CN107188218B - 一种钠掺杂p型氧化锌纳米棒材料及其制备方法与应用 - Google Patents

一种钠掺杂p型氧化锌纳米棒材料及其制备方法与应用 Download PDF

Info

Publication number
CN107188218B
CN107188218B CN201710494172.2A CN201710494172A CN107188218B CN 107188218 B CN107188218 B CN 107188218B CN 201710494172 A CN201710494172 A CN 201710494172A CN 107188218 B CN107188218 B CN 107188218B
Authority
CN
China
Prior art keywords
zinc
substrate
oxide nano
preparation
bar material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710494172.2A
Other languages
English (en)
Other versions
CN107188218A (zh
Inventor
季小红
曹发
叶志祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710494172.2A priority Critical patent/CN107188218B/zh
Publication of CN107188218A publication Critical patent/CN107188218A/zh
Application granted granted Critical
Publication of CN107188218B publication Critical patent/CN107188218B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明属于半导体材料的技术领域,公开了一种钠掺杂p型氧化锌纳米棒材料及其制备方法与应用。所述方法为(1)将氧化锌、石墨与焦磷酸钠混匀放入舟中,备用;(2)将衬底进行表面预处理,采用磁控溅射法在衬底的表面溅射一层氧化锌缓冲层;(3)将舟和衬底放置在反应装置中,装有混合料的舟放置在载流气体上风向的位置,衬底放置在载流气体下风向的位置,通过高温化学气相沉积法在衬底上制备钠掺杂p型氧化锌纳米棒材料。本发明实现了钠掺杂于p型氧化锌,所制备的p型氧化锌纳米棒重复性好、空穴浓度高、可用于制备氧化锌基光电器件;本发明的方法简单,成本经济。

Description

一种钠掺杂p型氧化锌纳米棒材料及其制备方法与应用
技术领域
本发明属于半导体纳米材料生长以及P型掺杂技术领域,涉及一种钠掺杂p型氧化锌纳米棒材料及其制备方法与应用。
背景技术
氧化锌是一种Ⅱ-Ⅵ族直接带隙宽禁带化合物半导体材料,室温禁带宽度为3.37eV,激子结合能为60eV,在紫外、蓝、绿光发光二极管、激光器和紫外探测器方面显示了巨大的应用潜力
由于氧化锌材料本身存在大量缺陷以及非故意掺杂,使得材料本底载流子浓度较高,易形成n型氧化锌而较难实现p型氧化锌。近年来,理论计算和实验结果表明Ⅴ族元素和Ⅰ族元素都可作为p型氧化锌的受主掺杂,主要有:I族Li,Na掺杂,V族N,P,Sb等掺杂,以及其他共掺杂。但是,实现稳定、高载流子浓度的p型材料仍然存在困难。
随着纳米科学与技术的发展,光电子器件逐渐向轻量化、微型化、集成化等方向迈进,使得以半导体纳米材料为结构单元的光电子器件具有广泛的应用前景。人们对低维纳米材料的电学、光学、磁学、热学和力学性能与维度和量子限制效应相关性等方面进行了广泛而深入的研究。低维p型纳米材料组分和结构的可控合成一直是纳米技术发展过程中的一大挑战。
综上所述,实现稳定、高载流子浓度的低维p型氧化锌掺杂将能实现以氧化锌纳米材料为结构单元的光电子器件。
发明内容
本发明的目的在于克服钠掺杂p型氧化锌稳定性较差,空穴浓度较低的问题,提供一种钠掺杂p型氧化锌纳米棒材料的制备方法。本发明通过化学气相沉积法,制备出钠掺杂p型氧化锌纳米棒。该方法操作工艺简单,制备出的氧化锌纳米棒结晶性能良好,产量高,且具有较高空穴浓度,为其在光电器件方向应用奠定基础。
本发明的另一目的在于提供由上述制备方法得到的钠掺杂p型氧化锌纳米棒材料。
本发明的再一目的在于提供上述钠掺杂p型氧化锌纳米棒材料的应用。所述钠掺杂p型氧化锌纳米棒材料用于制备光电器件。
本发明的目的通过以下技术方案实现:
一种钠掺杂p型氧化锌纳米棒材料的制备方法,包括以下具体步骤:
(1)将氧化锌、石墨与焦磷酸钠混匀放入舟中,备用;所述舟为石英舟;
(2)将衬底进行表面预处理,采用磁控溅射法在衬底的表面溅射一层氧化锌缓冲层;
(3)将步骤(1)中装有混合料的舟和步骤(2)中表面溅射有氧化锌缓冲层的衬底放置在反应装置中,装有混合料的舟放置在载流气体上风向的位置,衬底放置在载流气体下风向的位置,通过高温化学气相沉积法在衬底上制备钠掺杂p型氧化锌纳米棒材料。所述衬底放置在反应装置中时,溅射有氧化锌缓冲层的一面朝上。
步骤(1)中所述氧化锌与石墨的混合物与焦磷酸钠的质量比为0.2:(0.025~0.2),优选为0.2:(0.04~0.08),更优选为0.2:0.05。
步骤(1)中所述氧化锌与石墨的摩尔比为(1~5):7,优选为3:7。
步骤(1)中所述混匀优选指先将氧化锌和石墨进行混合,研磨,然后与焦磷酸钠混合均匀。所述研磨的时间为30~60min。
在进行钠掺杂时,只能采用焦磷酸钠,其他钠盐几乎没有钠掺杂。
步骤(2)中所述表面预处理是指将衬底分别用酒精、去离子水进行超声清洗,然后吹干备用。
步骤(2)中所述磁控溅射的条件为以ZnO陶瓷作为靶材,溅射功率为80W,氩气的流速为12sccm,溅射气压约0.3Pa。
步骤(2)中所述氧化锌缓冲层的厚度为20~80nm。
步骤(3)中所述装有混合料的舟处于恒温区,表面溅射有氧化锌缓冲层的衬底未处于恒温区。
步骤(3)中所述高温化学气相沉积法的具体步骤为:(a)将装有混合料的舟和表面溅射有氧化锌缓冲层的衬底放置在真空管式炉中,装有混合料的舟放置在载流气体上风向的位置并且处于恒温区,衬底放置在载流气体下风向的位置且未处于恒温区,衬底中溅射有氧化锌缓冲层的一面朝上;(b)抽真空,通入惰性气体和氧气,升温反应,随炉冷却。所述升温反应是指以不高于10℃/min的升温速率从室温升到300℃,再以不高于7℃/min的升温速率升至1000~1050℃,在1000~1050℃保持至少30min。
所述惰性气体的流量为100sccm,氧气的流量为5sccm,反应时的气压为1200Pa。所述惰性气体为氮气和/或氩气。
步骤(1)中所述石墨纯度为99.9995%,焦磷酸钠纯度为99%,氧化锌粉末纯度为99.99%,粒径为40-100nm,氧气纯度为99.999%,氮气载气纯度为99.999%。
步骤(2)中所述衬底材料为硅、蓝宝石或氮化镓。
与现有技术相比,本发明具有如下优点及有益效果:
(1)本发明采用纳米氧化锌粉体为原料,石墨粉体为还原剂,焦磷酸钠为掺杂源,通过高温化学气相沉积反应,制备出钠掺杂的p型氧化锌纳米棒,实现钠掺杂,产物的晶体的质量高;
(2)Na掺杂P型氧化锌纳米棒在氧气氛中生长,有效降低了氧化锌中施主型点缺陷浓度,有利于Na相关的受主产生,实现较好的P型导电性能;
(3)本发明提供的制备方法设备经济,操作简单,制备周期短,且原料易得;
(4)本发明制备的氧化锌纳米棒结晶性能良好,产量高,且具有较高空穴浓度。
附图说明
图1为本发明实施例中高温化学气相沉积法所用的装置的示意图;
图2为实施例1制备的钠掺杂p型氧化锌纳米棒的扫描电镜图;
图3为实施例1制备的钠掺杂p型氧化锌纳米棒的X射线衍射图;
图4为实施例1制备的钠掺杂p型氧化锌纳米棒的TEM图;其中a、b、c为不同放大倍数的TEM图,b为a中纳米棒的高分辨图,c为纳米棒的更高分辨图,d为缺陷区域(即c中白色框对应的放大图)的放大图;
图5为实施例1制备的钠掺杂p型氧化锌纳米棒的XPS图,其中a为全谱,b为氧谱,c为锌谱,d为钠谱;
图6为实施例1制备的钠掺杂p型氧化锌纳米棒光致发光谱谱图(PL图);
图7为实施例1利用钠掺杂p型氧化锌纳米棒构建的氧化锌pn同质结的I-V曲线图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例中高温化学气相沉积法所采用的装置示意图如图1所示。所采用的装置包括管式气氛炉,气氛炉的一端设有进气口,另一端设有出气口,出气口与真空泵连接,管式气氛炉的外侧的中部设有加热装置,管式气氛炉中放置有两端开口的石英管,该石英管一部分处于加热区(即恒温区)。实施例中所采用的装置为天津中环1200℃气氛炉,型号:SK906123K。
实施例1:硅衬底上钠掺杂p型氧化锌纳米材料的制备:
(1)原料准备:将摩尔比为3:7的氧化锌和石墨粉(2~15微米)混匀,研磨30min,取0.2g的混合物,加入0.05g的焦磷酸钠混合均匀,放入石英舟中;
(2)氧化锌缓冲层溅射:用磁控溅射法在洗净的硅衬底(分别用酒精、去离子水进行超声清洗,然后吹干)制备氧化锌薄膜,靶材为氧化锌陶瓷靶,腔体通12sccm氩气,溅射功率为80W,溅射时间160s,此时缓冲层厚度约为80nm;
(3)Na掺杂p型氧化锌纳米棒的制备:将装有混合料的石英舟和溅射有薄氧化锌缓冲层的硅片放入两端开口的小石英管内(石英舟中混合料与硅片间的距离为16~19cm),装有混合料的石英舟位于上风方向,硅片处于下风方向;再将小石英管放入单温区管式气氛炉中(石英舟中的混合料处于恒温区,硅片未处于恒温区),放置方式如图1所示;将气氛炉抽真空到200Pa,通入5sccm的氧气和100sccm的氮气,以10℃/min的升温速率从室温升到300℃,再以7℃/min的升温速率升至1000℃,在1000℃保持30分钟,然后随炉冷却,衬底表面制备出Na掺杂P型氧化锌纳米棒。本实施例制备的Na掺杂p型氧化锌纳米棒放置6个月后依然为p型导电,稳定性好。
本实施例制备的Na掺杂p型氧化锌纳米棒的SEM图如图2所示。图中可以看出规则的正六边形;样品面积约为1×3cm2
本实施例制备的Na掺杂p型氧化锌纳米棒X射线衍射图如图3所示。图中最强衍射峰对应于六方纤锌矿结构ZnO的(002)晶面。
本实施例制备的Na掺杂p型氧化锌纳米棒的不同放大倍数的透射电子显微镜图(TEM图)如图4所示,a、b、c、d分别为不同放大倍数的TEM图。从图4c中0.263nm的晶面间距表明纳米棒沿[002]晶向生长。
本实施例制备的Na掺杂p型氧化锌纳米棒X射线光电子能谱图(XPS图)如图5,其中a为全谱,b为氧谱,c为锌谱,d为钠谱。从图5a的全谱可以得知样品中含Zn、O、Na元素;Na 1s的结合能位于1071.3eV处,对应于Na-O键,表明Na掺进氧化锌中取代了Zn的位置。
本实施例制备的Na掺杂p型氧化锌纳米棒的光致发光图(PL图)如图6。从图中可知氧化锌的近紫外(380nm)发光强度明显强于缺陷(550nm)发光。Hall测试结果表明所制备的氧化锌纳米棒的空穴浓度为1.03×1017cm-3,载流子迁移率为6.78cm2/Vs。样品放置6个月后测试,其导电类型依然为p型导电,但空穴浓度下降至4.8×1016cm-3,迁移率提升为18cm2/Vs。
图7为利用本实施例制备的钠掺杂p型氧化锌纳米棒构建的氧化锌pn同质结的I-V曲线图。同质结的构建:在实施案例1中所制备的p型氧化锌纳米棒表面溅射一层厚度约为300nm的n型氧化锌(AZO),铟(In)为p型和n型氧化锌电极。用Keithley 2450进行测试I-V测试。结果表明同质氧化锌pn结有良好的反向截止特性,正向开启电压约为2.5V,进一步证明了钠掺杂制备的氧化锌纳米棒为p型导电。
实施例2:蓝宝石衬底上钠掺杂p型氧化锌纳米材料的制备:
(1)原料准备:将摩尔比为3:7的氧化锌和石墨粉(2~15微米)混匀,研磨30min,取0.2g的混合物,加入0.025g的焦磷酸钠混合均匀,放入石英舟中;
(2)氧化锌缓冲层溅射:用磁控溅射法在洗净的蓝宝石衬底(分别用酒精、去离子水进行超声清洗,然后吹干)制备氧化锌薄膜,靶材为氧化锌陶瓷靶,腔体通12sccm氩气,溅射功率为80W,溅射时间120s,此时缓冲层厚度约为60nm;
(3)Na掺杂p型氧化锌纳米棒的制备:将石英舟和溅射有薄氧化锌缓冲层的蓝宝石片放入两端开口的小石英管内,装有混合料的石英舟位于上风方向,蓝宝石片处于下风方向;再将小石英管放入单温区管式气氛炉中(石英舟中的混合料处于恒温区,蓝宝石片未处于恒温区放置方式如图1所示;将气氛炉抽真空到200Pa,通入5sccm的氧气和100sccm的氮气;以10℃/min的升温速率从室温升到300℃,再以7℃/min的升温速率升至1000℃,在1000℃保持30分钟,然后随炉冷却,衬底表面制备出Na掺杂p型氧化锌纳米棒。对本实施例制备的Na掺杂P型氧化锌纳米棒的进行霍尔测试,结果表明Na掺杂的ZnO纳米棒为p型氧化锌纳米棒,空穴浓度为8.1×1016cm-3,载流子迁移率为2.3cm2/Vs。
实施例3:蓝宝石衬底上钠掺杂p型氧化锌纳米材料的制备:
(1)原料准备:将摩尔比为3:7的氧化锌和石墨粉共0.2g,加入0.1g的焦磷酸钠混合均匀,放入石英舟中;
(2)氧化锌缓冲层溅射:用磁控溅射法在洗净的蓝宝石衬底制备氧化锌薄膜,靶材为氧化锌陶瓷靶,腔体通12sccm氩气,溅射功率为80W,溅射时间120s,此时缓冲层厚度约为60nm;
(3)Na掺杂p型氧化锌纳米棒的制备:将石英舟和溅射有薄氧化锌缓冲层的蓝宝石片放入两端开口的小石英管内,装有混合料的石英舟位于上风方向,蓝宝石片处于下风方向;再将小石英管放入单温区管式气氛炉中(石英舟中的混合料处于恒温区,蓝宝石片未处于恒温区),放置方式如图1所示;将气氛炉抽真空到200Pa,通入5sccm的氧气和100sccm的氮气;以10℃/min的升温速率从室温升到300℃,再以7℃/min的升温速率升至1000℃,在1000℃保持30分钟,然后随炉冷却。
对本实施例制备的Na掺杂p型氧化锌纳米棒的进行霍尔测试,结果表明Na掺杂的ZnO纳米棒为p型氧化锌纳米棒,空穴浓度为6.1×1016cm-3,载流子迁移率为5.7cm2/Vs。
本发明提出了一种制备垂直性能良好、空穴浓度高的P型氧化锌纳米棒材料。本方法可实现氧化锌纳米棒的定向生长。所制备的材料空穴浓度高、结晶性能良好、近紫外发光峰强,有望在LED、紫外探测器件等领域实现应用。

Claims (9)

1.一种钠掺杂p型氧化锌纳米棒材料的制备方法,其特征在于:包括以下具体步骤:
(1)将氧化锌、石墨与焦磷酸钠混匀放入舟中,备用;
(2)将衬底进行表面预处理,采用磁控溅射法在衬底的表面溅射一层氧化锌缓冲层;
(3)将步骤(1)中装有混合料的舟和步骤(2)中表面溅射有氧化锌缓冲层的衬底放置在反应装置中,装有混合料的舟放置在载流气体上风向的位置,衬底放置在载流气体下风向的位置,通过高温化学气相沉积法在衬底上制备钠掺杂p型氧化锌纳米棒材料;所述衬底放置在反应装置中时,溅射有氧化锌缓冲层的一面朝上;
步骤(3)中所述高温化学气相沉积法的具体步骤为:(a)将装有混合料的舟和表面溅射有氧化锌缓冲层的衬底放置在真空管式炉中,装有混合料的舟放置在载流气体上风向的位置并且处于恒温区,衬底放置在载流气体下风向的位置且未处于恒温区,衬底中溅射有氧化锌缓冲层的一面朝上;(b)抽真空,通入惰性气体和氧气,升温反应,随炉冷却;
所述升温反应是指以不高于10℃/min的升温速率从室温升到300℃,再以不高于7℃/min的升温速率升至1000~1050 ℃,在1000~1050 ℃保持至少30min。
2.根据权利要求1所述钠掺杂p型氧化锌纳米棒材料的制备方法,其特征在于:步骤(3)中所述装有混合料的舟处于恒温区,表面溅射有氧化锌缓冲层的衬底未处于恒温区;
步骤(1)中所述氧化锌与石墨的混合物与焦磷酸钠的质量比为0.2:(0.025~0.2)。
3.根据权利要求2所述钠掺杂p型氧化锌纳米棒材料的制备方法,其特征在于:步骤(1)中所述氧化锌与石墨的混合物与焦磷酸钠的质量比为0.2:(0.04~0.08)。
4.根据权利要求1所述钠掺杂p型氧化锌纳米棒材料的制备方法,其特征在于:步骤(3)中所述载流气体为惰性气体和氧气;
步骤(1)中所述氧化锌与石墨的摩尔比为(1~5):7。
5.根据权利要求4所述钠掺杂p型氧化锌纳米棒材料的制备方法,其特征在于:所述惰性气体为氮气和/或氩气;步骤(1)中所述氧化锌与石墨的摩尔比为3:7。
6.根据权利要求1所述钠掺杂p型氧化锌纳米棒材料的制备方法,其特征在于:步骤(2)中所述氧化锌缓冲层的厚度为20~80 nm。
7.根据权利要求1所述钠掺杂p型氧化锌纳米棒材料的制备方法,其特征在于:步骤(1)中所述氧化锌粉末的粒径为40-100nm;
步骤(2)中所述衬底材料为硅、蓝宝石或氮化镓。
8.一种由权利要求1~7任一项所述制备方法得到的钠掺杂p型氧化锌纳米棒材料。
9.根据权利要求8所述钠掺杂p型氧化锌纳米棒材料的应用,其特征在于:所述钠掺杂p型氧化锌纳米棒材料用于制备光电器件。
CN201710494172.2A 2017-06-26 2017-06-26 一种钠掺杂p型氧化锌纳米棒材料及其制备方法与应用 Expired - Fee Related CN107188218B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710494172.2A CN107188218B (zh) 2017-06-26 2017-06-26 一种钠掺杂p型氧化锌纳米棒材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710494172.2A CN107188218B (zh) 2017-06-26 2017-06-26 一种钠掺杂p型氧化锌纳米棒材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN107188218A CN107188218A (zh) 2017-09-22
CN107188218B true CN107188218B (zh) 2019-05-14

Family

ID=59880260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710494172.2A Expired - Fee Related CN107188218B (zh) 2017-06-26 2017-06-26 一种钠掺杂p型氧化锌纳米棒材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN107188218B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117247273B (zh) * 2023-11-17 2024-02-23 江苏迪纳科精细材料股份有限公司 高迁移率的x-izo磁控溅射靶材的制备方法与装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100582321C (zh) * 2007-11-09 2010-01-20 浙江大学 Na掺杂生长p型ZnO晶体薄膜的方法
WO2012037729A1 (zh) * 2010-09-25 2012-03-29 Ye Zhizhen 一种p型ZnO基材料的制备方法
CN102373425B (zh) * 2011-11-03 2013-04-24 浙江大学 一种Na掺杂p型ZnO薄膜的制备方法
CN104418380B (zh) * 2013-09-05 2016-03-16 国家纳米科学中心 一种氧化锌纳米线阵列结构及其制备方法

Also Published As

Publication number Publication date
CN107188218A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
Mi et al. Structural and optical properties of β-Ga2O3 films deposited on MgAl2O4 (1 0 0) substrates by metal–organic chemical vapor deposition
CN101038943A (zh) 一种a-b取向ZnO纳米线阵列的制备方法
CN107881472A (zh) 一种CsPbI3薄膜的制备方法
Ling et al. Electroluminescence from a n-ZnO nanorod/p-CuAlO2 heterojunction light-emitting diode
CN108511324B (zh) 一种γ相硒化铟纳米片的外延生长方法
Chen et al. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets
Li et al. Facile Au-assisted epitaxy of nearly strain-free GaN films on sapphire substrates
Ding et al. Defect-related photoluminescence emission from annealed ZnO films deposited on AlN substrates
Zhao et al. Catalyst-free growth of a Zn2GeO4 nanowire network for high-performance transfer-free solar-blind deep UV detection
CN107188218B (zh) 一种钠掺杂p型氧化锌纳米棒材料及其制备方法与应用
Calestani et al. Growth and characterization of β-Ga2O3 nanowires obtained on not-catalyzed and Au/Pt catalyzed substrates
Zhang et al. Study on the preparation of InN films under different substrates and nitrogen-argon flow ratios and the effect of operating temperature on carrier transport in p-NiO/n-InN heterojunctions
Hsueh et al. CuO-nanowire field emitter prepared on glass substrate
CN100366789C (zh) 纤锌矿结构Zn1-xMgxO半导体纳米晶体薄膜的低温制备方法
CN110172733B (zh) 一种高质量锡酸锌单晶薄膜及其制备方法
CN107021784B (zh) 一种实现p型层状碲化镓纳米片自组装纳米花的可控制备方法
CN107195749B (zh) 一种实现单根GaTe/ZnO异质结纳米线电泵浦发光二极管的方法
Nkrumah et al. Synthesis and characterization of ZnO thin films deposited by chemical bath technique
Li et al. Structural, optical and electrical properties of polycrystalline CuO thin films prepared by magnetron sputtering
Hsu et al. Vertical ZnO/ZnGa2O4 core–shell nanorods grown on ZnO/glass templates by reactive evaporation
Viswanathan et al. Electric properties of ZnO thin films by RF Magnetron sputtering technique
Yoshimoto et al. Room-temperature synthesis of epitaxial oxide thin films for development of unequilibrium structure and novel electronic functionalization
CN113279058A (zh) 一种低对称性层状材料Te的可控制备方法
Moore et al. ZnO ultraviolet photodetectors grown via thermal oxidation of Zn-metal on glass and sapphire substrates
Algarni et al. Enhanced field emission properties of aligned ZnO nanowires

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190514