CN114203848A - 一种柔性硒化锑太阳电池及其制备方法 - Google Patents

一种柔性硒化锑太阳电池及其制备方法 Download PDF

Info

Publication number
CN114203848A
CN114203848A CN202111262403.XA CN202111262403A CN114203848A CN 114203848 A CN114203848 A CN 114203848A CN 202111262403 A CN202111262403 A CN 202111262403A CN 114203848 A CN114203848 A CN 114203848A
Authority
CN
China
Prior art keywords
layer
selenide
prepared
solar cell
antimony selenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111262403.XA
Other languages
English (en)
Other versions
CN114203848B (zh
Inventor
李志强
梁晓杨
段召腾
李斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University
Original Assignee
Hebei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University filed Critical Hebei University
Priority to CN202111262403.XA priority Critical patent/CN114203848B/zh
Publication of CN114203848A publication Critical patent/CN114203848A/zh
Application granted granted Critical
Publication of CN114203848B publication Critical patent/CN114203848B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种柔性硒化锑太阳电池及其制备方法。本发明所述方法为应用低温磁控溅射法在背电极上制备一层硒化铅背接触层,而后进行后续的硒化锑吸收层、缓冲层、窗口层、顶电极的制备,硒化铅背接触层优化了后续沉积的硒化锑的结晶生长,同时降低了背接触界面的接触势垒,实现了柔性、低温、高效硒化锑薄膜太阳电池的制备。本发明提供了新的低温柔性背接触层制备方法,有效优化硒化锑吸收层生长,同时降低了器件背接触势垒,提升了器件性能,实现了柔性硒化锑太阳电池的制备。

Description

一种柔性硒化锑太阳电池及其制备方法
技术领域
本发明涉及光电材料及太阳电池制备领域,具体地说是一种柔性硒化锑太阳电池及其制备方法。
背景技术
二元化合物硒化锑(Sb2Se3)作为太阳电池的光吸收层,具有合适的带隙宽度(1.1~1.3eV)、高吸收系数(105cm-1量级)、价格低廉、环境友好等特点,是一种非常理想的光伏材料,硒化锑太阳电池理论效率可达到30%,发展潜力巨大。硒化锑具有独特的一维晶体结构:Sb2Se3晶体由带状的(Sb4Se6)n构成,当(Sb4Se6)n平行于衬底生长时,即[hk0]择优取向,载流子传输效率较低;当薄膜呈现[hk1]择优取向时,(Sb4Se6)n斜立或垂直于衬底生长,具有最高的迁移率,光生载流子可以被更高效的收集。在底衬结构硒化锑太阳电池中,为获得较好结晶取向的光吸收层,一般会对背电极进行高温硒化处理以获得性能优异的背接触层。此外,合适的背接触层可以有效减小背电极与硒化锑吸收层间的接触势垒,有效提升载流子收集。
目前,可用的背接触层制备工艺大都为高温硒化背电极获得硒化物背接触层。但是,对于薄膜太阳电池的优势——可制备柔性器件来说,背接触层的高温制备工艺通常超过550℃,限制了柔性硒化锑器件的制备:对于常用的柔性聚合物衬底如聚酰亚胺,高衬底温度超过了其耐受温度(~500℃),对常用的不锈钢薄片,高温会加剧衬底中的杂质向吸收层的扩散从而带来器件性能的衰减。此外,较高的衬底温度不利于低成本、低制备工艺要求的实现。因此,寻求一种低温背接触层制备材料及工艺对高效、低成本、柔性硒化锑太阳电池的制备及后续应用推广具有重要意义。
发明内容
本发明的目的就是提供一种柔性硒化锑太阳电池及其制备方法,该柔性硒化锑太阳电池采用硒化铅(PbSe)作为背接触层,且背接触层的制备工艺采用低温磁控溅射技术,解决了高温对衬底不利的问题。
本发明是这样实现的:一种柔性硒化锑太阳电池,由下至上依次包括:衬底、背电极、硒化铅背接触层、硒化锑吸收层、缓冲层、窗口层和顶电极;所述硒化铅背接触层采用磁控溅射法制备而成,溅射时衬底温度为常温至200℃,制备的硒化铅背接触层的厚度为5~20nm。
本发明应用低温磁控溅射法在附着在柔性衬底上的背电极上制备一层硒化铅背接触层,而后利用近空间升华法在所述硒化铅背接触层上沉积硒化锑吸收层,并进行缓冲层、窗口层、顶电极等其他功能层的制备完成柔性硒化锑太阳电池的制备。
所述衬底为聚酰亚胺薄片或不锈钢薄片。
所述背电极使用溅射工艺制备,优选的,背电极为钼背电极,钼背电极的厚度为500~1000nm,制备时衬底温度为150℃。
采用磁控溅射法制备硒化铅背接触层的条件为选择化学计量比的硒化铅靶材,溅射时衬底温度为常温~200℃,靶材至衬底的距离为5-8cm,溅射功率密度为1-2W/cm2,溅射气压为0.3~0.8Pa,制备的硒化铅薄膜厚度为5~20nm。
所述近空间升华法条件为选用化学计量比的硒化锑粉末作为蒸发源,衬底温度为240~320℃,蒸发源温度为480~530℃所制备的硒化锑吸收层的厚度为厚度为500~1200nm。
采用化学水浴法制备缓冲层,所述缓冲层制备时衬底温度为65~80℃,所制备的缓冲层的厚度为40~100nm。优选的,所述缓冲层为硫化镉或硫化铟缓冲层。
采用磁控溅射技术制备窗口层,所述窗口层制备时衬底温度为常温~150℃,所制备的窗口层为氧化锌/掺铝氧化锌或氧化锌/掺氟氧化锡层,氧化锌层厚度为50~70nm,掺铝氧化锌或掺氟氧化锡层厚度为100~350nm。
采用热蒸发法制备顶电极,所述顶电极制备时衬底温度为常温,所制备的顶电极层厚度为80~200nm。所述顶电极为金栅线顶电极。
本发明通过制备硒化铅背接触层,来获得结晶取向更加优化的硒化锑吸收层,同时降低背接触界面的接触势垒,整个制备过程均能实现器件的低温制备,适用于进一步推广应用。
背接触层的高温制备工艺是限制柔性、高效硒化锑太阳电池制备的关键因素之一,本发明提出的硒化铅低温磁控溅射工艺,有效的实现了背接触层制备工艺的低温化,从而获得低温高效柔性硒化锑太阳电池。相比于现有技术,本发明的优势具体体现在:
1)制备工艺简单、可控,应用磁控溅射工艺替换现有高温硒化工艺,工艺更加简单,制备过程可精准调控;2)成本低廉,磁控溅射工艺简单成熟,且应用低温工艺,节能环保,且设备成本及制备成本更低廉;3)制备的背接触层的厚度等参数可通过沉积时间精准调控,进而可有效调控优化器件背接触界面的接触;4)磁控溅射低温制备工艺有效的解决了背接触层在柔性器件中的制备的关键温度问题,实现了高效、柔性硒化锑太阳电池的制备。
附图说明
图1是本发明中柔性硒化锑太阳电池的结构示意图。
图2是本发明实施例2以及对比例中所制备的硒化锑吸收层的SEM图。
图3是本发明实施例3及对比例所制备的柔性硒化锑太阳电池的IV特性图。
具体实施方式
实施例1
如图1所示,本发明所提供的柔性硒化锑太阳电池的结构由下至上依次是:衬底、背电极、硒化铅背接触层、硒化锑吸收层、缓冲层、窗口层和顶电极。硒化铅背接触层采用低温磁控溅射法制备而成,硒化锑吸收层采用近空间升华法制备而成。本实施例中,衬底为柔性聚酰亚胺PI衬底,背电极为钼背电极,缓冲层为硫化镉缓冲层,窗口层为氧化锌/掺铝氧化锌层,顶电极为金电极。
实施例2
本实施例中,衬底选择为镀有钼背电极的聚酰亚胺PI衬底,溅射工艺选择射频磁控溅射工艺,溅射功率密度为1.1W/cm2,溅射靶材选择直径为7.62cm的圆形靶材,靶材为符合化学计量比的硒化铅靶材,选择Ar气作为溅射气体,靶材至衬底距离为8cm,溅射时气压设定为0.5Pa,衬底温度设定为常温,制备的硒化铅薄膜厚度设定为5nm。
硒化铅薄膜制备完成后,在所述硒化铅上应用近空间升华工艺制备硒化锑吸收层。衬底温度设置为300℃,蒸发源温度设定为510℃,制备的硒化锑吸收层厚度为1000nm。
对比例
本对比例与实施例2相比,在镀有钼背电极的聚酰亚胺衬底上采用近空间升华工艺制备硒化锑吸收层,即本对比例中没有制备硒化铅薄膜,其他工艺参数均与实施例2中相同。
对本对比例以及实施例2中所制备的硒化锑吸收层进行形貌及结晶取向测试,形貌结果如图2所示。图2中,(a)为对比例中硒化锑吸收层样品的表面形貌,(b)为对比例中硒化锑吸收层样品的截面形貌,(c)为实施例2中硒化锑吸收层样品的表面形貌,(d)为实施例2中硒化锑吸收层样品的截面形貌。由图2可知,通过与未沉积硒化铅背接触层的样品相比,硒化铅层的制备,使得后续沉积的硒化锑吸收层从致密的薄膜转变为稀疏的纳米棒阵列。结晶取向分析表明,硒化铅层的制备使硒化锑由水平于衬底方向生长的[hk0]结晶取向改变为垂直或倾斜于衬底方向的[hk1]的结晶取向。因此,硒化铅背接触层的制备有效的优化了后续沉积的硒化锑吸收层的结晶,获得了优选的[hk1]结晶取向的纳米棒阵列硒化锑吸收层。
实施例3
应用本发明制备的硒化铅背接触层,制备柔性硒化锑太阳电池,其结构为柔性聚酰亚胺衬底/钼背电极/硒化铅背接触层/硒化锑吸收层/硫化镉缓冲层/氧化锌/掺铝氧化锌窗口层/金顶电极(如图1所示)
具体制备步骤如下:
(1)清洗衬底
采用柔性聚酰亚胺作为衬底,分别用电子清洗剂、无水乙醇及去离子水依次冲洗聚酰亚胺表面,然后用氮气吹干衬底表面。
(2)制备钼背电极
采用直流磁控溅射技术制备Mo背电极,靶材溅射功率密度为3.9W/cm2,溅射气压为0.3Pa,制备的薄膜厚度为700nm,电阻率为3×10-5Ω·cm。
(3)制备硒化铅背接触层
采用射频磁控溅射工艺,溅射功率密度为1.1W/cm2,溅射靶材选择直径为7.62cm的圆形靶材,靶材为符合化学计量比的硒化铅靶材,选择Ar气作为溅射气体,靶材至衬底距离为8cm,溅射时气压为0.5Pa,衬底温度为常温,制备的硒化铅背接触层厚度为5nm。
(4)制备硒化锑吸收层
采用近空间升华工艺沉积硒化锑吸收层,衬底温度设置为300℃,蒸发源温度设定为510℃,制备的硒化锑吸收层厚度为1000nm。
(5)制备硫化镉缓冲层
采用化学水浴法制备硫化镉缓冲层,采用硫酸镉作为镉源,采用硫脲作为硫源,反应温度设定为70℃,制备的硫化镉缓冲层厚度为80nm。
(6)制备氧化锌及掺铝氧化锌窗口层
采用射频磁控溅射技术沉积制备氧化锌及掺铝氧化锌窗口层,溅射靶材选择高纯氧化锌靶材及掺铝氧化锌靶材,溅射功率密度分别为0.85W/cm2、1.70W/cm2,溅射气压分别为0.5Pa、0.2Pa,衬底温度为常温,厚度分别为50nm、300nm。
(7)制备金顶电极
采用热蒸发技术沉积金顶电极层,采用高纯金丝作为蒸发源,制备的金顶电极层厚度为100nm。
测试器件IV特性,结果如图3所示,没有应用硒化铅背接触层的器件光电转换效率为1.65%,应用硒化铅背接触层制备的柔性硒化锑太阳电池获得了4.12%的光电转换效率,实现了低温柔性高效率器件的制备。

Claims (10)

1.一种柔性硒化锑太阳电池,其特征是,由下至上依次包括:衬底、背电极、硒化铅背接触层、硒化锑吸收层、缓冲层、窗口层和顶电极;所述硒化铅背接触层采用磁控溅射法制备而成,溅射时衬底温度为常温至200℃,制备的硒化铅背接触层的厚度为5~20nm。
2.根据权利要求1所述的柔性硒化锑太阳电池,其特征是,所述硒化锑吸收层采用近空间升华法制备而成,制备时衬底温度为240~320℃。
3.根据权利要求1所述的柔性硒化锑太阳电池,其特征是,所述背电极为钼背电极,所述缓冲层为硫化镉缓冲层,所述窗口层为氧化锌/掺铝氧化锌层,所述顶电极为金顶电极。
4.根据权利要求1所述的柔性硒化锑太阳电池,其特征是,所述衬底为聚酰亚胺薄片或金属薄片。
5.一种柔性硒化锑太阳电池的制备方法,其特征是,包括如下步骤:
a、清洗衬底;
b、采用磁控溅射技术在所述衬底上制备背电极;
c、采用磁控溅射技术在所述背电极上制备硒化铅背接触层;溅射时衬底温度为常温至200℃,所制备的硒化铅背接触层的厚度为5~20nm;
d、采用近空间升华工艺在所述硒化铅背接触层上沉积硒化锑吸收层,衬底温度设置为240~320℃;
e、采用化学水浴法在所述硒化锑吸收层上制备缓冲层;
f、采用磁控溅射技术在所述缓冲层上制备窗口层;
g、采用热蒸发技术在所述窗口层上制备顶电极。
6.根据权利要求5所述的柔性硒化锑太阳电池的制备方法,其特征是,步骤c中,制备硒化铅背接触层时,所用靶材为满足化学计量比的硒化铅靶材,靶材至衬底的距离为5-8cm,溅射功率密度为1-2W/cm2,溅射气压为0.3~0.8Pa。
7.根据权利要求5所述的柔性硒化锑太阳电池的制备方法,其特征是,步骤e中,制备缓冲层时控制衬底温度为65~80℃,所制备的缓冲层的厚度为40~100nm。
8.根据权利要求5所述的柔性硒化锑太阳电池的制备方法,其特征是,步骤f中,制备窗口层时控制衬底温度为常温至150℃,所制备的窗口层为氧化锌/掺铝氧化锌或氧化锌/掺氟氧化锡层,氧化锌层厚度为50~70nm,掺铝氧化锌或掺氟氧化锡层厚度为100~350nm。
9.根据权利要求5所述的柔性硒化锑太阳电池的制备方法,其特征是,步骤g中,制备顶电极时衬底温度为常温,所制备的顶电极层厚度为80~200nm。
10.根据权利要求5所述的柔性硒化锑太阳电池的制备方法,其特征是,步骤b中,制备的背电极为钼背电极,钼背电极的厚度为500~1000nm,制备时衬底温度为150℃。
CN202111262403.XA 2021-10-28 2021-10-28 一种柔性硒化锑太阳电池及其制备方法 Active CN114203848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111262403.XA CN114203848B (zh) 2021-10-28 2021-10-28 一种柔性硒化锑太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111262403.XA CN114203848B (zh) 2021-10-28 2021-10-28 一种柔性硒化锑太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN114203848A true CN114203848A (zh) 2022-03-18
CN114203848B CN114203848B (zh) 2023-05-23

Family

ID=80646427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111262403.XA Active CN114203848B (zh) 2021-10-28 2021-10-28 一种柔性硒化锑太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN114203848B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744066A (zh) * 2022-03-24 2022-07-12 暨南大学 一种双面光伏器件及其制备方法
CN114975655A (zh) * 2022-05-17 2022-08-30 东北电力大学 一种锑基纳米棒阵列异质结的光电探测器及其制备方法
CN117727815A (zh) * 2024-02-18 2024-03-19 河北大学 一种自陷光结构硒化锑太阳电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129146A (zh) * 2016-08-23 2016-11-16 湖南师范大学 一种以黑磷烯作为导电材料的硒化锑薄膜太阳能电池及其制备方法
US9598283B1 (en) * 2015-09-25 2017-03-21 Sharp Laboratories Of America, Inc. Synthesis method for controlling antimony selenide nanostructure shapes
US20170125703A1 (en) * 2015-10-30 2017-05-04 Semiconductor Energy Laboratory Co., Ltd. Dibenzocarbazole Compound, Light-Emitting Element, Light-Emitting Device, Display Device, Electronic Device, and Lighting Device
JP2018046055A (ja) * 2016-09-12 2018-03-22 積水化学工業株式会社 太陽電池
CN110534591A (zh) * 2019-08-21 2019-12-03 西北工业大学 一种硒化锑薄膜太阳能电池及制备方法
CN110676384A (zh) * 2019-11-05 2020-01-10 南京理工大学 一种氮化硼封装的二维有机-无机异质结及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9598283B1 (en) * 2015-09-25 2017-03-21 Sharp Laboratories Of America, Inc. Synthesis method for controlling antimony selenide nanostructure shapes
US20170125703A1 (en) * 2015-10-30 2017-05-04 Semiconductor Energy Laboratory Co., Ltd. Dibenzocarbazole Compound, Light-Emitting Element, Light-Emitting Device, Display Device, Electronic Device, and Lighting Device
CN106129146A (zh) * 2016-08-23 2016-11-16 湖南师范大学 一种以黑磷烯作为导电材料的硒化锑薄膜太阳能电池及其制备方法
JP2018046055A (ja) * 2016-09-12 2018-03-22 積水化学工業株式会社 太陽電池
CN110534591A (zh) * 2019-08-21 2019-12-03 西北工业大学 一种硒化锑薄膜太阳能电池及制备方法
CN110676384A (zh) * 2019-11-05 2020-01-10 南京理工大学 一种氮化硼封装的二维有机-无机异质结及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张小丽等: "硒化铅核壳量子点的合成与应用研究进展", 《发光学报》 *
李志强等: "硒化锑纳米棒阵列太阳电池", 《第八届新型太阳能材料科学与技术学术研讨会论文集》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744066A (zh) * 2022-03-24 2022-07-12 暨南大学 一种双面光伏器件及其制备方法
CN114975655A (zh) * 2022-05-17 2022-08-30 东北电力大学 一种锑基纳米棒阵列异质结的光电探测器及其制备方法
CN114975655B (zh) * 2022-05-17 2023-12-22 东北电力大学 一种锑基纳米棒阵列异质结的光电探测器及其制备方法
CN117727815A (zh) * 2024-02-18 2024-03-19 河北大学 一种自陷光结构硒化锑太阳电池及其制备方法
CN117727815B (zh) * 2024-02-18 2024-04-23 河北大学 一种自陷光结构硒化锑太阳电池及其制备方法

Also Published As

Publication number Publication date
CN114203848B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
CN102569508B (zh) 一种纳米线阵列结构薄膜太阳能光伏电池及其制备方法
CN114203848B (zh) 一种柔性硒化锑太阳电池及其制备方法
CN107871795B (zh) 一种基于柔性钼衬底的镉掺杂铜锌锡硫硒薄膜的带隙梯度的调控方法
CN108123000B (zh) 一种纳米棒型硒化锑太阳电池及其制备方法
CN107946393B (zh) 基于SnTe作为背电极缓冲层的CdTe薄膜太阳能电池及其制备方法
JP5956397B2 (ja) 銅・インジウム・ガリウム・セレニウム(cigs)または銅・亜鉛・錫・硫黄(czts)系薄膜型太陽電池及びその製造方法
CN102386283B (zh) Cigss太阳能光伏电池制备方法
CN102779864A (zh) 一种碲化镉薄膜电池及其制备方法
CN107093650A (zh) 一种制备铜锑硫太阳能电池吸收层的方法
CN102779891A (zh) 铜铟镓硒薄膜型太阳能电池装置及其制备方法
CN104143579A (zh) 一种锑基化合物薄膜太阳能电池及其制备方法
CN112038439A (zh) 一种CZTSSe柔性双面太阳电池及其制备方法
CN103762257A (zh) 铜锌锡硫吸收层薄膜及铜锌锡硫太阳能电池的制备方法
CN102637755A (zh) 一种纳米结构czts薄膜光伏电池及其制备方法
CN103956391A (zh) 一种AZO/Si异质结太阳电池及其制备方法
Chu et al. Semi-transparent thin film solar cells by a solution process
KR20180034274A (ko) 은이 첨가된 czts계 박막 태양전지 및 이의 제조방법
CN103985783B (zh) 利用磁控溅射法在柔性衬底上制备铜锌锡硫薄膜的方法
CN112259620A (zh) 一种Sb2Se3薄膜太阳能电池及其制备方法
CN103400893A (zh) 一种制备铜锌锡硫光电薄膜的方法
KR20150035298A (ko) Czts계 태양전지의 박막 제조방법 및 이로부터 제조된 태양전지
CN106531845A (zh) 化学水浴制备太阳能电池吸收层CuInS2薄膜的方法
CN108574044B (zh) 一种基于Nb(OH)5的全室温钙钛矿太阳能电池及其制备方法
CN105895735A (zh) 氧化锌靶溅射制备铜锌锡硫薄膜太阳电池的方法
CN113929313B (zh) 一种三维导电纳米棒及其阵列电子传输层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant