CN114975655A - 一种锑基纳米棒阵列异质结的光电探测器及其制备方法 - Google Patents

一种锑基纳米棒阵列异质结的光电探测器及其制备方法 Download PDF

Info

Publication number
CN114975655A
CN114975655A CN202210535143.7A CN202210535143A CN114975655A CN 114975655 A CN114975655 A CN 114975655A CN 202210535143 A CN202210535143 A CN 202210535143A CN 114975655 A CN114975655 A CN 114975655A
Authority
CN
China
Prior art keywords
nanorod array
antimony
heterojunction
hole transport
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210535143.7A
Other languages
English (en)
Other versions
CN114975655B (zh
Inventor
曹宇
曲鹏
周静
凌同
朱嘉伟
武颖
贺伟兰
张颉
韩林肖
张国辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202210535143.7A priority Critical patent/CN114975655B/zh
Publication of CN114975655A publication Critical patent/CN114975655A/zh
Application granted granted Critical
Publication of CN114975655B publication Critical patent/CN114975655B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明一种锑基纳米棒阵列异质结的光电探测器,其包括:掺硼氧化锌透明导电玻璃衬底、锑基纳米棒阵列吸收层、空穴传输层和金属电极,采用ZnO:B透明导电玻璃衬底诱导技术,制备锑基纳米棒阵列中分子链与纳米棒生长取向一致,改善了载流子输运特性,增强了光电流响应;其制备方法为构建合理的锑基纳米棒阵列异质结结构,高度有序的锑基纳米棒阵列作为光吸收层,提高载流子输运特性,制备方法简单、成本低、制备器件性能高、具有较高的工业化应用价值。

Description

一种锑基纳米棒阵列异质结的光电探测器及其制备方法
技术领域
本发明涉及光电材料、光电探测器技术领域,具体涉及一种锑基纳米棒阵列异质结的光电探测器及其制备方法。
背景技术
近年来,光电探测器作为机器视觉、模式识别、无人驾驶等领域的关键光电元件,而受到广泛关注。随着成像技术的普及和高速发展,对具有宽谱域响应、高性能光电探测器的需求在不断加强。要求光电探测器实现高响应度、高探测率等性能的同时满足宽光谱响应,同时也要求制备材料无毒、成本低和可快速大规模制备等特点。锑基材料(Sb2S3、Sb2Se3、Sb2(S,Se)3)作为一种新型光伏吸收材料,禁带宽度为1.1–1.7eV,可以实现紫外-可见光-近红外的宽光谱吸收,同时还具有高吸收系数,原材料丰富,无毒,可满足工业生产中的大规模制备。
目前,虽然锑基材料作为光吸收材料,在光电导探测器和薄膜异质结光电探测器上已有应用,但光电导探测器需要在固定偏压下工作,而薄膜异质结光电探测器可以实现器件在无偏压下工作。进一步提升锑基材料性能,需要优化锑基吸光层生长取向,提高光电流响应,但此项技术尚未攻克,在相关文献上也没有任何记载。
发明内容
本发明针对现有技术存在的问题,设计了一种锑基纳米棒阵列异质结的光电探测器,构建合理的锑基纳米棒阵列异质结结构,高度有序的锑基纳米棒阵列作为光吸收层,可以提高载流子输运特性,提高光电探测器性能;同时提供了一种锑基纳米棒阵列异质结的光电探测器的制备方法,该制备方法简单,适用于工业化大规模生成。
实现本发明技术方案之一,一种锑基纳米棒阵列异质结的光电探测器,其特征是,它从上而下依次排列以下结构:掺硼氧化锌透明导电玻璃衬底,锑基纳米棒阵列吸收层,空穴传输层,金属电极层。
进一步,所述的锑基纳米棒阵列吸收层是Sb2S3纳米棒阵列吸收层、Sb2Se3纳米棒阵列吸收层或Sb2(S,Se)3纳米棒阵列吸收层。
进一步,所述的空穴传输层是P3HT、MoO3或Spiro-OMeTAD。
进一步,所述的金属电极层是Au、Ag或Al薄膜。
实现本发明技术方案之二,一种锑基纳米棒阵列异质结的光电探测器的制备方法,其特征是,它包括以下步骤:
1)对掺硼氧化锌透明导电玻璃衬底用洗洁精和纯水洗涤15分钟,然后依次用超纯水、乙醇、丙酮超声洗涤15分钟,用氮气吹干;
2)将步骤1)洁净后的掺硼氧化锌透明导电玻璃衬底放置于近空间升华系统设备中,真空压力为0.1~5pa,蒸发源重量为0.2~4g,所述蒸发源是Sb2S3、Sb2Se3或Sb2(S,Se)3,所述掺硼氧化锌透明导电玻璃衬底与蒸发源距离调整为5~20mm,所述掺硼氧化锌透明导电玻璃衬底温度调整为200~350℃,所述蒸发源的温度升至为150~400℃保持5-30min,当所述蒸发源的温度升至450~600℃时,开启衬底挡板,持续蒸发10~120s,沉积结束后,自然冷却至室温取出,得到锑基纳米棒阵列异质结;
3)在步骤2)中所述锑基纳米棒阵列异质结下部制备空穴传输层薄膜,所述的空穴传输层是P3HT、MoO3或Spiro-OMeTAD;
4)将步骤3)中制备空穴传输层薄膜后的锑基纳米棒阵列异质结,放置在蒸镀设备中,将所述蒸镀设备抽至真空后,蒸镀金属电极层,所述的金属电极层是Au、Ag或Al薄膜,所述蒸镀金属电极层蒸镀完毕后,得到锑基纳米棒阵列异质结的光电探测器。
进一步,在制备方法步骤2)中,所述Sb2S3纳米棒阵列厚度为200nm、Sb2Se3纳米棒阵列厚度为1500nm或Sb2(S,Se)3纳米棒阵列厚度为2000nm。
进一步,在制备方法步骤3)中,当所述空穴传输层是MoO3时,制备方法选用蒸镀法,将所述锑基纳米棒阵列异质结放在蒸镀设备中,将所述蒸镀设备抽至真空后,用蒸镀法蒸镀空穴传输层薄膜。
进一步,在制备方法步骤3)中,当所述空穴传输层是P3HT或Spiro-OMeTAD时,制备方法选用旋涂法,将所述锑基纳米棒阵列异质结放在旋涂仪中,用旋涂法旋涂空穴传输层薄膜。
进一步,在制备方法步骤3)中,所述P3HT薄膜厚度为120nm、MoO3薄膜厚度为3nm或Spiro-OMeTAD薄膜厚度为300nm。
进一步,在制备方法步骤4)中,所述Au电极厚度为60nm、Ag电极厚度为120nm或Al电极厚度为200nm。
本发明一种锑基纳米棒阵列异质结的光电探测器及其制备方法有益效果体现在:
1、一种锑基纳米棒阵列异质结的光电探测器,开发了一种锑基纳米棒阵列作为光吸收层,通过ZnO:B透明导电玻璃衬底诱导技术组成新型锑基纳米棒阵列异质结结构,使用锑基纳米棒阵列异质结制备的光电探测器具有高光电流响应,同时可以实现宽光谱响应;
2、一种锑基纳米棒阵列异质结的光电探测器的制备方法,应用锑基纳米棒阵列异质结构的光电探测器具有高器件性能、宽光谱响应范围等优点,制备方法简单、快速,原材料丰富、成本低,制备器件性能高,具有较高的工业化应用价值。
附图说明
图1是在实施例1中,ZnO:B/Sb2S3纳米棒阵列异质结光电探测器结构示意图;
图2是在实施例2中,ZnO:B/Sb2Se3纳米棒阵列异质结光电探测器结构示意图;
图3是在实施例3中,ZnO:B/Sb2(S,Se)3纳米棒阵列异质结光电探测器结构示意图;
图4是ZnO:B/锑基纳米棒阵列异质结SEM界面图;
图5是锑基纳米棒TEM照片:(a)纳米棒形貌图;(b)纳米棒HRTEM图;(c)纳米棒选取电子衍射图;
图6是锑基纳米棒阵列光电探测器、锑基薄膜光电探测器在460nm、625nm、930nm光下的光电流响应。
具体实施方式
以下结合附图1—6和具体实施例对本发明作进一步详细说明,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1:
如附图1所示,ZnO:B/Sb2S3纳米棒阵列异质结光电探测器结构示意图,ZnO:B/Sb2S3纳米棒阵列异质结光电探测器从下至上依次排列:ZnO:B透明导电玻璃、Sb2S3纳米棒阵列吸收层、P3HT空穴传输层、Au电极。
一种ZnO:B/Sb2S3纳米棒阵列异质结光电探测器的制备方法,器包括以下步骤:
(1)将ZnO:B透明导电玻璃用洗洁精、纯水洗去表面污染物,之后将ZnO:B透明导电玻璃分别用超纯水、乙醇、丙酮等进行15min的超声清洗,清洗后用氮气吹干,得到表面干净的ZnO:B衬底;
(2)称取0.2g的Sb2S3粉末作为蒸发源,调节蒸发源与衬底间距为5mm,调节设备气压为0.1pa,控制衬底温度为200℃,蒸发源温度为150℃保持20min,调节蒸发源温度以最大功率从150℃升温,蒸发源到450℃开启衬底挡板,蒸发10s,经过自然冷却后制备得到200nm厚的Sb2S3纳米棒阵列,形成ZnO:B/Sb2S3纳米棒阵列异质结结构;
(3)称取0.035g P3HT溶于2ml二氯代苯,50℃搅拌一小时以上,得到P3HT有机溶液。
(4)将步骤(2)中得到的ZnO:B/Sb2S3纳米棒阵列异质结样品放置旋涂仪中,旋涂步骤(3)中配好的P3HT样品,获得120nm厚P3HT空穴传输层。
(5)将步骤(4)中得到的涂有P3HT空穴传输层的样品放置在蒸镀设备中,将设备真空调至10-1Pa,蒸镀60nm的Au电极,得到ZnO:B/Sb2S3纳米棒阵列异质结光电探测器。
实施例2:
如附图2所示,ZnO:B/Sb2Se3纳米棒阵列异质结光电探测器结构示意图,ZnO:B/Sb2Se3纳米棒阵列异质结光电探测器从下至上依次排列:ZnO:B透明导电玻璃、Sb2Se3纳米棒阵列吸收层、MoO3空穴传输层、Ag电极。
一种ZnO:B/Sb2Se3纳米棒阵列异质结光电探测器的制备方法,其包括以下步骤:
(1)将ZnO:B透明导电玻璃用洗洁精、纯水洗去表面污染物,之后将ZnO:B透明导电玻璃分别用超纯水、乙醇、丙酮等进行10min的超声清洗,清洗后用氮气吹干,得到表面干净的ZnO:B衬底;
(2)称取2g的Sb2Se3粉末作为蒸发源,调节蒸发源与衬底间距为15mm,调节设备气压为1pa,控制衬底温度为300℃,蒸发源温度为350℃保持20min,调节蒸发源温度以最大功率从350℃升温,蒸发源到500℃开启衬底挡板,蒸发70s,经过自然冷却后制备得到1800nm厚的Sb2Se3纳米棒阵列,形成ZnO:B/Sb2Se3纳米棒阵列异质结结构;
(3)将步骤(2)中得到的ZnO:B/Sb2Se3纳米棒阵列异质结样品放置蒸镀设备中,将设备真空调至10-2Pa,蒸镀3nm厚MoO3空穴传输层;
(4)将步骤(3)中得到的蒸有MoO3空穴传输层的样品放置在蒸镀设备中,将设备真空调至10-3Pa,蒸镀120nm的Ag电极,得到ZnO:B/Sb2Se3纳米棒阵列异质结光电探测器。
实施例3:
如附图3所示,ZnO:B/Sb2(S,Se)3纳米棒阵列异质结光电探测器结构示意图,ZnO:B/Sb2(S,Se)3纳米棒阵列异质结光电探测器从下至上依次排列:ZnO:B透明导电玻璃、Sb2(S,Se)3纳米棒阵列吸收层、Spiro-OMeTAD空穴传输层、Al电极。
一种ZnO:B/Sb2(S,Se)3纳米棒阵列异质结光电探测器的制备方法,其包括以下步骤:
(1)将ZnO:B透明导电玻璃用洗洁精、纯水洗去表面污染物,之后将ZnO:B透明导电玻璃分别用超纯水、乙醇、丙酮等进行15min的超声清洗,清洗后用氮气吹干,得到表面干净的ZnO:B衬底;
(2)称取4g的Sb2(S,Se)3粉末作为蒸发源,调节蒸发源与衬底间距为20mm,调节设备气压为5pa,控制衬底温度为400℃,蒸发源温度为400℃保持30min,调节蒸发源温度以最大功率从600℃升温,蒸发源到600℃开启衬底挡板,蒸发120s,经过自然冷却后制备得到2000nm厚的Sb2(S,Se)3纳米棒阵列,形成ZnO:B/Sb2(S,Se)3纳米棒阵列异质结结构;
(3)使用1ml氯苯作为溶剂,溶解称好的36.6mg Spiro-OMeTAD粉末,依次加入14.4μL4-叔丁基吡啶和18.8μL二(三氟甲基磺酸酰)亚胺锂的乙腈溶液,获得Spiro-OMeTAD有机溶剂;
(4)将步骤(2)中得到的ZnO:B/Sb2(S,Se)3纳米棒阵列异质结样品放置旋涂仪中,旋涂步骤(3)中配好的Spiro-OMeTAD样品,获得300nm厚Spiro-OMeTAD空穴传输层;
(5)将步骤(4)中得到的涂有P3HT空穴传输层的样品放置在蒸镀设备中,将设备真空调至10-3Pa,蒸镀200nm的Al电极,得到ZnO:B/Sb2(S,Se)3纳米棒阵列异质结光电探测器。
对实施例2进行了SEM表征。如附图4所示,制备得到了垂直于衬底形成有序的锑基纳米棒阵列结构。
选取实施例2,Sb2Se3纳米棒阵列中一根纳米棒进行TEM表征,选取的S纳米棒如图3所示。如附图5中b为选取的单根纳米棒HRTEM图片,图片显示出清晰的(002)晶格排列,说明了锑基分子链与纳米棒生长的一致性,分子链沿着纳米棒生长将提高吸收层的载流子输运特性,提高光电流响应。如附图5中c选区电子衍射图显示出同样的(002)晶格排列,验证了分子链与纳米棒生长一致,同时也证实了制备的锑基纳米棒接近于(002)择优的单晶。
如附图6所示,为锑基纳米棒阵列和锑基薄膜光电探测器在0V偏压,10mW/cm2光强,460、625、930nm入射光下的光响应曲线;可以看出Sb2Se3纳米棒阵列光电探测器在460-960nm范围内显示均显示出较高的光电流响应;较高的光电流响来源于分子链与纳米棒生长一致,产生高度有序的锑基纳米棒阵列,提高了载流子的载流子传输效率。
以上所述仅是本发明的优选方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应该视为本发明的保护范围。

Claims (10)

1.一种锑基纳米棒阵列异质结的光电探测器,其特征是,它从上而下依次排列以下结构:掺硼氧化锌透明导电玻璃衬底,锑基纳米棒阵列吸收层,空穴传输层,金属电极层。
2.根据权利要求1所述的一种锑基纳米棒阵列异质结的光电探测器,其特征是,所述的锑基纳米棒阵列吸收层是Sb2S3纳米棒阵列吸收层、Sb2Se3纳米棒阵列吸收层或Sb2(S,Se)3纳米棒阵列吸收层。
3.根据权利要求1所述的一种锑基纳米棒阵列异质结的光电探测器,其特征是,所述的空穴传输层是P3HT、MoO3或Spiro-OMeTAD。
4.根据权利要求1所述的一种锑基纳米棒阵列异质结的光电探测器,其特征是,所述的金属电极层是Au、Ag或Al薄膜。
5.根据权利要求1所述的一种锑基纳米棒阵列异质结的光电探测器,其特征是,它的制备方法包括以下步骤:
1)对掺硼氧化锌透明导电玻璃衬底用洗洁精和纯水洗涤15分钟,然后依次用超纯水、乙醇、丙酮超声洗涤15分钟,用氮气吹干;
2)将步骤1)洁净后的掺硼氧化锌透明导电玻璃衬底放置于近空间升华系统设备中,真空压力为0.1~5pa,蒸发源重量为0.2~4g,所述蒸发源是Sb2S3、Sb2Se3或Sb2(S,Se)3,所述掺硼氧化锌透明导电玻璃衬底与蒸发源距离调整为5~20mm,所述掺硼氧化锌透明导电玻璃衬底温度调整为200~350℃,所述蒸发源的温度升至为150~400℃保持5-30min,当所述蒸发源的温度升至450~600℃时,开启衬底挡板,持续蒸发10~120s,沉积结束后,自然冷却至室温取出,得到锑基纳米棒阵列异质结;
3)在步骤2)中所述锑基纳米棒阵列异质结下部制备空穴传输层薄膜,所述的空穴传输层是P3HT、MoO3或Spiro-OMeTAD;
4)将步骤3)中制备空穴传输层薄膜后的锑基纳米棒阵列异质结,放置在蒸镀设备中,将所述蒸镀设备抽至真空后,蒸镀金属电极层,所述的金属电极层是Au、Ag或Al薄膜,所述蒸镀金属电极层蒸镀完毕后,得到锑基纳米棒阵列异质结的光电探测器。
6.根据权利要求5所述的一种锑基纳米棒阵列异质结的光电探测器,其特征是,在制备方法步骤2)中,所述Sb2S3纳米棒阵列厚度为200nm、Sb2Se3纳米棒阵列厚度为1500nm或Sb2(S,Se)3纳米棒阵列厚度为2000nm。
7.根据权利要求5所述的一种锑基纳米棒阵列异质结的光电探测器,其特征是,在制备方法步骤3)中,当所述空穴传输层是MoO3时,制备方法选用蒸镀法,将所述锑基纳米棒阵列异质结放在蒸镀设备中,将所述蒸镀设备抽至真空后,用蒸镀法蒸镀空穴传输层薄膜。
8.根据权利要求5所述的一种锑基纳米棒阵列异质结的光电探测器,其特征是,在制备方法步骤3)中,当所述空穴传输层是P3HT或Spiro-OMeTAD时,制备方法选用旋涂法,将所述锑基纳米棒阵列异质结放在旋涂仪中,用旋涂法旋涂空穴传输层薄膜。
9.根据权利要求5所述的一种锑基纳米棒阵列异质结的光电探测器,其特征是,在制备方法步骤3)中,所述P3HT薄膜厚度为120nm、MoO3薄膜厚度为3nm或Spiro-OMeTAD薄膜厚度为300nm。
10.根据权利要求5所述的一种锑基纳米棒阵列异质结的光电探测器,其特征是,在制备方法步骤4)中,所述Au电极厚度为60nm、Ag电极厚度为120nm或Al电极厚度为200nm。
CN202210535143.7A 2022-05-17 2022-05-17 一种锑基纳米棒阵列异质结的光电探测器及其制备方法 Active CN114975655B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210535143.7A CN114975655B (zh) 2022-05-17 2022-05-17 一种锑基纳米棒阵列异质结的光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210535143.7A CN114975655B (zh) 2022-05-17 2022-05-17 一种锑基纳米棒阵列异质结的光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN114975655A true CN114975655A (zh) 2022-08-30
CN114975655B CN114975655B (zh) 2023-12-22

Family

ID=82984164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210535143.7A Active CN114975655B (zh) 2022-05-17 2022-05-17 一种锑基纳米棒阵列异质结的光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN114975655B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116666472A (zh) * 2023-04-17 2023-08-29 中国科学技术大学 一种大面积硒化锑薄膜太阳能电池组件及其制备方法
CN116666472B (zh) * 2023-04-17 2024-05-31 中国科学技术大学 一种大面积硒化锑薄膜太阳能电池组件及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768905A (zh) * 2012-06-11 2012-11-07 湖北大学 双壳层ZnO/CdTe/ZnS纳米电缆阵列电极及其制备方法
CN103904217A (zh) * 2014-01-10 2014-07-02 中国科学院等离子体物理研究所 一种多元有机/无机杂化太阳电池及其制备方法
CN108123000A (zh) * 2017-12-08 2018-06-05 河北大学 一种纳米棒型硒化锑太阳电池及其制备方法
CN209947847U (zh) * 2019-03-30 2020-01-14 福建农林大学 一种基于硫硒化锑/氧化钛纳米棒核壳异质结的太阳能电池
CN110844936A (zh) * 2019-12-10 2020-02-28 中国科学院合肥物质科学研究院 一种三硫化二锑纳米棒阵列的制备方法及基于其的太阳电池
CN111560583A (zh) * 2020-05-05 2020-08-21 东北电力大学 一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法
CN111893512A (zh) * 2020-08-10 2020-11-06 浙江大学 一种硫化锑基异质结光阴极及其制备方法和用途
KR20210099773A (ko) * 2020-02-05 2021-08-13 연세대학교 산학협력단 광-캐소드의 제조방법, 광-캐소드 및 이를 이용한 광전기화학적 물 분해 방법
CN113929313A (zh) * 2021-10-18 2022-01-14 西安电子科技大学 一种三维导电纳米棒及其阵列电子传输层的制备方法
CN114141956A (zh) * 2021-11-29 2022-03-04 江南大学 一种导电高分子/硒化锑异质结及其制备方法与光电应用
CN114203848A (zh) * 2021-10-28 2022-03-18 河北大学 一种柔性硒化锑太阳电池及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768905A (zh) * 2012-06-11 2012-11-07 湖北大学 双壳层ZnO/CdTe/ZnS纳米电缆阵列电极及其制备方法
CN103904217A (zh) * 2014-01-10 2014-07-02 中国科学院等离子体物理研究所 一种多元有机/无机杂化太阳电池及其制备方法
CN108123000A (zh) * 2017-12-08 2018-06-05 河北大学 一种纳米棒型硒化锑太阳电池及其制备方法
CN209947847U (zh) * 2019-03-30 2020-01-14 福建农林大学 一种基于硫硒化锑/氧化钛纳米棒核壳异质结的太阳能电池
CN110844936A (zh) * 2019-12-10 2020-02-28 中国科学院合肥物质科学研究院 一种三硫化二锑纳米棒阵列的制备方法及基于其的太阳电池
KR20210099773A (ko) * 2020-02-05 2021-08-13 연세대학교 산학협력단 광-캐소드의 제조방법, 광-캐소드 및 이를 이용한 광전기화학적 물 분해 방법
CN111560583A (zh) * 2020-05-05 2020-08-21 东北电力大学 一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法
CN111893512A (zh) * 2020-08-10 2020-11-06 浙江大学 一种硫化锑基异质结光阴极及其制备方法和用途
CN113929313A (zh) * 2021-10-18 2022-01-14 西安电子科技大学 一种三维导电纳米棒及其阵列电子传输层的制备方法
CN114203848A (zh) * 2021-10-28 2022-03-18 河北大学 一种柔性硒化锑太阳电池及其制备方法
CN114141956A (zh) * 2021-11-29 2022-03-04 江南大学 一种导电高分子/硒化锑异质结及其制备方法与光电应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, TAO: "Conduction Band Energy-Level Engineering for Improving Open-Circuit Voltage in Antimony Selenide Nanorod Array Solar Cells", 《ADVANCED SCIENCE》, vol. 8, no. 16 *
沈小平;赵慧;刘琦;徐正;: "水热法制备Sb_2S_3纳米棒有序阵列", 无机化学学报, no. 09 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116666472A (zh) * 2023-04-17 2023-08-29 中国科学技术大学 一种大面积硒化锑薄膜太阳能电池组件及其制备方法
CN116666472B (zh) * 2023-04-17 2024-05-31 中国科学技术大学 一种大面积硒化锑薄膜太阳能电池组件及其制备方法

Also Published As

Publication number Publication date
CN114975655B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
Yang et al. 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell
CN204243085U (zh) 钙钛矿基薄膜太阳电池
CN105047826B (zh) 一种在钙钛矿层中掺入硫化镉的钙钛矿太阳能电池及其制备方法
CN103346193B (zh) 一种CdTe纳米晶异质结太阳电池及其制备方法
CN101894689A (zh) 量子点复合敏化太阳能电池及其电极的制备方法
CN110844936A (zh) 一种三硫化二锑纳米棒阵列的制备方法及基于其的太阳电池
CN109103280B (zh) 全无机钙钛矿铁电纤维复合结构的太阳能电池及制备方法
CN113314672A (zh) 一种钙钛矿太阳能电池及其制备方法
CN111883662A (zh) 一种基于旋转退火工艺的有机太阳能电池及其制备方法
CN111525036A (zh) 一种自驱动钙钛矿光电探测器及其制备方法
CN113725368B (zh) 一种nh4no3界面修饰的钙钛矿太阳能电池
CN107732014B (zh) 一种基于三元无机体型异质结薄膜的太阳电池及其制备方法
CN105206746A (zh) 基于三元溶剂系统的有机薄膜太阳能电池及其制备方法
CN114975655A (zh) 一种锑基纳米棒阵列异质结的光电探测器及其制备方法
CN102386332B (zh) 太阳能电池及其制备方法
Akhtaruzzaman et al. Comprehensive guide on organic and inorganic solar cells: fundamental concepts to fabrication methods
Zhao et al. Atmospheric preparation of ZnO thin films by mist chemical vapor deposition for spray-coated organic solar cells
CN108520920B (zh) 一种高分子基趋光钙钛矿太阳能电池及其制备方法
Mondal et al. Cadmium sulfide nanostructures for photovoltaic devices
CN113394343B (zh) 一种背入射p-i-n结构钙钛矿太阳电池及其制备方法
CN115528175A (zh) 基于硒化锑纳米棒阵列和n2200的有机无机异质结光电器件及其制备方法
CN111129205B (zh) 碳纳米管-z907复合薄膜光电晶体管及其制备方法和应用
CN109326587B (zh) 一种三合一复合自驱动的光电探测器及其制备方法
CN109346461B (zh) 一种光电热电复合自驱动的光电探测器及其制备方法
CN107887513B (zh) 一种基于三元无机平板型异质结薄膜的太阳电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant