CN103180491B - 一种p型ZnO基材料的制备方法 - Google Patents

一种p型ZnO基材料的制备方法 Download PDF

Info

Publication number
CN103180491B
CN103180491B CN201080067947.4A CN201080067947A CN103180491B CN 103180491 B CN103180491 B CN 103180491B CN 201080067947 A CN201080067947 A CN 201080067947A CN 103180491 B CN103180491 B CN 103180491B
Authority
CN
China
Prior art keywords
source
organic
sodium
based material
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080067947.4A
Other languages
English (en)
Other versions
CN103180491A (zh
Inventor
叶志镇
卢洋藩
吴科伟
黄靖云
叶启阔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN103180491A publication Critical patent/CN103180491A/zh
Application granted granted Critical
Publication of CN103180491B publication Critical patent/CN103180491B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/227Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds further characterised by the doping material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种p型ZnO基材料的制备方法,该方法在金属有机化学气相沉积设备系统中进行,该方法将衬底表面清洗后放入金属有机化学气相沉积系统的生长室中,生长室抽真空至10-3~10-4Pa,加热衬底至200~700℃,输入有机锌源、有机钠源和氧气,在衬底上沉积p型ZnO基材料;Na掺杂能够大大提高ZnO基材料中的空穴浓度以及p型稳定性,采用Na掺杂技术结合MOCVD设备,可制备具有良好晶体质量和优良电学、光学性能的p型ZnO基材料;本发明采用环戊二烯基钠等类似有机物作为钠掺杂的金属有机源,可实现工业化生产Na掺杂p型ZnO基材料应用。

Description

一种p型ZnO基材料的制备方法
技术领域
本发明属于半导体材料技术领域,涉及一种p型ZnO基材料的制备方法,尤其涉及一种在金属有机化学气相沉积设备中采用有机钠源进行p型掺杂的方法。
背景技术
宽禁带化合物半导体ZnO以及以ZnO为基础的合金材料由于具有一系列优良的特性被认为是一种理想的短波长光电器件材料。天然ZnO呈n型,其中存在诸多本征施主缺陷,会产生高度的自补偿效应,并且多种受主元素在ZnO中的固溶度低、能级较深,因而ZnO的p型掺杂一度是个很大的国际性科学难题。近年来,经全世界各国科学家的共同努力,ZnO的p型掺杂研究已取得了一系列重要进展,实现ZnO的p型掺杂不再是个问题。但是要制备高质量的具有实际应用价值的p型ZnO基材料并非易事,要制备具有较高空穴浓度、高迁移率、低电阻,并且具有稳定的电学、光学性能的p型ZnO基材料仍然是个难题,而它却是实现ZnO基发光器件广泛应用的重要基础。此前研究报道较多的ZnO中受主掺杂元素主要包括V族元素N、P、As、Sb以及I族元素Li,但是对于哪种元素最适合用于ZnO的p型掺杂还没有统一的意见,每种掺杂元素都存在各自的优缺点,研究者们也没有找到一种具有普适性的p型掺杂工艺方法。从理论计算的结果来看,Na元素是一种很好的受主元素,但由于其非常活泼的性质,一般较难引入ZnO中,因而研究的人较少,相关的研究报道也很少。我们的实验结果表明,Na在ZnO中确实能很好的充当受主,使用其掺杂的ZnO具有良好的p型表现。要使这种掺杂技术得到推广,尤其是在工业生产上运用,需要采用目前半导体工业生产中普遍运用的MOCVD设备。而要用该设备进行Na掺杂则需要含Na的有机源作为原料,但是目前市场上并没有相关的有机源,本发明的目的正是为了解决这个问题。
发明内容
本发明的目的是为克服其他受主元素掺杂所存在的问题,提供一种p型ZnO基材料的方法。
本发明的目的是通过以下技术方案来实现的:一种p型ZnO基材料的制备方法,该方法在金属有机化学气相沉积设备系统中进行,该方法为:将衬底表面清洗后放入金属有机化学气相沉积系统的生长室中,生长室抽真空至10-3~10-4Pa,加热衬底至200~700℃,输入有机锌源、有机钠源和氧气,在衬底上沉积p型ZnO基材料,其中,所述有机钠源为环戊二稀基钠、甲基环戊二烯基钠或五甲基环戊二烯基钠。
进一步地,在输入有机锌源、有机钠源和氧气的同时输入其它有机源。
进一步地,所述其它有机源为镁源、镉源或铍源。
进一步地,所述衬底为氧化锌单晶、碳化硅、蓝宝石、石英、硅或玻璃。
进一步地,所述有机锌源为二乙基锌或二甲基锌;有机镁源为二茂镁或甲基二茂镁;有机镉源为二甲基镉或二乙基镉;有机铍源为二甲基铍或二乙基铍。
本发明的有益效果是:
1、Na掺杂能够大大提高ZnO基材料中的空穴浓度以及p型稳定性,采用Na掺杂技术结合MOCVD设备,可制备具有良好晶体质量和优良电学、光学性能的p型ZnO基材料。
2、采用环戊二烯基钠等类似有机物作为钠掺杂的金属有机源,可实现工业化生产Na掺杂p型ZnO基材料应用。
具体实施方式
本发明制备p型ZnO基材料的方法,采用的是金属有机化学气相沉积(MetalOrganicChemicalVaporDeposition,MOCVD)设备系统,包括以下步骤:
将衬底表面清洗后放入金属有机化学气相沉积系统的生长室中,生长室抽真空至10-3~10-4Pa,加热衬底至200~700℃,输入有机锌源、有机钠源、氧气,也可以同时输入其他有机源(如镁源、镉源或铍源等),在衬底上沉积p型ZnO基材料。
其中,衬底可采用氧化锌单晶、碳化硅、蓝宝石、石英、硅或者玻璃等。
有机钠源采用环戊二稀基钠、甲基环戊二烯基钠、五甲基环戊二烯基钠或者其他具有类似物化性质的有机钠盐,该种有机钠盐能在室温下真空或惰性气氛中稳定存在,能被氮气或者氢气通过鼓泡或者吹扫方式带入到MOCVD系统的生长室中,并且能与氧气剧烈反应生成含钠的氧化物和其他气态物质。
有机锌源可采用二乙基锌或者二甲基锌;有机镁源可采用二茂镁或者甲基二茂镁;有机镉源可采用二甲基镉或二乙基镉;有机铍源可采用二甲基铍或者二乙基铍。
根据本发明的方法制备的p型ZnO基材料,包括ZnO、ZnMgO、ZnCdO、ZnBeO等薄膜或者纳米材料。
以下结合实施例进一步说明本发明。
实施例1:
本实施例中的p型ZnO材料为采用MOCVD系统在蓝宝石衬底上制备而成。首先将蓝宝石衬底用丙酮或者无水乙醇超声清洗10~30分钟,然后用去离子水冲洗,再用氮气吹干。接下来将清洗好的蓝宝石衬底放入金属有机化学沉积系统的生长室中,生长室抽真空至10-3Pa,加热衬底至400℃,输入有机锌源二乙基锌、有机钠源环戊二烯基钠、氧气,有机锌源、有机钠源与氧气的流量比为2:1:1,在衬底上沉积一层300nm厚的p-ZnO薄膜层。本例制备的p型ZnO薄膜的空穴浓度约1017cm-3
实施例2:
本实施例中的p型ZnMgO材料为采用MOCVD系统在玻璃衬底上制备而成。首先将玻璃衬底用丙酮或者无水乙醇超声清洗10~30分钟,然后用去离子水冲洗,再用氮气吹干。接下来将清洗好的玻璃衬底放入金属有机化学沉积系统的生长室中,生长室抽真空至10-4Pa,加热衬底至650℃,输入有机锌源二乙基锌、有机镁源甲基二茂镁、有机钠源环戊二烯基钠、氧气,有机锌源、有机镁源、有机钠源与氧气的流量比为2:5:1:1,在衬底上沉积一层300nm厚的p-ZnMgO薄膜层。本例制备的p型ZnMgO薄膜的空穴浓度约1016cm-3
实施例3:
本实施例中的p型ZnO材料为采用MOCVD系统在氧化锌单晶衬底上制备而成。首先将表面清洁的氧化锌单晶衬底放入金属有机化学沉积系统的生长室中,生长室抽真空至10-3Pa,加热衬底至400℃,输入有机锌源二乙基锌、有机钠源环戊二烯基钠、氧气,有机锌源、有机钠源与氧气的流量比为2:1:1,在衬底上沉积一层300nm厚的p-ZnO薄膜层。本例制备的p型ZnO薄膜与n型ZnO单晶衬底能形成性能良好的同质p-n结,显示整流特性并可实现室温电注入发光。
实施例4:
本实施例中的p型ZnCdO材料为采用MOCVD系统在石英衬底上制备而成。首先将石英衬底用丙酮或者无水乙醇超声清洗10~30分钟,然后用去离子水冲洗,再用氮气吹干。接下来将清洗好的石英衬底放入金属有机化学沉积系统的生长室中,生长室抽真空至10-4Pa,加热衬底至200℃,输入有机锌源二乙基锌、有机镉源二甲基镉、有机钠源环戊二烯基钠、氧气,有机锌源、有机镉源、有机钠源与氧气的流量比为2:1:1:1,在衬底上沉积一层300nm厚的p-ZnCdO薄膜层。本例制备的p型ZnCdO薄膜的空穴浓度约1016cm-3
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (5)

1.一种p型ZnO基材料的制备方法,该方法在金属有机化学气相沉积设备系统中进行,其特征在于,该方法为:将衬底表面清洗后放入金属有机化学气相沉积系统的生长室中,生长室抽真空至10-3~10-4Pa,加热衬底至200~700℃,输入有机锌源、有机钠源和氧气,在衬底上沉积p型ZnO基材料,其中,所述有机钠源为环戊二烯基钠、甲基环戊二烯基钠或五甲基环戊二烯基钠;所述有机锌源、有机钠源和氧气的流量比为2:1:1。
2.根据权利要求1所述制备方法,其特征在于,在输入有机锌源、有机钠源和氧气的同时,输入其它有机源。
3.根据权利要求2所述制备方法,其特征在于,所述其它有机源为镁源、镉源或铍源。
4.根据权利要求1所述制备方法,其特征在于,所述衬底为氧化锌单晶、碳化硅、蓝宝石、石英、硅或玻璃。
5.根据权利要求3所述制备方法,其特征在于,所述有机锌源为二乙基锌或二甲基锌;有机镁源为二茂镁或甲基二茂镁;有机镉源为二甲基镉或二乙基镉;有机铍源为二甲基铍或二乙基铍。
CN201080067947.4A 2010-09-25 2010-09-25 一种p型ZnO基材料的制备方法 Expired - Fee Related CN103180491B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/077253 WO2012037729A1 (zh) 2010-09-25 2010-09-25 一种p型ZnO基材料的制备方法

Publications (2)

Publication Number Publication Date
CN103180491A CN103180491A (zh) 2013-06-26
CN103180491B true CN103180491B (zh) 2016-02-17

Family

ID=45873389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080067947.4A Expired - Fee Related CN103180491B (zh) 2010-09-25 2010-09-25 一种p型ZnO基材料的制备方法

Country Status (3)

Country Link
US (1) US8722456B2 (zh)
CN (1) CN103180491B (zh)
WO (1) WO2012037729A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107188218B (zh) * 2017-06-26 2019-05-14 华南理工大学 一种钠掺杂p型氧化锌纳米棒材料及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1542917A (zh) * 2003-11-04 2004-11-03 浙江大学 一种实时掺氮生长p型氧化锌晶体薄膜的方法
CN1696356A (zh) * 2004-05-12 2005-11-16 中国科学院长春光学精密机械与物理研究所 籽晶诱导、低温液相外延自组装生长氧化锌薄膜的方法
CN1738001A (zh) * 2005-07-19 2006-02-22 大连理工大学 一种p型ZnO薄膜的金属有机物化学气相沉积制备方法
CN101183595A (zh) * 2007-12-14 2008-05-21 浙江大学 p型掺杂ZnO基稀磁半导体材料及制备方法
CN101235536A (zh) * 2007-11-09 2008-08-06 浙江大学 Na掺杂生长p型ZnO晶体薄膜的方法
CN101696492A (zh) * 2009-10-23 2010-04-21 北京航空航天大学 一种制备掺铝氧化锌透明导电薄膜的装置及方法
CN101760726A (zh) * 2009-12-31 2010-06-30 华南师范大学 一种B和N共掺杂ZnO薄膜的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291085B1 (en) * 1998-08-03 2001-09-18 The Curators Of The University Of Missouri Zinc oxide films containing P-type dopant and process for preparing same
JP4126332B2 (ja) * 1999-08-13 2008-07-30 学校法人高知工科大学 低抵抗p型単結晶酸化亜鉛およびその製造方法
US7172813B2 (en) * 2003-05-20 2007-02-06 Burgener Ii Robert H Zinc oxide crystal growth substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1542917A (zh) * 2003-11-04 2004-11-03 浙江大学 一种实时掺氮生长p型氧化锌晶体薄膜的方法
CN1696356A (zh) * 2004-05-12 2005-11-16 中国科学院长春光学精密机械与物理研究所 籽晶诱导、低温液相外延自组装生长氧化锌薄膜的方法
CN1738001A (zh) * 2005-07-19 2006-02-22 大连理工大学 一种p型ZnO薄膜的金属有机物化学气相沉积制备方法
CN101235536A (zh) * 2007-11-09 2008-08-06 浙江大学 Na掺杂生长p型ZnO晶体薄膜的方法
CN101183595A (zh) * 2007-12-14 2008-05-21 浙江大学 p型掺杂ZnO基稀磁半导体材料及制备方法
CN101696492A (zh) * 2009-10-23 2010-04-21 北京航空航天大学 一种制备掺铝氧化锌透明导电薄膜的装置及方法
CN101760726A (zh) * 2009-12-31 2010-06-30 华南师范大学 一种B和N共掺杂ZnO薄膜的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fabrication of P-Type ZnO Thin Films via DC Reactive Magnetron Sputtering by Using Na as the Dopant Source;Yang LL, et al.;《Journal of ELECTRONIC MATERIALS》;20070206;第36卷(第4期);498-500 *
P-Type ZnO Thin Films Grown by MOCVD;Li X, et al.;《Prepared for the 31st IEEE Photovoltaics Specialists Conference and Exhibition》;20050228(第3-7期);1-3 *
ZnO Films Synthesized by Solid-Source Chemical Vapor Deposition with c-Axis Parallel to Substrate;Lü Jianguo, et al.;《半导体学报》;20030131;第24卷(第1期);1-5 *

Also Published As

Publication number Publication date
US20130183797A1 (en) 2013-07-18
CN103180491A (zh) 2013-06-26
US8722456B2 (en) 2014-05-13
WO2012037729A1 (zh) 2012-03-29

Similar Documents

Publication Publication Date Title
US9252316B2 (en) Ultra thin hit solar cell and fabricating method of the same
CN103035496B (zh) 一种生长在Si衬底上的GaN薄膜及其制备方法和应用
KR20090130219A (ko) 다수―정크션 태양 전지 그리고 그 제조 방법 및 장치
KR20080033955A (ko) 반도체 구조물, 광기전력 디바이스 및 제조 방법과 솔러모듈
US20090205707A1 (en) Solar cell and method for producing the same
EP3295490B1 (en) Photovoltaic cell structure and method to produce the same
CN113451515A (zh) 一种GaN半导体材料作为双功能层的钙钛矿太阳能电池的制备方法
Hu et al. Fabrication and properties of a solar-blind ultraviolet photodetector based on Si-doped β-Ga2O3 film grown on p-Si (111) substrate by MOCVD
CN102339891A (zh) 一种p-i-n夹层结构InGaN太阳电池
CN105720154B (zh) 一种led外延片及其制造方法
Li et al. Hydrogen annealed ZnO: B film grown by LPCVD technique as TCO for enhancing conversion efficiency of a-Si: H/μc-Si: H tandem solar cells
KR20200140833A (ko) 페로브스카이트 기반 광기전력 장치를 제조하는 방법, 및 해당 광기전력 장치
CN103180491B (zh) 一种p型ZnO基材料的制备方法
CN107394023B (zh) 一种晶化纳米结构氧化锌透明导电薄膜的制备方法
CN103695866B (zh) 采用简单化学气相沉积法制备Sb掺杂p型ZnO薄膜的方法
CN111139449A (zh) 氧化锌基透明电极光电探测器及其制备方法
KR101660311B1 (ko) 태양전지 및 그의 제조 방법
Hsueh et al. Si nanowire-based photovoltaic devices prepared at various temperatures
Burgess Review of tailoring ZnO for optoelectronics through atomic layer deposition experimental variables
CN108541349A (zh) 包括cigs光吸收层的太阳能电池及其制造方法
US20110155246A1 (en) Thin film solar cell and manufacturing method thereof
CN202977493U (zh) 多晶硅薄膜太阳能电池
KR101304643B1 (ko) 인듐 도핑된 산화아연 나노로드 박막층을 포함하는 태양전지용 전극 및 이의 제조 방법
CN204857758U (zh) 一种InXGa1-XN玻璃结构薄膜太阳能电池
Cho et al. Control of Na diffusion from soda-lime glass and NaF film into Cu (In, Ga) Se 2 for thin-film solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160217

Termination date: 20190925

CF01 Termination of patent right due to non-payment of annual fee