CN114086126B - 一种单晶太阳能电池薄膜材料及其制备方法 - Google Patents

一种单晶太阳能电池薄膜材料及其制备方法 Download PDF

Info

Publication number
CN114086126B
CN114086126B CN202111320963.6A CN202111320963A CN114086126B CN 114086126 B CN114086126 B CN 114086126B CN 202111320963 A CN202111320963 A CN 202111320963A CN 114086126 B CN114086126 B CN 114086126B
Authority
CN
China
Prior art keywords
bazrs
solar cell
target
thin film
film material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111320963.6A
Other languages
English (en)
Other versions
CN114086126A (zh
Inventor
乔梁
周祥寅
丁翔
陈培
陶思绪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze River Delta Research Institute of UESTC Huzhou
Original Assignee
Yangtze River Delta Research Institute of UESTC Huzhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze River Delta Research Institute of UESTC Huzhou filed Critical Yangtze River Delta Research Institute of UESTC Huzhou
Priority to CN202111320963.6A priority Critical patent/CN114086126B/zh
Publication of CN114086126A publication Critical patent/CN114086126A/zh
Application granted granted Critical
Publication of CN114086126B publication Critical patent/CN114086126B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种单晶太阳能电池薄膜材料及其制备方法,涉及新能源材料以及光电应用领域,方法包括如下步骤:S1、以BaS粉末和ZrS2粉末为反应材料进行高温煅烧并压片得到BaZrS3靶材;S2、将步骤S1中合成得到的BaZrS3靶材和清洗好的YSZ衬底放入脉冲激光沉积系统;S3、对YSZ衬底进行真空室温沉积镀膜得到BaZrS3非晶薄膜;S4、对步骤S3获得的产物进行真空高温热处理,得到BaZrS3单晶太阳能电池薄膜材料。本发明探索的制备条件工艺,首次制备了BaZrS3单晶薄膜,为探索该材料光学性质提供了优良的薄膜样品,该材料具有优良的光学吸收,在太阳能电池领域具有较大的应用前景。

Description

一种单晶太阳能电池薄膜材料及其制备方法
技术领域
本发明属于新能源材料以及光电应用领域,具体涉及一种BaZrS3单晶太阳能电池薄膜材料及其制备方法。
背景技术
寻找高效的太阳能电池材料,或者一般的光电子材料,是材料化学和物理学中的一个古老的研究课题。所追求的材料是具有合适光带隙的高质量半导体,目前在开发太阳能电池材料方面取得了重大成功,如硅、砷化镓、碲化镉、铜铟镓硒和卤化铅钙钛矿。不幸的是,这些材料在大规模应用方面仍然存在问题。卤化铅钙钛矿已经显示出优异的光电性能,太阳能电池单结器件的效率超过25%,与硅的单片串联的效率超过29%。但这些化合物的稳定性以及铅所具有的毒性是目前一大挑战,因此,寻找好的太阳能电池材料仍然是最具挑战性和最重要的研究领域之一。
为了解决混合钙钛矿的毒性和稳定性限制,近年来出现了一种新的材料类别无机硫族钙钛矿。2015年,孙等人从理论上筛选出18种用于光伏的ABX3硫族钙钛矿,其中A为Ca/Sr/Ba,B为Ti/Zr/Hf,X为S/Se。几个ABX3硫族钙钛矿被确定具有合适的带隙和光学吸收,可以用于光伏材料。作为典型的硫族钙钛矿,BaZrS3具有1.8eV的直接带隙和强的近边缘吸收。此外,已经证明BaZrS3具有稳定的钙钛矿结构,能够抵抗高压、湿气和热量。然而,由于缺乏高质量的薄膜样品,有关硫族钙钛矿BaZrS3的诸多性质还未被探索,目前,在BaZrS3薄膜制备方面,薄膜样品数极少,且大多数制备的是多晶薄膜,因此,本领域技术人员致力于开发一种在非金属衬底YSZ上外延制备BaZrS3太阳能电池单晶薄膜材料的方法,使得制备的BaZrS3太阳能电池单晶薄膜材料具有优良的光学性能以及较好的稳定性和优异的环境友好性,并且为研究BaZrS3的其他性质提供高质量的薄膜样本。
目前,BaZrS3太阳能电池薄膜材料的制备多采用先制备BaZrO3薄膜,再通CS2或H2S进行硫化,最终得到BaZrS3多晶薄膜,这种制备工艺制备出的BaZrS3薄膜材料是多晶薄膜,导致单晶薄膜才能显现出来的一些性质无法探索。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种BaZrS3单晶太阳能电池薄膜材料及其制备方法,使得制备的BaZrS3外延薄膜材料是单晶薄膜,并且具有优良的光学性能以及较好的稳定性和优异的环境友好性,为研究BaZrS3的其他性质提供高质量的薄膜样本。
为实现上述目的,本发明采用如下技术方案:
一种单晶太阳能电池薄膜材料的制备方法,包括如下步骤:
S1、以BaS粉末和ZrS2粉末为反应材料进行高温煅烧并压片得到BaZrS3靶材;
S2、将步骤S1中合成得到的BaZrS3靶材和清洗好的YSZ衬底放入脉冲激光沉积系统;
S3、对YSZ衬底进行真空室温沉积镀膜得到BaZrS3非晶薄膜;
S4、对步骤S3获得的产物进行真空高温热处理,得到BaZrS3单晶太阳能电池薄膜材料。
进一步地,步骤S1中BaS粉末和ZrS2粉末化学计量比为1:1,将两者在手套箱内进行称量混合研磨20min,并用压靶机压片,压力为20Mpa,压片时间20min,压片磨具的直径为12.5mm,将压完片的靶材转移至石英管中,利用真空封管机进行封管,最后将真空封好的靶材转移至管式炉中进行高温热处理,待炉内温度降至室温,取出石英管并取出其中的靶材。
进一步地,真空封管机中的真空度为10-4Pa。
进一步地,将真空封好的靶材转移至管式炉中进行高温热处理的条件如下:从室温加热至900-1000℃,加热速率7℃/min,保温15h。
进一步地,步骤S2中合成好的BaZrS3靶材需用砂纸进行表面打磨,并用导电碳胶粘到靶托上;YSZ基片分别用丙酮、酒精、去离子水进行超声波清洗,清洗时间为5min、5min、10min;将清洗好的YSZ基片用氮气吹干,并用导电银浆粘到基片托上;将放有靶材的靶托和放有YSZ的基片托放入脉冲激光沉积系统的溅射室中,靶材和YSZ基底的间距控制在5-6cm。
进一步地,步骤S3中脉冲激光沉积系统的真空度为10-5Pa,温度为室温,激光光束的频率为8Hz,发射能量为200mJ,沉积脉冲数为8000。
进一步地,步骤S4中对获得的产物利用真空封管机进行封管,最后将真空封好的靶材转移至管式炉中进行高温热处理,待炉内温度降至室温,取出石英管并取出其中的靶材,得到BaZrS3单晶太阳能电池薄膜材料。
进一步地,真空封管机中的真空度为10-4Pa。
进一步地,将真空封好的靶材转移至管式炉中进行高温热处理的条件如下:从室温加热至900-1100℃,加热速率7℃/min,保温10h。
与现有技术相比,本发明具有如下的有益效果:
(1)本发明探索的制备条件工艺,首次制备了BaZrS3单晶外延薄膜,为探索该材料光学性质提供了优良的薄膜样品。
(2)本发明所制备的材料具有优良的光学吸收以及较低的光学带隙,在太阳能电池领域具有较大的应用前景。
(3)本发明提供的外延制备方法比较新颖,为薄膜制备领域提供新的思路。
附图说明
图1是本发明的单晶太阳能电池薄膜材料的制备工艺流程图;
图2是本发明实施例1制备的BaZrS3薄膜的校准YSZ(002)取向测得的XRD图;
图3是本发明实施例1制备的BaZrS3薄膜的校准YSZ(202)取向测得的XRD图;
图4是本发明实施例1制备的BaZrS3薄膜的校准BaZrS3(112)测得的Phi扫描图;
图5是本发明实施例制备的BaZrS3薄膜的光学吸收图谱;
图6是本发明实施例制备的BaZrS3薄膜的PL图谱。
具体实施方式
在本发明的实施例中,如图1所示,所述单晶太阳能电池薄膜材料的制备方法,包括如下步骤:
S1、BaS粉末和ZrS2,粉末化学计量比为1:1,将两者在手套箱内进行称量、混合研磨20min,并用压靶机压片,压力为20MPa,压片时间20min,压片磨具的直径为12.5mm,将压完片的靶材转移至石英管中,利用真空封管机进行封管,真空度为10-4Pa,最后将真空封好的靶材转移至管式炉中进行高温热处理,从室温加热至900-1000℃,加热速率7℃/min,保温15h,待炉内温度降至室温,取出石英管并取出其中的靶材;
S2、合成好的BaZrS3靶材需用砂纸进行表面打磨,并用导电碳胶粘到靶托上;YSZ基片分别用丙酮、酒精、去离子水进行超声波清洗,清洗时间为5min、5min、10min;将清洗好的YSZ基片用氮气吹干,并用导电银浆粘到基片托上;将放有靶材的靶托和放有YSZ的基片托放入脉冲激光沉积系统的溅射室中,靶材和YSZ基底的间距控制在5-6cm;
S3、脉冲激光沉积系统的真空度为10-5Pa,温度为室温,激光光束的频率为8Hz,发射能量为200mJ,沉积脉冲数为8000;
S4、取出步骤S3所得的产物,将其在10-4Pa真空度下进行封管,并放入管式炉中以5-8℃/min的速率升温至900-1100℃,保温时间5-10h,得到BaZrS3单晶太阳能电池薄膜材料。
下面通过3个实施例具体介绍本发明的实施过程。
实施例1
如图1所示,一种单晶太阳能电池薄膜材料的制备方法,包括如下步骤:
S1、称取5gBaS粉末和ZrS2,粉末化学计量比为1:1,将两者在手套箱内进行称量、混合研磨20min,并用压靶机压片,压力为20MPa,压片时间20min,压片磨具的直径为12.5mm,将压完片的靶材转移至石英管中,利用真空封管机进行封管,真空度为10-4Pa,最后将真空封好的靶材转移至管式炉中进行高温热处理,从室温加热至1000℃,加热速率7C/min,保温15h,待炉内温度降至室温,取出石英管并取出其中的靶材;
S2、合成好的BaZrS3靶材需用砂纸进行表面打磨,并用导电碳胶粘到靶托上;YSZ基片分别用丙酮、酒精、去离子水进行超声波清洗,清洗时间为5min、5min、10min;将清洗好的YSZ基片用氮气吹干,并用导电银浆粘到基片托上;将放有靶材的靶托和放有YSZ的基片托放入脉冲激光沉积系统的溅射室中,靶材和YSZ基底的间距控制在5cm;
S3、脉冲激光沉积系统的真空度为10-5Pa,温度为室温,激光光束的频率为8Hz,发射能量为200mJ,沉积脉冲数为8000;
S4、取出步骤S3所得的产物,将其在10-4Pa真空度下进行封管,并放入管式炉中以8℃/min的速率升温至1000℃,保温时间10h,得到BaZrS3单晶太阳能电池薄膜材料。
实施例2
如图1所示,一种单晶太阳能电池薄膜材料的制备方法,包括如下步骤:
S1、称取4.5gBaS粉末和ZrS2,粉末化学计量比为1:1,将两者在手套箱内进行称量、混合研磨20min,并用压靶机压片,压力为20MPa,压片时间20min,压片磨具的直径为12.5mm,将压完片的靶材转移至石英管中,利用真空封管机进行封管,真空度为10-4Pa,最后将真空封好的靶材转移至管式炉中进行高温热处理,从室温加热至900℃,加热速率7C/min,保温15h,待炉内温度降至室温,取出石英管并取出其中的靶材;
S2、合成好的BaZrS3靶材需用砂纸进行表面打磨,并用导电碳胶粘到靶托上;YSZ基片分别用丙酮、酒精、去离子水进行超声波清洗,清洗时间为5min、5min、10min;将清洗好的YSZ基片用氮气吹干,并用导电银浆粘到基片托上;将放有靶材的靶托和放有YSZ的基片托放入脉冲激光沉积系统的溅射室中,靶材和YSZ基底的间距控制在5cm;
S3、脉冲激光沉积系统的真空度为10-5Pa,温度为室温,激光光束的频率为8Hz,发射能量为200mJ,沉积脉冲数为8000;
S4、取出步骤S3所得的产物,将其在10-4Pa真空度下进行封管,并放入管式炉中以6℃/min的速率升温至900℃,保温时间10h,得到单晶太阳能电池薄膜材料。
实施例3
如图1所示,一种单晶太阳能电池薄膜材料的制备方法,包括如下步骤:
S1、称取4gBaS粉末和ZrS2,粉末化学计量比为1:1,将两者在手套箱内进行称量、混合研磨20min,并用压靶机压片,压力为20MPa,压片时间20min,压片磨具的直径为12.5mm,将压完片的靶材转移至石英管中,利用真空封管机进行封管,真空度为10-4Pa,最后将真空封好的靶材转移至管式炉中进行高温热处理,从室温加热至1000℃,加热速率7C/min,保温15h,待炉内温度降至室温,取出石英管并取出其中的靶材;
S2、合成好的BaZrS3靶材需用砂纸进行表面打磨,并用导电碳胶粘到靶托上;YSZ基片分别用丙酮、酒精、去离子水进行超声波清洗,清洗时间为5min、5min、10min;将清洗好的YSZ基片用氮气吹干,并用导电银浆粘到基片托上;将放有靶材的靶托和放有YSZ的基片托放入脉冲激光沉积系统的溅射室中,靶材和YSZ基底的间距控制在5cm;
S3、脉冲激光沉积系统的真空度为10-5Pa,温度为室温,激光光束的频率为8Hz,发射能量为200mJ,沉积脉冲数为8000;
S4、取出步骤S3所得的产物,将其在10-4Pa真空度下进行封管,并放入管式炉中以5℃/min的速率升温至1100℃,保温时间10h,得到单晶太阳能电池薄膜材料。
图2是本发明实施例1制备的BaZrS3薄膜的校准YSZ(002)取向测得的XRD图,图3是本发明实施例1制备的BaZrS3薄膜的校准YSZ(202)取向测得的XRD图,图2与图3显示BaZrS3的薄膜峰与标准Pnma图对应良好,可以看出在YSZ上已经形成质量良好的BaZrS3薄膜,图4是本发明实施例1制备的BaZrS3薄膜的校准BaZrS3(112)测得的Phi扫描图,发现在0-360度范围内出现4个峰,显示薄膜具有四重对称性,形成了良好的单晶薄膜BaZrS3
图5是本发明实施例1制备的BaZrS3薄膜的光学吸收图谱,图谱显示出制备的BaZrS3薄膜的光学带隙在1.8eV左右;图6是本发明本发明实施例1制备的BaZrS3薄膜的PL图谱,从PL图谱可以看出,在约1.8eV的中可以观察到一个宽的PL峰。吸收和PL图谱结果表明,本发明实施例1制备的BaZrS3薄膜是一个理想的低带隙光伏材料,光学带隙在1.8eV左右,在光电应用方面具有理想的光学特性。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (6)

1.一种单晶太阳能电池薄膜材料的制备方法,其特征在于,包括如下步骤:
S1、以BaS粉末和ZrS2粉末按化学计量比为1:1为反应材料,将真空封好的靶材转移至管式炉中进行高温热处理,从室温加热至900-1000℃,加热速率7℃/min,保温15h,待炉内温度降至室温,得到BaZrS3靶材;
S2、将步骤S1中合成得到的BaZrS3靶材和清洗好的YSZ衬底放入脉冲激光沉积系统;
S3、对YSZ衬底进行真空室温沉积镀膜得到BaZrS3非晶薄膜;
S4、取出步骤S3所得的产物,将其在真空度下进行封管,并放入管式炉中以5-8℃/min的速率升温至900-1100℃,保温时间5-10h,得到BaZrS3单晶太阳能电池薄膜材料。
2.权利要求1所述的单晶太阳能电池薄膜材料的制备方法,其特征在于,步骤S1中的真空度为10-4Pa。
3.根据权利要求1所述的单晶太阳能电池薄膜材料的制备方法,其特征在于,步骤S2中合成好的BaZrS3靶材需用砂纸进行表面打磨,并用导电碳胶粘到靶托上;YSZ基片分别用丙酮、酒精、去离子水进行超声波清洗,清洗时间为5min、5min、10min;将清洗好的YSZ基片用氮气吹干,并用导电银浆粘到基片托上;将放有靶材的靶托和放有YSZ的基片托放入脉冲激光沉积系统的溅射室中,靶材和YSZ基底的间距控制在5-6cm。
4.根据权利要求1所述的单晶太阳能电池薄膜材料的制备方法,其特征在于,步骤S3中脉冲激光沉积系统的真空度为10-5Pa,温度为室温,激光光束的频率为8Hz,发射能量为200mJ,沉积脉冲数为8000。
5.权利要求1所述的单晶太阳能电池薄膜材料的制备方法,其特征在于,步骤S4中的的真空度为10-4Pa。
6.一种根据权利要求1-5任一项所述方法制备的单晶太阳能电池薄膜材料。
CN202111320963.6A 2021-11-09 2021-11-09 一种单晶太阳能电池薄膜材料及其制备方法 Active CN114086126B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111320963.6A CN114086126B (zh) 2021-11-09 2021-11-09 一种单晶太阳能电池薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111320963.6A CN114086126B (zh) 2021-11-09 2021-11-09 一种单晶太阳能电池薄膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114086126A CN114086126A (zh) 2022-02-25
CN114086126B true CN114086126B (zh) 2023-06-02

Family

ID=80299779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111320963.6A Active CN114086126B (zh) 2021-11-09 2021-11-09 一种单晶太阳能电池薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114086126B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114873639B (zh) * 2022-03-30 2023-06-23 郑州大学 一种Ba3Zr2S7薄膜及其制备方法和应用
CN115074667B (zh) * 2022-07-01 2023-06-23 郑州大学 一种高迁移率p型SrHfS3薄膜及其制备方法
CN115478248B (zh) * 2022-09-20 2023-10-24 郑州大学 一种叠层太阳能电池吸收层材料SrZrS3薄膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2278650A1 (fr) * 1974-07-15 1976-02-13 Matsushita Electric Ind Co Ltd Procede de fabrication d'un corps ceramique au sulfure et corps ceramique au sulfure ainsi obtenu
CN109943816A (zh) * 2019-04-17 2019-06-28 扬州旭磁智能科技有限公司 BaZrS3薄膜及其制备方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2278650A1 (fr) * 1974-07-15 1976-02-13 Matsushita Electric Ind Co Ltd Procede de fabrication d'un corps ceramique au sulfure et corps ceramique au sulfure ainsi obtenu
CN109943816A (zh) * 2019-04-17 2019-06-28 扬州旭磁智能科技有限公司 BaZrS3薄膜及其制备方法及其应用

Also Published As

Publication number Publication date
CN114086126A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
CN114086126B (zh) 一种单晶太阳能电池薄膜材料及其制备方法
Ali et al. Modulation of structural, optical and thermoelectric properties of sol-gel grown CZTS thin films by controlling the concentration of zinc
CN106449367A (zh) 一种合成碘化铜锌三元宽带隙化合物半导体薄膜材料的化学方法
CN103762257A (zh) 铜锌锡硫吸收层薄膜及铜锌锡硫太阳能电池的制备方法
CN113481602A (zh) 一种具有超导特性的无限层型镍酸盐薄膜的制备方法
CN104465807B (zh) 一种czts纳米阵列薄膜太阳能光伏电池及其制备方法
Xie et al. Fabrication of Sb2S3 solar cells by close space sublimation and enhancing the efficiency via co-selenization
Belgacem et al. CuInS2 thin films obtained through an innovative CSVT deposition method from solvothermal-generated precursors
CN111910158A (zh) 一种超宽禁带p型SnO2薄膜及其制备方法
CN103390692B (zh) 一种制备铜铟碲薄膜的方法
CN102286741B (zh) 碲化镉薄膜制备方法
CN111816770B (zh) 钙钛矿薄膜的制备方法、钙钛矿薄膜以及太阳能电池器件
CN115377235A (zh) 一种太阳能电池及其制备方法
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
CN108389934A (zh) 一种运用一步溅射法制备铜铟镓硒太阳电池的方法
CN101693550B (zh) 一种生长CdO纳米线束的方法
CN111874876B (zh) 一种生长碲化铜的方法、碲化铜及应用
CN107988629A (zh) 一种低电阻率p型氧化亚铜外延薄膜的制备方法
CN114873639A (zh) 一种Ba3Zr2S7薄膜及其制备方法和应用
CN110212042B (zh) 一种Cu3Sb(S,Se)4薄膜及其制备方法、应用
Razykov et al. Production and characteristics of (ZnSe) 0.1 (SnSe) 0.9 films for use in thin film solar cells
Xu et al. Effect of Growth Temperature on the Characteristics of β-Ga203 Thin Films Grown on 4H-SiC (0001) Substrates by Low Pressure Chemical Vapor Deposition
CN111710750A (zh) 基于六方氮化硼厚膜的深紫外光电探测器及制备方法
CN110255603B (zh) 一种CuInS2薄膜均匀掺钠的方法
CN110634749B (zh) 一种BaSi2薄膜的外延生长方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant