CN110634749B - 一种BaSi2薄膜的外延生长方法 - Google Patents

一种BaSi2薄膜的外延生长方法 Download PDF

Info

Publication number
CN110634749B
CN110634749B CN201910872831.0A CN201910872831A CN110634749B CN 110634749 B CN110634749 B CN 110634749B CN 201910872831 A CN201910872831 A CN 201910872831A CN 110634749 B CN110634749 B CN 110634749B
Authority
CN
China
Prior art keywords
basi
sputtering
silicon substrate
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910872831.0A
Other languages
English (en)
Other versions
CN110634749A (zh
Inventor
杜伟杰
杜锐
沈岑
张毅闻
石旺舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN201910872831.0A priority Critical patent/CN110634749B/zh
Publication of CN110634749A publication Critical patent/CN110634749A/zh
Application granted granted Critical
Publication of CN110634749B publication Critical patent/CN110634749B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明一种BaSi2薄膜的外延生长方法,具体指一种利用磁控共溅射技术在单晶Si衬底上外延生长BaSi2薄膜的方法,涉及BaSi2薄膜制作方法技术领域。一种BaSi2薄膜的外延生长方法,所述单晶硅衬底晶向为<111>或<100>,电阻率0.01~10000Ω.cm。还包括如下步骤:I.单晶硅衬底清洗;II.单晶硅衬底退火;III.BaSi2种子层生长;IV.Ba、Si共溅射生长得到BaSi2外延薄膜。综上所述,本发明一种BaSi2薄膜的外延生长方法,与现有技术相比,具有可以实现薄膜的化学计量比的精确控制,提高薄膜的质量,有较好的外延特性及比分子束外延技术有生长速率快、成本低等优点。

Description

一种BaSi2薄膜的外延生长方法
技术领域:
本发明涉及BaSi2薄膜制作方法技术领域,具体指一种利用磁控共溅射技术在单晶 Si衬底上外延生长BaSi2薄膜的方法
背景技术:
随着能源和环境问题的日趋严峻,清洁、高效的可再生能源越来越受到人们的瞩目。太阳能电池作为一种新能源,一直是人们的研究的热点。目前,以晶硅(单晶硅、多晶硅)为主的太阳能电池占据了绝大部分的市场份额,主要归功于成熟的硅提纯工艺和晶硅太阳能电池生产工艺。近年来,薄膜太阳能电池如碲化镉(CdTe)和铜铟镓硒 (CIGS)太阳能电池也加入了竞争行列,其优势在于它们低的制造成本,较高的效率,灵活的应用场景,柔性等特点。钙钛矿太阳能电池由于其高效和简单灵活的制造工艺,成为太阳能电池家族的又一有力竞争者。然而昂贵元素如In、Ga的使用,造成了电池成本的上升,而且电池材料中所含的有毒元素如Cd、Pb等容易造成对环境的污染,这些因素限制了该类薄膜太阳能电池的进一步发展。因此,发展环境友好型薄膜太阳能电池,进一步提高薄膜太阳能电池的转换效率,降低制造成本,一直是太阳能电池研究领域中的热点问题。
二硅化钡(BaSi2)作为一种新型半导体材料,与常见太阳能电池材料相比,主要有两大特点:1,对环境友好,BaSi2中不含有污染环境的元素;2,原材料丰富廉价,使得制备低成本太阳能电池成为可能。此外,该材料具有合适的禁带宽度(1.3eV),在可见光区有着很高的吸收系数(105cm-1),在薄膜太阳能电池方面具有广阔的应用前景。
目前已公开的BaSi2薄膜的制备方法主要有三种(Suemasu T,UsamiN.Exploringthe potential of semiconducting BaSi2 for thin-film solar cellapplications[J].Journal of Physics D:Applied Physics,2016,50(2): 023001.):分子束外延,磁控溅射和热蒸发。分子束外延法制备BaSi2薄膜通常在超高真空下进行,通过Si和Ba的慢速率共沉积到加热的Si衬底上,得到BaSi2外延薄膜。该方法制备的BaSi2薄膜具有结晶性高、少子寿命长,光电响应强等优点,但其生长速率较慢(1~1.5nm/min),设备昂贵,造成较高的制备成本,不适于工业化应用。
磁控溅射法利用BaSi2靶材在Si、石英或玻璃衬底上,直接溅射沉积BaSi2薄膜,其生长速率在每分钟数十纳米,适合大规模生产,但目前该方法得到的BaSi2薄膜一般为多晶性质,需要进一步提高结晶质量。
热蒸发法通过在真空中利用钨舟加热BaSi2粉末,快速沉积到衬底上得到BaSi2薄膜,该方法对实验条件依赖较低,生长速率很快,达到每分钟数百纳米,但结晶质量较差,尚不能与分子束外延或溅射得到的薄膜质量相比。
从目前已公开的BaSi2薄膜的制备技术来说,其主要的问题是如何在获得高质量的基础上,提高薄膜生长速率。
发明内容:
本发明的目的在于克服现有技术存在的缺失和不足,提出一种BaSi2薄膜的生长方法,基于独立的Si靶和Ba靶作为源,通过双靶共溅射的方法,在单晶硅衬底上进行 BaSi2薄膜的外延生长,解决分子束外延生长中速率低下、成本高昂等问题。
本发明的技术方案:
一种BaSi2薄膜的外延生长方法,所述单晶硅衬底晶向为<111>或<100>,电阻率0.01~10000Ω·cm。
还包括如下步骤:
(1)单晶Si衬底分别使用丙酮、无水乙醇、去离子水依次超声清洗5分钟,然后在80℃的盐酸∶双氧水∶水=1∶1∶5的溶液中清洗5min,之后在80℃的氨水∶双氧水∶水=1∶1∶5的溶液中清洗5min,最后使用5%的氢氟酸溶液除去表面氧化层,取出用去离子水漂洗干净后用高纯氮气吹干放入磁控溅射腔室。
(2)在真空环境下退火硅衬底,退火温度850℃,退火时间30。
(3)在Si衬底上溅射一层5nm的Ba层,升高Si衬底温度和Ba反应得到BaSi2种子层,或直接在升温的Si衬底上溅射Ba得到BaSi2种子层。
(4)Si、Ba双靶共溅射生长BaSi2薄膜。
所述磁控溅射的背景压强低于5×10-5Pa。
优选地,步骤(3)中氩气流量为6sccm,溅射压强为0.3Pa。
优选地,步骤(3)中衬底温度为500-550℃,优选为500℃。
优选地,步骤(3)中Ba的溅射速率为1-5nm/min,优选为2.5nm/min。
优选地,步骤(3)中溅射时间为1-5min,优选为2min。
优选地,步骤(4)中氩气流量为6sccm,溅射压强为0.3Pa。
优选地,步骤(4)中衬底温度为500-600℃,优选为550℃。
优选地,步骤(4)中Si的溅射速率3~7nm/min,优选为5nm/min;Ba的溅射速率为15~25nm/min,优选为15nm/min;溅射时间1~4h。
如上所述,与现有技术相比,本发明具有如下优势:
具有较好的外延特性,相比分子束外延技术具有生长速率快,成本低等优点。可以实现薄膜的化学计量比的精确控制,提高薄膜的质量。
附图说明
图1为本发明一种BaSi2薄膜的外延生长方法流程框图;
图2为本发明实施例BaSi2种子层的拉曼光谱;
图3为本发明实施例在衬底上BaSi2薄膜的高分辨率X射线衍射图;
图4为本发明实施例在衬底上BaSi2薄膜的(a)表面和(b)截面扫描电镜图。
具体实施方式
以下结合附图和实施例对本发明作进一步描述
本发明一种BaSi2薄膜的外延生长方法步骤流程(如附图1所示)
本发明实施例1:
I步骤,将衬底依次在丙酮、乙醇、去离子水中各超声清洗5min。之后依次放入 80℃盐酸∶双氧水∶水=1∶1∶5的酸溶液和80℃氨水∶双氧水∶水=1∶1∶5的碱溶液中清洗5min,最后在5%的稀HF中除去氧化层,用去离子水冲洗并用高纯氮气吹干备用。
II步骤洗净的衬底导入磁控溅射真空腔室,抽取真空到5×10-5Pa以下,将衬底升温至850℃并维持30min,之后降低衬底温度至500℃。
III步骤在500℃的衬底上溅射Ba层,溅射压强为0.3Pa,溅射速率2.5nm/min,溅射时间2min,在该过程中,Ba和加热的Si衬底发生反应,生成BaSi2种子层,通过拉曼光谱检测,在250~300cm-1和350~400cm-1之间,得到代表BaSi2的四个拉曼特征峰(如附图2所示)。
IV步骤将衬底温度升高到550℃,在已经生成BaSi2种子层的衬底上同时溅射Ba和Si,溅射压强0.3Pa,溅射速率分别为15nm/min和5nm/min,溅射时间1h,得到外延生长的BaSi2薄膜,溅射结束后自然降温至室温后取出样品进行结晶性和微观形貌表征。
薄膜的高分辨率X射线衍射图(如附图3所示),检测到除Si衬底峰之外的代表BaSi2沿<100>方向生长的BaSi2(200),BaSi2(400)和BaSi2(600)三个峰,表明薄膜的外延特性;
生长1h的BaSi2薄膜的(a)表面和(b)截面形貌图,观察到BaSi2薄膜和Si衬底之间的清晰界面(如附图4所示)。
本发明实施例2(如附图1所示)
I.步骤:将衬底依次在丙酮、乙醇、去离子水中各超声清洗5min。之后依次放入 80℃盐酸∶双氧水∶水=1∶1∶5的酸溶液和80℃氨水∶双氧水∶水=1∶1∶5的碱溶液中清洗5min,最后在5%的稀HF中出去氧化层,用去离子水冲洗并用高纯氮气吹干备用。
II.步骤:洗净的衬底导入磁控溅射真空腔室,抽取真空到5×10-5Pa以下,将衬底升温至850℃并维持30分钟,之后降低衬底温度至室温。
III步骤:在衬底上溅射Ba层,溅射压强为0.3Pa,溅射速率2.5nm/min,溅射时间2min,然后缓慢升高衬底温度至500℃并维持该温度30min,形成BaSi2种子层。
IV步骤:共溅射Ba和Si,溅射压强0.3Pa,衬底温度为550℃,溅射速率分别为15nm/min和5nm/min,溅射时间1h,溅射结束后自然降温至室温后取出样品进行结晶性和微观形貌表征。
综上所述,本发明一种BaSi2薄膜的外延生长方法,特别在二硅化钡(BaSi2)作为一种新型半导体材料,与常见太阳能电池材料相比,主要有几大特点:对环境友好, BaSi2中不含有污染环境的元素;原材料丰富廉价,使得制备低成本太阳能电池成为可能;以及该材料具有合适的禁带宽度(1.3eV),在可见光区有着很高的吸收系数(105cm-1) 基础上,与现有技术相比,具有实现薄膜的化学计量比的精确控制,提高薄膜的质量和具有较好的外延特性,相比分子束外延技术具有生长速率快,成本低等优点,为在硅异质结太阳能电池、薄膜太阳能电池、光电探测器等领域良好的应用前景,提供坚实的技术物质基础。

Claims (5)

1.一种BaSi2薄膜的外延生长方法,基于独立的Si靶和Ba靶作为源,通过双靶共溅射在单晶硅衬底上进行BaSi2薄膜的外延生长,其特征在于,所述单晶硅衬底晶向为<111>或<100>,电阻率0.01~10000Ω·cm;
并包括如下步骤:
I.单晶硅衬底清洗;
II.单晶硅衬底退火;
III.BaSi2种子层生长;
IV.Ba、Si共溅射生长得到BaSi2外延薄膜;
所述III.BaSi2种子层生长,还包括:III.1硅衬底温度至500~550℃,溅射5nm厚Ba原子层至硅衬底上,反应得到BaSi2种子层;
或在室温下溅射5nm厚Ba原子层至硅衬底上,缓慢升高衬底温度至500~550℃,反应得到BaSi2种子层。
2.如权利要求1所述的一种BaSi2薄膜的外延生长方法,其特征在于,所述I.单晶硅衬底的清洗,还包括:I.1在丙酮、乙醇、去离子水中各超声清洗5min;
I.2在80℃的盐酸∶双氧水∶水=1∶1∶5的溶液中清洗5min;
I.3在80℃的氨水∶双氧水∶水=1∶1∶5的溶液中清洗5min;
I.4在5%的稀HF中除去氧化层并用高纯氮气吹干。
3.如权利要求1所述的一种BaSi2薄膜的外延生长方法,其特征在于,所述II.单晶硅衬底退火,还包括:退火的温度为850℃,退火时间30min。
4.如权利要求1所述的一种BaSi2薄膜的外延生长方法,其特征在于,所述III.BaSi2种子层生长,其中:
氩气流量为6sccm,溅射压强为0.3Pa;
衬底温度为500-550℃;
Ba的溅射速率为1-5nm/min;
溅射时间为1-5min。
5.如权利要求1所述的一种BaSi2薄膜的外延生长方法,其特征在于,所述IV.Ba、Si共溅射生长得到BaSi2外延薄膜的溅射速率:
其中,Si的溅射速率3~7nm/min;
Ba的溅射速率为15~25nm/min;
溅射时间1~4h;
氩气流量为6sccm;
溅射压强为0.3Pa;
衬底温度为500-600℃。
CN201910872831.0A 2019-09-16 2019-09-16 一种BaSi2薄膜的外延生长方法 Active CN110634749B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910872831.0A CN110634749B (zh) 2019-09-16 2019-09-16 一种BaSi2薄膜的外延生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910872831.0A CN110634749B (zh) 2019-09-16 2019-09-16 一种BaSi2薄膜的外延生长方法

Publications (2)

Publication Number Publication Date
CN110634749A CN110634749A (zh) 2019-12-31
CN110634749B true CN110634749B (zh) 2022-03-25

Family

ID=68971448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910872831.0A Active CN110634749B (zh) 2019-09-16 2019-09-16 一种BaSi2薄膜的外延生长方法

Country Status (1)

Country Link
CN (1) CN110634749B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046356A (zh) * 1990-03-22 1990-10-24 四川大学 多组元金属氧化物薄膜的制备方法
CN103137720A (zh) * 2013-02-06 2013-06-05 内蒙古大学 一种掺杂稀土元素的光伏薄膜材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046356A (zh) * 1990-03-22 1990-10-24 四川大学 多组元金属氧化物薄膜的制备方法
CN103137720A (zh) * 2013-02-06 2013-06-05 内蒙古大学 一种掺杂稀土元素的光伏薄膜材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
杨子义、刘涛、徐虎.衬底温度对共溅射法制备BaSi2薄膜的影响.《四川师范大学学报(自然科学版)》.2017,第40卷(第5期),675-679. *
正交相BaSi2薄膜的制备及结晶研究;杨子义、郝正同、徐虎;《材料导报B:研究篇》;20140531;第28卷(第5期);正文第38-41页 *
衬底温度对共溅射法制备BaSi2薄膜的影响;杨子义、刘涛、徐虎;《四川师范大学学报(自然科学版)》;20170930;第40卷(第5期);第675-679页 *

Also Published As

Publication number Publication date
CN110634749A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN110828602B (zh) 一种硒化锑薄膜太阳电池及其制备方法
JP5520496B2 (ja) 太陽電池の製造方法
CN104988579A (zh) 基于蓝宝石衬底的氧化镓薄膜及其生长方法
CN104962858A (zh) 基于GaAs衬底的氧化镓薄膜及其生长方法
CN111020487B (zh) 一种取向可控的准一维结构材料的薄膜制备方法
CN114086126B (zh) 一种单晶太阳能电池薄膜材料及其制备方法
CN101339906A (zh) 新型环境半导体光电子材料β-FeSi2薄膜的制备工艺
CN105118851A (zh) 基于蓝宝石衬底的多层氧化镓薄膜及其生长方法
CN114203848A (zh) 一种柔性硒化锑太阳电池及其制备方法
JP2010530474A (ja) 単一の有機金属化学気相蒸着工程によるi−iii−vi2化合物薄膜の製造方法
CN111334856A (zh) 用等离子体辅助分子束外延以准范德华外延生长高质量ZnO单晶薄膜的方法
CN105118853A (zh) 基于MgO衬底的氧化镓薄膜及其生长方法
CN110634749B (zh) 一种BaSi2薄膜的外延生长方法
CN111933738B (zh) 基于分子束外延技术的自成结光电探测器及其制备方法
KR101683127B1 (ko) 그래핀을 완충층으로 사용한 게르마늄 단결정 박막의 제조 방법
KR101635970B1 (ko) 저압 화학기상증착법을 이용한 게르마늄 단결정 박막 제조 방법
JP2001250968A (ja) 結晶シリコン薄膜半導体装置、結晶シリコン薄膜光起電力素子、および結晶シリコン薄膜半導体装置の製造方法
CN105986321B (zh) 在Ge衬底上生长GaAs外延薄膜的方法
CN101469448B (zh) 在蓝宝石上生长大尺寸高质量氧化锌单晶厚膜的方法
TWI313026B (en) Multi layer compound semiconductor solar photovoltaic device and its growing method
CN114959635B (zh) 一种硫化锡/二硫化钼混合维度范德华异质结的制备方法
CN111910158B (zh) 一种超宽禁带p型SnO2薄膜及其制备方法
CN115478248B (zh) 一种叠层太阳能电池吸收层材料SrZrS3薄膜及其制备方法
CN117089928A (zh) 超平整无孪晶BixSb2-xTe3薄膜的分子束外延制备方法
CN108642448B (zh) 一种低电阻率n型氧化亚铜薄膜的真空制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant