WO2012035676A1 - 蓄熱装置及び該蓄熱装置を備えた空気調和機 - Google Patents

蓄熱装置及び該蓄熱装置を備えた空気調和機 Download PDF

Info

Publication number
WO2012035676A1
WO2012035676A1 PCT/JP2011/001136 JP2011001136W WO2012035676A1 WO 2012035676 A1 WO2012035676 A1 WO 2012035676A1 JP 2011001136 W JP2011001136 W JP 2011001136W WO 2012035676 A1 WO2012035676 A1 WO 2012035676A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat transfer
heat storage
compressor
storage tank
Prior art date
Application number
PCT/JP2011/001136
Other languages
English (en)
French (fr)
Inventor
岡 浩二
栗須谷 広治
十倉 聡
廣和 加守田
馬場 雅浩
憲昭 山本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP11824696.6A priority Critical patent/EP2618075B1/en
Priority to KR1020137006582A priority patent/KR20130142108A/ko
Priority to BR112013006126A priority patent/BR112013006126A2/pt
Priority to CN201180044773.4A priority patent/CN103201569B/zh
Publication of WO2012035676A1 publication Critical patent/WO2012035676A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/067Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/006Heat conductive materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/18Safety or protection arrangements; Arrangements for preventing malfunction for removing contaminants, e.g. for degassing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage device that is disposed so as to circumscribe a compressor and that stores a heat storage material that accumulates heat generated by the compressor, and an air conditioner including the heat storage device.
  • FIG. 8 is a plan view showing an example of a conventional heat storage device.
  • a heat storage tank 101 is a heat storage material 103 that stores waste heat generated in the compressor 102, and heat for heat storage that exchanges heat between the heat and the refrigerant in order to effectively use the heat stored in the heat storage material 103.
  • the exchanger 104 is housed, it is attached so as to contact the compressor 102 via the heat transfer sheet 105.
  • an accumulator 106 is attached to the compressor 102 to prevent liquid phase refrigerant from flowing into the compressor 102.
  • the present invention has been made in view of such problems of the prior art, and when transferring heat from a compressor to a heat storage material stored in a heat storage tank via a heat transfer sheet, the heat transfer sheet
  • the object is to provide a heat storage device that can efficiently store heat without reducing the heat transfer efficiency by discharging air between the heat storage tank and the heat storage tank.
  • the present invention is a heat storage device arranged so as to circumscribe a compressor, a heat storage material that stores heat generated by the compressor, a heat storage tank that stores the heat storage material, and a compression
  • a heat transfer sheet provided between the compressor and the heat storage tank is provided, and the heat storage tank includes a heat transfer part at a portion in contact with the heat transfer sheet.
  • the surface in contact with the heat transfer sheet is provided with a groove for discharging air accumulated between the heat transfer section and the heat transfer sheet.
  • heat transfer efficiency can be improved without air having a heat insulation effect inhibiting heat transfer. Since the heat of the compressor can be efficiently stored in the heat storage material, the waste heat of the compressor can be used more efficiently.
  • FIG. 1 is a diagram showing the configuration of an air conditioner equipped with a heat storage device according to the present invention.
  • FIG. 2 is a schematic diagram illustrating the operation and refrigerant flow during normal heating of the air conditioner of FIG.
  • FIG. 3 is a schematic diagram showing the operation of the air conditioner of FIG. 1 during defrosting / heating and the flow of refrigerant.
  • FIG. 4 is a view showing a state in which a heat storage tank is attached to the compressor in the heat storage device according to the present invention.
  • FIG. 5 is a view showing a heat storage tank provided with a heat transfer section in the heat storage device according to the present invention.
  • FIG. 6 is a view showing a heat transfer section in the heat storage device according to the present invention.
  • FIG. 7 is a view showing a heat transfer sheet in the heat storage device according to the present invention.
  • FIG. 8 is a lateral view of a conventional heat storage device.
  • the thermal storage apparatus arrange
  • the heat storage tank includes a heat transfer part in a portion in contact with the heat transfer sheet, heat transfer of the heat transfer part The surface in contact with the sheet is provided with a groove for discharging the air accumulated between the heat transfer section and the heat transfer sheet, so that the heat storage unit provided with the heat transfer section via the heat transfer sheet in the compressor.
  • a groove for discharging air is provided on the surface where the heat transfer section is in contact with the heat transfer sheet, so when the heat transfer sheet and the heat transfer section are in close contact, the air accumulated between them is transmitted through the groove.
  • the heat of the compressor is transferred without air being trapped between the heat transfer sheet and the heat transfer section. Insulating air through the seat and heat transfer section to the heat storage material stored in the heat storage tank can improve the heat transfer efficiency without obstructing the heat transfer, making the heat of the compressor more efficient It can be stored well in heat storage materials. And it becomes possible to utilize the waste heat of a compressor more efficiently.
  • 2nd invention made the height of the part which hits the back side of a slot out of the surface opposite to the surface where a heat-transfer part contacts a heat-transfer sheet higher than the meat height of other parts, By providing a groove in the heat transfer portion, it is possible to compensate for the fact that the groove portion is thinner than other portions and the strength of the portion is weakened, and the strength can be ensured.
  • a through hole is provided in the heat transfer sheet, thereby preventing air from accumulating between the heat transfer sheet and the compressor, and improving the heat transfer efficiency between the heat transfer sheet and the compressor. It becomes possible to make it higher.
  • the interval between the grooves of the heat transfer section is set to a constant interval, and the through holes of the heat transfer sheet are provided at the same interval as the grooves, whereby air between the compressor and the heat transfer sheet is provided. After being discharged to the outside of the heat transfer sheet through the through hole of the heat transfer sheet, it can be surely discharged through the groove of the heat transfer portion at the same position as the outer through hole.
  • the thickness of the heat transfer section is thinner than the thickness of the heat storage tank other than the heat transfer section, thereby ensuring the strength of the heat storage tank other than the heat transfer section, It becomes possible to improve the heat transfer performance in the heat transfer section.
  • the heat transfer sheet has viscosity and elasticity, and is in close contact with the compressor and the heat transfer section, and at the same time, the heat transfer sheet contracts when the heat storage tank is pressed against the compressor, and is viscous. Therefore, it is possible to improve the heat transfer performance by improving the mutual adhesion between the compressor and the heat transfer sheet, and between the heat transfer sheet and the heat transfer section, and at the same time, since it has elasticity, for example, the compressor surface is rough and rough. Even if there is a protrusion or the like formed during the welding process, the unevenness on the surface of the compressor can be absorbed to ensure adhesion, and heat transfer can be improved.
  • both the heat storage tank and the heat transfer section are made of resin, and even if the heat storage tank and the heat transfer section are separate parts, it is easy to perform secondary molding to integrate both. And can be manufactured at low cost.
  • an air conditioner including a compressor and the above-described heat storage device arranged so as to circumscribe the compressor.
  • FIG. 1 shows a configuration of an air conditioner including a heat storage device according to the present invention, and the air conditioner is composed of an outdoor unit 2 and an indoor unit 4 that are connected to each other through a refrigerant pipe.
  • a compressor 6, a four-way valve 8, a strainer 10, an expansion valve 12, and an outdoor heat exchanger 14 are provided inside the outdoor unit 2.
  • a heat exchanger 16 is provided, and these are connected to each other via a refrigerant pipe to constitute a refrigeration cycle.
  • the compressor 6 and the indoor heat exchanger 16 are connected via a first pipe 18 provided with a four-way valve 8, and the indoor heat exchanger 16 and the expansion valve 12 are provided with a strainer 10.
  • the second pipe 20 is connected.
  • the expansion valve 12 and the outdoor heat exchanger 14 are connected via a third pipe 22, and the outdoor heat exchanger 14 and the compressor 6 are connected via a fourth pipe 24.
  • a four-way valve 8 is disposed in the middle of the fourth pipe 24, and an accumulator 26 for separating the liquid-phase refrigerant and the gas-phase refrigerant is provided in the fourth pipe 24 on the refrigerant suction side of the compressor 6. ing.
  • the compressor 6 and the third pipe 22 are connected via a fifth pipe 28, and the first solenoid valve 30 is provided in the fifth pipe 28.
  • a heat storage tank 32 is provided around the compressor 6, and a heat storage heat exchanger 34 is provided inside the heat storage tank 32, and a heat storage material for exchanging heat with the heat storage heat exchanger 34 (for example, An ethylene glycol aqueous solution) 36 is filled, and the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36 constitute a heat storage device.
  • a heat storage material for exchanging heat with the heat storage heat exchanger 34 for example, An ethylene glycol aqueous solution
  • the second pipe 20 and the heat storage heat exchanger 34 are connected via a sixth pipe 38, the heat storage heat exchanger 34 and the fourth pipe 24 are connected via a seventh pipe 40, and the sixth pipe 38. Is provided with a second electromagnetic valve 42.
  • an air blower fan (not shown), upper and lower blades (not shown), and left and right blades (not shown) are provided inside the indoor unit 4, and indoor heat exchange is performed.
  • the unit 16 exchanges heat between the indoor air sucked into the interior of the indoor unit 4 by the blower fan and the refrigerant flowing through the interior of the indoor heat exchanger 16, and blows out the air warmed by heat exchange into the room during heating.
  • air cooled by heat exchange is blown into the room during cooling.
  • the upper and lower blades change the direction of air blown from the indoor unit 4 up and down as necessary, and the left and right blades change the direction of air blown from the indoor unit 4 to right and left as needed.
  • the compressor 6, the blower fan, the upper and lower blades, the left and right blades, the four-way valve 8, the expansion valve 12, the electromagnetic valves 30 and 42, etc. are electrically connected to a control device (not shown, for example, a microcomputer). Be controlled.
  • the refrigerant discharged from the discharge port of the compressor 6 passes from the four-way valve 8 to the indoor heat exchanger 16 through the first pipe 18.
  • the refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 passes through the second pipe 20 through the indoor heat exchanger 16, expands through the strainer 10 that prevents foreign matter from entering the expansion valve 12.
  • To valve 12. The refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the third pipe 22, and the refrigerant evaporated by exchanging heat with the outdoor air in the outdoor heat exchanger 14 is the fourth pipe 24 and the four-way valve 8. And returns to the suction port of the compressor 6 through the accumulator 26.
  • the fifth pipe 28 branched from the compressor 6 discharge port of the first pipe 18 and the four-way valve 8 is connected to the expansion valve 12 of the third pipe 22 and the outdoor heat exchanger 14 via the first electromagnetic valve 30. I am joining in between.
  • the heat storage tank 32 in which the heat storage material 36 and the heat storage heat exchanger 34 are housed is disposed so as to be in contact with and surround the compressor 6, and the heat generated in the compressor 6 is accumulated in the heat storage material 36, and the second The sixth pipe 38 branched from the pipe 20 between the indoor heat exchanger 16 and the strainer 10 reaches the inlet of the heat storage heat exchanger 34 via the second electromagnetic valve 42 and exits from the outlet of the heat storage heat exchanger 34.
  • the seventh pipe 40 joins between the four-way valve 8 and the accumulator 26 in the fourth pipe 24.
  • FIG. 2 schematically showing the operation during normal heating and the flow of the refrigerant of the air conditioner shown in FIG.
  • the first electromagnetic valve 30 and the second electromagnetic valve 42 are controlled to be closed, and the refrigerant discharged from the discharge port of the compressor 6 as described above passes through the first pipe 18 and the four-way valve 8.
  • the indoor heat exchanger 16 The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 exits the indoor heat exchanger 16, passes through the second pipe 20, reaches the expansion valve 12, and the refrigerant decompressed by the expansion valve 12 is the third refrigerant. It reaches the outdoor heat exchanger 14 through the pipe 22.
  • the refrigerant evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 14 returns from the four-way valve 8 to the suction port of the compressor 6 through the fourth pipe 24.
  • the heat generated in the compressor 6 is accumulated in the heat storage material 36 housed in the heat storage tank 32 from the outer wall of the compressor 6 through the outer wall of the heat storage tank 32.
  • FIG. 3 schematically showing the operation of the air conditioner shown in FIG. 1 during defrosting / heating and the flow of refrigerant.
  • the solid line arrows indicate the flow of the refrigerant used for heating
  • the broken line arrows indicate the flow of the refrigerant used for defrosting.
  • the air conditioner according to the present invention is provided with a temperature sensor 44 that detects the piping temperature of the outdoor heat exchanger 14, and the evaporation temperature is lower than that during non-frosting. When this is detected by the temperature sensor 44, an instruction from the normal heating operation to the defrosting / heating operation is output from the control device.
  • the first electromagnetic valve 30 and the second electromagnetic valve 42 are controlled to open, and in addition to the refrigerant flow during the normal heating operation described above, the first solenoid valve 30 and the second electromagnetic valve 42 are discharged from the discharge port of the compressor 6. After a part of the vapor-phase refrigerant passes through the fifth pipe 28 and the first electromagnetic valve 30 and merges with the refrigerant passing through the third pipe 22, the outdoor heat exchanger 14 is heated, condensed, and converted into a liquid phase. Through the fourth pipe 24, the four-way valve 8 and the accumulator 26 are returned to the suction port of the compressor 6.
  • a part of the liquid-phase refrigerant that is divided between the indoor heat exchanger 16 and the strainer 10 in the second pipe 20 passes through the sixth pipe 38 and the second electromagnetic valve 42, and then is stored in the heat storage material 36 in the heat storage heat exchanger 34. From the accumulator 26 and returns to the suction port of the compressor 6 through the seventh pipe 40 and the refrigerant that passes through the fourth pipe 24.
  • the refrigerant returning to the accumulator 26 includes the liquid phase refrigerant returning from the outdoor heat exchanger 14. By mixing this with the high-temperature gas phase refrigerant returning from the heat storage heat exchanger 34, The evaporation of the phase refrigerant is promoted, and the liquid phase refrigerant does not return to the compressor 6 through the accumulator 26, so that the reliability of the compressor 6 can be improved.
  • the temperature of the outdoor heat exchanger 14 that has become below freezing due to the attachment of frost at the start of defrosting and heating is heated by the gas-phase refrigerant discharged from the discharge port of the compressor 6, and the frost is melted near zero degrees.
  • the temperature of the outdoor heat exchanger 14 begins to rise again.
  • the control device outputs an instruction from the defrosting / heating operation to the normal heating operation.
  • FIG. 4 is a perspective view showing a state in which the heat storage tank 32 is attached to the compressor 6.
  • the compressor 6 includes an accumulator 26.
  • the heat storage tank 32 is attached so as to circumscribe the compressor 6, and a heat transfer sheet (see FIG. 7) 52 is sandwiched between the heat storage tank 32 and the compressor 6.
  • a heat storage material (not shown) and a heat storage heat exchanger 34 are accommodated in the heat storage tank 32.
  • FIG. 5 is a perspective view showing a state where the compressor 6 is removed from the heat storage tank 32.
  • the heat transfer section 45 is a portion of the heat storage tank 32 that is in contact with the heat transfer sheet 52 attached to the compressor 6, and is stored between the heat transfer sheet 52 when the heat storage tank 32 and the heat transfer sheet 52 are brought into close contact with each other. Grooves 46 for discharging air are provided at regular intervals.
  • the thickness of the heat transfer section 45 is thinner than the thickness of the heat storage tank 32 other than the heat transfer section 45, and the heat conductivity of the heat transfer section 45 is ensured while ensuring the strength of the heat storage tank 32. To improve.
  • Both the heat storage tank 32 and the heat transfer section 45 are made of resin and are easy to process and inexpensive. Even when both are separate parts, secondary processing for integration can be easily performed.
  • the heat storage tank 32 is provided with a lid 47 so that the heat storage material accommodated therein is not spilled out, and a seal 48 is attached between the lid 47 and the heat storage heat exchanger 34.
  • FIG. 6 is a perspective view showing the heat transfer section 45
  • FIG. 6 (a) is a surface in contact with the heat transfer sheet 52 attached to the compressor 6
  • FIG. 6 (b) is inside the opposite heat storage tank 32. It is a facing surface.
  • the grooves 46 being provided at regular intervals on the surface of FIG. 6A, there are provided recesses 49 for escaping from the projecting shape of the compressor 6.
  • the groove 46 is provided on the surface of FIG. 6B on the surface of FIG. 6B, the thickness of the heat transfer portion 45 is reduced by the depth of the groove 46, and the strength is reduced.
  • a reinforcing portion 51 for reinforcing the lateral direction is provided so that the heat transfer portion 45 is not damaged even if a twisting force is applied to the heat transfer portion 45.
  • FIG. 7 shows a heat transfer sheet 52 having a through hole 53 for releasing air taken in between the heat transfer sheet 52 and the compressor 6.
  • the interval between the through holes 53 in the horizontal direction is the same as the interval between the grooves 46 provided in the heat transfer unit 45.
  • a resin heat transfer sheet 52 (for example, silicon-based) that is sticky and elastic and has excellent heat transfer performance is sandwiched between the compressor 6 and the heat storage tank 32. .
  • the thickness is 0.5 to 3 mm to maintain the heat transfer performance and to improve the deterioration of adhesion due to unevenness and roughness of the surface of the compressor 6, or the compressor 6 and the heat storage tank 32 (heat transfer section 45). And an appropriate thickness for improving the mounting tolerance.
  • the heat storage tank 32 accumulates the heat generated in the compressor 6 during the normal heating operation in the heat storage material 36, and when the heat storage tank 32 shifts from the normal heating operation to the defrosting / heating operation, Since a part of the liquid refrigerant divided between the heat exchanger 16 and the strainer 10 is for absorbing heat from the heat storage material 36 by the heat storage heat exchanger 34 and evaporating and vaporizing it, the compressor 6 The higher the heat absorption efficiency of the generated heat, the better.
  • the heat absorption efficiency depends on the degree of adhesion between the heat storage tank 32 and the compressor 6, but since the compressor 6 is made of a cylindrical metal and has an uneven surface, the heat storage tank 32 and the compressor 6 In order to improve the degree of adhesion, an adhesive heat transfer sheet 52 is sandwiched between the compressor 6 and the heat storage tank 32 to improve the heat absorption efficiency.
  • the heat stored in the heat storage tank 32 during the normal heating operation is used for frost melting during the defrosting / heating operation. Therefore, it is better to store the heat at a high temperature in the heat storage material 36 during the normal heating operation.
  • the frost performance can be increased. That is, even when the normal heating operation time and the surface temperature of the compressor 6 are the same, if the heat transfer from the surface of the compressor 6 to the heat storage material 36 accommodated in the heat storage tank 32 is poor, the temperature of the heat storage material 36 is reduced. On the contrary, when the heat transfer from the compressor 6 surface to the heat storage material 36 is good, the temperature increase of the heat storage material 36 is also improved. It is the adhesion between the heat storage tank 32 and the compressor 6 that contributes to how these heat is transmitted. If there is excess air between the two, this becomes a heat insulating effect and the heat transfer becomes worse.
  • a heat transfer sheet 52 having an appropriate thickness of viscosity and elasticity is sandwiched between the compressor 6 and the heat storage tank 32, and the adhesion is increased in order to improve the heat transfer performance. I am doing so.
  • the heat transfer sheet 52 when the heat transfer sheet 52 is attached to the compressor 6 and the heat storage tank 32 is attached thereto, the heat transfer sheet 52 has viscosity, and therefore, between the compressor 6 and the heat transfer sheet 52 and heat transfer. Air may be trapped between the sheet and the heat storage tank 32. Therefore, in order to improve this, in the present invention, in order to discharge air accumulated between the compressor 6 and the heat transfer sheet 52, a through hole 53 is provided in the heat transfer sheet 52, and the heat transfer sheet 52 and the heat storage tank 32 are provided. In order to discharge the air accumulated during this period, a heat transfer section 45 is provided in a portion of the heat storage tank 32 in contact with the heat transfer sheet 52, and a groove 46 for discharging air is provided in the heat transfer section 45.
  • the heat transfer sheet 52 can be brought into close contact with the compressor 6 by using the viscosity of the heat transfer sheet 52, and at this time, the air taken in between the heat transfer sheet 52 and the compressor 6 is It can be discharged to the outside from the through hole 53.
  • the heat transfer sheet 52 can be in close contact with the heat transfer portion 45 of the heat storage tank 32. The air taken in between the heat transfer unit 45 can be discharged to the outside through the groove 46.
  • the gap between the groove 46 and the heat transfer sheet 52 can be filled by the elasticity of the heat transfer sheet 52, and the heat transfer sheet 52 and the heat transfer sheet 52 The adhesion of the portion 45 can be further enhanced. As a result, the heat of the compressor 6 can be efficiently transmitted to the heat storage material stored in the heat storage tank 32.
  • the pitch of the grooves 46 needs to be as narrow as possible so that air with the smallest possible diameter can be discharged. On the other hand, the presence of a large number of grooves 46 causes air to accumulate there, and the compressor 6 An appropriate pitch is required so as not to hinder heat transfer from the heat storage tank 32 to the heat storage tank 32. In the present invention, the pitch is between 1 mm and 30 mm.
  • the pitch of the through holes 53 of the heat transfer sheet 52 is the same as the pitch of the grooves 46 of the heat transfer section 45, the air discharged through the through holes 53 from between the compressor 6 and the heat transfer sheet 52 is exhausted. As it is, it can be discharged to the outside through the groove 46 of the heat transfer section 45 on the outside as it is.
  • the pitches of both the heat transfer sheet 45 and the through holes 53 of the heat transfer sheet 52 are matched to each other so that the through holes 53 of the heat transfer sheet 52 are in the same position. It is even better if the positional relationship with the heat transfer section 45 is matched.
  • a mark is provided so that the attachment position is determined when attaching the heat transfer sheet 52 to the compressor 6, and the positional relationship between the compressor 6 and the heat storage tank 32 is in some form. For example, it should be determined uniquely.
  • metal is higher in heat transfer than resin, but it can be said that resin is more suitable in consideration of workability such as freedom of processing shape and dimensional accuracy.
  • resin is more suitable in consideration of workability such as freedom of processing shape and dimensional accuracy.
  • a resin excellent in thermal conductivity is used among the resins, it is possible to obtain thermal conductivity that is comparable to metals.
  • the heat transfer section 45 is made of resin and thinner than the other parts of the heat storage tank 32, the heat transfer performance in the thickness direction becomes better as the thickness of the material is thinner. There is also a way to secure it.
  • the heat stored in the heat storage material 36 stored in the heat storage tank 32 during normal heating operation is used for defrosting during defrosting / heating operation, after defrosting / heating operation, It is also possible to realize a quick start-up of heating by using it as an auxiliary heat source when the normal heating operation is performed again after the equipment is stopped once.
  • the heat storage device relates to accumulating waste heat generated in a compressor in a heat storage material, and is useful for an air conditioner, a refrigerator, a water heater, a heat pump washing machine, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 圧縮機で発生した熱を蓄積する蓄熱材を収容した蓄熱槽32と、圧縮機の廃熱を効率よく蓄熱槽32に伝えるために圧縮機と蓄熱槽32の間に設けられた伝熱シートとで構成し、蓄熱槽32は伝熱シートに接する部分に伝熱部45を備え、伝熱部45の伝熱シートに接する面には伝熱部45と伝熱シートとの間に溜まる空気を排出するために溝46を設けたことで、伝熱シートと伝熱部45が密着する時にその間に溜め込まれる空気は溝46を伝って排出され、断熱効果のある空気が伝熱の阻害となることなく伝熱効率を向上させることができる。

Description

蓄熱装置及び該蓄熱装置を備えた空気調和機
 本発明は、圧縮機に外接するように配置され圧縮機で発生した熱を蓄積する蓄熱材を収容する蓄熱装置及びこの蓄熱装置を備えた空気調和機に関するものである。
 従来、この種のヒートポンプ式空気調和機では、暖房運転時に室外熱交換器に霜が付着した場合には、暖房サイクルから冷房サイクルに四方弁を切り替えて除霜を行っている。この除霜方式では、室内ファンは停止させるものの、室内機から冷気が徐々に放出されることから暖房感が失われるという欠点がある。
 そこで、室外機に設けられた圧縮機に蓄熱装置を設け、暖房運転中に蓄熱槽に蓄えられた圧縮機の廃熱を利用して除霜するようにしたものが提案されている(例えば、特許文献1参照)。
 図8は、従来の蓄熱装置の一例を示す平面図である。図8において、蓄熱槽101は、圧縮機102で発生する廃熱を蓄える蓄熱材103と、この蓄熱材103に蓄えられた熱を有効に利用するために熱と冷媒を熱交換する蓄熱用熱交換器104を収納すると同時に、伝熱シート105を介して圧縮機102に接触するように取り付けられている。また、圧縮機102には液相冷媒が圧縮機102に流入しないようにするためのアキュームレータ106が取り付けられている。
特公平7-9304号公報
 しかしながら、前記従来の構成では圧縮機102に伝熱シート105を介して蓄熱槽101を取り付ける際に、伝熱シート105と蓄熱槽101との間に空気が溜まり、これが断熱効果となって、圧縮機102の熱を蓄熱槽101に収納した蓄熱材103に伝えるのを阻害し伝熱効率を低下させていた。
 本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、圧縮機の熱を伝熱シートを介して蓄熱槽に収納した蓄熱材に伝熱させる際に、伝熱シートと蓄熱槽との間の空気を排出させ、伝熱効率を低下させずに効率良く蓄熱が行える蓄熱装置を提供することを目的としている。
 上記目的を達成するため、本発明は、圧縮機と外接するように配置された蓄熱装置であって、圧縮機で発生した熱を蓄熱する蓄熱材と、蓄熱材を収容する蓄熱槽と、圧縮機の廃熱を効率よく蓄熱槽に伝えるために圧縮機と蓄熱槽の間に設けられた伝熱シートとを備え、蓄熱槽は伝熱シートに接する部分に伝熱部を備え、伝熱部の伝熱シートに接する面には伝熱部と伝熱シートとの間に溜まる空気を排出するために溝を設けたものである。
 これによって圧縮機に伝熱シートを介して伝熱部を備えた蓄熱槽を取り付ける際に、伝熱部が伝熱シートと接する面に空気を排出するための溝を設けているので、伝熱シートと伝熱部が密着する時にその間に溜め込まれる空気は溝を伝って排出され、伝熱シートと伝熱部の間に空気が溜められることはない。このように伝熱シートと伝熱部の間に空気が溜められないので、圧縮機の熱を伝熱シートと伝熱部を介して蓄熱槽に収納された蓄熱材に伝えるのに、断熱効果のある空気が伝熱の阻害となることなく伝熱効率を向上させることができる。
 本発明によれば、圧縮機に伝熱シートを介して伝熱部を備えた蓄熱槽を取り付ける際に、断熱効果のある空気が伝熱の阻害となることなく伝熱効率を向上させることができ、圧縮機の熱を効率よく蓄熱材に蓄えることができるので、圧縮機の廃熱をより効率的に利用することが可能となる。
図1は本発明に係る蓄熱装置を備えた空気調和機の構成を示す図 図2は図1の空気調和機の通常暖房時の動作及び冷媒の流れを示す模式図 図3は図1の空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式図 図4は本発明に係る蓄熱装置における圧縮機に蓄熱槽を取り付けた状態を示す図 図5は本発明に係る蓄熱装置における伝熱部を備えた蓄熱槽を示す図 図6は本発明に係る蓄熱装置における伝熱部を示す図 図7は本発明に係る蓄熱装置における伝熱シートを示す図 図8は従来の蓄熱装置の横面図
 第1の発明は、圧縮機と外接するように配置された蓄熱装置であって、圧縮機で発生した熱を蓄熱する蓄熱材と、蓄熱材を収容する蓄熱槽と、圧縮機の廃熱を効率よく蓄熱槽に伝えるために圧縮機と前記蓄熱槽の間に設けられた伝熱シートとを備え、蓄熱槽は前記伝熱シートに接する部分に伝熱部を備え、伝熱部の伝熱シートに接する面には伝熱部と伝熱シートとの間に溜まる空気を排出するために溝を設けたもので、これにより、圧縮機に伝熱シートを介して伝熱部を備えた蓄熱槽を取り付ける際に、伝熱部が伝熱シートと接する面に空気を排出するための溝を設けているので、伝熱シートと伝熱部が密着する時にその間に溜め込まれる空気は溝を伝って排出され、伝熱シートと伝熱部の間に空気が溜められることなく、圧縮機の熱を伝熱シートと伝熱部を介して蓄熱槽に収納された蓄熱材に伝えるのに、断熱効果のある空気が伝熱の阻害となることなく伝熱効率を向上させることができ、圧縮機の熱を効率よく蓄熱材に蓄えることができる。そして、圧縮機の廃熱をより効率的に利用することが可能となる。
 第2の発明は、伝熱部が伝熱シートと接する面とは反対の面のうち溝の裏側に当たる部分の肉高さを他の部分の肉高さに比べ高くしたもので、これにより、伝熱部に溝を設けることでこの溝の部分が他の部分に比べて厚さが薄くなりその部分の強度が弱くなるのを補うことができ、強度を確保することができる。
 第3の発明は、伝熱シートに貫通孔を設けたもので、これにより、伝熱シートと圧縮機の間に空気が溜まるのを防いで、伝熱シートと圧縮機の間の伝熱効率を高くすることが可能となる。
 第4の発明は、伝熱部の溝の間隔を一定の間隔とし、伝熱シートの貫通孔は溝と同じ間隔で設けられたもので、これにより、圧縮機と伝熱シートの間の空気が伝熱シートの貫通孔を通じて伝熱シートの外側に排出された後、その外側の貫通孔と同じ位置にある伝熱部の溝を伝って確実に排出することが可能となる。
 第5の発明は、伝熱部の厚さは蓄熱槽うちの伝熱部以外の部分の厚さに比べて薄いもので、これにより、伝熱部以外の蓄熱槽の強度は確保しつつ、伝熱部での伝熱性能を高めることが可能となる。
 第6の発明は、伝熱シートは粘性と弾性を有し、圧縮機ならびに伝熱部に密着すると同時に、蓄熱槽を前記圧縮機に押しつけた際に伝熱シートが縮むもので、粘性があるので圧縮機と伝熱シート、ならびに伝熱シートと伝熱部の相互の密着性を高めて伝熱性能を向上させることができると同時に、弾性があるので、例えば圧縮機表面が粗く、ざらつきがあったり、溶接過程でできる突起物などがある場合でも、このような圧縮機表面の凹凸を吸収して密着性を確保することができ、伝熱性を高めることができる。
 第7の発明は、蓄熱槽と伝熱部は共に樹脂とするもので、蓄熱槽と伝熱部とが別部品の場合でも、両者を一体化させるための2次成型をすることが容易で、かつ安価に製作することが可能である。
 また、本発明の他の態様は、圧縮機と、圧縮機に外接するように配置された上述した蓄熱装置とを備える空気調和機である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1は、本発明に係る蓄熱装置を備えた空気調和機の構成を示しており、空気調和機は、冷媒配管で互いに接続された室外機2と室内機4とで構成されている。
 図1に示されるように、室外機2の内部には、圧縮機6と四方弁8とストレーナ10と膨張弁12と室外熱交換器14とが設けられ、室内機4の内部には、室内熱交換器16が設けられ、これらは冷媒配管を介して互いに接続されることで冷凍サイクルを構成している。
 さらに詳述すると、圧縮機6と室内熱交換器16は、四方弁8が設けられた第1配管18を介して接続され、室内熱交換器16と膨張弁12は、ストレーナ10が設けられた第2配管20を介して接続されている。また、膨張弁12と室外熱交換器14は第3配管22を介して接続され、室外熱交換器14と圧縮機6は第4配管24を介して接続されている。
 第4配管24の中間部には四方弁8が配置されており、圧縮機6の冷媒吸入側における第4配管24には、液相冷媒と気相冷媒を分離するためのアキュームレータ26が設けられている。また、圧縮機6と第3配管22は、第5配管28を介して接続されており、第5配管28には第1電磁弁30が設けられている。
 さらに、圧縮機6の周囲には蓄熱槽32が設けられ、蓄熱槽32の内部には、蓄熱熱交換器34が設けられるとともに、蓄熱熱交換器34と熱交換するための蓄熱材(例えば、エチレングリコール水溶液)36が充填されており、蓄熱槽32と蓄熱熱交換器34と蓄熱材36とで蓄熱装置を構成している。
 また、第2配管20と蓄熱熱交換器34は第6配管38を介して接続され、蓄熱熱交換器34と第4配管24は第7配管40を介して接続されており、第6配管38には第2電磁弁42が設けられている。
 室内機4の内部には、室内熱交換器16に加えて、送風ファン(図示せず)と上下羽根(図示せず)と左右羽根(図示せず)とが設けられており、室内熱交換器16は、送風ファンにより室内機4の内部に吸込まれた室内空気と、室内熱交換器16の内部を流れる冷媒との熱交換を行い、暖房時には熱交換により暖められた空気を室内に吹き出す一方、冷房時には熱交換により冷却された空気を室内に吹き出す。上下羽根は、室内機4から吹き出される空気の方向を必要に応じて上下に変更し、左右羽根は、室内機4から吹き出される空気の方向を必要に応じて左右に変更する。
 なお、圧縮機6、送風ファン、上下羽根、左右羽根、四方弁8、膨張弁12、電磁弁30、42等は制御装置(図示せず、例えばマイコン)に電気的に接続され、制御装置により制御される。
 上記構成の本発明に係る冷凍サイクル装置において、各部品の相互の接続関係と機能とを、暖房運転時を例にとり冷媒の流れとともに説明する。
 圧縮機6の吐出口から吐出された冷媒は、第1配管18を通って四方弁8から室内熱交換器16へと至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て第2配管20を通り、膨張弁12への異物侵入を防止するストレーナ10を通って、膨張弁12に至る。膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至り、室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24と四方弁8とアキュームレータ26を通って圧縮機6の吸入口へと戻る。
 また、第1配管18の圧縮機6吐出口と四方弁8の間から分岐した第5配管28は、第1電磁弁30を介して第3配管22の膨張弁12と室外熱交換器14の間に合流している。
 さらに、内部に蓄熱材36と蓄熱熱交換器34を収納した蓄熱槽32は、圧縮機6に接して取り囲むように配置され、圧縮機6で発生した熱を蓄熱材36に蓄積し、第2配管20から室内熱交換器16とストレーナ10の間で分岐した第6配管38は、第2電磁弁42を経て蓄熱熱交換器34の入口へと至り、蓄熱熱交換器34の出口から出た第7配管40は、第4配管24における四方弁8とアキュームレータ26の間に合流する。
 次に、図1に示される空気調和機の通常暖房時の動作及び冷媒の流れを模式的に示す図2を参照しながら通常暖房時の動作を説明する。
 通常暖房運転時、第1電磁弁30と第2電磁弁42は閉制御されており、上述したように圧縮機6の吐出口から吐出された冷媒は、第1配管18を通って四方弁8から室内熱交換器16に至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て、第2配管20を通り膨張弁12に至り、膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至る。室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24を通って四方弁8から圧縮機6の吸入口へと戻る。
 また、圧縮機6で発生した熱は、圧縮機6の外壁から蓄熱槽32の外壁を介して蓄熱槽32の内部に収容された蓄熱材36に蓄積される。
 次に、図1に示される空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式的に示す図3を参照しながら除霜・暖房時の動作を説明する。図中、実線矢印は暖房に供する冷媒の流れを示しており、破線矢印は除霜に供する冷媒の流れを示している。
 上述した通常暖房運転中に室外熱交換器14に着霜し、着霜した霜が成長すると、室外熱交換器14の通風抵抗が増加して風量が減少し、室外熱交換器14内の蒸発温度が低下する。本発明に係る空気調和機には、図3に示されるように、室外熱交換器14の配管温度を検出する温度センサ44が設けられており、非着霜時に比べて、蒸発温度が低下したことを温度センサ44で検出すると、制御装置から通常暖房運転から除霜・暖房運転への指示が出力される。
 通常暖房運転から除霜・暖房運転に移行すると、第1電磁弁30と第2電磁弁42は開制御され、上述した通常暖房運転時の冷媒の流れに加え、圧縮機6の吐出口から出た気相冷媒の一部は第5配管28と第1電磁弁30を通り、第3配管22を通る冷媒に合流して、室外熱交換器14を加熱し、凝縮して液相化した後、第4配管24を通って四方弁8とアキュームレータ26を介して圧縮機6の吸入口へと戻る。
 また、第2配管20における室内熱交換器16とストレーナ10の間で分流した液相冷媒の一部は、第6配管38と第2電磁弁42を経て、蓄熱熱交換器34で蓄熱材36から吸熱し蒸発、気相化して、第7配管40を通って第4配管24を通る冷媒に合流し、アキュームレータ26から圧縮機6の吸入口へと戻る。
 アキュームレータ26に戻る冷媒には、室外熱交換器14から戻ってくる液相冷媒が含まれているが、これに蓄熱熱交換器34から戻ってくる高温の気相冷媒を混合することで、液相冷媒の蒸発が促され、アキュームレータ26を通過して液相冷媒が圧縮機6に戻ることがなくなり、圧縮機6の信頼性の向上を図ることができる。
 除霜・暖房開始時に霜の付着により氷点下となった室外熱交換器14の温度は、圧縮機6の吐出口から出た気相冷媒によって加熱されて、零度付近で霜が融解し、霜の融解が終わると、室外熱交換器14の温度は再び上昇し始める。この室外熱交換器14の温度上昇を温度センサ44で検出すると、除霜が完了したと判断し、制御装置から除霜・暖房運転から通常暖房運転への指示が出力される。
 図4は、圧縮機6に蓄熱槽32を取り付けた状態を示す斜視図である。図4において、圧縮機6はアキュムレータ26を備えている。蓄熱槽32は圧縮機6に対して外接するように取り付けられており蓄熱槽32と圧縮機6との間には伝熱シート(図7参照)52が挟まれている。蓄熱槽32には蓄熱材(図示せず)と蓄熱熱交換器34が収容されている。
 図5は、蓄熱槽32から圧縮機6を取り外した状態を示す斜視図である。伝熱部45は蓄熱槽32のうち、圧縮機6に取り付けられた伝熱シート52に接する部分で、蓄熱槽32と伝熱シート52を密着させる際に伝熱シート52との間に溜められる空気を排出するための溝46が一定間隔で設けられている。ここで、伝熱部45の厚さは伝熱部45以外の蓄熱槽32の厚さに比べて薄くなっていて、蓄熱槽32の強度は確保しながらも、伝熱部45の熱伝導性を良くするようにしている。
 蓄熱槽32と伝熱部45は共に樹脂で、加工が容易で安価である。両者が別部品の場合でも、一体化させるための2次加工も容易にできる。
 蓄熱槽32は中に収容した蓄熱材が外にこぼれないよう蓋47が取り付けられていて、蓋47と蓄熱熱交換器34との間にはシール48が取り付けられている。
 図6は、伝熱部45を示す斜視図で、図6(a)は圧縮機6に取り付けられた伝熱シート52と接する面、図6(b)はその反対の蓄熱槽32の内側に面する面である。図6(a)の面には溝46が一定の間隔で設けられている他、圧縮機6に存在する突起形状のものから逃げるための窪み49が設けられている。また、図6(b)の面には、図6(a)面に溝46を設けたために、その溝46の深さ分、伝熱部45に厚みが薄くなり、強度が弱くなるのを補う為の補強部50が設けられてる他、伝熱部45にねじれ方向の力が加わっても伝熱部45が破損しないよう横方向を補強するための補強部51が設けられている。
 図7は伝熱シート52で、圧縮機6に取り付ける際に、圧縮機6との間に取り込まれる空気を逃がすための貫通孔53を備えている。貫通孔53の横方向の間隔は、伝熱部45に設けられた溝46の間隔と同じである。
 圧縮機6の表面には圧縮機6製造過程で生じる溶接による凹凸箇所や表面のざらざらした部分が存在するため、蓄熱槽32を圧縮機6に取り付ける場合、その接する面を密着させるのは困難である。このため、本発明においては圧縮機6と蓄熱槽32との間に、粘着性があり、かつ弾性がある伝熱性能に優れた樹脂製の伝熱シート52(例えばシリコン系)を挟んでいる。厚みは0.5~3mmで、伝熱性能を維持しつつ、圧縮機6表面の凹凸やざらざらによる密着性の悪化を改善できるための、あるいは圧縮機6と蓄熱槽32(伝熱部45)との取付公差を改善するための適切な厚みを有する。
 次に、上記構成の蓄熱装置の作用を説明する。
 上述したように、蓄熱槽32は、通常暖房運転時に圧縮機6で発生した熱を蓄熱材36に蓄積し、通常暖房運転から除霜・暖房運転に移行したときに、第2配管20における室内熱交換器16とストレーナ10の間で分流した液相冷媒の一部が、蓄熱熱交換器34で蓄熱材36から吸熱し蒸発、気相化するためのものであることから、圧縮機6で発生した熱の吸熱効率は高いほど好ましい。吸熱効率は、蓄熱槽32と圧縮機6との密着度に依存しているが、圧縮機6は円筒型の金属製でその外周面には凹凸があるので、蓄熱槽32と圧縮機6との密着度を向上させるために圧縮機6と蓄熱槽32の間に粘着性の伝熱性シート52を挟んで、吸熱効率を向上させている。
 通常暖房運転時に蓄熱槽32に蓄えられた熱は、除霜・暖房運転時には霜の溶解に利用されるため、蓄熱材36には通常暖房運転時の間に高い温度の熱を蓄えた方が、除霜性能を高くすることができる。すなわち、通常暖房運転時間と圧縮機6の表面温度が同じ場合でも、圧縮機6の表面から蓄熱槽32に収容された蓄熱材36への熱の伝わり方が悪い場合は蓄熱材36の温度の上昇も悪くなり、逆に圧縮機6表面から蓄熱材36への熱の伝わり方が良い場合は蓄熱材36の温度の上昇も良くなる。これら熱の伝わり方に寄与するのが、蓄熱槽32と圧縮機6との密着性で、両者の間に余分な空気が存在すれば、これが断熱効果となって熱の伝わりが悪くなる。
 以上の点を改善するために本発明では、圧縮機6と蓄熱槽32との間に適度な厚さの粘性と弾性を有する伝熱シート52を挟んで、伝熱性能上げるべく密着性を高めるようにしている。
 一方、圧縮機6に伝熱シート52を取り付けて、これに蓄熱槽32を取り付ける際に、伝熱シート52が粘性を有するが故に、圧縮機6と伝熱シート52の間、および、伝熱シートと蓄熱槽32の間に、空気を溜め込んでしまうことがある。そこで、これを改善するために、本発明では、圧縮機6と伝熱シート52の間に溜まる空気を排出するために伝熱シート52に貫通孔53を設け、伝熱シート52と蓄熱槽32の間に溜まる空気を排出するために蓄熱槽32のうち伝熱シート52に接する部分に伝熱部45を設けて、この伝熱部45に空気を排出するための溝46を設けた。これにより、伝熱シート52が持つ粘性を利用して伝熱シート52は圧縮機6に密着させることができ、この際に、伝熱シート52と圧縮機6との間に取り込まれる空気は、貫通孔53から外側に排出することができる。次に圧縮機6に伝熱シート52を密着させたものに蓄熱槽32を取り付けると、伝熱シート52は蓄熱槽32の伝熱部45に密着させることができ、この際に伝熱シート52と伝熱部45との間に取り込まれる空気は、溝46を伝って外部に排出することができる。加えて溝46と伝熱シート52の間の空気を排出した後、伝熱シート52の弾性によって溝46と伝熱シート52の間の隙間を埋めることができて、伝熱シート52と伝熱部45の密着性を更に高めることができる。これらの結果、圧縮機6の熱は蓄熱槽32に収納された蓄熱材に効率よく伝えることが可能となる。
 なお、溝46のピッチは、できるだけ小さな径の空気を排出できるようできるだけ間隔を狭くして構成する必要がある一方、逆に溝46が多数存在することでそこに空気が溜まって、圧縮機6から蓄熱槽32への伝熱の阻害とならないよう適切なピッチが必要となる。本発明においては、そのピッチを1mmから30mmの間とする。
 また、伝熱シート52の貫通孔53のピッチは、伝熱部45の溝46のピッチと同じにすれば、圧縮機6と伝熱シート52との間から貫通孔53を通して排出された空気が、そのままその外側にある伝熱部45の溝46を伝って、外部に排出することできる。これをより確実に実現するためには、伝熱部45の溝46と伝熱シート52の貫通孔53が同じ位置に関係となるように、両者のピッチを一致させると同時に伝熱シート52と伝熱部45との位置関係を一致させておくとなお良い。その方法としては、例えば、圧縮機6に伝熱シート52を取り付ける際に取付位置が定められるような目印を設けておき、かつ、圧縮機6と蓄熱槽32との位置関係が、何らかの形で一義的に決定されるようにしておくといったものが挙げられる。
 伝熱部45は、樹脂よりも金属の方が伝熱性が高い一方で、加工形状の自由度と寸法精度などの加工性を考慮すると樹脂の方が適していると言える。特に、樹脂の中でも熱伝導性に優れた樹脂を用いれば金属と遜色がない熱伝導性を得られることも可能である。また、伝熱部45を樹脂にして、蓄熱槽32の他の部分に比べて薄くすることで材料の厚さが薄いほど厚み方向への熱伝達性が良くなることから、これで伝熱性を確保するといった方法もある。
 なお、通常暖房運転時に蓄熱槽32に収納された蓄熱材36に蓄えられた熱は、上述の通り、除霜・暖房運転時の除霜用に用いられる他、除霜・暖房運転後や、機器が一度停止した後の、通常暖房運転を再び実施する際の補助熱源として用いることで、素早い暖房の立ち上げを実現することも可能である。
 本発明に係る蓄熱装置は、圧縮機で発生した廃熱を蓄熱材へ蓄積するのに関わるもので、空気調和機、冷蔵庫、給湯器、ヒートポンプ式洗濯機等に有用である。
2 室外機、 4 室内機、 6 圧縮機、 8 四方弁、
10 ストレーナ、 12 膨張弁、 14 室外熱交換器、
16 室内熱交換器、 18 第1配管、 20 第2配管、
22 第3配管、 24 第4配管、 26 アキュームレータ、
28 第5配管、 30 第1電磁弁、 32 蓄熱槽、
34 蓄熱熱交換器、 36 蓄熱材、 38 第6配管、
40 第7配管、 42 第2電磁弁、 44 温度センサ、
45 伝熱部、 46 溝、 47 蓋、 48 シール、
50、51 補強部、 52 伝熱シート、53 貫通孔。

Claims (8)

  1. 圧縮機と外接するように配置された蓄熱装置であって、
    圧縮機で発生した熱を蓄熱する蓄熱材と、前記蓄熱材を収容する蓄熱槽と、前記圧縮機の廃熱を効率よく前記蓄熱槽に伝えるために前記圧縮機と前記蓄熱槽の間に設けられた伝熱シートとを備え、前記蓄熱槽は前記伝熱シートに接する部分に伝熱部を設けるとともに、前記伝熱部の前記伝熱シートに接する面には前記伝熱部と前記伝熱シートとの間に溜まる空気を排出するために溝を設けたことを特徴とする蓄熱装置。
  2. 前記伝熱部が前記伝熱シートと接する面とは反対の面のうち溝の裏側に当たる部分の肉高さは他の部分の肉高さに比べ高いことを特徴とする請求項1に記載の蓄熱装置。
  3. 前記伝熱シートに貫通孔を設けたことを特徴とする請求項1ないし2のいずれか1項に記載の蓄熱装置。
  4. 前記伝熱部の溝の間隔を一定の間隔とし、前記伝熱シートの前記貫通孔は前記溝と同じ間隔で設けられたことを特徴とする請求項3に記載の蓄熱装置。
  5. 前記伝熱部の厚さは前期蓄熱槽うちの前記伝熱部以外の部分の厚さに比べて薄いことを特徴とする請求項1から4のいずれか1項に記載の蓄熱装置。
  6. 前記伝熱シートは粘性と弾性を有し、前記圧縮機ならびに伝熱部に密着すると同時に、前記蓄熱槽を前記圧縮機に押しつけた際に前記伝熱シートが縮むことを特徴とする請求項1から5のいずれか1項に記載の蓄熱装置。
  7. 前記蓄熱槽と前記伝熱部は共に樹脂とする請求項1から6のいずれか1項に記載の蓄熱装置。
  8. 請求項1から7のいずれか1項に記載の蓄熱装置を備えることを特徴とする空気調和機。
PCT/JP2011/001136 2010-09-16 2011-02-28 蓄熱装置及び該蓄熱装置を備えた空気調和機 WO2012035676A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11824696.6A EP2618075B1 (en) 2010-09-16 2011-02-28 Heat storage device and air conditioner provided with said heat storage device
KR1020137006582A KR20130142108A (ko) 2010-09-16 2011-02-28 축열 장치 및 상기 축열 장치를 구비한 공기 조화기
BR112013006126A BR112013006126A2 (pt) 2010-09-16 2011-02-28 dispositivo de armazenamento de calor e condicionador de ar tendo o mesmo
CN201180044773.4A CN103201569B (zh) 2010-09-16 2011-02-28 蓄热装置和具有该蓄热装置的空气调节机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-207495 2010-09-16
JP2010207495A JP5083394B2 (ja) 2010-09-16 2010-09-16 蓄熱装置及び該蓄熱装置を備えた空気調和機

Publications (1)

Publication Number Publication Date
WO2012035676A1 true WO2012035676A1 (ja) 2012-03-22

Family

ID=45831172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001136 WO2012035676A1 (ja) 2010-09-16 2011-02-28 蓄熱装置及び該蓄熱装置を備えた空気調和機

Country Status (6)

Country Link
EP (1) EP2618075B1 (ja)
JP (1) JP5083394B2 (ja)
KR (1) KR20130142108A (ja)
CN (1) CN103201569B (ja)
BR (1) BR112013006126A2 (ja)
WO (1) WO2012035676A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080761A1 (ja) 2012-11-21 2014-05-30 日産自動車株式会社 燃料電池単セル
EP3169950A4 (en) * 2014-07-17 2018-07-11 Electrolux (Hangzhou) Home Appliances CO., LTD. Heat pump system
CN104296275B (zh) * 2014-08-22 2017-02-08 深圳朴方环保发展有限公司 一种缩小昼夜温差的装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197156A (ja) * 1989-01-26 1990-08-03 Nec Corp Lsiケースの冷却構造
JPH02128065U (ja) * 1989-03-27 1990-10-22
JPH03160242A (ja) * 1989-11-17 1991-07-10 Matsushita Electric Ind Co Ltd 空気調和機の蓄熱装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112638A1 (en) * 2005-04-21 2006-10-26 Lg Electronics Inc. Heat storage air conditioner
FR2930020B1 (fr) * 2008-04-10 2014-09-19 Valeo Systemes Thermiques Echangeur interne comportant un moyen de stockage thermique et boucle incorporant un tel echangeur.
FR2932875B1 (fr) * 2008-06-19 2013-09-13 Valeo Systemes Thermiques Installation de chauffage, ventilation et/ou climatisation a stockage de froid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197156A (ja) * 1989-01-26 1990-08-03 Nec Corp Lsiケースの冷却構造
JPH02128065U (ja) * 1989-03-27 1990-10-22
JPH03160242A (ja) * 1989-11-17 1991-07-10 Matsushita Electric Ind Co Ltd 空気調和機の蓄熱装置
JPH079304B2 (ja) 1989-11-17 1995-02-01 松下電器産業株式会社 空気調和機の蓄熱装置

Also Published As

Publication number Publication date
JP2012063075A (ja) 2012-03-29
CN103201569B (zh) 2015-05-06
JP5083394B2 (ja) 2012-11-28
BR112013006126A2 (pt) 2016-05-31
EP2618075A4 (en) 2016-10-05
KR20130142108A (ko) 2013-12-27
CN103201569A (zh) 2013-07-10
EP2618075A1 (en) 2013-07-24
EP2618075B1 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
WO2011099061A1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
WO2012042689A1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP6286675B2 (ja) 空気調和機
JP5110136B2 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
WO2012042690A1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP5182347B2 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP5083394B2 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2011163664A (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2012078012A (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
WO2011099060A1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2011163662A (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2014085021A (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2012072934A (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2012077935A (ja) 蓄熱装置およびこれを用いた空気調和機
JP4634529B1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2014020679A (ja) 蓄熱装置及びそれを備えた空気調和機
JP5067460B2 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
WO2013099163A1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2012072958A (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2012063076A (ja) 蓄熱装置および空気調和機
JP5560920B2 (ja) 自動販売機
WO2011099062A1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2012077937A (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137006582

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011824696

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013006126

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013006126

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130314