WO2012033172A1 - 半導体装置の製造方法およびリンス液 - Google Patents
半導体装置の製造方法およびリンス液 Download PDFInfo
- Publication number
- WO2012033172A1 WO2012033172A1 PCT/JP2011/070516 JP2011070516W WO2012033172A1 WO 2012033172 A1 WO2012033172 A1 WO 2012033172A1 JP 2011070516 W JP2011070516 W JP 2011070516W WO 2012033172 A1 WO2012033172 A1 WO 2012033172A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor
- interlayer insulating
- insulating layer
- acid
- resin
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 302
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 64
- 238000007789 sealing Methods 0.000 claims abstract description 173
- 239000000203 mixture Substances 0.000 claims abstract description 131
- 239000000758 substrate Substances 0.000 claims abstract description 101
- 239000011347 resin Substances 0.000 claims abstract description 97
- 229920005989 resin Polymers 0.000 claims abstract description 97
- 238000000034 method Methods 0.000 claims abstract description 93
- 125000000524 functional group Chemical group 0.000 claims abstract description 71
- 125000002091 cationic group Chemical group 0.000 claims abstract description 61
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 10
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 10
- 239000011591 potassium Substances 0.000 claims abstract description 10
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 10
- 239000011734 sodium Substances 0.000 claims abstract description 10
- 239000010410 layer Substances 0.000 claims description 225
- 239000011229 interlayer Substances 0.000 claims description 110
- 239000007788 liquid Substances 0.000 claims description 97
- 238000004140 cleaning Methods 0.000 claims description 72
- 229920002873 Polyethylenimine Polymers 0.000 claims description 64
- 239000000463 material Substances 0.000 claims description 63
- 239000000243 solution Substances 0.000 claims description 45
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 41
- 239000010949 copper Substances 0.000 claims description 31
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 26
- 229910052802 copper Inorganic materials 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 239000000377 silicon dioxide Substances 0.000 claims description 20
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 18
- 239000002253 acid Substances 0.000 claims description 18
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 16
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 12
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 12
- 229910017604 nitric acid Inorganic materials 0.000 claims description 12
- 239000012487 rinsing solution Substances 0.000 claims description 11
- 125000005372 silanol group Chemical group 0.000 claims description 10
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 8
- 229940098779 methanesulfonic acid Drugs 0.000 claims description 7
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 6
- 235000015165 citric acid Nutrition 0.000 claims description 6
- 235000019253 formic acid Nutrition 0.000 claims description 6
- 235000006408 oxalic acid Nutrition 0.000 claims description 6
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 claims description 4
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 4
- 238000005406 washing Methods 0.000 abstract description 9
- 125000004429 atom Chemical group 0.000 description 41
- 238000011156 evaluation Methods 0.000 description 40
- 230000008569 process Effects 0.000 description 25
- 239000011148 porous material Substances 0.000 description 23
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 22
- 239000010703 silicon Substances 0.000 description 22
- 229910052710 silicon Inorganic materials 0.000 description 22
- 230000015572 biosynthetic process Effects 0.000 description 18
- 239000000523 sample Substances 0.000 description 18
- 229910021642 ultra pure water Inorganic materials 0.000 description 18
- 239000012498 ultrapure water Substances 0.000 description 18
- 125000004433 nitrogen atom Chemical group N* 0.000 description 17
- 230000002093 peripheral effect Effects 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 16
- 239000000693 micelle Substances 0.000 description 12
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 11
- 150000008040 ionic compounds Chemical class 0.000 description 11
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 10
- 239000012298 atmosphere Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 230000004888 barrier function Effects 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 8
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 8
- 230000001590 oxidative effect Effects 0.000 description 8
- -1 poly (p-pyridylvinylene) Polymers 0.000 description 8
- 239000007921 spray Substances 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 6
- 239000012901 Milli-Q water Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 6
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 5
- 239000005751 Copper oxide Substances 0.000 description 5
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 238000011109 contamination Methods 0.000 description 5
- 229910000431 copper oxide Inorganic materials 0.000 description 5
- 238000002296 dynamic light scattering Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 239000002798 polar solvent Substances 0.000 description 5
- 229920000083 poly(allylamine) Polymers 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000001530 fumaric acid Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- GEVPUGOOGXGPIO-UHFFFAOYSA-N oxalic acid;dihydrate Chemical compound O.O.OC(=O)C(O)=O GEVPUGOOGXGPIO-UHFFFAOYSA-N 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical group S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 150000003482 tantalum compounds Chemical class 0.000 description 3
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 2
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910001431 copper ion Inorganic materials 0.000 description 2
- ZFTFAPZRGNKQPU-UHFFFAOYSA-N dicarbonic acid Chemical class OC(=O)OC(O)=O ZFTFAPZRGNKQPU-UHFFFAOYSA-N 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 235000011090 malic acid Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920002717 polyvinylpyridine Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 150000003628 tricarboxylic acids Chemical class 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- SMTDFMMXJHYDDE-UHFFFAOYSA-N 2-prop-1-enylpyridine Chemical compound CC=CC1=CC=CC=N1 SMTDFMMXJHYDDE-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- NCMHKCKGHRPLCM-UHFFFAOYSA-N caesium(1+) Chemical compound [Cs+] NCMHKCKGHRPLCM-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- YIOJGTBNHQAVBO-UHFFFAOYSA-N dimethyl-bis(prop-2-enyl)azanium Chemical class C=CC[N+](C)(C)CC=C YIOJGTBNHQAVBO-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- VEWLDLAARDMXSB-UHFFFAOYSA-N ethenyl sulfate;hydron Chemical compound OS(=O)(=O)OC=C VEWLDLAARDMXSB-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical group [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
- H01L21/0206—Cleaning during device manufacture during, before or after processing of insulating layers
- H01L21/02063—Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02334—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment in-situ cleaning after layer formation, e.g. removing process residues
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K3/1006—Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02043—Cleaning before device manufacture, i.e. Begin-Of-Line process
- H01L21/02052—Wet cleaning only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02082—Cleaning product to be cleaned
- H01L21/02087—Cleaning of wafer edges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02082—Cleaning product to be cleaned
- H01L21/0209—Cleaning of wafer backside
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76826—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76831—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/5329—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/5329—Insulating materials
- H01L23/53295—Stacked insulating layers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2200/00—Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2200/06—Macromolecular organic compounds, e.g. prepolymers
- C09K2200/0645—Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02203—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a semiconductor device manufacturing method and a rinsing liquid.
- low-k materials materials having a low dielectric constant having a porous structure
- the semiconductor interlayer insulating layer having such a porous structure when the porosity is increased in order to further lower the dielectric constant, a metal component such as copper embedded as a wiring material enters the pores in the semiconductor interlayer insulating layer. In some cases, the dielectric constant is increased and a leakage current is generated.
- a porous interlayer insulating layer is formed on the surface of the substrate together with copper or the like.
- the material (seal composition) used for the sealing adheres to the wiring. If a semiconductor device is created by leaving an extra sealing composition that does not contribute to the pore seals and adheres to these circuit materials (wirings), it may cause malfunction of the circuit or corrosion. Things need to be removed.
- cleaning method a method (hereinafter sometimes referred to as “rinsing method”) or a rinsing liquid (hereinafter referred to as “cleaning agent”) that quickly cleans the excess sealing composition on the wiring while leaving the material that seals the pores. Is sometimes required).
- a surfactant that does not have a micelle structure may enter the pores on the side wall surface of the groove and the relative dielectric constant may increase.
- the adhesion between the interlayer insulating layer and the wiring material may be reduced by the micelle.
- a bulky layer is easily formed by hydrogen bonding between polyvinyl alcohol-based amphiphilic polymers, thereby increasing the relative dielectric constant and the adhesion between the interlayer insulating layer and the wiring material. There was a case where a decrease in the amount occurred.
- the present invention uses a semiconductor sealing composition that can form a thin sealing layer and is excellent in the coverage of the pores of the porous interlayer insulating layer, and can easily be used on the periphery of a semiconductor substrate or on the periphery of a semiconductor substrate. It is an object of the present invention to provide a method of manufacturing a semiconductor device that is removed by the above-described method, and contamination due to an excess of the semiconductor sealing composition on the peripheral portion and back surface of the wiring portion and the semiconductor substrate is suppressed. It is another object of the present invention to provide a rinsing liquid used in the method for manufacturing a semiconductor device.
- a semiconductor sealing composition comprising a resin having a cationic functional group and a weight average molecular weight of 2000 to 600,000 on at least a part of a surface of a semiconductor substrate, wherein the contents of sodium and potassium are each 10 mass ppb or less on an element basis.
- ⁇ 2> The method for producing a semiconductor device according to ⁇ 1>, wherein the resin having a cationic functional group and having a weight average molecular weight of 2,000 to 600,000 has a cationic functional group equivalent of 43 to 430.
- ⁇ 3> The method for manufacturing a semiconductor device according to ⁇ 1> or ⁇ 2>, wherein the resin having a cationic functional group and having a weight average molecular weight of 2,000 to 600,000 is polyethyleneimine or a polyethyleneimine derivative.
- ⁇ 4> The method for manufacturing a semiconductor device according to any one of ⁇ 1> to ⁇ 3>, wherein a porous interlayer insulating layer is formed on at least a part of the surface of the semiconductor substrate.
- the semiconductor sealing layer is formed on the porous interlayer insulating layer, the porous interlayer insulating layer has a concave groove having a width of 10 nm to 32 nm, and the sealing composition applying step includes the step of providing the porous interlayer insulating layer.
- ⁇ 6> The method for manufacturing a semiconductor device according to ⁇ 4> or ⁇ 5>, wherein the porous interlayer insulating layer includes porous silica and has a silanol residue derived from the porous silica on a surface thereof.
- ⁇ 7> The manufacturing of a semiconductor device according to any one of ⁇ 1> to ⁇ 6>, wherein the rinsing liquid includes at least one solvent selected from the group consisting of water, methanol, ethanol, propanol, butanol, and propylene glycol monomethyl ether acetate.
- the rinse liquid contains at least one acid selected from the group consisting of oxalic acid, formic acid, citric acid, paratoluenesulfonic acid, methanesulfonic acid, hydrochloric acid, and nitric acid.
- ⁇ 9> The method for manufacturing a semiconductor device according to any one of ⁇ 1> to ⁇ 8>, wherein the surface of the semiconductor substrate on which the semiconductor sealing layer is formed includes a surface on which a semiconductor circuit is not formed. ⁇ 10> ⁇ 9> The method for manufacturing a semiconductor device according to ⁇ 9>, wherein a pH of a rinse liquid for cleaning the semiconductor circuit non-formation surface at 25 ° C. is 2 or less.
- a circuit surface cleaning step in which the surface of the semiconductor substrate includes a circuit surface at least partially including a porous interlayer insulating layer and a wiring material containing copper, and the cleaning step is a cleaning step of removing and cleaning the seal layer on the wiring material A method for manufacturing a semiconductor device according to any one of ⁇ 1> to ⁇ 8>.
- ⁇ 13> The method for manufacturing a semiconductor device according to any one of ⁇ 1> to ⁇ 12>, wherein the cationic functional group is at least one selected from a primary amino group and a secondary amino group.
- the semiconductor according to any one of ⁇ 1> to ⁇ 13> further including a surface peripheral edge cleaning step of spraying and cleaning the rinse liquid on the peripheral edge of the surface of the semiconductor substrate on which the semiconductor sealing layer is formed.
- Device manufacturing method. ⁇ 15> The method for manufacturing a semiconductor device according to any one of ⁇ 1> to ⁇ 14>, wherein the rinsing liquid includes at least one resin decomposing agent selected from the group consisting of hydrogen peroxide and nitric acid.
- ⁇ 16> The method for manufacturing a semiconductor device according to any one of ⁇ 1> to ⁇ 15>, wherein the circuit surface cleaning step is performed in a non-oxidizing atmosphere.
- ⁇ 17> The method for manufacturing a semiconductor device according to any one of ⁇ 1> to ⁇ 16>, wherein the rinse liquid does not contain an oxidizing compound.
- ⁇ 18> The method for manufacturing a semiconductor device according to any one of ⁇ 1> to ⁇ 17>, wherein the semiconductor substrate has a silanol residue derived from a natural oxide film formed on a surface of the substrate.
- the resin having a cationic functional group and a weight average molecular weight of 2,000 to 600,000 has a cationic functional group equivalent of 43 to 430, and the cationic functional group is selected from a primary amino group and a secondary amino group
- the rinse solution according to ⁇ 19> which is at least one kind.
- rinsing liquid according to ⁇ 19> or ⁇ 20> which has a pH of 1 or more at 25 ° C. and is used for rinsing the semiconductor circuit surface.
- ⁇ 22> The rinsing liquid according to ⁇ 19> or ⁇ 20>, wherein the rinsing liquid has a pH of 2 or less at 25 ° C. and is used for rinsing the non-circuit surface of the semiconductor substrate.
- a semiconductor device using a semiconductor sealing composition that can form a thin seal layer and has excellent pore coverage of a porous interlayer insulating layer is formed on a wiring or a semiconductor substrate.
- the seal composition adhering to the peripheral portion and the back surface where the circuit is not formed can be easily removed, and the contamination by the excess semiconductor seal composition on the peripheral portion and the back surface of the wiring portion and the semiconductor substrate can be suppressed.
- the rinse liquid of this invention can be used suitably for the said manufacturing method.
- the method for manufacturing a semiconductor device of the present invention comprises a resin having a cationic functional group and having a weight average molecular weight of 2000 to 600000 on at least a part of the surface of a semiconductor substrate, and the contents of sodium and potassium are each 10 ppb on an element basis.
- a cleaning process for removing the semiconductor sealing layer is included in this order.
- the method for manufacturing a semiconductor device of the present invention is configured to further include other steps between the sealing composition applying step and the cleaning step, or after the cleaning step, if necessary.
- the “surface on which the semiconductor sealing composition is formed” includes the surface of the semiconductor substrate (circuit surface including a porous interlayer insulating layer and a wiring material containing copper), and the back surface of the semiconductor substrate (non-semiconductor circuit). Forming surface) and the peripheral portion of the surface (semiconductor circuit forming surface) or a combination thereof.
- the seal composition application step of the present invention comprises a resin having a cationic functional group and a weight average molecular weight of 2000 to 600000 on at least a part of the surface of a semiconductor substrate, and contains sodium and potassium. Includes an operation of applying a semiconductor sealing composition having an element basis of 10 ppb or less.
- the semiconductor substrate in the present invention can be used without limitation as long as it is a commonly used semiconductor substrate. Specifically, a silicon wafer or a substrate in which a circuit such as a transistor is formed on the silicon wafer can be used. .
- the porous interlayer insulating layer in the present invention is composed of a low dielectric constant material and is not particularly limited as long as it is porous, but contains porous silica and has silanol residues derived from porous silica on the surface. Is preferred. When the silanol residue interacts with a cationic functional group contained in the resin, a thin layer made of the resin is formed so that the resin covers pores on the interlayer insulating layer.
- porous silica usually used for an interlayer insulating layer of a semiconductor device can be used without particular limitation.
- silica gel and surfactant described in International Publication No. 91/11390 pamphlet uniform utilizing self-organization of organic compound and inorganic compound hydrothermally synthesized in a sealed heat-resistant container Oxide having various mesopores, and condensates and surface activity of alkoxysilanes described in Nature, 1996, 379 (page 703) or Supramolecular Science, 1998, 5 (247)
- porous silica produced from the agent Especially, the porous interlayer insulation layer formed using the porous silica described in the international publication 2009/123104 pamphlet is preferable.
- the porous interlayer insulating layer can be formed, for example, by applying the above-described composition for forming porous silica on the surface of the silicon wafer and then appropriately performing a heat treatment or the like.
- the semiconductor sealing composition when brought into contact with the concave groove, when the wiring material is embedded in the concave groove, the components constituting the wiring material diffuse into the pores of the porous interlayer insulating layer. This can be effectively suppressed and is useful.
- the step of forming a concave groove or hole having a width of 10 nm to 32 nm in the interlayer insulating layer can be performed according to the manufacturing process conditions of a semiconductor device that is normally used.
- a groove having a desired pattern can be formed by forming a hard mask and a photoresist on the interlayer insulating layer and etching according to the pattern of the photoresist.
- the porous interlayer insulating layer contains porous silica, the surface of the porous silica is scraped with the formation of the concave groove, so that the density of silanol groups on the surface tends to increase.
- a circuit is formed by wiring a wiring material containing copper between elements such as transistors formed on a silicon wafer.
- This wiring formation step can be performed according to known process conditions.
- a copper wiring is formed by a metal CVD method, a sputtering method or an electrolytic plating method directly on a silicon wafer or on an interlayer insulating layer in which the above-described concave groove or hole is formed, and chemical mechanical polishing ( The film is smoothed by CMP).
- a multilayer can be formed by forming a cap film on the surface of the film, then forming a hard mask, and repeating the formation of the porous interlayer insulating layer and the wiring formation process described above.
- the semiconductor sealing composition of the present invention is used, for example, to form a resin layer covering pores formed on a porous interlayer insulating layer, and has a weight average molecular weight having a cationic functional group of 2000 to 2000. It contains at least one of 600,000 resins, the content of sodium and potassium is 10 ppb or less on an element basis, respectively, and the volume average particle diameter measured by a dynamic light scattering method is preferably 10 nm or less.
- the cationic functional group of the resin is adsorbed on the interlayer insulating layer at multiple points, and the interlayer insulating layer
- the pores (pores) present on the surface are covered with the resin layer.
- diffusion of the metal component into the porous interlayer insulating layer can be suppressed.
- the resin layer formed by the resin is a thin layer (for example, 5 nm or less), it has excellent adhesion between the interlayer insulating layer and the wiring material formed on the interlayer insulating layer via the resin layer. A change in dielectric constant can be suppressed.
- the semiconductor sealing composition of the present invention contains at least one resin having a cationic functional group and a weight average molecular weight of 2,000 to 600,000.
- the resin has at least one cationic functional group, but may further have an anionic functional group or a nonionic functional group as necessary. Further, the resin may have a repeating unit structure having a cationic functional group, or may have a random structure formed by branching polymerization of monomers constituting the resin without having a specific repeating unit structure. It may have a structure. In the present invention, from the viewpoint of suppressing the diffusion of the metal component, the resin does not have a specific repeating unit structure, and has a random structure formed by branching polymerization of monomers constituting the resin. Is preferred.
- the cationic functional group is not particularly limited as long as it is a functional group that can be positively charged.
- an amino group, a quaternary ammonium group, etc. can be mentioned. Of these, at least one selected from a primary amino group and a secondary amino group is preferable from the viewpoint of suppressing diffusion of the metal component.
- the nonionic functional group may be a hydrogen bond accepting group or a hydrogen bond donating group.
- a hydroxyl group, a carbonyl group, an ether bond, etc. can be mentioned.
- the anionic functional group is not particularly limited as long as it is a functional group that can be negatively charged. Examples thereof include a carboxylic acid group, a sulfonic acid group, and a sulfuric acid group.
- the resin Since the resin has a cationic functional group in one molecule, diffusion of the metal component can be suppressed. Moreover, it is preferable that it is a polymer with a high cation density from a viewpoint of the spreading
- the cationic functional group equivalent means the weight average molecular weight per cationic functional group
- the weight average molecular weight (Mw) of the resin is the number of cationic functional groups (n) contained in the resin corresponding to one molecule. The value obtained by dividing (Mw / n). The larger the cationic functional group equivalent, the lower the density of the cationic functional group, while the smaller the cationic functional group equivalent, the higher the density of the cationic functional group.
- the cationic functional group has a main chain in the specific unit structure. It may be included as at least a part, may be included as at least a part of the side chain, and may further be included as at least a part of the main chain and at least a part of the side chain. Furthermore, when the specific unit structure contains two or more cationic functional groups, the two or more cationic functional groups may be the same or different.
- the cationic functional group is a ratio of the main chain length of the specific unit structure to the average distance between the adsorption points (for example, silanol residues) of the cationic functional group present on the porous interlayer insulating layer (hereinafter referred to as “ The relative distance between the cationic functional groups ”is sometimes included to be 0.08 to 1.2, and is preferably included to be 0.08 to 0.6. It is more preferable. With such an embodiment, the resin can be more efficiently adsorbed on the porous interlayer insulating layer more efficiently.
- the specific unit structure preferably has a molecular weight of 30 to 500, more preferably 40 to 200, from the viewpoint of adsorptivity to the interlayer insulating layer.
- the molecular weight of a specific unit structure means the molecular weight of the monomer which comprises a specific unit structure.
- the specific unit structure in the present invention preferably has a relative distance between the cationic functional groups of 0.08 to 1.2 and a molecular weight of 30 to 500 from the viewpoint of adsorptivity to the interlayer insulating layer. More preferably, the relative distance between the cationic functional groups is 0.08 to 0.6, and the molecular weight is 40 to 200.
- the specific unit structure containing a cationic functional group is specifically derived from a unit structure derived from ethyleneimine, a unit structure derived from allylamine, a unit structure derived from diallyldimethylammonium salt, or vinylpyridine.
- Examples include a unit structure, a unit structure derived from lysine, a unit structure derived from methylvinylpyridine, and a unit structure derived from p-vinylpyridine.
- the resin may further include at least one of a unit structure containing a nonionic functional group and a unit structure containing an anionic functional group.
- a unit structure containing the nonionic functional group include a unit structure derived from vinyl alcohol, a unit structure derived from alkylene oxide, and a unit structure derived from vinyl pyrrolidone.
- a unit structure containing an anionic functional group specifically, a unit structure derived from styrene sulfonic acid, a unit structure derived from vinyl sulfate, a unit structure derived from acrylic acid, a unit structure derived from methacrylic acid, Examples include a unit structure derived from maleic acid and a unit structure derived from fumaric acid.
- the specific unit structures when the resin contains two or more types of specific unit structures, the specific unit structures may be different from each other in the kind or number of polar groups contained, the molecular weight, and the like.
- the two or more specific unit structures may be included as a block copolymer or a random copolymer.
- the resin may further include at least one repeating unit structure other than the specific unit structure (hereinafter sometimes referred to as “second unit structure”).
- the specific unit structure and the second unit structure may be included as a block copolymer or a random copolymer.
- the second unit structure is not particularly limited as long as it is a unit structure derived from a monomer polymerizable with the monomer constituting the specific unit structure. Examples include unit structures derived from olefins.
- the cationic functional group is mainly It may be included as at least part of the chain, may be included as at least part of the side chain, and may be included as at least part of the main chain and at least part of the side chain.
- the monomer that can constitute such a resin include ethyleneimine and derivatives thereof.
- the resin containing a cationic functional group in the present invention include polyethyleneimine (PEI), polyallylamine (PAA), polydiallyldimethylammonium (PDDA), polyvinylpyridine (PVP), polylysine, and polymethylpyridylvinyl (PMPyV). ), Protonated poly (p-pyridylvinylene) (R-PHPyV), and derivatives thereof.
- PEI polyethyleneimine
- PAA polyallylamine
- PAA polydiallyldimethylammonium
- PVP polyvinylpyridine
- PMPyV polymethylpyridylvinyl
- R-PHPyV Protonated poly (p-pyridylvinylene)
- polyethyleneimine (PEI) or a derivative thereof, polyallylamine (PAA), or the like is preferable
- polyethyleneimine (PEI) or a derivative thereof is more preferable.
- Polyethyleneimine can be generally produced by polymerizing ethyleneimine by a commonly used method.
- a polymerization catalyst, polymerization conditions, and the like can also be appropriately selected from those generally used for polymerization of ethyleneimine.
- the reaction can be carried out at 0 to 200 ° C. in the presence of an effective amount of an acid catalyst such as hydrochloric acid.
- ethyleneimine may be addition-polymerized based on polyethyleneimine.
- the polyethyleneimine in the present invention may be a homopolymer of ethyleneimine or a compound copolymerizable with ethyleneimine, for example, a copolymer of amines and ethyleneimine.
- JP-B 43-8828, JP-B 49-33120 and the like can be referred to.
- the polyethyleneimine in the present invention may be obtained using crude ethyleneimine obtained from monoethanolamine.
- JP-A-2001-2213958 can be referred to.
- Polyethyleneimine produced as described above has not only a partial structure in which ethyleneimine is opened and bonded in a straight chain, but also a branched partial structure and a linear partial structure are linked together. It has a complicated skeleton having a partial structure.
- a resin having a cationic functional group having such a structure the resin is more efficiently adsorbed at multiple points. Furthermore, the coating layer is more effectively formed by the interaction between the resins.
- polyethyleneimine derivative is not particularly limited as long as it is a compound that can be produced using the polyethyleneimine.
- Specific examples include a polyethyleneimine derivative in which an alkyl group (preferably having 1 to 10 carbon atoms) or an aryl group is introduced into polyethyleneimine, a polyethyleneimine derivative obtained by introducing a crosslinkable group such as a hydroxyl group into polyethyleneimine, and the like. be able to.
- These polyethyleneimine derivatives can be produced by a method usually performed using polyethyleneimine. Specifically, for example, it can be produced according to the method described in JP-A-6-016809.
- polyethyleneimine and derivatives thereof in the present invention may be commercially available.
- it can be appropriately selected from polyethyleneimine and derivatives thereof commercially available from Nippon Shokubai Co., Ltd., BASF, etc.
- the resin has a weight average molecular weight of 2,000 to 600,000, preferably 2,000 to 300,000, more preferably 2,000 to 100,000, still more preferably 10,000 to 80,000, and 20,000 to 60,000. Even more preferably.
- a weight average molecular weight of 2,000 to 600,000 means that the molecular weight is within this range from the viewpoint of covering the pores of the porous interlayer insulating layer and the dielectric constant.
- the semiconductor sealing composition of the present invention is applied to the manufacture of a semiconductor device in which the wiring interval is 32 nm or less and the pore diameter on the interlayer insulating layer is about 2 nm, the weight average molecular weight of the resin is more than 600000.
- a weight average molecular weight is measured using the GPC apparatus normally used for the molecular weight measurement of resin. The weight average molecular weight described in the present specification is measured under the following conditions.
- GPC device GPC-101 manufactured by Shodex Co., Ltd. Column: Asahipak GF-7M HQ Developing solvent: 0.5 M NaNO 3 + 0.5 M AcOH solution Flow rate: 1 mL / min.
- the resin is preferably a resin having a critical micelle concentration in an aqueous solvent of 1% by mass or more or does not substantially form a micelle structure.
- substantially not forming a micelle structure means that micelles are not formed under normal conditions such as in an aqueous solvent at room temperature, that is, the critical micelle concentration cannot be measured.
- the resin in the present invention is preferably polyethyleneimine having a weight average molecular weight of 2,000 to 600,000 and a cationic functional group equivalent of 43 to 430, and having a weight average molecular weight of 10,000 to 80,000. More preferred is polyethyleneimine having a functional group equivalent of 200 to 400. With this mode, the diffusion of the metal component into the interlayer insulating layer is more effectively suppressed, and the adhesion between the interlayer insulating layer and the wiring material is further improved.
- the content of the resin in the semiconductor sealing composition of the present invention is not particularly limited, and can be, for example, 0.01 to 1.0% by mass, and 0.02 to 0.3% by mass. Is preferred. Moreover, based on the area and pore density of the surface which forms a resin layer using the semiconductor sealing composition of this invention, content of the said resin in the said composition can also be adjusted.
- the semiconductor sealing composition of the present invention has a sodium and potassium content of 10 ppb or less on an element basis. 10 ppb or less means that sodium and potassium are not actively contained. If the sodium or potassium content exceeds 10 ppb on an element basis, leakage current may occur.
- the semiconductor sealing composition of the present invention can contain a solvent as necessary in addition to the resin, and at least in the sealing composition application step, the solvent is contained.
- the solvent in the present invention is not particularly limited as long as the resin is uniformly dissolved and does not easily form micelles.
- water preferably ultrapure water
- a water-soluble organic solvent for example, alcohol etc.
- the boiling point of the solvent is not particularly limited, but is preferably 210 ° C. or lower, and more preferably 160 ° C. or lower.
- the boiling point of the solvent is in the above range, for example, when a cleaning step or a drying step is provided after the step of applying the semiconductor sealing composition of the present invention described later to the interlayer insulating layer, the insulating property of the interlayer insulating layer.
- the solvent is removed at a low temperature at which the sealing composition is not peeled off from the interlayer insulating layer without greatly damaging the sealing composition, and a semiconductor sealing layer can be formed.
- the semiconductor sealing layer is also referred to as a semiconductor sealing composition.
- the semiconductor sealing composition of the present invention may further contain a cation such as cesium ion, if necessary, as long as the effects of the present invention are not impaired.
- a cation such as cesium ion
- the resin in the semiconductor sealing composition can be more uniformly spread on the interlayer insulating layer.
- the semiconductor sealing composition of the present invention does not contain a compound that corrodes or dissolves the interlayer insulating layer.
- the main material of the interlayer insulating layer is an inorganic compound such as silica
- the fluorine compound or the like is contained in the composition of the present invention, the interlayer insulating layer is dissolved and the insulating property is impaired. As a result, the relative dielectric constant may increase.
- the semiconductor sealing composition of the present invention preferably contains only a compound having a boiling point of 210 ° C. or lower, preferably 160 ° C. or lower, or a compound that does not decompose even when heated to 250 ° C.
- the “compound not decomposable when heated to 250 ° C.” means that the change in mass after holding at 250 ° C. under nitrogen for 1 hour with respect to the mass measured at 25 ° C. is less than 50%. Refers to a compound.
- the semiconductor sealing composition of the present invention preferably has a volume average particle diameter measured by a dynamic light scattering method of 10 nm or less.
- the volume average particle size of 10 nm or less means that large particles are not actively included from the viewpoint of adhesion.
- the volume average particle diameter exceeds 10 nm, the adhesion with the wiring material may be deteriorated, or the diffusion of the metal component to the interlayer insulating layer may not be sufficiently suppressed.
- the volume average particle diameter is determined by using the ELSZ-2 manufactured by Otsuka Electronics Co., Ltd. at 23 to 26 ° C., the dynamic light scattering method (the temporal fluctuation of the scattered light observed by the dynamic light scattering method, (E.g., conditions such as 70 times of integration and 1 time of repetition).
- the volume average particle diameter exceeds 10 nm, specifically, when micelles (average particle diameter is 10 nm or more) are formed in the composition, or wiring is formed in the composition. This is the case where abrasive grains such as metal oxides used for polishing copper (chemical mechanical polishing) are contained.
- abrasive grains such as metal oxides used for polishing copper (chemical mechanical polishing) are contained.
- micelles having a large particle size are formed in the semiconductor seal composition, for example, when the semiconductor seal composition of the present invention is applied to the manufacture of a semiconductor device having a wiring interval of 32 nm or less, the semiconductor seal The resin constituting the composition may not sufficiently enter the concave groove in which the wiring material is embedded, and may not sufficiently cover the pores on the side surface of the groove.
- the pH of the semiconductor sealing composition of the present invention is not particularly limited, but the pH is preferably higher than the isoelectric point of the interlayer insulating layer from the viewpoint of the adsorptivity of the resin to the interlayer insulating layer.
- the pH of the said sealing composition for semiconductors is the range of pH in which the said cationic functional group is a cation state.
- the isoelectric point of the interlayer insulating layer is the isoelectric point indicated by the compound constituting the interlayer insulating layer.
- the isoelectric point is around pH 2 (25 ° C).
- the pH range where the cationic functional group is in a cationic state means that the pH of the semiconductor sealing composition is equal to or lower than the pKb of the resin containing the cationic functional group.
- the resin containing a cationic functional group is polyallylamine
- pKb is 8 to 9
- pKb is 7 to 11.
- the pH of the semiconductor sealing composition can be appropriately selected according to the type of compound constituting the interlayer insulating layer and the type of resin, and is preferably pH 2 to 11, for example, pH 7 More preferably, it is ⁇ 11.
- pH (25 degreeC) is measured using the pH measuring apparatus used normally.
- a method to provide the sealing composition for semiconductors of this invention to the said porous insulating layer There is no restriction
- the method used normally can be used.
- a dipping method for example, see US Pat. No. 5,208,111
- a spray method for example, Schlenoff et al., Langmuir, 16 (26), 9968, 2000, Izuquierdo et al., Langmuir, 21 (16), 7558, 2005.
- a porous insulating layer by a spin coating method see, for example, Lee et al., Langmuir, 19 (18), 7592, 2003, J. Polymer Science, part B, polymer physics, 42, 3654, 2004).
- a method of bringing the semiconductor sealing composition into contact with can be used.
- the semiconductor sealing layer comprising the resin is applied onto the interlayer insulating layer by applying the semiconductor sealing composition containing the resin and appropriately drying by a commonly used method. It can be formed in a thin layer.
- the thickness of the semiconductor sealing layer is not particularly limited, but is, for example, 0.3 nm to 5 nm, preferably 0.5 nm to 2 nm.
- the concentration of the resin contained in the semiconductor sealing composition used in the sealing composition application step of the present invention is preferably less than the critical micelle concentration of the resin.
- the resin can be applied to the interlayer insulating layer in a thin layer shape (for example, 5 nm or less, preferably 2 nm or less), and an increase in dielectric constant can be suppressed.
- the dipping method, spray method, or spin coating method described above can be used as a method of bringing the semiconductor sealing composition into contact with the side surface of the concave groove of the interlayer insulating layer.
- the resin After application of the semiconductor sealing composition, the resin may be crosslinked to polymerize the resin.
- the semiconductor manufacturing method of the present invention includes a step of removing and cleaning the seal layer by applying a rinse solution having a pH of 6 or less at 25 ° C. after the above-described sealing composition applying step.
- a rinse solution having a pH of 6 or less at 25 ° C. after the above-described sealing composition applying step.
- circuit surface cleaning process a process (circuit surface cleaning process) of removing the semiconductor sealing layer formed on the surface of the porous interlayer insulating layer on the surface of the semiconductor substrate will be described.
- a semiconductor sealing layer is formed on the surface of the porous interlayer insulating layer on the surface of the semiconductor substrate.
- the first rinse solution (cleaning agent) of the present invention used in the circuit surface cleaning step has an upper limit of pH at 25 ° C. of 6 or less, preferably 5 or less, and preferably has a lower limit of 1 or more, more preferably 2 or more.
- the solution is preferably 1 to 5, still more preferably 2 to 5, and still more preferably 2 to 3.
- the first rinsing liquid dissolves or decomposes the above-described excess semiconductor sealing composition (semiconductor sealing layer) in order to quickly clean and remove the rinsing liquid.
- the semiconductor sealing composition is rapidly removed, while those that do not contaminate or destroy the circuit material such as the porous insulating layer are required.
- copper oxide dissolves.
- the porous insulating layer is difficult to dissolve, and the interaction between the porous insulating layer and the seal composition material is not greatly impaired.
- the first rinsing liquid is less likely to break the porous layer insulating layer formed of silica or the like, and suppresses peeling of an effective seal composition that seals the pores of the porous insulating layer. Any excess deposited on the material has the function of quickly removing the seal composition.
- an oxide of the wiring material is present on the wiring material, which causes peeling of the wiring material, the low dielectric constant material, and the wiring material, so the oxide is removed. It is known that a process is necessary.
- the first rinsing solution dissolves an oxide film on the wiring material, specifically, a copper oxide film when the wiring material contains copper, and removes the excess sealing composition together with the oxide film. Accordingly, it is possible to remove the excess oxide film on the wiring material together with the excess seal composition while suppressing the peeling of the effective seal composition sealing the pores of the porous insulating layer.
- the first rinse liquid preferably contains a highly polar solvent. This is because the semiconductor sealing composition of the present invention has a high polarity as described above, so that it is easily dissolved in a solvent having a high polarity and the cleaning efficiency of the rinsing liquid is improved. Specifically, it is preferable to include a polar solvent such as water, methanol, ethanol, propanol, butanol, and propylene glycol monomethyl ether acetate. On the other hand, such a polar solvent does not significantly impair the interaction between the porous insulating layer and the seal composition.
- the first rinse liquid may be heated or may be subjected to ultrasonic waves.
- the first rinsing solution can be produced by adding an acid to the solvent and adjusting the pH to the above range.
- Acids that can be used in the present invention are not particularly limited, but those that do not contaminate or destroy the porous interlayer insulating film and can hardly remain on the semiconductor substrate can be used. Specifically, monocarboxylic acids such as formic acid and acetic acid can be used.
- Acid oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, dicarboxylic acid such as maleic acid, fumaric acid and phthalic acid, tricarboxylic acid such as trimellitic acid and tricarbaryl acid, hydroxybutyric acid, lactic acid, Oxymonocarboxylic acids such as salicylic acid, oxydicarboxylic acids such as malic acid and tartaric acid, oxytricarboxylic acids such as citric acid, aminocarboxylic acids such as aspartic acid and glutamic acid, organic acids such as paratoluenesulfonic acid and methanesulfonic acid, hydrochloric acid And inorganic acids such as nitric acid and phosphoric acid.
- dicarboxylic acid such as maleic acid, fumaric acid and phthalic acid
- tricarboxylic acid such as trimellitic acid and tricarbaryl acid
- hydroxybutyric acid
- At least one selected from the group consisting of oxalic acid, formic acid, citric acid, paratoluenesulfonic acid, methanesulfonic acid, hydrochloric acid, and nitric acid is preferable.
- the first rinse liquid preferably contains a reducing agent or a compound having a reducing action.
- a reducing agent and the compound having a reducing action that can be used in the first rinsing liquid include formalin.
- the first rinsing liquid has a viewpoint that prevents the carbon-carbon bonds and the like in the resin of the sealing composition from being broken and suppresses the peeling of the effective sealing layer sealing the pores of the porous insulating layer. Therefore, the content of the oxidizing compound (for example, hydrogen peroxide and nitric acid) is preferably 10% by mass or less, and more preferably not containing the oxidizing compound.
- the oxidizing compound for example, hydrogen peroxide and nitric acid
- the first rinse liquid preferably has an ionic strength of 0.003 or more, and preferably 0.01 or more.
- the semiconductor sealing composition contains a resin having a cationic functional group and a high polarity, so that it is easy to dissolve these resins within the range of the pH and the ionic strength. This is because the interaction between the insulating layer and the sealing composition is not greatly impaired.
- the upper limit of ionic strength What is necessary is just the ionic strength of the density
- ionic compounds such as organic bases, such as ammonia, a pyridine, and ethylamine, for example other than said acid can also be added as needed.
- a polymer for example, polyethyleneimine
- that captures copper ions may be added after removing copper.
- the amount of the solvent, acid, reducing agent, ionic compound, and the like that can be contained in the first rinsing liquid can be appropriately adjusted so that the pH and ionic strength of the rinsing liquid are within the above-described ranges. .
- the first rinsing liquid can be prepared by mixing the above-mentioned solvent, acid, reducing agent, ionic compound, etc., but in a clean environment such as a clean room in order to prevent contamination of the semiconductor circuit. It is preferable to remove a contaminating component to the semiconductor circuit by preparing or rinsing liquid after purification or filtration.
- the excess sealing composition adhering to the wiring material is quickly removed while maintaining an effective material sealing the porous interlayer insulating layer. It can be washed (rinsed), and furthermore, as described above, the oxide of the wiring material can also be removed, whereby the peeling between the wiring material and the low dielectric constant material or between the wiring materials can be suppressed. .
- the circuit surface cleaning step is performed in a non-oxidizing atmosphere.
- a non-oxidizing atmosphere By performing cleaning in a non-oxidizing atmosphere, copper wiring on the wiring surface that existed before rinsing was removed with a rinsing solution, and then copper was oxidized and the rinsing solution was dissolved again. Can be prevented from being excessively removed.
- a non-oxidizing atmosphere for example, a reducing atmosphere gas may be used.
- the cleaning of the circuit surface of the semiconductor substrate of the present invention is not particularly limited as long as the first rinsing solution is used and may be performed by a commonly used method.
- the circuit surface cleaning time is not particularly limited. For example, when a rinse solution at 25 ° C. and pH 5 is used, it is preferably 0.1 to 60 minutes, and more preferably 0.1 to 10 minutes.
- a semiconductor sealing layer is formed on the surface of the porous interlayer insulating layer on the surface of the semiconductor substrate, but at the same time, a circuit such as an interlayer insulating film is not formed and the base of the semiconductor substrate is formed.
- a circuit such as an interlayer insulating film is not formed and the base of the semiconductor substrate is formed.
- this back surface cleaning includes cleaning with a rinse solution (Berberus) of the portion of the wafer edge that is rounded from the surface on which the porous interlayer insulating layer is formed to the back surface.
- the second rinsing liquid of the present invention used in the back surface cleaning step dissolves or decomposes the above-mentioned excess semiconductor sealing composition (semiconductor sealing layer) in order to quickly clean and remove the above-mentioned semiconductor sealing composition.
- the second rinsing liquid is required to rapidly remove the semiconductor sealing composition in order to increase the semiconductor manufacturing efficiency, while not contaminating or destroying the circuit material such as the porous insulating layer.
- the second rinse liquid has a pH at 25 ° C. of 6 or less, preferably 5 or less, more preferably 0 to 2.5, and more preferably 0 to 2. Even more preferably, it is zero.
- a silicon wafer is used as the semiconductor substrate, a natural oxide film is formed on the back surface of the semiconductor substrate to be cleaned with the rinsing liquid and on the peripheral edge of the semiconductor substrate described later, and many silanol groups exist on the surface.
- the density of silanol groups derived from this natural oxide film is not limited, but generally a density of about 5/100 2 can be mentioned.
- the semiconductor sealing composition of the present invention has a cationic functional group, it is presumed that the semiconductor sealing composition interacts with and is fixed to the silanol group. Therefore, the excess semiconductor sealing composition can be efficiently removed by washing with a rinsing solution having a pH of 5 or less, preferably a silanol residue having an isoelectric point or less, and weakening the interaction. .
- the acid that can be used to adjust the pH of the second rinsing liquid to the above range is not particularly limited, but it does not contaminate or destroy the porous interlayer insulating film, and can be used that does not remain on the semiconductor substrate.
- monocarboxylic acids such as formic acid and acetic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, phthalic acid and other dicarboxylic acids, trimellitic acid and tricarbali Tricarboxylic acids such as rilic acid, oxymonocarboxylic acids such as hydroxybutyric acid, lactic acid and salicylic acid, oxydicarboxylic acids such as malic acid and tartaric acid, oxytricarboxylic acids such as citric acid, aminocarboxylic acids such as aspartic acid and glutamic acid, paratoluene
- organic acids such as sulfonic acid
- At least one selected from the group consisting of oxalic acid, formic acid, citric acid, paratoluenesulfonic acid, methanesulfonic acid, hydrochloric acid, and nitric acid is preferable.
- the second rinse liquid has an ionic strength of 0.003 or more, and preferably 0.01 or more. This is because, as described above, since the semiconductor sealing composition contains a resin having a cationic functional group and a high polarity, these resins are easily dissolved within the range of the pH and ionic strength. Moreover, there is no limitation in particular about the upper limit of ionic strength, What is necessary is just the ionic strength of the density
- dissolve an ionic compound. The ionic strength is represented by the following formula. Ionic strength 1/2 ⁇ ⁇ (c ⁇ Z 2 ) (C represents the molar concentration of the ionic compound contained in the rinse solution, and Z represents the ionic valence of the ionic compound contained in the rinse solution)
- ionic compounds such as organic bases, such as ammonia, a pyridine, and ethylamine, for example other than said organic acid can also be added as needed.
- a polymer for example, polyethyleneimine
- that captures copper ions may be added after removing copper.
- the second rinse liquid may include a resin decomposing agent that decomposes the semiconductor sealing composition.
- the resin decomposing agent is not particularly limited as long as it is a compound that cleaves carbon-carbon bonds, carbon-nitrogen bonds, and carbon-oxygen bonds in the resin, and a normal decomposing agent can be used. Examples include those that generate radicals, ions such as H + , and OH ⁇ , specifically, good solutions containing hydrogen peroxide, nitric acid, and ozone, and hydrogen peroxide and nitric acid are preferable.
- the second rinsing liquid satisfies at least one of the conditions (A) pH is 6 or less, (B) ionic strength is 0.003 or more, and (C) a resin decomposing agent is included. Further, two conditions of any combination among (A) to (C) may be satisfied, or all three conditions (A) to (C) may be satisfied.
- the second rinsing liquid preferably contains a highly polar solvent that hardly breaks the porous insulating layer formed of silica or the like. This is because the semiconductor sealing composition of the present invention has a high polarity as described above, so that it is easily dissolved in a solvent having a high polarity and the cleaning efficiency of the rinsing liquid is improved. Specifically, it is preferable to include a polar solvent such as water, methanol, ethanol, propanol, butanol, and propylene glycol monomethyl ether acetate.
- the second rinse liquid may be heated or may be subjected to ultrasonic waves.
- the amount of the solvent, acid, ionic compound, etc. contained in the second rinsing liquid can be adjusted as appropriate so that the pH and ionic strength of the second rinsing liquid are within the above ranges.
- the second rinsing liquid is prepared by mixing the above-mentioned solvent, acid, oxidant, etc., but in order to prevent contamination of the semiconductor circuit, it is prepared in a clean environment such as a clean room, or the rinsing liquid. After the production, it is preferable to remove contaminant components to the semiconductor circuit by purification or filtration.
- the cleaning of the back surface of the semiconductor substrate of the present invention is not particularly limited as long as the second rinsing liquid is used, and may be performed by a commonly used method. Specifically, it can be cleaned by a back rinse method in semiconductor manufacturing as described in JP-A-9-106980.
- the second rinsing liquid is also used for cleaning the peripheral portion of the surface of the semiconductor substrate (the surface on which at least the porous interlayer insulating film and the semiconductor sealing layer are formed) in the reaction device manufacturing method of the present invention. it can.
- the peripheral portion means a portion of about 1 to 10 mm inward from the extended portion of the semiconductor substrate, in which a porous interlayer insulating layer or the like is not formed.
- the peripheral portion is often discarded after the dicing step because it is difficult to take out the circuit in the dicing step after the circuit is formed on the semiconductor substrate. For this reason, a porous interlayer insulating layer is not formed on the surface of the peripheral portion.
- a substrate of a semiconductor substrate specifically, a silicon wafer is used as the substrate, silicon or a natural oxide film of silicon is exposed. Is in a state of being.
- the semiconductor sealing layer formed on the surface of such a peripheral portion does not exhibit the function of sealing the porous interlayer insulating layer, similar to the semiconductor sealing layer formed on the back surface of the semiconductor substrate described above. Alternatively, it may cause contamination of the semiconductor circuit, so that it is preferably removed by cleaning.
- the cleaning of the peripheral portion of the semiconductor substrate surface can be performed by the normal cleaning method of the peripheral portion of the surface of the semiconductor substrate, using the rinse liquid of the present invention, similarly to the back surface of the semiconductor substrate described above. Can be cleaned by a so-called edge rinse method in semiconductor manufacturing as described in JP-A-9-106980. Each of the above washing steps may be performed simultaneously or independently.
- ⁇ Next wiring formation process> In the manufacturing method of the semiconductor device of this invention, after the sealing composition provision process and the washing
- a copper wiring is formed by a known metal CVD method, sputtering method or electrolytic plating method, and the film is smoothed by CMP.
- a cap film is formed on the surface of the film.
- a hard mask can be formed and multilayered by repeating the steps including the sealing composition applying step and the circuit surface cleaning step, and a multilayer wiring semiconductor device can be manufactured.
- a barrier film (copper barrier layer) forming step can be further provided before the wiring forming step.
- the barrier film forming step can be performed in accordance with commonly used process conditions.
- a barrier film made of a titanium compound such as titanium nitride or a tantalum compound such as tantalum nitride can be formed by vapor deposition (CVD).
- CVD vapor deposition
- the method for manufacturing a semiconductor device of the present invention may include a post-rinsing step of further cleaning the rinsing liquid remaining on the semiconductor substrate after the circuit surface cleaning step and the backside cleaning step of the semiconductor substrate.
- the post-rinsing step can be performed by a commonly used method, and is not particularly limited. Specifically, the post-rinsing step can be washed by a post-rinsing method as described in JP-A-2008-47831.
- the rinsing liquid used in the post-rinsing process (hereinafter referred to as post-rinsing liquid) is not particularly limited as long as it can be removed by dissolving or decomposing the rinsing liquid.
- An organic solvent and water having water, a mixture of an organic solvent and water having the above polarity, a decomposable acid such as nitric acid and sulfuric acid, and a solvent containing ozone can be used.
- a semiconductor device manufactured by the manufacturing method of the present invention includes, for example, a porous interlayer insulating layer and a resin having a cationic functional group and a weight average molecular weight of 2,000 to 600,000, and a thickness of 0.3 nm to A resin layer having a thickness of 5 nm and a layer made of copper are provided in this order, and other layers are included as necessary. Since a resin layer containing a specific resin is disposed between the interlayer insulating layer and the wiring material, generation of leakage current and the like is suppressed even in a fine circuit configuration of 32 nm or less, and excellent characteristics are exhibited. be able to. In the present invention, it is preferable that a copper barrier layer (preferably a layer made of a tantalum compound) is further disposed between the resin layer and the wiring material containing copper.
- the density was measured in the usual manner using an XRD apparatus (Rigaku Corporation, TPR-In-Plane), with an X-ray power supply of 50 kV, 300 mA, and a wavelength of 1.5418 mm, in a scanning range of 0 to 1.5 °. It was measured.
- the relative dielectric constant was measured by a conventional method at a frequency of 1 MHz in an atmosphere of 25 ° C. and a relative humidity of 30% using a mercury probe apparatus (SSM5130).
- the elastic modulus was measured by a conventional method using a nanoindenter (Hysitron, Triboscope) at an indentation depth of 1/10 or less of the film thickness.
- a semiconductor seal composition As a semiconductor seal composition, a solution obtained by dissolving 250 mg of polyethyleneimine (PEI, manufactured by BASF, weight average molecular weight 25,000, cationic functional group equivalent 309) in 100 mL of water was used. The pH of the semiconductor sealing composition was 10.52. With respect to the semiconductor sealing composition, the volume average particle size was measured by dynamic light scattering method using ELSZ-2 manufactured by Otsuka Electronics Co., Ltd., and was below the detection limit ( ⁇ 10 nm). The measurement conditions were 70 times of integration and 1 repetition, and the analysis conditions were histogram analysis and cumulant analysis.
- PEI polyethyleneimine
- BASF weight average molecular weight 25,000, cationic functional group equivalent 309
- the pH of the semiconductor sealing composition was 10.52.
- the volume average particle size was measured by dynamic light scattering method using ELSZ-2 manufactured by Otsuka Electronics Co., Ltd., and was below the detection limit ( ⁇ 10 nm). The measurement conditions were 70 times of integration and
- the sodium and potassium contents of the semiconductor sealing composition were measured using an ICP mass spectrometer, they were 10 ppb or less on an element basis.
- a commercially available spray bottle “AIR-BOY” (manufactured by Carl Roth GmbH) is used for the above-mentioned interlayer insulating layer (hereinafter sometimes referred to as “low-k”).
- a spray method solution contact time 20 seconds, spray distance 10 centimeters.
- water was contacted by a spray method (contact time of ultrapure water 10 seconds, spray distance 10 centimeters) using a spray bottle similar to the above.
- the resin layer was formed on the interlayer insulating layer by drying by air blowing. Thereafter, the following evaluation was performed on a sample (low-k / PEI) stored in a constant temperature and humidity environment of 23 ° C. and 55% for 15 hours or more.
- the “water” used was ultrapure water (Millipore, Milli-Q water, resistance of 18 M ⁇ ⁇ cm (25 ° C.) or less).
- the section of Sample 1 (low-k / PEI / Cu) obtained above was observed in the same manner as described above, and element mapping was performed.
- the thickness of the formed resin layer was estimated from the distribution state of nitrogen atoms derived from polyethyleneimine, it was 5 nm or less.
- Sputtering was performed using HSM-521 (manufactured by Shimadzu Corporation) as an apparatus under the conditions of a set current of 0.4 A, a set voltage of 440 V, an Ar atmosphere, and a sputtering time of 2 minutes and 10 seconds.
- sample 1 low-k / PEI / Cu
- SMI2050 manufactured by Seiko Instruments Inc.
- FIB focused ion beam
- JEM-2200FS manufactured by JEOL Ltd., acceleration voltage 220 kV
- the cross section of the sample in which the metal copper film was formed on the semiconductor sealing layer was observed, and the diffusion depth of the metal component was measured.
- the diffusion depth of the metal component was 0 nm, and it was confirmed that the semiconductor seal layer suppressed the diffusion of the metal component into the porous interlayer insulating film.
- Example 1-1 (Preparation of rinse solution 1-1) Gradually add oxalic acid dihydrate (Pure Chemical Co., Ltd., reagent grade) to ultrapure water (Millipore, Milli-Q water) while measuring the pH using a pH meter and mix. The pH was adjusted to 3 at 25 ° C. to obtain rinse solution 1-1.
- oxalic acid dihydrate Pure water
- ultrapure water Millipore, Milli-Q water
- the silicon wafer on which the circuit surface is formed is left in the atmosphere for 2 hours or longer to form a natural oxide film (copper oxide) on the surface of the wiring, and the surface is cut into a 5 mm square, and the surface is subjected to UV for 5 minutes.
- -2 mL of the semiconductor sealing composition (polyethyleneimine aqueous solution) of Production Example 1 was dropped on the O3-treated one and spin-cast at 600 rpm to form a semiconductor sealing layer. Seal layer / copper layer / A substrate 1 made of a silicon layer was produced.
- the substrate 1 is immersed in a 20 mL container filled with the rinsing liquid 1 to a height of 15 mm, placed on a shaker and held for 60 minutes, the solution in the container is discarded, rinsed with ultrapure water three times, It was immersed in a container with a capacity of 20 mL filled with ultrapure water up to 15 mm, placed on a shaker and held for 15 minutes. The sample was taken out with tweezers, passed through an ultrapure water washing bottle for 1 minute, and dried with a dry air blow.
- a silicon wafer (Furuuchi Chemical, 8 inches, ⁇ 100> plane, P-type (boron doped) 10-20 ohm-cm, thickness 700-775 ⁇ m) was used. For 24 hours or more, leave it in the atmosphere to form a natural oxide film on the surface, cut out to 5 mm square, and treat the surface with UV-O3 for 5 minutes.
- 2 mL of the above semiconductor sealing composition polyethyleneimine aqueous solution
- the substrate 2 was prepared by dropping and spin casting at 600 rpm.
- the surface of the substrate 2 was in a surface state of porous silica, which is a kind of porous low dielectric constant material.
- the substrate 2 is immersed in a 20 mL container filled with the rinsing liquid 1-1 up to a height of 15 mm, placed on a shaker and held for 60 minutes, and then the solution in the container is discarded and rinsed with ultrapure water three times. It was immersed in a container with a capacity of 20 mL filled with ultrapure water up to 15 mm, placed on a shaker and held for 15 minutes. The sample was taken out with tweezers, passed through an ultrapure water washing bottle for 1 minute, and dried with a dry air blow.
- the obtained sample was subjected to the rinse resistance evaluation by measuring the elemental composition under the conditions of the X-ray source AlK ⁇ and the analysis region ⁇ 1 mm.
- the amount of nitrogen atoms (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the substrate 2 before the rinse resistance evaluation was 9.3 atom%. It was confirmed that the rinsing resistance of the semiconductor sealing layer on the porous low dielectric constant material was good against the rinsing liquid 1-1.
- Example 1-2 (Preparation of rinse liquid 1-2) To pure water (Millipore, Milli-Q water), gradually add oxalic acid dihydrate (Pure Chemical Co., Ltd., reagent grade) while measuring the pH using a pH meter, and mix. The pH was adjusted to 5 at 25 ° C. to obtain Rinse Solution 2.
- Substrate 1 and substrate 2 were prepared in the same manner as in Example 1-1 except that rinse solution 1-2 was used instead of rinse solution 1-1, and wiring cleaning property evaluation and rinse resistance evaluation were performed.
- the amount of nitrogen atoms (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the substrate 1 before the wiring cleaning evaluation was 8.9 atom%. It was confirmed that the color of the previous copper oxide was completely eliminated, and that the rinsing liquid 1-2 was excellent in rinsing property to the excess semiconductor sealing layer on the wiring. Further, the amount of nitrogen atoms (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the substrate 2 before the rinse resistance evaluation was 9.3 atom%. It was confirmed that the rinsing resistance of the semiconductor sealing layer on the porous low dielectric constant material was excellent with respect to the rinsing liquid 1-2.
- Substrate 1 and substrate 2 were prepared in the same manner as Example 1-1 except that rinse solution 1-3 was used instead of rinse solution 1-1, and wiring cleaning evaluation and rinse resistance evaluation were performed.
- the amount of nitrogen atoms (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the substrate 1 before the wiring cleaning evaluation was 8.9 atom% after the wiring cleaning evaluation was 4.7 atoms. %, And it was confirmed that the rinsing liquid 1-3 did not have sufficient rinsing properties for the excess semiconductor seal layer on the wiring.
- the amount of nitrogen atoms (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the substrate 2 before the rinse resistance evaluation was 9.3 atom%. It was confirmed that the rinsing resistance of the semiconductor sealing layer on the porous low dielectric constant material was poor with respect to the rinsing liquid 1-3.
- ⁇ Comparative Example 1-2> (Preparation of rinse solution 1-4) While measuring pH with a pH meter, add 0.5 N ammonia water gradually to pure water (Millipore, Milli-Q water), mix, and adjust pH to 9 at 25 ° C. As a result, rinse solution 1-4 was obtained.
- Substrate 1 and substrate 2 were prepared in the same manner as in Example 1-1 except that rinse solution 1-4 was used instead of rinse solution 1-1, and wiring cleaning evaluation and rinse resistance evaluation were performed.
- the amount of nitrogen atoms (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the substrate 1 before the wiring cleaning evaluation was 8.9 atom%, which was 6.6 atoms after the wiring cleaning evaluation. %, And it was confirmed that the rinsing liquid 1-4 did not have sufficient rinsing properties for the excess semiconductor seal layer on the wiring. Further, the amount of nitrogen atoms (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the substrate 2 before the rinse resistance evaluation was 9.3 atom%. It was confirmed that the rinsing resistance of the semiconductor sealing layer on the porous low dielectric constant material was poor with respect to the rinsing liquid 1-4.
- Substrate 1 and substrate 2 were prepared in the same manner as Example 1-1 except that rinse solution 1-5 was used instead of rinse solution 1-1, and wiring cleaning evaluation and rinse resistance evaluation were performed.
- the amount of nitrogen atoms (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the substrate 1 before the wiring cleaning evaluation was 8.9 tom% after the wiring cleaning evaluation was 8.9 atoms. %, And it was confirmed that the rinsing liquid 1-5 did not have sufficient rinsing properties for the excess semiconductor seal layer on the wiring. Further, the nitrogen atom amount (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the substrate 2 before the rinse resistance evaluation was 9.3 atom%. It was not changed to 3 atom%.
- Example 2-1 (Synthesis of rinse liquid 2-1) 30% hydrogen peroxide (genuine chemistry, reagent grade) was used as the rinse solution 2-1. The pH was 4.5 at 25 ° C.
- a silicon wafer (Furuuchi Chemical, 8 inches, ⁇ 100> surface, P-type (boron doped) 10-20 ohm-cm, thickness 700-775 ⁇ m) is used for 24 hours or more. Then, a natural oxide film is formed on the surface by leaving it in the atmosphere, cut into 5 mm square, and 2 mL of the above semiconductor sealing composition (polyethyleneimine aqueous solution) is dropped on the surface treated with UV-O3 for 5 minutes. A silicon wafer was formed by spin casting at 600 rpm to form a semiconductor sealing phase.
- the above semiconductor sealing composition polyethyleneimine aqueous solution
- the silicon wafer is immersed in a 20 mL container filled with rinse solution 2-1 to a height of 15 mm, placed on a shaker and held for 60 minutes, the solution in the container is discarded, and rinsed with ultrapure water three times.
- the container was immersed in a 20 mL container filled with ultrapure water up to a height of 15 mm, placed on a shaker, and held for 15 minutes.
- the sample was taken out with tweezers, passed through an ultrapure water washing bottle for 1 minute, and dried with a dry air blow.
- the elemental composition of the obtained sample was measured under the conditions of an X-ray source AlK ⁇ and an analysis region ⁇ 1 mm, and E (edge) B (back or bevel) R (rinse) Characterization was performed.
- the amount of nitrogen atoms (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the semiconductor substrate before the EBR evaluation was 8 atom%, but decreased to 1.3 atom% after the EBR evaluation. It was confirmed that the rinsing liquid 2-1 has a good rinsing property to the semiconductor sealing layer.
- Example 2-2 (Synthesis of rinse liquid 2-2) Add oxalic acid dihydrate (pure chemistry, reagent grade) to ultrapure water, measure the pH with a pH meter, adjust the pH to 2.0 ⁇ 0.05 at 25 ° C, and reduce the ionic strength to 0 0.005 rinse solution 2-2 was obtained.
- oxalic acid dihydrate pure chemistry, reagent grade
- the semiconductor substrate was adjusted and EBR characteristics were evaluated in the same manner as in Example 2-1, except that the rinse liquid 2-2 was used instead of the rinse liquid 2-1.
- the amount of nitrogen atoms (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the semiconductor substrate before the EBR evaluation was 8 atom%, but decreased to 2.1 atom% after the EBR evaluation. It was confirmed that the rinsing liquid 2-2 has a good rinsing property to the semiconductor sealing layer.
- Example 2-3 (Synthesis of rinse solution 2-3) Hydrochloric acid was added to ultrapure water, the pH was measured using a pH meter, the pH was adjusted to 2.0 ⁇ 0.05 at 25 ° C., and a rinsing solution 2-3 having an ionic strength of 0.0039 was obtained.
- the semiconductor substrate was adjusted and EBR characteristics were evaluated in the same manner as in Example 2-1, except that the rinse liquid 2-3 was used instead of the rinse liquid 2-1.
- the amount of nitrogen atoms (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the semiconductor substrate before the EBR evaluation was 8 atom%, but decreased to 3.73 atom% after the EBR evaluation. It was confirmed that the rinsing liquid 2-2 has a good rinsing property to the semiconductor sealing layer.
- Example 2-4 (Synthesis of rinse solution 2-4) Methanesulfonic acid is added to ultrapure water, the pH is measured using a pH meter, the pH is adjusted to 2.0 ⁇ 0.05 at 25 ° C., and rinse solution 2-4 having an ionic strength of 0.0055 is obtained. It was.
- the semiconductor substrate was adjusted and EBR characteristics were evaluated in the same manner as in Example 2-1, except that the rinse liquid 2-4 was used instead of the rinse liquid 2-1.
- the amount of nitrogen atoms (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the semiconductor substrate before the EBR evaluation was 8 atom%, but decreased to 1.77 atom% after the EBR evaluation. It was confirmed that the rinsing liquid 2-4 has a good rinsing property to the semiconductor sealing layer.
- Example 2-5 (Synthesis of rinse solution 2-5) Nitric acid was added to ultrapure water, the pH was measured using a pH meter, and the pH was adjusted to 2.0 ⁇ 0.05 at 25 ° C. to obtain a rinse solution 2-5 having an ionic strength of 0.0071.
- the semiconductor substrate was adjusted and EBR characteristics were evaluated in the same manner as in Example 2-1, except that the rinse liquid 2-5 was used instead of the rinse liquid 2-1.
- the amount of nitrogen atoms (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the semiconductor substrate before the EBR evaluation was 8 atom%, but decreased to 3.44 atom% after the EBR evaluation. It was confirmed that the rinsing liquid 2-5 had good rinsing properties for the semiconductor sealing layer.
- the semiconductor substrate was adjusted and the EBR characteristics were evaluated in the same manner as in Example 2-1, except that the rinse liquid 2-6 was used instead of the rinse liquid 2-1.
- the amount of nitrogen atoms (atom%) representing the amount of polyethyleneimine contained in the semiconductor sealing layer on the semiconductor substrate before the EBR evaluation was 8 atom%, but after the EBR evaluation, it decreased to only 5.9 atom%. It was confirmed that the rinsing liquid 2-6 did not have good rinsing properties for the semiconductor sealing layer.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Weting (AREA)
- Formation Of Insulating Films (AREA)
- Sealing Material Composition (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
このような多孔質構造を有する半導体層間絶縁層においては、誘電率をさらに低下させるために空隙率を大きくすると、配線材料として埋め込まれる銅などの金属成分が半導体層間絶縁層中の細孔に入り込みやすくなり、誘電率が上昇したり、リーク電流が発生したりする場合があった。
また、low-k材料が疎水性の表面を有する場合に、ポリビニルアルコール系両親媒性ポリマーをその表面に付与することで材料の親水性・疎水性を制御する技術が知られている(例えば、特許文献2参照)。
さらに、カチオン性ポリマーと界面活性剤を含む半導体研磨用組成物が知られている(例えば、特許文献3参照)。
また、特許文献2に記載の技術では、ポリビニルアルコール系両親媒性ポリマー間の水素結合により、嵩高い層が形成されやすく、これによる比誘電率の上昇や、層間絶縁層と配線材料の密着性の低下が発生する場合があった。
本発明はさらに、上記半導体装置の製造方法に用いられるリンス液を提供することを課題とする。
<1>
半導体基板の表面の少なくとも一部に、カチオン性官能基を有する重量平均分子量が2000~600000の樹脂を含有し、ナトリウムおよびカリウムの含有量がそれぞれ元素基準で10質量ppb以下である半導体用シール組成物を付与し、半導体用シール層を形成するシール組成物付与工程と、半導体基板の前記半導体用シール層が形成された面を、25℃におけるpHが6以下のリンス液で洗浄する洗浄工程と、をこの順で含む、半導体装置の製造方法。
<2>
前記カチオン性官能基を有する重量平均分子量が2000~600000の樹脂は、カチオン性官能基当量が43~430である、<1>に記載の半導体装置の製造方法。
<3>
前記カチオン性官能基を有する重量平均分子量が2000~600000の樹脂は、ポリエチレンイミンまたはポリエチレンイミン誘導体である、<1>又は<2>に記載の半導体装置の製造方法。
<4>
前記半導体基板の表面の少なくとも一部に多孔質層間絶縁層が形成されている、<1>~<3>のいずれかに記載の半導体装置の製造方法。
<5>
前記半導体シール層は前記多孔質層間絶縁層上に形成されており、多孔質層間絶縁層が10nm~32nm幅の凹状の溝を有し、前記シール組成物付与工程は、前記多孔質層間絶縁層の少なくとも前記凹状の溝の側面に、前記半導体用シール組成物を接触させる、<4>に記載の半導体装置の製造方法。
<6>
前記多孔質層間絶縁層は、多孔質シリカを含み、その表面に前記多孔質シリカに由来するシラノール残基を有する、<4>又は<5>に記載の半導体装置の製造方法。
<7>
前記リンス液が水、メタノール、エタノール、プロパノール、ブタノール、およびプロピレングリコールモノメチルエーテルアセテートからなる群から選ばれる少なくとも1種類の溶媒を含む<1>~<6>のいずれかに記載の半導体装置の製造方法。
<8>
前記リンス液がシュウ酸、ギ酸、クエン酸、パラトルエンスルホン酸、メタンスルホン酸、塩酸、硝酸からなる群から選ばれる少なくとも1種類の酸を含む、<1>~<7>のいずれかに記載の半導体装置の製造方法。
<9>
前記半導体基板の前記半導体用シール層が形成された面が半導体回路非形成面を含む、<1>~<8>のいずれかに記載の半導体装置の製造方法。
<10>
前記半導体回路非形成面を洗浄するリンス液の25℃におけるpHが2以下である、<9>に記載の半導体装置の製造方法。
<11>
前記半導体基板の表面が少なくとも一部に多孔質層間絶縁層と銅を含む配線材料とを備えた回路面を備え、前記洗浄工程が前記配線材料上のシール層を除去洗浄する回路面洗浄工程である、<1>~<8>のいずれかに記載の半導体装置の製造方法。
<12>
前記半導体回路面を洗浄するリンス液の25℃におけるpHが1以上である、<11>に記載の半導体装置の製造方法。
<13>
前記カチオン性官能基は、1級アミノ基および2級アミノ基から選択された少なくとも1種である、<1>~<12>のいずれか1項に記載の半導体装置の製造方法。
<14>
さらに、半導体基板の半導体用シール層が形成された表面の周縁部に、前記リンス液を吹き付け洗浄する表面周縁部洗浄工程を含む、<1>~<13>のいずれか1項に記載の半導体装置の製造方法。
<15>
前記リンス液が過酸化水素、および硝酸からなる群から選ばれる少なくとも1種類の樹
脂分解剤を含む、<1>~<14>のいずれか1項に記載の半導体装置の製造方法。
<16>
前記回路面洗浄工程は、非酸化性雰囲気下で洗浄を行う、<1>~<15>のいずれか1項に記載の半導体装置の製造方法。
<17>
前記リンス液は、酸化性化合物を含まない、<1>~<16>のいずれか1項に記載の半導体装置の製造方法。
<18>
前記半導体基板は、基板の表面に形成された自然酸化膜に由来するシラノール残基を有する、<1>~<17>のいずれか1項に記載の半導体装置の製造方法。
<19>
半導体回路面の金属配線または半導体基板上の、カチオン性官能基を有する重量平均分子量が2000~600000の樹脂に由来する半導体用シール層を除去するためのリンス液であって、25℃におけるpHが6以下である、リンス液。
<20>
前記カチオン性官能基を有する重量平均分子量が2000~600000の樹脂は、カチオン性官能基当量が43~430であり、前記カチオン性官能基は、1級アミノ基および2級アミノ基から選択された少なくとも1種である、<19>に記載のリンス液。
<21>
<19>又は<20>に記載のリンス液であって、25℃におけるpHが1以上であり、半導体回路面のリンスに用いられるリンス液。
<22>
<19>又は<20>に記載のリンス液であって、25℃におけるpHが2以下であり、半導体基板の非回路面のリンスに用いられるリンス液。
本発明の半導体装置の製造方法は、必要に応じて上記シール組成物付与工程及び洗浄工程の間、または洗浄工程の後にその他の工程をさらに含んで構成される。
本発明において「半導体用シール組成物が形成された面」には、半導体基板の表面(多孔質層間絶縁層と銅を含む配線材料とを備えた回路面)、半導体基板の裏面(半導体回路非形成面)、および表面(半導体回路形成面)の周縁部、のいずれかまたはこれらの組み合わせが含まれる。
本発明のシール組成物付与工程は、半導体基板の表面の少なくとも一部に、カチオン性官能基を有する重量平均分子量が2000~600000の樹脂を含有し、ナトリウムおよびカリウムの含有量がそれぞれ元素基準で10ppb以下である半導体用シール組成物を付与する操作を含む。
本発明における半導体基板は、通常用いられる半導体基材であれば制限なく用いることができるが、具体的にはシリコンウエハや、シリコンウエハ上にトランジスターなどの回路を形成されたものを用いることができる。
本発明における多孔質層間絶縁層は、低誘電率材料から構成され、多孔質性であれば特に制限はないが、多孔質シリカを含み、表面に多孔質シリカに由来するシラノール残基を有することが好ましい。前記シラノール残基が、前記樹脂に含まれるカチオン性官能基と相互作用することにより、前記樹脂が層間絶縁層上の細孔を被覆するように前記樹脂からなる薄層が形成される。
中でも、国際公開第2009/123104号パンフレットに記載された多孔質シリカを用いて形成される多孔質層間絶縁層が好ましい。
シリコンウエハ上に形成されたトランジスターなどの素子間に、銅を含む配線材料を配線することで回路を形成する。この配線形成工程は、公知のプロセス条件に従って行うことができる。例えば、シリコンウエハ上に直接、または、上記の凹状の溝や孔が形成された、層間絶縁層の上に、メタルCVD法、スパッタリング法または電解メッキ法により銅配線を形成し、ケミカルメカニカルポリッシング(CMP)により膜を平滑化する。また、必要であれば、その膜の表面にキャップ膜を形成し、次いで、ハードマスクを形成し、上記の多孔質層間絶縁層の形成及び配線形成工程を繰り返すことで多層化することができる。
本発明の半導体用シール組成物は、例えば、多孔質の層間絶縁層上に形成された細孔を被覆する樹脂層を形成するために用いられ、カチオン性官能基を有する重量平均分子量が2000~600000の樹脂の少なくとも1種を含有し、ナトリウムおよびカリウムの含有量が、それぞれ元素基準で10ppb以下であって、好ましくは動的光散乱法で測定された体積平均粒子径が10nm以下である。
本発明の半導体用シール組成物は、カチオン性官能基を有する重量平均分子量が2000~600000の樹脂の少なくとも1種を含む。
また、前記ノニオン性官能基は、水素結合受容基であっても、水素結合供与基であってもよい。例えば、ヒドロキシ基、カルボニル基、エーテル結合等を挙げることができる。
さらに前記アニオン性官能基は、負電荷を帯びることができる官能基であれば特に制限はない。例えば、カルボン酸基、スルホン酸基、硫酸基等を挙げることができる。
さらに、多孔質の層間絶縁層の表面を公知の方法、例えば、国際公開第04/026765号パンフレット、国際公開第06/025501号パンフレットなどに記載の方法で疎水化処理した場合は、前記表面の極性基の密度が減少するので、200~400であることもまた好ましい。
ここで、カチオン性官能基当量とは、カチオン性官能基当たりの重量平均分子量を意味し、樹脂の重量平均分子量(Mw)を、1分子に相当する樹脂が含むカチオン性官能基数(n)で除して得られる値(Mw/n)である。このカチオン性官能基当量が大きいほどカチオン性官能基の密度が低く、一方、カチオン性官能基当量が小さいほどカチオン性官能基の密度が高い。
さらに、前記特定単位構造がカチオン性官能基を2以上含む場合、2以上のカチオン性官能基は同一であっても異なっていてもよい。
また前記カチオン性官能基は、多孔質層間絶縁層上に存在するカチオン性官能基の吸着点(例えば、シラノール残基)間の平均距離に対する、特定単位構造の主鎖長の比(以下、「カチオン性官能基間の相対距離」ということがある)が、0.08~1.2となるように含まれていることが好ましく、0.08~0.6となるように含まれていることがより好ましい。かかる態様であることで樹脂が多孔質の層間絶縁層上に、より効率的に多点吸着しやすくなる。
本発明における特定単位構造は、層間絶縁層への吸着性の観点から、カチオン性官能基間の相対距離が0.08~1.2であって、分子量が30~500であることが好ましく、カチオン性官能基間の相対距離が0.08~0.6であって、分子量が40~200であることがより好ましい。
前記ノニオン性官能基を含む単位構造として、具体的には、ビニルアルコールに由来する単位構造、アルキレンオキシドに由来する単位構造、ビニルピロリドンに由来する単位構造等を挙げることができる。
前記第2の単位構造としては、前記特定単位構造を構成するモノマーと重合可能なモノマーに由来する単位構造であれば特に制限はない。例えば、オレフィンに由来する単位構造等を挙げることができる。
かかる樹脂を構成し得るモノマーとしては、例えば、エチレンイミンおよびその誘導体を挙げることができる。
また本発明におけるポリエチレンイミンは、モノエタノールアミンから得られる粗エチレンイミンを用いて得られたものであってもよい。具体的には例えば特開2001-2123958号公報等を参照することができる。
これらのポリエチレンイミン誘導体は、ポリエチレンイミンを用いて通常行われる方法により製造することができる。具体的には例えば、特開平6―016809号公報等に記載の方法に準拠して製造することができる。
例えば、本発明の半導体用シール組成物を、配線間隔が32nm以下で層間絶縁層上の細孔直径が2nm程度である半導体装置の製造に適用する場合、前記樹脂の重量平均分子量が600000よりも大きいと、樹脂の大きさが配線間隔よりも大きくなり、樹脂が、配線材料が埋め込まれる凹状の溝に入り込めず、溝の側面の細孔が十分に被覆されない。また、重量平均分子量が2000未満であると、層間絶縁層上の細孔直径よりも樹脂分子の大きさが小さくなり、樹脂分子が層間絶縁層上の細孔に入り込んで層間絶縁層の誘電率が上昇する。また多点で吸着しない場合がある。
尚、重量平均分子量は、樹脂の分子量測定に通常用いられるGPC装置を用いて測定される。本願明細書に記載の重量平均分子量は、下記の条件で測定されたものである。
GPC装置:(株)Shodex社製 GPC-101
カラム:Asahipak GF-7M HQ
展開溶媒:0.5M NaNO3 + 0.5M AcOH溶液
流速:1mL/min.
なお、前記「250℃まで加熱しても分解性を有さない化合物」とは、25℃で測定した質量に対する、250℃、窒素下で1時間保持した後の質量の変化が50%未満の化合物のことをいう。
本発明において体積平均粒子径は、大塚電子社製ELSZ-2を用い、23~26℃において、動的光散乱法(動的光散乱法で観測された散乱光の時間的揺らぎを、光子相関法を用いて解析する方法、例えば、積算回数70回、繰り返し回数1回などの条件)で測定される。
半導体用シール組成物中に粒子径の大きいミセルが形成されていると、例えば、本発明の半導体用シール組成物を配線間隔が32nm以下である半導体装置の製造に適用する場合に、半導体用シール組成物を構成する樹脂が、配線材料が埋め込まれる凹状の溝に充分に入り込むことができず、溝の側面の細孔を充分に被覆できない場合がある。
また、前記カチオン性官能基がカチオンの状態であるpHの範囲とは、半導体用シール組成物のpHが、カチオン性官能基を含む樹脂のpKb以下であることをいう。例えば、カチオン性官能基を含む樹脂がポリアリルアミンである場合、pKbは8~9であり、ポリエチレンイミンである場合、pKbは7~11である。
すなわち、本発明において半導体用シール組成物のpHは、層間絶縁層を構成する化合物種類と、樹脂の種類とに応じて適宜選択することができ、例えば、pH2~11であることが好ましく、pH7~11であることがより好ましい。尚、pH(25℃)は通常用いられるpH測定装置を用いて測定される。
前記多孔質絶縁層に、本発明の半導体用シール組成物を付与する方法としては特に制限はなく、通常用いられる方法を用いることができる。例えば、ディッピング法(例えば、米国特許第5208111号明細書参照)、スプレー法(例えば、Schlenoffら、Langmuir, 16(26), 9968, 2000や、Izuquierdoら、Langmuir, 21(16), 7558, 2005参照)、および、スピンコート法(例えば、Leeら、Langmuir, 19(18), 7592, 2003や、J. Polymer Science, part B, polymer physics, 42, 3654, 2004参照)などにより多孔質絶縁層に半導体用シール組成物を接触させる方法を用いることができる。
半導体用シール組成物の付与後、架橋して樹脂を重合させてもよい。
本発明の半導体製造方法は、上述のシール組成物付与工程の後に、25℃におけるpHが6以下のリンス液を付与して、シール層を除去洗浄する工程を含む。
<回路面洗浄工程>
以下、半導体基板の表面の多孔質層間絶縁層の表面に形成された半導体用シール層を除去する工程(回路面洗浄工程)について説明する。
上述のシール組成物付与工程において、半導体基板の表面の多孔質層間絶縁層の表面に半導体用シール層が形成される。ここで、半導体基板の表面の少なくとも一部に多孔質層間絶縁層と銅を含む配線材料とが備えられている場合にシール組成物を付与するとき、あるいは、多孔質層間絶縁層を有効にシールしていないシール層が、配線形成工程などの半導体製造工程で剥離し、配線材料上に付着した場合などには、配線材料上に半導体用シール層が形成されてしまう。そのため、この回路面洗浄工程で、配線材料上に付着した余分な半導体用シール組成物を、多孔質の層間絶縁層をシールしている有効な半導体用シール組成物を維持しつつ、迅速に除去洗浄(リンス)する。
第一のリンス液は、上述の余分な半導体用シール組成物(半導体用シール層)を迅速に洗浄・除去するために、前記組成物を溶解または分解させるものであり、また、リンス液には、半導体の製造効率を高めるために半導体用シール組成物を迅速に除去する一方、多孔絶縁層などの回路材料を汚染や破壊しないものが求められるが、前記pHの範囲では、酸化銅は溶解するが、多孔質絶縁層が溶解しにくく、多孔質絶縁層とシール組成物材の相互作用を大きく損ねることはない。
また、第一のリンス液は、加温してもよく、超音波をかけてもよい。
イオン強度=1/2×Σ(c×Z2)
(cはリンス液に含まれるイオン性化合物のモル濃度、Zはリンス液に含まれるイオン性化合物のイオン原子価を表す)
さらに、銅をはがした後に銅イオンを捕捉するポリマー(例えばポリエチレンイミン)を添加してもよい。
回路面の洗浄時間は特に限定はないが、例えば、25℃で、pH5のリンス液を用いた場合には、0.1~60分が好ましく、0.1~10分がさらに好ましい。
以下、半導体基板の多孔質層間絶縁層が形成されている面とは反対側の「裏面」をリンス液で洗浄する工程(裏面洗浄工程)について説明する。
これらの多孔質層間絶縁層をシールしていない、いわば余分なシール層が、後述のような配線形成工程などの半導体製造工程で剥離し、半導体基板を汚染する可能性がある。よって、シール組成物付与工程の後に、少なくとも余分な半導体用シール層が形成されやすい半導体基板の裏面については、これらの余分な半導体用シール層を除去する洗浄工程が必要となる。
また、この裏面洗浄には、ウエハエッジの端部の丸みを帯びている、ウエハの多孔質層間絶縁層形成面から裏面にかかる部分のリンス液での洗浄(ベベルリンス)を含む。
イオン強度=1/2×Σ(c×Z2)
(cはリンス液に含まれるイオン性化合物のモル濃度、Zはリンス液に含まれるイオン性化合物のイオン原子価を表す)
さらに、銅をはがした後に銅イオンを捕捉するポリマー(例えばポリエチレンイミン)を添加してもよい。
また第二のリンス液は、加温してもよく、超音波をかけてもよい。
第二のリンス液は、本発明の反動装置の製造方法において半導体基板の表面(多孔質層間絶縁膜と半導体用シール層とが少なくとも形成されている面)の周縁部を洗浄する際にも使用できる。
このような周縁部の表面に形成された半導体用シール層は、上述の半導体基板の裏面に形成された半導体用シール層と同様に、多孔質層間絶縁層をシールする機能を発揮していないばかりか、半導体回路の汚染の原因になる可能性があるので、洗浄により除去するのが好ましい。
半導体基板表面の周縁部の洗浄は、上述の半導体基板の裏面と同様に、本発明のリンス液を使用すれば、通常の半導体基板表面の周縁部の洗浄方法で行なうことができ、具体的には特開平9-106980号公報に記載されているような、いわゆる半導体製造におけるエッジリンス方法で洗浄することができる。
上記の各洗浄工程は、同時に行ってもよく、単独で行ってもよい。
本発明の半導体装置の製造方法においては、シール組成物付与工程、及び洗浄工程の後、必要に応じて上記と同様の配線形成工程等の通常行われる工程をさらに含んでいてもよい。例えば、公知のメタルCVD法、スパッタリング法または電解メッキ法により銅配線を形成し、CMPにより膜を平滑化する。次いでその膜の表面にキャップ膜を形成する。さらに必要であれば、ハードマスクを形成し、上記のシール組成物付与工程、及び回路面洗浄工程を含む工程を繰り返すことで多層化することができ、多層配線半導体装置を製造することができる。
さらに、本発明の半導体装置の製造方法においては、配線形成工程前にバリア膜(銅バリア層)形成工程をさらに設けることができる。バリア膜を形成することで層間絶縁層への金属成分の拡散をより効果的に抑制することができる。
前記バリア膜形成工程は、通常用いられるプロセス条件に従って行うことができる。前記シール組成物付工程後に、例えば、気相成長法(CVD)により、窒化チタン等のチタン化合物や窒化タンタル等のタンタル化合物からなるバリア膜を形成することができる。本発明においては、タンタル化合物からなるバリア膜を形成することが好ましい。
さらに、本発明の半導体装置の製造方法は、回路面洗浄工程や半導体基板の裏面の洗浄工程の後に、半導体基板上に残る前記リンス液をさらに洗浄する後リンス工程を含んでもよい。後リンス工程は、通常用いられる方法で行なうことができ、特に限定されないが、具体的には特開2008-47831号公報に記載されているような後リンス方法で洗浄することができる。また後リンス工程に用いられるリンス液(以下、後リンス液という)は、前記リンス液を溶解や分解することで除去できるものであれば、特に限定されないが、具体的にはアルコールのような極性を有する有機溶媒や水、前記極性を有する有機溶媒と水の混合物、分解性を有する硝酸、硫酸等の酸やオゾンを含む溶媒を用いることができる。
本発明の製造方法により製造される半導体装置は、例えば、多孔質の層間絶縁層と、カチオン性官能基を有する重量平均分子量が2000~600000の樹脂を含み、厚さが0.3nm~5nmである樹脂層と、銅からなる層と、がこの順で配置された構造を備え、必要に応じてその他の層を含んで構成される。層間絶縁層と配線材料との間に、特定の樹脂を含む樹脂層が配置されていることで32nm以下の微細な回路構成であってもリーク電流等の発生が抑制され、良好な特性を示すことができる。
本発明においては、前記樹脂層と前記銅を含む配線材料との間に、銅バリア層(好ましくは、タンタル化合物からなる層)がさらに配置されていることが好ましい。
(層間絶縁層の形成)
多孔質シリカ形成用組成物1.0mLをシリコンウエハ表面上に滴下し、2000rpmで60秒間回転させて、シリコンウエハ表面に塗布した後、窒素雰囲気下150℃で1分間、次いで、350℃で10分間加熱処理した。その後、172nmエキシマランプを装備したチャンバー内で350℃まで加熱し、圧力1Paで出力14mW/cm2により、紫外線を10分間照射することにより、層間絶縁層(多孔質シリカ膜)を得た。
得られた層間絶縁層の密度は、0.887g/cm3であった。
また、得られた層間絶縁層の、比誘電率kは2.0、弾性率Eは6.60GPaであった。
また比誘電率は、水銀プローブ装置(SSM5130)を用い、25℃、相対湿度30%の雰囲気下、周波数1MHzにて常法により比誘電率を測定した。
また、弾性率は、ナノインデンテーター(Hysitron社、Triboscope)により、膜厚の1/10以下の押し込み深さで常法により弾性率を測定した。
半導体用シール組成物として、ポリエチレンイミン(PEI、BASF社製、重量平均分子量25,000、カチオン性官能基当量309)250mgを、水100mLに溶解させたものを使用した。前記半導体用シール組成物のpH10.52であった。前記半導体用シール組成物について、大塚電子製ELSZ-2を用いて動的光散乱法により体積平均粒子径を測定したところ、検出限界以下(<10nm)であった。尚、測定条件は、積算回数70回、繰り返し回数1回、解析条件は、ヒストグラム解析、キュムラント解析を用いた。
上記の層間絶縁層(以下「low-k」ということがある)に、上記半導体用シール組成物(PEI水溶液)を、市販のスプレーボトル“AIR-BOY”(Carl Roth GmbH社製)を用いて、スプレー法(溶液の接触時間20秒、スプレー距離10センチメートル)で接触させた。次いで水を、上記と同様のスプレーボトルを用いて、スプレー法(超純水の接触時間10秒、スプレー距離10センチメートル)により接触させた。エアブローにより乾燥させて、層間絶縁層上に樹脂層(半導体用シール層)を形成した。その後、23℃55%の恒温恒湿環境に15時間以上保管した試料(low-k/PEI)について以下の評価を行なった。
尚、「水」には、超純水(Millipore社製Milli-Q水、抵抗18MΩ・cm(25℃)以下)を使用した。
得られた試料(low-k/PEI)について、X線光電子分光(XPS)装置としてESCALAB220iXL(VG社製)を用い、X線源AlKα、分析領域φ1mmの条件で、形成された半導体用シール層の元素組成を測定したところ、上記で得られた層間絶縁層(low-k)と比較して増加した組成は、C/N=2.34であった。これにより、ポリエチレンイミンの層が形成されたことが確認できた。
また原子間力顕微鏡により半導体用シール層表面の形態観察を行ったところ、RMSが0.369nm(層間絶縁層のみで0.403nm)であり、均一な厚みの層が形成されていた。
得られた試料(low-k/PEI)の半導体用シール層上にスパッタリングにより金属銅膜を形成して試料1(以下、「low-k/PEI/Cu」ということがある)を作製した。
得られた試料1(low-k/PEI/Cu)を目視により観察したところ、半導体用シール層上に金属銅色の金属膜が形成されていることが確認できた。
(リンス液1-1の調製)
超純水(Millipore社製、Milli-Q水)に、pHメータを用いてpHを測定しながら、シュウ酸2水和物(純正化学(株)、試薬特級)を徐々に添加して、混合し、pHを25℃で3に調整して、リンス液1-1を得た。
表面に層間絶縁層を有するシリコンウエハ(フルウチ化学、8インチ、<100>面、P型(ボロンドープ)10~20 ohm-cm、厚さ700~775μm)の表面上に、昭和真空製真空蒸着装置(SGC-8)を用いて蒸着速度2nm/秒で25秒間の条件で、厚さ50nmの銅層を配線材料として形成し、シリコンウエハの一方の面に、多孔質層間絶縁層と銅を含む配線材料を備えた回路面を形成した。
この回路面を形成したシリコンウエハを2時間以上、大気中に放置して自然酸化膜(酸化銅)を配線の表面に形成させ、表面が配線の部分を5mm角に切り出し、表面を5分間UV-O3処理したものに、製造例1の半導体用シール組成物(ポリエチレンイミン水溶液)を2mL滴下して、600rpmでスピンキャストして付与し、半導体用シール層を形成し、シール層/銅層/シリコン層からなる基板1を作製した。
次に前記基板1を、高さ15mmまでリンス液1を満たした容積20mLの容器に浸し、振盪器に載せ60分間保持後、容器内の溶液を捨て、超純水で3回ゆすぎ、高さ15mmまで超純水を満たした容積20mLの容器に浸し、振盪器に載せ15分間保持した。ピンセットで取り出し、超純水洗浄瓶で1分流し、乾燥空気ブローで乾燥させた。
得られた試料を、XPS装置としてESCALAB220iXL(VG社製)を用い、X線源AlKα、分析領域φ1mmの条件で、元素組成を測定するとともに、目視観察を行い、配線洗浄評価を行った。また、リンス液1-1で洗浄する前の試料についても同様に元素組成を測定した。
配線洗浄評価前の基板1上の半導体用シール層に含まれるポリエチレンイミンの量を表す窒素原子の量(atom%)が、8.9atom%だったものが、上記配線洗浄評価後、目視により洗浄前の酸化銅の色がまったくなくなり、リンス液1は配線上の余分な半導体用シール層へのリンス性が良好であることが確認できた。
多孔質層間絶縁層上のシール層のリンス耐性を評価するために、シリコンウエハ(フルウチ化学、8インチ、<100>面、P型(ボロンドープ)10~20ohm-cm、厚さ700~775μm)を、24時間以上、大気中に放置して自然酸化膜を表面に形成させ、5mm角に切り出し、表面を5分間UV-O3処理したものに、上記半導体用シール組成物(ポリエチレンイミン水溶液)を2mL滴下して、600rpmでスピンキャストして、基板2を作製した。基板2の表面は、多孔質低誘電率材料の1種である、多孔質シリカの表面状態をしていた。
(リンス液1-2の調製)
純水(Millipore社製、Milli-Q水)に、pHメータを用いてpHを測定しながら、シュウ酸2水和物(純正化学(株)、試薬特級)を徐々に添加して、混合し、pHを25℃で5に調整し、リンス液2を得た。
配線洗浄評価前の基板1上の半導体用シール層に含まれるポリエチレンイミンの量を表す窒素原子の量(atom%)が、8.9atom%だったものが、上記配線洗浄評価後、目視により洗浄前の酸化銅の色がまったくなくなり、リンス液1-2は配線上の余分な半導体用シール層へのリンス性が良好であることが確認できた。
また、リンス耐性評価前の基板2上の半導体用シール層に含まれるポリエチレンイミンの量を表す窒素原子の量(atom%)が、9.3atom%だったものが、上記リンス耐性評価後、5.5atom%と保持されており、リンス液1-2に対して、多孔質低誘電率材料上の半導体用シール層のリンス耐性が良好であることが確認できた。
(リンス液1-3の調製)
純水(Millipore社製、Milli-Q水)に、pHメータを用いてpHを測定しながら、0.5規定のアンモニア水を徐々に添加して、混合し、pHを25℃で7に調整し、リンス液1-3を得た。
配線洗浄評価前の基板1上の半導体用シール層に含まれるポリエチレンイミンの量を表す窒素原子の量(atom%)が、8.9atom%だったものが、上記配線洗浄評価後、4.7atom%までしか減少しておらず、リンス液1-3は配線上の余分な半導体シール層へのリンス性が十分ではないことが確認できた。
また、リンス耐性評価前の基板2上の半導体用シール層に含まれるポリエチレンイミンの量を表す窒素原子の量(atom%)が、9.3atom%だったものが、上記リンス耐性評価後、4.7atom%まで減少し、リンス液1-3に対して、多孔質低誘電率材料上の半導体用シール層のリンス耐性が不良であることが確認できた。
(リンス液1-4の調製)
純水(Millipore社製、Milli-Q水)に、pHメータを用いてpHを測定しながら、0.5規定のアンモニア水を徐々に添加して、混合し、pHを25℃で9に調整し、リンス液1-4を得た。
配線洗浄評価前の基板1上の半導体用シール層に含まれるポリエチレンイミンの量を表す窒素原子の量(atom%)が、8.9atom%だったものが、上記配線洗浄評価後、6.6atom%までしか減少しておらず、リンス液1-4は配線上の余分な半導体シール層へのリンス性が十分ではないことが確認できた。
また、リンス耐性評価前の基板2上の半導体用シール層に含まれるポリエチレンイミンの量を表す窒素原子の量(atom%)が、9.3atom%だったものが、上記リンス耐性評価後、3.9atom%まで減少し、リンス液1-4に対して、多孔質低誘電率材料上の半導体用シール層のリンス耐性が不良であることが確認できた。
(リンス液1-5の調製)
純水(Millipore社製、Milli-Q水)に、pHメータを用いてpHを測定しながら、0.5規定のアンモニア水を徐々に添加して、混合し、pHを25℃で10.5に調整し、リンス液1-5を得た。
配線洗浄評価前の基板1上の半導体用シール層に含まれるポリエチレンイミンの量を表す窒素原子の量(atom%)が、8.9tom%だったものが、上記配線洗浄評価後、8.9atom%と変化しておらず、リンス液1-5は配線上の余分な半導体シール層へのリンス性が十分ではないことが確認できた。
また、リンス耐性評価前の基板2上の半導体用シール層に含まれるポリエチレンイミンの量を表す窒素原子の量(atom%)が、9.3atom%だったものが、上記リンス耐性評価後、9.3atom%と変化していなかった。
(リンス液2-1の合成)
30%過酸化水素水(純正化学、試薬特級)をリンス液2-1とした。pHは25℃で4.5であった。
裏面洗浄、エッジ洗浄性を評価するために、シリコンウエハ(フルウチ化学、8インチ、<100>面、P型(ボロンドープ)10-20 ohm-cm、厚さ700-775 μm)を、24時間以上、大気中に放置して自然酸化膜を表面に形成させ、5mm角に切り出し、表面を5分間UV-O3処理したものに、上記半導体用シール組成物(ポリエチレンイミン水溶液)を2mL滴下して、600rpmでスピンキャストして、半導体用シール相を形成しシリコンウエハを作成した。
次に前記シリコンウエハを、高さ15mmまでリンス液2-1を満たした容積20mLの容器に浸し、振盪器に載せ60分間保持後、容器内の溶液を捨て、超純水で3回ゆすぎ、高さ15mmまで超純水を満たした容積20mLの容器に浸し、振盪器に載せ15分間保持した。ピンセットで取り出し、超純水洗浄瓶で1分流し、乾燥空気ブローで乾燥させた。得られた試料を、XPS装置としてESCALAB220iXL(VG社製)を用い、X線源AlKα、分析領域φ1mmの条件で、元素組成を測定し、E(エッジ)B(バック又はベベル)R(リンス)特性評価を行った。
(リンス液2-2の合成)
超純水に、シュウ酸2水和物(純正化学、試薬特級)を加え、pHメータを用いてpHを測定し、pHを25℃で2.0±0.05に調整し、イオン強度0.005のリンス液2-2を得た。
(リンス液2-3の合成)
超純水に、塩酸を加え、pHメータを用いてpHを測定し、pHを25℃で2.0±0.05に調整し、イオン強度0.0039のリンス液2-3を得た。
(リンス液2-4の合成)
超純水に、メタンスルホン酸を加え、pHメータを用いてpHを測定し、pHを25℃で2.0±0.05に調整し、イオン強度0.0055のリンス液2-4を得た。
(リンス液2-5の合成)
超純水に、硝酸を加え、pHメータを用いてpHを測定し、pHを25℃で2.0±0.05に調整し、イオン強度0.0071のリンス液2-5を得た。
(リンス液2-6の合成)
超純水をリンス液2-6とした。pHは25℃で6.5-7.0、イオン強度は0であった。
Claims (16)
- 半導体基板の表面の少なくとも一部に、カチオン性官能基を有する重量平均分子量が2000~600000の樹脂を含有し、ナトリウムおよびカリウムの含有量がそれぞれ元素基準で10質量ppb以下である半導体用シール組成物を付与し、半導体用シール層を形成するシール組成物付与工程と、半導体基板の前記半導体用シール層が形成された面を、25℃におけるpHが6以下のリンス液で洗浄する洗浄工程と、をこの順で含む、半導体装置の製造方法。
- 前記カチオン性官能基を有する重量平均分子量が2000~600000の樹脂は、カチオン性官能基当量が43~430である、請求項1に記載の半導体装置の製造方法。
- 前記カチオン性官能基を有する重量平均分子量が2000~600000の樹脂は、ポリエチレンイミンまたはポリエチレンイミン誘導体である、請求項1に記載の半導体装置の製造方法。
- 前記半導体基板の表面の少なくとも一部に多孔質層間絶縁層が形成されている、請求項1に記載の半導体装置の製造方法。
- 前記半導体シール層は前記多孔質層間絶縁層上に形成されており、多孔質層間絶縁層が10nm~32nm幅の凹状の溝を有し、前記シール組成物付与工程は、前記多孔質層間絶縁層の少なくとも前記凹状の溝の側面に、前記半導体用シール組成物を接触させる、請求項4に記載の半導体装置の製造方法。
- 前記多孔質層間絶縁層は、多孔質シリカを含み、その表面に前記多孔質シリカに由来するシラノール残基を有する、請求項4に記載の半導体装置の製造方法。
- 前記リンス液が水、メタノール、エタノール、プロパノール、ブタノール、およびプロピレングリコールモノメチルエーテルアセテートからなる群から選ばれる少なくとも1種類の溶媒を含む請求項1に記載の半導体装置の製造方法。
- 前記リンス液がシュウ酸、ギ酸、クエン酸、パラトルエンスルホン酸、メタンスルホン酸、塩酸、硝酸からなる群から選ばれる少なくとも1種類の酸を含む、請求項1に記載の半導体装置の製造方法。
- 前記半導体基板の前記半導体用シール層が形成された面が半導体回路非形成面を含む、請求項1に記載の半導体装置の製造方法。
- 前記半導体回路非形成面を洗浄するリンス液の25℃におけるpHが2以下である、請求項9に記載の半導体装置の製造方法。
- 前記半導体基板の表面が少なくとも一部に多孔質層間絶縁層と銅を含む配線材料とを備えた回路面を備え、前記洗浄工程が前記配線材料上のシール層を除去洗浄する回路面洗浄工程である、請求項1に記載の半導体装置の製造方法。
- 前記半導体回路面を洗浄するリンス液の25℃におけるpHが1以上である、請求項11に記載の半導体装置の製造方法。
- 半導体回路面の金属配線または半導体基板上の、カチオン性官能基を有する重量平均分子量が2000~600000の樹脂に由来する半導体用シール層を除去するためのリンス液であって、25℃におけるpHが6以下である、リンス液。
- 前記カチオン性官能基を有する重量平均分子量が2000~600000の樹脂は、カチオン性官能基当量が43~430であり、前記カチオン性官能基は、1級アミノ基および2級アミノ基から選択された少なくとも1種である、請求項13に記載のリンス液。
- 請求項13に記載のリンス液であって、25℃におけるpHが1以上であり、半導体回路面のリンスに用いられるリンス液。
- 請求項13に記載のリンス液であって、25℃におけるpHが2以下であり、半導体基板の非回路面のリンスに用いられるリンス液。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180040488.5A CN103081076B (zh) | 2010-09-10 | 2011-09-08 | 半导体装置的制造方法及冲洗液 |
JP2011547106A JP4913269B1 (ja) | 2010-09-10 | 2011-09-08 | 半導体装置の製造方法およびリンス液 |
KR1020137004092A KR101419662B1 (ko) | 2010-09-10 | 2011-09-08 | 반도체 장치의 제조 방법 및 린스액 |
SG2013016035A SG188389A1 (en) | 2010-09-10 | 2011-09-08 | Semiconductor device production method and rinse |
US13/818,347 US8956977B2 (en) | 2010-09-10 | 2011-09-08 | Semiconductor device production method and rinse |
EP11823646.2A EP2615635B1 (en) | 2010-09-10 | 2011-09-08 | Semiconductor device production method and rinse |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-203068 | 2010-09-10 | ||
JP2010203068 | 2010-09-10 | ||
JP2010263882 | 2010-11-26 | ||
JP2010-263882 | 2010-11-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012033172A1 true WO2012033172A1 (ja) | 2012-03-15 |
Family
ID=45810768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/070516 WO2012033172A1 (ja) | 2010-09-10 | 2011-09-08 | 半導体装置の製造方法およびリンス液 |
Country Status (8)
Country | Link |
---|---|
US (1) | US8956977B2 (ja) |
EP (1) | EP2615635B1 (ja) |
JP (1) | JP4913269B1 (ja) |
KR (1) | KR101419662B1 (ja) |
CN (1) | CN103081076B (ja) |
SG (1) | SG188389A1 (ja) |
TW (1) | TWI490954B (ja) |
WO (1) | WO2012033172A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014013956A1 (ja) | 2012-07-17 | 2014-01-23 | 三井化学株式会社 | 半導体装置及びその製造方法並びにリンス液 |
WO2014156616A1 (ja) | 2013-03-27 | 2014-10-02 | 三井化学株式会社 | 複合体の製造方法及び組成物 |
WO2016021648A1 (ja) * | 2014-08-08 | 2016-02-11 | 三井化学株式会社 | シール組成物、及び半導体装置の製造方法 |
WO2016098738A1 (ja) * | 2014-12-17 | 2016-06-23 | 三井化学株式会社 | 基板中間体、貫通ビア電極基板および貫通ビア電極形成方法 |
WO2017086360A1 (ja) * | 2015-11-16 | 2017-05-26 | 三井化学株式会社 | 半導体用膜組成物、半導体用膜組成物の製造方法、半導体用部材の製造方法、半導体用工程材の製造方法及び半導体装置 |
JP2021002641A (ja) * | 2019-06-20 | 2021-01-07 | 新光電気工業株式会社 | 静電チャック、基板固定装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170218227A1 (en) * | 2014-07-31 | 2017-08-03 | Az Electronic Materials (Luxembourg) S.A.R.L. | Sacrificial film composition, method for preparing same, semiconductor device having voids formed using said composition, and method for manufacturing semiconductor device using said composition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005206905A (ja) * | 2004-01-23 | 2005-08-04 | Ebara Corp | 基板処理方法及び装置、並びに処理液 |
JP2009105299A (ja) * | 2007-10-05 | 2009-05-14 | Mitsubishi Chemicals Corp | 半導体デバイス用基板の洗浄液 |
WO2009085098A1 (en) * | 2007-12-19 | 2009-07-09 | Lam Research Corporation | Vapor phase repair and pore sealing of low-k dielectric materials |
JP2010070726A (ja) * | 2008-09-22 | 2010-04-02 | Fujifilm Corp | 絶縁膜形成用組成物、絶縁膜、および電子デバイス |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3649771B2 (ja) * | 1995-05-15 | 2005-05-18 | 栗田工業株式会社 | 洗浄方法 |
JP4516176B2 (ja) * | 1999-04-20 | 2010-08-04 | 関東化学株式会社 | 電子材料用基板洗浄液 |
JP4225765B2 (ja) * | 2002-10-31 | 2009-02-18 | 日揮触媒化成株式会社 | 低誘電率非晶質シリカ系被膜の形成方法および該方法より得られる低誘電率非晶質シリカ系被膜 |
EP1717344A4 (en) | 2004-01-23 | 2008-08-20 | Ebara Corp | PROCESS FOR PROCESSING A SUBSTRATE, CATALYST PROCESS LIQUID, AND SUBSTRATE PROCESSING DEVICE |
US20070042609A1 (en) * | 2005-04-28 | 2007-02-22 | Senkevich John J | Molecular caulk: a pore sealant for ultra-low k dielectrics |
JP5121128B2 (ja) | 2005-06-20 | 2013-01-16 | ニッタ・ハース株式会社 | 半導体研磨用組成物 |
JP2009503879A (ja) | 2005-08-05 | 2009-01-29 | フリースケール セミコンダクター インコーポレイテッド | 多孔質低誘電率構造のポアシーリング及びクリーニング |
JP2008274365A (ja) * | 2007-05-01 | 2008-11-13 | Shin Etsu Chem Co Ltd | Si含有膜形成材料、Si含有膜及びその製造方法、並びに半導体デバイス |
JP2010533966A (ja) * | 2007-07-13 | 2010-10-28 | インターモレキュラー, インコーポレイテッド | 低誘電率の誘電性材料の表面調整 |
KR101186719B1 (ko) * | 2009-05-29 | 2012-09-27 | 미쓰이 가가쿠 가부시키가이샤 | 반도체용 시일 조성물, 반도체 장치 및 반도체 장치의 제조 방법 |
-
2011
- 2011-09-08 JP JP2011547106A patent/JP4913269B1/ja active Active
- 2011-09-08 KR KR1020137004092A patent/KR101419662B1/ko active IP Right Grant
- 2011-09-08 US US13/818,347 patent/US8956977B2/en active Active
- 2011-09-08 CN CN201180040488.5A patent/CN103081076B/zh active Active
- 2011-09-08 WO PCT/JP2011/070516 patent/WO2012033172A1/ja active Application Filing
- 2011-09-08 SG SG2013016035A patent/SG188389A1/en unknown
- 2011-09-08 EP EP11823646.2A patent/EP2615635B1/en not_active Not-in-force
- 2011-09-09 TW TW100132697A patent/TWI490954B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005206905A (ja) * | 2004-01-23 | 2005-08-04 | Ebara Corp | 基板処理方法及び装置、並びに処理液 |
JP2009105299A (ja) * | 2007-10-05 | 2009-05-14 | Mitsubishi Chemicals Corp | 半導体デバイス用基板の洗浄液 |
WO2009085098A1 (en) * | 2007-12-19 | 2009-07-09 | Lam Research Corporation | Vapor phase repair and pore sealing of low-k dielectric materials |
JP2010070726A (ja) * | 2008-09-22 | 2010-04-02 | Fujifilm Corp | 絶縁膜形成用組成物、絶縁膜、および電子デバイス |
Non-Patent Citations (1)
Title |
---|
See also references of EP2615635A4 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014013956A1 (ja) | 2012-07-17 | 2014-01-23 | 三井化学株式会社 | 半導体装置及びその製造方法並びにリンス液 |
TWI640560B (zh) * | 2013-03-27 | 2018-11-11 | 日商三井化學股份有限公司 | 複合體的製造方法及組成物 |
WO2014156616A1 (ja) | 2013-03-27 | 2014-10-02 | 三井化学株式会社 | 複合体の製造方法及び組成物 |
CN105051872A (zh) * | 2013-03-27 | 2015-11-11 | 三井化学株式会社 | 复合体的制造方法及组合物 |
US10020238B2 (en) | 2013-03-27 | 2018-07-10 | Mitsui Chemicals, Inc. | Method for manufacturing composite body and composition |
US20160049343A1 (en) * | 2013-03-27 | 2016-02-18 | Mitsui Chemicals, Inc. | Method for manufacturing composite body and composition |
EP2978011A4 (en) * | 2013-03-27 | 2016-10-19 | Mitsui Chemicals Inc | PROCESS FOR PREPARING A COMPLEX AND COMPOSITION |
JP6058788B2 (ja) * | 2013-03-27 | 2017-01-11 | 三井化学株式会社 | 複合体の製造方法及び組成物 |
KR101747582B1 (ko) * | 2013-03-27 | 2017-06-14 | 미쓰이 가가쿠 가부시키가이샤 | 복합체의 제조 방법 및 조성물 |
WO2016021648A1 (ja) * | 2014-08-08 | 2016-02-11 | 三井化学株式会社 | シール組成物、及び半導体装置の製造方法 |
US10580639B2 (en) | 2014-08-08 | 2020-03-03 | Mitsui Chemicals, Inc. | Sealing composition and method of manufacturing semiconductor device |
JPWO2016021648A1 (ja) * | 2014-08-08 | 2017-04-27 | 三井化学株式会社 | シール組成物、及び半導体装置の製造方法 |
KR20170023091A (ko) | 2014-08-08 | 2017-03-02 | 미쓰이 가가쿠 가부시키가이샤 | 시일 조성물, 및 반도체 장치의 제조 방법 |
WO2016098738A1 (ja) * | 2014-12-17 | 2016-06-23 | 三井化学株式会社 | 基板中間体、貫通ビア電極基板および貫通ビア電極形成方法 |
KR20170077222A (ko) | 2014-12-17 | 2017-07-05 | 미쓰이 가가쿠 가부시키가이샤 | 기판 중간체, 관통 비어 전극 기판 및 관통 비어 전극 형성 방법 |
JPWO2016098738A1 (ja) * | 2014-12-17 | 2017-05-25 | 三井化学株式会社 | 基板中間体、貫通ビア電極基板および貫通ビア電極形成方法 |
US10950532B2 (en) | 2014-12-17 | 2021-03-16 | Mitsui Chemicals, Inc. | Substrate intermediary body, through-hole via electrode substrate, and through-hole via electrode formation method |
JPWO2017086360A1 (ja) * | 2015-11-16 | 2018-04-05 | 三井化学株式会社 | 半導体用膜組成物、半導体用膜組成物の製造方法、半導体用部材の製造方法、半導体用工程材の製造方法及び半導体装置 |
WO2017086360A1 (ja) * | 2015-11-16 | 2017-05-26 | 三井化学株式会社 | 半導体用膜組成物、半導体用膜組成物の製造方法、半導体用部材の製造方法、半導体用工程材の製造方法及び半導体装置 |
US10759964B2 (en) | 2015-11-16 | 2020-09-01 | Mitsui Chemicals, Inc. | Semiconductor film composition, method of manufacturing semiconductor film composition, method of manufacturing semiconductor member, method of manufacturing semiconductor processing material, and semiconductor device |
JP2021002641A (ja) * | 2019-06-20 | 2021-01-07 | 新光電気工業株式会社 | 静電チャック、基板固定装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20130029123A (ko) | 2013-03-21 |
JP4913269B1 (ja) | 2012-04-11 |
CN103081076B (zh) | 2015-11-25 |
US20130171826A1 (en) | 2013-07-04 |
CN103081076A (zh) | 2013-05-01 |
EP2615635B1 (en) | 2016-05-25 |
TWI490954B (zh) | 2015-07-01 |
KR101419662B1 (ko) | 2014-07-15 |
US8956977B2 (en) | 2015-02-17 |
EP2615635A4 (en) | 2014-12-31 |
TW201216386A (en) | 2012-04-16 |
SG188389A1 (en) | 2013-04-30 |
JPWO2012033172A1 (ja) | 2014-01-20 |
EP2615635A1 (en) | 2013-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4913269B1 (ja) | 半導体装置の製造方法およびリンス液 | |
TWI602246B (zh) | 半導體裝置及其製造方法及清洗液 | |
KR100775199B1 (ko) | 세정용 조성물, 반도체 기판의 세정 방법 및 반도체장치의 제조 방법 | |
TWI423402B (zh) | 半導體用密封組成物、半導體裝置及其製造方法 | |
JP2010533966A (ja) | 低誘電率の誘電性材料の表面調整 | |
TWI660427B (zh) | 密封組成物及半導體裝置的製造方法 | |
TW201809251A (zh) | 用於化學機械硏磨後清潔之組成物 | |
JP6438747B2 (ja) | 複合体の製造方法 | |
TWI571506B (zh) | 抑制微細構造體的圖案崩塌用之處理液及使用該處理液的微細構造體的製造方法 | |
JP5840042B2 (ja) | 半導体用シール強化組成物、半導体装置および半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180040488.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011547106 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11823646 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137004092 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011823646 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13818347 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |