WO2012033034A1 - 非水電解液電池 - Google Patents

非水電解液電池 Download PDF

Info

Publication number
WO2012033034A1
WO2012033034A1 PCT/JP2011/070122 JP2011070122W WO2012033034A1 WO 2012033034 A1 WO2012033034 A1 WO 2012033034A1 JP 2011070122 W JP2011070122 W JP 2011070122W WO 2012033034 A1 WO2012033034 A1 WO 2012033034A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
battery
positive electrode
negative electrode
aqueous electrolyte
Prior art date
Application number
PCT/JP2011/070122
Other languages
English (en)
French (fr)
Inventor
辻川 知伸
荒川 正泰
健二 栗田
寺田 正幸
Original Assignee
株式会社Nttファシリティーズ
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttファシリティーズ, 新神戸電機株式会社 filed Critical 株式会社Nttファシリティーズ
Priority to EP11823509.2A priority Critical patent/EP2615681A4/en
Priority to KR1020137005731A priority patent/KR20140027043A/ko
Priority to CN201180042815.0A priority patent/CN103125045B/zh
Priority to US13/820,817 priority patent/US9515353B2/en
Publication of WO2012033034A1 publication Critical patent/WO2012033034A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte battery, and in particular, a positive electrode plate in which a positive electrode mixture containing an active material is applied to a current collector, and a negative electrode in which a negative electrode mixture containing an active material is applied to a current collector.
  • the present invention relates to a non-aqueous electrolyte battery in which a plate is disposed via a porous separator.
  • Alkaline storage batteries, lead storage batteries, and the like are known as secondary batteries in which the electrolytic solution is an aqueous solution system.
  • non-aqueous electrolyte batteries represented by lithium secondary batteries have become widespread as small, lightweight and high energy density secondary batteries.
  • the electrolyte used for the nonaqueous electrolyte battery contains an organic solvent such as dimethyl ether. Since the organic solvent is flammable, when the battery temperature rises when the battery is abnormal such as a short circuit or when dropped in the fire, the battery behavior may become severe due to the combustion of the battery constituent material or the thermal decomposition reaction of the active material.
  • JP-A-4-184870 and JP-A-2006-127839 are techniques for making the battery constituent material of the non-aqueous electrolyte containing the flame retardant and the separator non-combustible. It is difficult to make it incombustible.
  • JP-A-4-184870 and JP-A-2006-127839 it is possible to impart nonflammability to the separator itself by the amount of the flame retardant contained in the separator.
  • a non-aqueous electrolyte battery such as a lithium secondary battery generates a large amount of heat due to a thermal decomposition reaction of the active material. An agent is required.
  • the flame retardant can be included in the mixture together with the active material, but in this case, the gap between the mixture layers is filled with the flame retardant, and thus the movement of ions during charging and discharging is hindered. Thus, there arises a problem that the capacity and output are reduced.
  • an object of the present invention is to provide a non-aqueous electrolyte battery capable of ensuring safety when a battery is abnormal and suppressing a decrease in capacity and output when the battery is used.
  • the present invention provides a positive electrode plate in which a positive electrode mixture containing an active material is applied to a current collector, and a negative electrode plate in which a negative electrode mixture containing an active material is applied to a current collector.
  • a non-aqueous electrolyte battery with a porous separator interposed therebetween a phosphazene compound as a flame retardant and an ion conductive binder on at least one of the positive electrode plate, the negative electrode plate and the separator A flame retardant layer containing is arranged.
  • the phosphazene compound of the flame retardant is included in the flame retardant layer disposed on one or both surfaces of at least one of the positive electrode plate, the negative electrode plate, and the separator, so that the flame retardant is present in the vicinity of the active material. Because the agent is present, the battery flame is suppressed by the flame retardant when the temperature rises due to battery abnormalities, so the battery behavior can be moderated and safety can be ensured. Since the binder to be ionized has ionic conductivity, the ionic conductivity in the flame retardant layer is ensured during normal charging / discharging, so that it is possible to suppress a decrease in capacity and output.
  • the flame retardant can be a phosphazene compound that is thermally decomposed in a temperature environment of 60 ° C. or higher and 400 ° C. or lower.
  • the flame retardant may be contained at a ratio of 10 wt% or more with respect to the positive electrode mixture.
  • the binder of the flame retardant layer can be a polyether polymer compound.
  • the polyether polymer compound may contain polyethylene oxide.
  • the flame retardant layer may contain a flame retardant in a ratio in the range of 50 wt% to 91 wt% and a binder in a ratio in the range of 9 wt% to 50 wt%.
  • the phosphazene compound of the flame retardant is contained in the flame retardant layer disposed on one or both surfaces of at least one of the positive electrode plate, the negative electrode plate, and the separator. Since there is a flame retardant, the battery flame is suppressed by the flame retardant when the temperature rises due to battery abnormalities, so the battery behavior can be moderated and safety can be ensured. Obtaining an effect that the decrease in capacity and output can be suppressed because the binder contained in the ionic conductivity ensures the ionic conductivity in the flame retardant layer during normal charge and discharge. Can do.
  • the columnar lithium ion secondary battery 20 of the present embodiment has a bottomed cylindrical battery case 7 made of steel plated with nickel.
  • the battery container 7 accommodates an electrode group 6 in which strip-like positive and negative electrode plates are wound in a spiral shape through a separator.
  • a hollow cylindrical shaft core 1 made of polypropylene resin is used at the winding center of the electrode group 6.
  • a positive electrode current collecting ring 4 of an annular conductor for collecting the electric potential from the positive electrode plate is disposed substantially on the extension line of the shaft core 1.
  • the positive electrode current collecting ring 4 is fixed to the upper end portion of the shaft core 1.
  • the edge part of the positive electrode lead piece 2 led out from the positive electrode plate is joined by ultrasonic welding to the peripheral edge of the flange part integrally protruding from the periphery of the positive electrode current collecting ring 4.
  • a disc-shaped battery lid 11 is provided that incorporates a safety valve and serves as a positive electrode external terminal.
  • the upper part of the positive electrode current collecting ring 4 is connected to the battery lid 11 via a conductor lead.
  • an annular conductor negative electrode current collecting ring 5 for collecting the electric potential from the negative electrode plate is disposed below the electrode group 6.
  • the outer peripheral surface of the lower end portion of the shaft core 1 is fixed to the inner peripheral surface of the negative electrode current collecting ring 5.
  • the end of the negative electrode lead piece 3 led out from the negative electrode plate is joined to the outer peripheral edge of the negative electrode current collecting ring 5 by welding.
  • the lower part of the negative electrode current collection ring 5 is connected to the inner bottom part of the battery container 7 through a conductor lead.
  • the dimensions of the battery container 7 are set to an outer diameter of 40 mm and an inner diameter of 39 mm.
  • the battery lid 11 is caulked and fixed to the upper part of the battery container 7 via an insulating and heat resistant EPDM resin gasket 10. For this reason, the inside of the lithium ion secondary battery 20 is sealed.
  • a non-aqueous electrolyte is injected into the battery container 7.
  • the non-aqueous electrolyte includes lithium hexafluorophosphate (LiPF 6) as a lithium salt in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) in a volume ratio of 1: 1: 1. 1) / mol dissolved.
  • the lithium ion secondary battery 20 is given a battery function by performing initial charging at a predetermined voltage and current.
  • the positive electrode plate and the negative electrode plate are wound around the shaft core 1 through a porous polyethylene separator W5 through which lithium ions can pass so that the two electrode plates do not directly contact each other.
  • the thickness of the separator W5 is set to 30 ⁇ m.
  • the positive electrode lead piece 2 and the negative electrode lead piece 3 are arranged on both end surfaces of the electrode group 6 opposite to each other.
  • the diameter of the electrode group 6 is set to 38 ⁇ 0.5 mm by adjusting the lengths of the positive electrode plate, the negative electrode plate, and the separator W5.
  • Insulation coating is applied to the entire circumference of the collar peripheral surface of the electrode group 6 and the positive electrode current collecting ring 4 in order to prevent electrical contact between the electrode group 6 and the battery container 7.
  • an adhesive tape in which a hexamethacrylate adhesive is applied to one side of a polyimide base material is used.
  • the pressure-sensitive adhesive tape is wound one or more times from the collar surface to the outer circumferential surface of the electrode group 6. The number of turns is adjusted so that the maximum diameter portion of the electrode group 6 becomes an insulating coating existing portion, and the maximum diameter is set slightly smaller than the inner diameter of the battery container 7.
  • the positive electrode plate constituting the electrode group 6 has an aluminum foil (current collector) W1 as a positive electrode current collector.
  • the thickness of the aluminum foil W1 is set to 20 ⁇ m.
  • the positive electrode mixture is applied substantially uniformly and uniformly to form a positive electrode mixture layer W2.
  • the positive electrode mixture contains a lithium transition metal double oxide as a positive electrode active material.
  • the thickness of the applied positive electrode mixture layer W2 is substantially uniform, and the positive electrode active material is dispersed substantially uniformly in the positive electrode mixture layer W2.
  • either lithium manganese cobalt double acid powder having a layered crystal structure or lithium manganate powder having a spinel crystal structure is used as the lithium transition metal double oxide.
  • Examples of the positive electrode mixture include 85 wt% (mass%) of lithium transition metal double oxide, 8 wt% of flaky graphite and 2 wt% of acetylene black as a conductive material, and polyfluoride as a binder (binder). 5 wt% of vinylidene chloride (hereinafter abbreviated as PVdF) is blended.
  • PVdF vinylidene chloride
  • NMP dispersion solvent N-methyl-2-pyrrolidone
  • An uncoated portion of a positive electrode mixture having a width of 30 mm is formed on the side edge on one side in the longitudinal direction of the aluminum foil W1.
  • the uncoated part is cut out in a comb shape, and the positive electrode lead piece 2 is formed in the notch remaining part.
  • the interval between the adjacent positive electrode lead pieces 2 is set to 20 mm, and the width of the positive electrode lead piece 2 is set to 5 mm.
  • the positive electrode plate is pressed after drying and cut into a width of 80 mm.
  • a flame retardant layer W6 including a flame retardant and an ion conductive binder is formed on the surface of the positive electrode mixture layer W2, that is, on both surfaces of the positive electrode plate.
  • a flame retardant a phosphazene compound having phosphorus and nitrogen as a basic skeleton is used.
  • the binder a polyether polymer compound having lithium ion conductivity can be used, and examples thereof include polyethylene oxide, polyethylene glycol dimethyl ether, and polyethylene glycol methyl ether. In this example, polyethylene oxide is used as the binder.
  • the blending ratio of the flame retardant is set to 1 wt% or more with respect to the positive electrode mixture.
  • the blending ratio of the binder can be set in the range of 1 to 10 wt% with respect to the positive electrode mixture.
  • the phosphazene compound is contained in a proportion in the range of 50 wt% to 91 wt%, and the polyethylene oxide is contained in a proportion in the range of 9 wt% to 50 wt%.
  • This flame retardant layer W6 is formed as follows. That is, a solution in which a phosphazene compound and polyethylene oxide are dissolved and dispersed is applied to the surface of the positive electrode mixture layer W2, dried, and then subjected to press treatment to adjust the thickness of the entire positive electrode plate.
  • the phosphazene compound is a cyclic compound represented by the general formula (NPR 2 ) 3 or (NPR 2 ) 4 .
  • R in the general formula represents a halogen element such as fluorine or chlorine or a monovalent substituent.
  • alkoxy groups such as methoxy group and ethoxy group
  • aryloxy groups such as phenoxy group and methylphenoxy group
  • alkyl groups such as methyl group and ethyl group
  • aryl groups such as phenyl group and tolyl group
  • Examples thereof include an amino group containing a substituted amino group such as a methylamino group, an alkylthio group such as a methylthio group and an ethylthio group, and an arylthio group such as a phenylthio group.
  • Each of these phosphazene compounds is thermally decomposed at a predetermined temperature, but those that are thermally decomposed in a temperature environment of 60 ° C.
  • a phosphazene compound having a temperature of 60 ° C. or higher and 400 ° C. or lower is used in consideration of the fact that the positive electrode active material starts self-heating at 60 ° C. or higher and that the positive electrode active material starts to thermally decompose when it exceeds 400 ° C.
  • the negative electrode plate has a rolled copper foil (current collector) W3 as a negative electrode current collector.
  • the thickness of the rolled copper foil W3 is set to 10 ⁇ m.
  • the negative electrode mixture is applied substantially uniformly and uniformly in the same manner as the positive electrode plate to form a negative electrode mixture layer W4.
  • the negative electrode mixture contains a carbon material capable of inserting and extracting lithium ions as a negative electrode active material.
  • amorphous carbon powder is used for the carbon material of the negative electrode active material.
  • 10 wt% of PVdF is blended as a binder with respect to 90 wt% of the amorphous carbon powder.
  • NMP as a dispersion solvent When applying the negative electrode mixture to the rolled copper foil W3, NMP as a dispersion solvent is used. An uncoated portion of a negative electrode mixture having a width of 30 mm is formed on the side edge on one side in the longitudinal direction of the rolled copper foil W3, and a negative electrode lead piece 3 is formed. The interval between the adjacent negative electrode lead pieces 3 is set to 20 mm, and the width of the negative electrode lead piece 3 is set to 5 mm. The negative electrode plate is pressed after drying and cut into a width of 86 mm. The length of the negative electrode plate is such that when the positive electrode plate and the negative electrode plate are wound, the positive electrode plate does not protrude from the negative electrode plate in the winding direction at the innermost winding and outermost winding.
  • the width of the negative electrode mixture layer W4 (mixture application portion) is such that the positive electrode mixture layer W2 does not protrude from the negative electrode mixture layer W4 in the direction perpendicular to the winding direction. 6 mm longer.
  • lithium ion secondary battery 20 manufactured according to the present embodiment describes together about the lithium ion secondary battery of the comparative example produced for the comparison.
  • Example 1 In Example 1, a solution in which a phosphazene compound (made by Bridgestone Corporation, trade name Phoslite (registered trademark), solid, decomposition temperature of 250 ° C. or higher) as a flame retardant and polyethylene oxide was dissolved and dispersed was prepared. The blending ratio of polyethylene oxide was set to 1 wt% with respect to the positive electrode mixture. As shown in Table 1 below, the blending ratio of the phosphazene compound was adjusted to 1 wt% with respect to the positive electrode mixture. This dispersion was applied to the surface of the positive electrode mixture layer W2 whose thickness was adjusted to 120 ⁇ m by press working.
  • a phosphazene compound made by Bridgestone Corporation, trade name Phoslite (registered trademark), solid, decomposition temperature of 250 ° C. or higher
  • the blending ratio of polyethylene oxide was set to 1 wt% with respect to the positive electrode mixture. As shown in Table 1 below, the blending ratio of the phosphazene compound was adjusted to
  • the blending ratio of the flame retardant with respect to the positive electrode mixture was adjusted by adjusting the coating amount of the dispersion solution.
  • the thickness of the flame retardant layer W6 was 4 ⁇ m.
  • the phosphazene compound is contained at 50 wt% and the polyethylene oxide is contained at 50 wt%.
  • Example 2 to Example 9 As shown in Table 1, Examples 2 to 9 were the same as Example 1 except that the blending ratio of the flame retardant was changed. That is, the blending ratio of the flame retardant is 2 wt% in Example 2, 3 wt% in Example 3, 5 wt% in Example 4, 6 wt% in Example 5, 8 wt% in Example 6, and in Example 7. It was adjusted to 10 wt%, 15 wt% in Example 8, and 20 wt% in Example 9, respectively. Since the coating amount of the dispersion solution on the positive electrode mixture layer W2 is increased in order to increase the blending ratio of the flame retardant, the thickness of the flame retardant layer W6 of the obtained positive electrode plate is changed.
  • the thickness of the flame retardant layer W6 is 8 ⁇ m in Example 2, 10 ⁇ m in Example 3, 17 ⁇ m in Example 4, 20 ⁇ m in Example 5, 24 ⁇ m in Example 6, and Example 7 was 31 ⁇ m, Example 8 was 44 ⁇ m, and Example 9 was 63 ⁇ m.
  • the ratios of the phosphazene compound and polyethylene oxide in the flame retardant layer W6 were the same as in Example 1, and the amount of flame retardant was adjusted according to the coating amount. For all of Examples 9, 50 wt% and 50 wt% are obtained.
  • the comparative example was the same as Example 1 except that the flame retardant layer W6 was not formed on the surface of the positive electrode mixture layer W2. That is, the lithium ion secondary battery of the comparative example is a conventional battery.
  • Test 1 About the lithium ion secondary battery of each Example and the comparative example, the overcharge test was done and evaluated. In the overcharge test, a thermocouple was placed in the center of the battery, and the temperature of the battery surface when each lithium ion secondary battery was continuously charged at a current value of 0.5 C was measured. The maximum battery surface temperature in the overcharge test is shown in Table 2 below.
  • the battery surface maximum temperature reached 482.9 ° C. by the overcharge test.
  • the battery surface maximum temperature is lowered, and the blending ratio of the flame retardant is increased.
  • the rate at which the battery surface maximum temperature decreases also increases. If the flame retardant is blended in an amount of 1 wt% with respect to the positive electrode mixture (Example 1), the battery surface maximum temperature can be lowered as compared with the lithium ion secondary battery of the comparative example.
  • the maximum battery surface temperature is suppressed to about 150 ° C. or less. This can be achieved by setting the blending ratio of the flame retardant to 10 wt% or more (Examples 7 to 9).
  • Example 10 In Example 10, the blending ratio of the phosphazene compound was set to 10 wt% with respect to the positive electrode mixture, and the blending ratio of polyethylene oxide was adjusted to 1 wt% with respect to the positive electrode mixture as shown in Table 3 below. Except for the above, a flame retardant layer W6 was formed on the surface of the positive electrode mixture layer W2 having a thickness of 120 ⁇ m in the same manner as in Example 1. The thickness of the flame retardant layer W6 was 25 ⁇ m. In the flame retardant layer W6, 91 wt% of the phosphazene compound and 9 wt% of polyethylene oxide are included.
  • Example 11 to 14 were the same as Example 10 except that the blending ratio of polyethylene oxide was changed. That is, the blending ratio of polyethylene oxide to the positive electrode mixture was adjusted to 3 wt% in Example 11, 5 wt% in Example 12, 8 wt% in Example 13, and 10 wt% in Example 14, respectively.
  • the thickness of the flame retardant layer W6 was 24 ⁇ m in Example 11, 26 ⁇ m in Example 12, 28 ⁇ m in Example 13, and 31 ⁇ m in Example 14.
  • the ratios of the phosphazene compound and polyethylene oxide in the flame retardant layer W6 were 77 wt% and 23 wt% in Example 11, 67 wt% and 33 wt% in Example 12, 56 wt% and 44 wt% in Example 13, and In Example 14, it becomes 50 wt% and 50 wt%.
  • Example 15 to Example 16 In Examples 15 to 16, it was the same as Example 10 except that the binder of the flame retardant layer W6 was changed. That is, as the binder, polyethylene glycol dimethyl ether was used in Example 15, and polyethylene glycol methyl ether was used in Example 16. As shown in Table 3, the thickness of the flame retardant layer W6 was 32 ⁇ m in Example 15 and 29 ⁇ m in Example 16.
  • Test 2 The lithium ion secondary batteries of Examples 10 to 16 and the comparative example were evaluated by performing a charge / discharge test. In the charge / discharge test, each lithium ion secondary battery was charged at a current value of 0.5C, and then discharged at a current value of 1.0C and 3.0C. The relative capacity when the discharge capacity in the lithium ion secondary battery of the comparative example was 100% was calculated. The relative capacity results are shown in Table 4 below.
  • a flame retardant layer W6 containing a phosphazene compound as a flame retardant is formed on the surface of the positive electrode mixture layer W2 of the positive electrode plate constituting the electrode group 6.
  • This phosphazene compound decomposes at a predetermined temperature (60 to 400 ° C.) in a high temperature environment such as when the battery is abnormal.
  • the flame retardant layer W6 is formed on the surface of the positive electrode mixture layer W2, the phosphazene compound is present in the vicinity of the positive electrode active material.
  • the lithium ion secondary battery 20 when the lithium ion secondary battery 20 is exposed to an abnormally high temperature environment or when a battery abnormality occurs, if the battery temperature rises due to a thermal decomposition reaction or a chain reaction of the positive electrode active material, the phosphazene compound becomes Decompose. Thereby, since combustion of a battery constituent material is suppressed, the battery behavior of the lithium ion secondary battery 20 can be moderated and safety can be ensured.
  • the flame retardant layer W6 includes polyethylene oxide having ion conductivity as a binder.
  • the flame retardant fills the gaps in the active material on the surface of the positive electrode mixture layer W2, thereby inhibiting the movement of lithium ions.
  • output may be reduced.
  • the flame retardant layer W6 contains polyethylene oxide having ion conductivity, ion conductivity is ensured, so that lithium ions can sufficiently move between the positive and negative electrode plates. Battery performance can be ensured.
  • the dispersion state of the phosphazene compound is likely to be nonuniform, and safety may be insufficiently secured.
  • the dispersed state of the phosphazene compound becomes uniform, and a stable flame retardant effect can be obtained.
  • polyethylene oxide present in the gaps of the phosphazene compound forms a substantially uniform porous ion conduction path. For this reason, the movement of lithium ions is facilitated, which can contribute to securing battery performance.
  • a phosphazene compound that thermally decomposes in a temperature environment of 60 ° C. or higher and 400 ° C. or lower is used as a flame retardant.
  • a phosphazene compound that thermally decomposes below 60 ° C. may hinder normal charge / discharge performance.
  • the lithium transition metal double oxide exceeds 400 ° C., it begins to thermally decompose, so it is difficult to obtain a sufficient effect with a phosphazene compound that thermally decomposes above 400 ° C.
  • the phosphazene compound is thermally decomposed at 60 ° C. or more and 400 ° C. or less, the phosphazene compound is not decomposed and is retained as the flame retardant layer W6 when using a normal battery, so the battery performance of the lithium ion secondary battery 20
  • the phosphazene compound is decomposed in a temperature environment that causes battery abnormality, and safety can be ensured.
  • the flame retardant layer W6 is formed on the surface of the positive electrode mixture layer W2, that is, both surfaces of the positive electrode plate is shown, but the present invention is not limited to this.
  • it may be formed on the surface of the negative electrode mixture layer W4 or the separator W5. That is, the flame retardant layer W6 only needs to be formed on at least one side or both sides of the positive electrode plate, the negative electrode plate, and the separator W5. Even when the flame retardant layer W6 is formed on the surface of the negative electrode mixture layer W4 or the separator W5, it has been confirmed that the same effect as the present embodiment can be obtained.
  • the battery is abnormal or the like, it is expected that the amount of heat generated in the positive electrode plate will increase, so it is effective to form the flame retardant layer W6 on the positive electrode plate.
  • polyethylene oxide was illustrated as a binder mix
  • the material having a binder function and lithium ion conductivity include polyether polymer compounds, and the above-described polyethylene glycol dimethyl ether, polyethylene glycol methyl ether, and the like can be used.
  • the example which uses 1 type of polyethylene oxide for a binder was shown in this embodiment, you may make it use 2 or more types.
  • blended with the flame retardant layer W6 to the range of 1-10 wt% with respect to a positive mix is shown. If the blending ratio of the binder exceeds 10 wt%, the thickness of the flame retardant layer W6 increases, which may hinder battery performance. That is, in the lithium ion secondary battery having the same volume, since the thickness of the flame retardant layer W6 is increased, the thickness of the positive electrode mixture layer W2 is relatively decreased and the amount of the active material is decreased. Will be reduced.
  • the blending ratio of the binder is less than 1 wt%, it becomes difficult to form the flame retardant layer W6, and the ion conductivity becomes insufficient, so that the effect of suppressing the decrease in output and capacity is suppressed. Can not get enough.
  • Example 1 to Example 9 the example which sets the ratio of the flame retardant mix
  • the blending ratio of the flame retardant exceeds 20 wt%, the thickness of the flame retardant layer W6 increases, so that the battery capacity decreases due to the decrease in the amount of active material filled in the battery, This is not preferable because it may cause an increase in battery resistance due to an increase in the distance. Therefore, it is more preferable to adjust the blending ratio of the flame retardant to a range of 10 to 20 wt%.
  • phosphazene compound is blended as a flame retardant
  • the present invention is not limited to this, and two kinds of phosphazene compounds exemplified in this embodiment.
  • flame retardants other than phosphazene compounds can be mixed and used. Any flame retardant may be used as long as it can be thermally decomposed in the above-described temperature range and the temperature increase due to the thermal decomposition reaction of the active material or its chain reaction can be suppressed.
  • the flame retardant layer W6 may be made porous so as to improve lithium ion permeability.
  • a pore forming agent pore forming agent
  • the pore-forming agent for example, aluminum oxide or the like can be used, and the blending ratio of the pore-forming agent can be adjusted in accordance with the ratio of the porosity to be formed. If it does in this way, the mobility between the positive / negative electrode plates of lithium ion at the time of normal battery use (charge / discharge) can be improved, and battery performance can be improved.
  • the conductive agent include carbon materials such as graphite and amorphous carbon.
  • the cylindrical lithium ion secondary battery 20 mounted on a hybrid vehicle is illustrated, but the present invention is not limited to this, and a large-sized lithium ion secondary battery having a battery capacity exceeding about 3 Ah. It can be applied to the next battery.
  • the electrode group 6 which wound the positive electrode plate and the negative electrode plate was illustrated, this invention is not limited to this, For example, the electrode which laminated
  • the battery shape may be a square shape in addition to the cylindrical shape.
  • the present invention is not limited to the lithium ion secondary battery, and it goes without saying that the present invention can be applied to a nonaqueous electrolyte battery using a nonaqueous electrolyte.
  • the positive electrode active material that can be used in the present invention may be any lithium transition metal double oxide.
  • amorphous carbon is used as the negative electrode active material has been described, but the present invention is not limited to this.
  • the negative electrode active material may be any carbon material that can occlude and release lithium ions.
  • a graphite-based material may be used.
  • the composition of the non-aqueous electrolyte, etc. that is, the type and combination of the organic solvent, the type and blending amount of the lithium salt, etc. are not particularly limited.
  • the present invention provides a non-aqueous electrolyte battery capable of ensuring safety in the event of battery abnormalities and suppressing a decrease in capacity and output when the battery is used, manufacture and sale of non-aqueous electrolyte batteries Therefore, it has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

 電池異常時の安全性を確保し、電池使用時の容量や出力の低下を抑制することができる非水電解液電池を提供する。リチウムイオン二次電池20では、電池容器7に、正負極板がセパレータを介して捲回された電極群6が収容されており、非水電解液が注液されている。正極板は、アルミニウム箔W1の両面に、リチウム遷移金属複酸化物を含む正極合剤層W2が形成されている。正極合剤層W2の表面には、難燃化剤のホスファゼン化合物と、イオン伝導性を有するバインダのポリエチレンオキサイドとを含む難燃化剤層W6が形成されている。負極板は、圧延銅箔W3の両面に、負極活物質の炭素材を含む負極合剤層W4が形成されている。ポリエチレンオキサイドでイオン伝導性が確保され、電池異常で電池温度が上昇するとホスファゼン化合物が分解する。

Description

非水電解液電池
 本発明は非水電解液電池に係り、特に、活物質を含む正極合剤が集電体に塗着された正極板と、活物質を含む負極合剤が集電体に塗着された負極板とが多孔質セパレータを介して配置された非水電解液電池に関する。
 電解液が水溶液系である二次電池としては、アルカリ蓄電池や鉛蓄電池等が知られている。これらの水溶液系二次電池に代わり、小型、軽量かつ高エネルギー密度の二次電池として、リチウム二次電池に代表される非水電解液電池が普及している。非水電解液電池に用いられる電解液には、ジメチルエーテル等の有機溶媒が含まれている。有機溶媒が可燃性を有するため、短絡等の電池異常時や火中投下時に電池温度が上昇した場合は、電池構成材料の燃焼や活物質の熱分解反応により電池挙動が激しくなるおそれがある。
 このような事態を回避し電池の安全性を確保するために種々の安全化技術が提案されている。例えば、非水電解液に難燃化剤(不燃性付与物質)を溶解させて非水電解液を不燃化する技術(日本国特開平4-184870号公報参照)、セパレータに難燃化剤を分散させてセパレータを不燃化する技術(日本国特開2006-127839号公報参照)が開示されている。
 しかしながら、特開平4-184870号公報、特開2006-127839号公報の技術では、難燃化剤を含有させた非水電解液およびセパレータの電池構成材料を不燃化する技術であり、電池そのものを不燃化することは難しい。例えば、特開2006-127839号公報の技術において、セパレータ中に含有させる難燃化剤の量によりセパレータ自身に不燃性を付与することが可能となる。この技術をリチウム二次電池に適用した場合、リチウム二次電池等の非水電解液電池では活物質の熱分解反応による発熱が大きくなるため、電池温度の上昇を抑制するには多量の難燃化剤が必要となる。このように難燃化剤を多く含ませたセパレータでは、本来セパレータとして要求される強度を保つことが難しくなる、という問題が生じるおそれがある。また、難燃化剤を活物質とともに合剤に含有させることもできるが、この場合は、難燃化剤により合剤層の隙間が埋められるため、充放電時のイオンの移動が妨げられることとなり、容量や出力が低下する、という問題も生じる。
 本発明は上記事案に鑑み、電池異常時の安全性を確保し、電池使用時の容量や出力の低下を抑制することができる非水電解液電池を提供することを課題とする。
 上記課題を解決するために、本発明は、活物質を含む正極合剤が集電体に塗着された正極板と、活物質を含む負極合剤が集電体に塗着された負極板とが多孔質セパレータを介して配置された非水電解液電池において、前記正極板、負極板およびセパレータの少なくとも1種の片面または両面に、難燃化剤のホスファゼン化合物およびイオン伝導性を有するバインダを含む難燃化剤層が配されたことを特徴とする。
 本発明では、正極板、負極板およびセパレータの少なくとも1種の片面または両面に配された難燃化剤層に難燃化剤のホスファゼン化合物が含まれたことで、活物質の近傍に難燃化剤が存在するので、電池異常で温度上昇したときに難燃化剤により電池の燃焼が抑制されるため、電池挙動を穏やかにし安全性を確保することができ、難燃化剤層に含まれるバインダがイオン伝導性を有することで、通常充放電時に難燃化剤層でのイオン伝導性が確保されるため、容量や出力の低下を抑制することができる。
 この場合において、難燃化剤を60℃以上400℃以下の温度環境で熱分解するホスファゼン化合物とすることができる。難燃化剤が正極合剤に対して10wt%以上の割合で含まれていてもよい。また、難燃化剤層のバインダをポリエーテル系高分子化合物とすることができる。ポリエーテル系高分子化合物がポリエチレンオキサイドを含むようにしてもよい。また、難燃化剤層には、難燃化剤が50wt%~91wt%の範囲の割合、バインダが9wt%~50wt%の範囲の割合でそれぞれ含まれていてもよい。
 本発明によれば、正極板、負極板およびセパレータの少なくとも1種の片面または両面に配された難燃化剤層に難燃化剤のホスファゼン化合物が含まれたことで、活物質の近傍に難燃化剤が存在するので、電池異常で温度上昇したときに難燃化剤により電池の燃焼が抑制されるため、電池挙動を穏やかにし安全性を確保することができ、難燃化剤層に含まれるバインダがイオン伝導性を有することで、通常充放電時に難燃化剤層でのイオン伝導性が確保されるため、容量や出力の低下を抑制することができる、という効果を得ることができる。
本発明を適用した実施形態の円柱型リチウムイオン二次電池の断面図である。
 以下、図面を参照して、本発明を適用したハイブリッド自動車搭載用の円柱型リチウムイオン二次電池(非水電解液電池)の実施の形態について説明する。
 図1に示すように、本実施形態の円柱型リチウムイオン二次電池20は、ニッケルメッキが施されたスチール製で有底円筒状の電池容器7を有している。電池容器7には、帯状の正負極板がセパレータを介して断面渦巻状に捲回された電極群6が収容されている。
 電極群6の捲回中心には、ポリプロピレン樹脂製で中空円筒状の軸芯1が使用されている。電極群6の上側には、軸芯1のほぼ延長線上に正極板からの電位を集電するための円環状導体の正極集電リング4が配置されている。正極集電リング4は、軸芯1の上端部に固定されている。正極集電リング4の周囲から一体に張り出している鍔部周縁には、正極板から導出された正極リード片2の端部が超音波溶接で接合されている。正極集電リング4の上方には、安全弁を内蔵し正極外部端子となる円盤状の電池蓋11が配置されている。正極集電リング4の上部は、導体リードを介して電池蓋11に接続されている。
 一方、電極群6の下側には負極板からの電位を集電するための円環状導体の負極集電リング5が配置されている。負極集電リング5の内周面には軸芯1の下端部外周面が固定されている。負極集電リング5の外周縁には、負極板から導出された負極リード片3の端部が溶接で接合されている。負極集電リング5の下部は、導体リードを介して電池容器7の内底部に接続されている。電池容器7の寸法は、本例では、外径40mm、内径39mmに設定されている。
 電池蓋11は、絶縁性および耐熱性のEPDM樹脂製ガスケット10を介して電池容器7の上部にカシメ固定されている。このため、リチウムイオン二次電池20の内部は密封されている。また、電池容器7内には、非水電解液が注液されている。非水電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)との体積比1:1:1の混合溶媒中にリチウム塩として6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものが用いられている。なお、リチウムイオン二次電池20は、所定電圧および電流で初充電を行うことで、電池機能が付与される。
 電極群6は、正極板と負極板とが、これら両極板が直接接触しないように、リチウムイオンが通過可能な多孔質ポリエチレン製のセパレータW5を介し、軸芯1の周囲に捲回されている。セパレータW5の厚さは、本例では、30μmに設定されている。正極リード片2と負極リード片3とが、それぞれ電極群6の互いに反対側の両端面に配置されている。電極群6の直径は、本例では、正極板、負極板、セパレータW5の長さを調整することで、38±0.5mmに設定されている。電極群6および正極集電リング4の鍔部周面全周には、電極群6と電池容器7との電気的接触を防止するために絶縁被覆が施されている。絶縁被覆には、ポリイミド製の基材の片面にヘキサメタアクリレートの粘着剤が塗布された粘着テープが用いられている。粘着テープは鍔部周面から電極群6の外周面に亘って一重以上巻かれている。電極群6の最大径部が絶縁被覆存在部となるように巻き数が調整され、該最大径が電池容器7の内径より僅かに小さく設定されている。
 電極群6を構成する正極板は、正極集電体としてアルミニウム箔(集電体)W1を有している。アルミニウム箔W1の厚さは、本例では、20μmに設定されている。アルミニウム箔W1の両面には、正極合剤が実質的に均等かつ均質に塗着され正極合剤層W2が形成されている。正極合剤には、正極活物質としてリチウム遷移金属複酸化物が含まれている。塗着された正極合剤層W2の厚さがほぼ一様であり、かつ、正極合剤層W2内では正極活物質がほぼ一様に分散されている。リチウム遷移金属複酸化物には、本例では、層状結晶構造を有するマンガンニッケルコバルト複酸リチウム粉末、スピネル結晶構造を有するマンガン酸リチウム粉末のいずれかが用いられている。正極合剤には、例えば、リチウム遷移金属複酸化物の85wt%(質量%)に対して、導電材として鱗片状黒鉛の8wt%およびアセチレンブラックの2wt%と、バインダ(結着材)としてポリフッ化ビニリデン(以下、PVdFと略記する。)の5wt%と、が配合されている。アルミニウム箔W1に正極合剤を塗着するときには、分散溶媒のN-メチル-2-ピロリドン(以下、NMPと略記する。)が用いられる。アルミニウム箔W1の長寸方向一側の側縁には、幅30mmの正極合剤の未塗着部が形成されている。未塗着部は櫛状に切り欠かれており、切り欠き残部で正極リード片2が形成されている。隣り合う正極リード片2の間隔が20mm、正極リード片2の幅が5mmに設定されている。正極板は、乾燥後プレス加工され、幅80mmに裁断されている。
 また、正極合剤層W2の表面、すなわち、正極板の両面には、難燃化剤とイオン伝導性を有するバインダとを含む難燃化剤層W6が形成されている。難燃化剤には、リンおよび窒素を基本骨格とするホスファゼン化合物が用いられている。バインダとしては、リチウムイオン伝導性を有するポリエーテル系高分子化合物を用いることができ、例えば、ポリエチレンオキサイド、ポリエチレングリコールジメチルエーテル、ポリエチレングリコールメチルエーテル等を挙げることができる。本例では、バインダとしてポリエチレンオキサイドが用いられている。難燃化剤の配合割合は、本例では、正極合剤に対して1wt%以上に設定されている。また、バインダの配合割合は、正極合剤に対して1~10wt%の範囲で設定することができる。難燃化剤層W6では、ホスファゼン化合物が50wt%~91wt%の範囲の割合、ポリエチレンオキサイドが9wt%~50wt%の範囲の割合でそれぞれ含まれている。この難燃化剤層W6は、次のようにして形成されたものである。すなわち、ホスファゼン化合物とポリエチレンオキサイドとを溶解、分散させた溶液を正極合剤層W2の表面に塗布し、乾燥後、プレス処理を施すことで正極板全体の厚さを調整する。
 ホスファゼン化合物は、一般式(NPRまたは(NPRで表される環状化合物である。一般式中のRは、フッ素や塩素等のハロゲン元素または一価の置換基を示している。一価の置換基としては、メトキシ基やエトキシ基等のアルコキシ基、フェノキシ基やメチルフェノキシ基等のアリールオキシ基、メチル基やエチル基等のアルキル基、フェニル基やトリル基等のアリール基、メチルアミノ基等の置換型アミノ基を含むアミノ基、メチルチオ基やエチルチオ基等のアルキルチオ基、および、フェニルチオ基等のアリールチオ基を挙げることができる。これらのホスファゼン化合物は、それぞれ所定温度で熱分解するが、60℃以上400℃以下の温度環境で熱分解するものが用いられる。すなわち、正極活物質が60℃以上で自己発熱を始めること、および、正極活物質が400℃を超えると熱分解し始めることを考慮し、60℃以上400℃以下のホスファゼン化合物が用いられる。
 一方、負極板は、負極集電体として圧延銅箔(集電体)W3を有している。圧延銅箔W3の厚さは、本例では、10μmに設定されている。圧延銅箔W3の両面には、負極合剤が、正極板と同様に実質的に均等かつ均質に塗着され負極合剤層W4が形成されている。負極合剤には、負極活物質としてリチウムイオンを吸蔵、放出可能な炭素材が含まれている。負極活物質の炭素材には、本例では、非晶質炭素粉末が用いられている。負極合剤には、例えば、非晶質炭素粉末の90wt%に対して、バインダとしてPVdFの10wt%が配合されている。圧延銅箔W3に負極合剤を塗着するときには、分散溶媒のNMPが用いられる。圧延銅箔W3の長寸方向一側の側縁には、正極板と同様に幅30mmの負極合剤の未塗着部が形成されており、負極リード片3が形成されている。隣り合う負極リード片3の間隔が20mm、負極リード片3の幅が5mmに設定されている。負極板は、乾燥後、プレス加工され、幅86mmに裁断されている。なお、負極板の長さは、正極板および負極板を捲回したときに、捲回最内周および最外周で捲回方向に正極板が負極板からはみ出すことがないように、正極板の長さより120mm長く設定されている。また、負極合剤層W4(合剤塗布部)の幅は、捲回方向と垂直方向において正極合剤層W2が負極合剤層W4からはみ出すことがないように、正極合剤層W2の幅より6mm長く設定されている。
 次に、本実施形態に従い作製したリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例のリチウムイオン二次電池についても併記する。
(実施例1)
 実施例1では、難燃化剤のホスファゼン化合物(株式会社ブリヂストン製、商品名ホスライト(登録商標)、固体状、分解温度250℃以上)とポリエチレンオキサイドとを溶解、分散させた溶液を調製した。ポリエチレンオキサイドの配合割合は、正極合剤に対して1wt%に設定した。ホスファゼン化合物の配合割合は、下表1に示すように、正極合剤に対して1wt%に調整した。この分散溶液を、プレス加工により厚さを120μmに調整した正極合剤層W2の表面に塗布した。このとき、分散溶液の塗布量を調整することで、正極合剤に対する難燃化剤の配合割合を調整した。難燃化剤層W6の厚さは4μmとなった。難燃化剤層W6では、ホスファゼン化合物が50wt%、ポリエチレンオキサイドが50wt%でそれぞれ含まれることとなる。
Figure JPOXMLDOC01-appb-T000001
(実施例2~実施例9)
 表1に示すように、実施例2~実施例9では、難燃化剤の配合割合を変える以外は実施例1と同様にした。すなわち、難燃化剤の配合割合は、実施例2では2wt%、実施例3では3wt%、実施例4では5wt%、実施例5では6wt%、実施例6では8wt%、実施例7では10wt%、実施例8では15wt%、実施例9では20wt%、にそれぞれ調整した。難燃化剤の配合割合を大きくするために正極合剤層W2に対する分散溶液の塗布量を増やしたことから、得られた正極板の難燃化剤層W6の厚さが変わることとなる。難燃化剤層W6の厚さは、表1に示すように、実施例2では8μm、実施例3では10μm、実施例4では17μm、実施例5では20μm、実施例6では24μm、実施例7では31μm、実施例8では44μm、実施例9では63μmとなった。また、難燃化剤層W6でのホスファゼン化合物およびポリエチレンオキサイドの割合は、実施例1と同様の分散溶液を使用し、塗布量により難燃化剤量を調整したことから、実施例2~実施例9のいずれについても50wt%および50wt%となる。
(比較例)
 比較例では、正極合剤層W2の表面に難燃化剤層W6を形成しない以外は実施例1と同様にした。すなわち、比較例のリチウムイオン二次電池は従来の電池である。
(試験1)
 各実施例および比較例のリチウムイオン二次電池について、過充電試験を行い評価した。過充電試験では、電池中央部に熱電対を配置し、各リチウムイオン二次電池を0.5Cの電流値で充電し続けたときの電池表面の温度を測定した。過充電試験における電池表面最高温度を下表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、難燃化剤を含有していない比較例のリチウムイオン二次電池では、過充電試験により電池表面最高温度が482.9℃に達した。これに対して、難燃化剤を含有した実施例1~実施例9のリチウムイオン二次電池20では、いずれも電池表面最高温度が低下しており、難燃化剤の配合割合を大きくすることで電池表面最高温度の低下する割合も大きくなることが判った。難燃化剤が正極合剤に対して1wt%配合されていれば(実施例1)、比較例のリチウムイオン二次電池と比べて電池表面最高温度を低下させることができる。活物質の熱分解反応やその連鎖反応を抑制することを考慮すれば、電池表面最高温度がおよそ150℃以下に抑えられることが好ましい。このことは、難燃化剤の配合割合を10wt%以上とすることで達成することができる(実施例7~実施例9)。
(実施例10)
 実施例10では、ホスファゼン化合物の配合割合を正極合剤に対して10wt%に設定し、ポリエチレンオキサイドの配合割合を、下表3に示すように、正極合剤に対して1wt%に調整したこと以外は実施例1と同様に、厚さ120μmの正極合剤層W2の表面に難燃化剤層W6を形成した。難燃化剤層W6の厚さは25μmとなった。難燃化剤層W6では、ホスファゼン化合物が91wt%、ポリエチレンオキサイドが9wt%でそれぞれ含まれることとなる。
Figure JPOXMLDOC01-appb-T000003
(実施例11~実施例14)
 表3に示すように、実施例11~実施例14では、ポリエチレンオキサイドの配合割合を変える以外は実施例10と同様にした。すなわち、正極合剤に対するポリエチレンオキサイドの配合割合は、実施例11では3wt%、実施例12では5wt%、実施例13では8wt%、実施例14では10wt%、にそれぞれ調整した。難燃化剤層W6の厚さは、実施例11では24μm、実施例12では26μm、実施例13では28μm、実施例14では31μm、となった。また、難燃化剤層W6でのホスファゼン化合物およびポリエチレンオキサイドの割合は、実施例11では77wt%および23wt%、実施例12では67wt%および33wt%、実施例13では56wt%および44wt%、実施例14では50wt%および50wt%、となる。
(実施例15~実施例16)
 実施例15~実施例16では、難燃化剤層W6のバインダを変える以外は実施例10と同様にした。すなわち、バインダとして、実施例15ではポリエチレングリコールジメチルエーテル、実施例16ではポリエチレングリコールメチルエーテルをそれぞれ用いた。表3に示すように、難燃化剤層W6の厚さは、実施例15では32μm、実施例16では29μmとなった。
(試験2)
 実施例10~実施例16および比較例のリチウムイオン二次電池について、充放電試験を行い評価した。充放電試験では、各リチウムイオン二次電池を0.5Cの電流値で充電した後、1.0Cおよび3.0Cの電流値で放電したときの放電容量を測定した。比較例のリチウムイオン二次電池における放電容量を100%としたときの相対容量を算出した。相対容量の結果を下表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、正極合剤層W2の表面に難燃化剤層W6を形成した実施例10~実施例14の各リチウムイオン二次電池20では、難燃化剤層W6を形成しない比較例のリチウムイオン二次電池と比べて、1.0C放電において90%以上、3.0C放電においても80%以上の放電容量を確保できることが確認された。難燃化剤層W6の形成により電池性能の低下が予想されるものの、難燃化剤層W6に配合したバインダがイオン伝導性を有することで容量低下が抑制されたためと考えられる。また、バインダの種類を変えた実施例15、実施例16でも、ポリエチレンオキサイドをバインダとしたときと比べると若干の容量低下がみられるものの、1.0C放電で80%以上、3.0C放電で70%以上の放電容量を確保できることが確認された。
(作用等)
 次に、本実施形態のリチウムイオン二次電池20の作用等について説明する。
 本実施形態では、電極群6を構成する正極板の正極合剤層W2の表面に、難燃化剤としてホスファゼン化合物が含有された難燃化剤層W6が形成されている。このホスファゼン化合物は、電池異常時等の高温環境下の所定温度(60~400℃)で分解する。難燃化剤層W6が正極合剤層W2の表面に形成されることで、ホスファゼン化合物が正極活物質の近傍に存在することとなる。このため、リチウムイオン二次電池20が異常な高温環境下にさらされたときや電池異常が生じたときに、正極活物質の熱分解反応やその連鎖反応で電池温度が上昇すると、ホスファゼン化合物が分解する。これにより、電池構成材料の燃焼が抑制されるため、リチウムイオン二次電池20の電池挙動を穏やかにし安全性を確保することができる。
 また、本実施形態では、難燃化剤層W6に、バインダとしてイオン伝導性を有するポリエチレンオキサイドが含まれている。難燃化剤のみの層が正極合剤層W2の表面に形成された場合は、難燃化剤により正極合剤層W2の表面における活物質の隙間が埋められ、リチウムイオンの移動が阻害される可能性がある。結果として、出力低下を招くことがある。これに対して、難燃化剤層W6にイオン伝導性を有するポリエチレンオキサイドが含まれたことで、イオン伝導性が確保されるため、リチウムイオンが正負極板間を十分に移動することができ、電池性能を確保することができる。更に、難燃化剤層W6をホスファゼン化合物のみで形成しようとする場合は、ホスファゼン化合物の分散状態が不均一化しやすく、安全性の確保が不十分となることがある。これに対して、ホスファゼン化合物とバインダとを混合し難燃化剤層W6を形成することにより、ホスファゼン化合物の分散状態が均一化し安定した難燃効果を得ることができる。また、本来イオン伝導性を阻害するホスファゼン化合物の分散状態が均一化することで、ホスファゼン化合物の間隙に存在するポリエチレンオキサイドがほぼ一様な多孔質様のイオン伝導経路を形成する。このため、リチウムイオンの移動が円滑化され、電池性能の確保に寄与することができる。
 更に、本実施形態では、難燃化剤として60℃以上400℃以下の温度環境で熱分解するホスファゼン化合物が用いられている。正極活物質のリチウム遷移金属複酸化物が60℃以上で自己発熱を始めることを考慮すれば、60℃未満で熱分解するホスファゼン化合物では通常の充放電性能を妨げる可能性がある。また、リチウム遷移金属複酸化物が400℃を超えると熱分解し始めることから、400℃を超えて熱分解するホスファゼン化合物では十分な効果を得ることが難しくなる。従って、60℃以上400℃以下で熱分解するホスファゼン化合物であれば、通常の電池使用時にはホスファゼン化合物が分解せず難燃化剤層W6として保持されるので、リチウムイオン二次電池20の電池性能を確保することができ、電池異常となる温度環境下でホスファゼン化合物が分解し安全性を確保することができる。
 なお、本実施形態では、正極合剤層W2の表面、すなわち、正極板の両面に難燃化剤層W6を形成する例を示したが、本発明はこれに限定されるものではない。例えば、負極合剤層W4やセパレータW5の表面に形成するようにしてもよい。すなわち、難燃化剤層W6が、正極板、負極板およびセパレータW5の少なくとも1つの片面または両面に形成されていればよい。負極合剤層W4やセパレータW5の表面に難燃化剤層W6を形成した場合でも、本実施形態と同様の効果の得られることを確認している。電池異常時等では、正極板での発熱量が大きくなることが予想されることから、正極板に難燃化剤層W6を形成することが効果的である。
 また、本実施形態では、難燃化剤層W6に配合されるバインダとしてポリエチレンオキサイドを例示したが、本発明はこれに限定されるものではなく、イオン伝導性を有しており難燃化剤層W6を形成可能であればいかなるバインダを用いてもよい。バインダ機能とリチウムイオン伝導性とを有する材料としては、ポリエーテル系高分子化合物を挙げることができ、上述したポリエチレングリコールジメチルエーテルやポリエチレングリコールメチルエーテル等を用いることができる。また、本実施形態では、バインダにポリエチレンオキサイドの1種を用いる例を示したが、2種以上を用いるようにしてもよい。
 更に、本実施形態では、難燃化剤層W6に配合するバインダの割合を、正極合剤に対して1~10wt%の範囲に設定する例を示した。バインダの配合割合が10wt%を超えると難燃化剤層W6の厚みが大きくなることとなり、電池性能を阻害する可能性がある。すなわち、同じ容積のリチウムイオン二次電池では、難燃化剤層W6の厚みが大きくなることで、相対的に正極合剤層W2の厚みが小さくなり活物質量が減少するため、却って電池性能を低下させることとなる。反対に、バインダの配合割合が1wt%に満たないと、難燃化剤層W6を形成することが難しくなり、また、イオン伝導性が不十分となるため、出力や容量の低下を抑制する効果を十分に得ることができなくなる。
 また更に、本実施形態では、難燃化剤層W6に配合する難燃化剤の割合を1wt%以上に設定する例を示した(実施例1~実施例9)。難燃化剤の配合割合が1wt%に満たないと熱分解反応による温度上昇を抑制することが難しくなる。また、熱分解反応の連鎖反応による更なる温度上昇を抑制することを考慮すれば、難燃化剤の配合割合を10wt%以上とすることがより好ましい。反対に、難燃化剤の配合割合が20wt%を超えると、難燃化剤層W6の厚みが増大するため、電池内への活物質充填量の低下による電池容量の低下、正負極板間の距離拡大による電池抵抗の増大等を招く可能性があり好ましくない。従って、難燃化剤の配合割合を10~20wt%の範囲に調整することがより好ましい。
 更にまた、本実施形態では、難燃化剤としてホスファゼン化合物の1種を配合する例を示したが、本発明はこれに限定されるものではなく、本実施形態で例示したホスファゼン化合物の2種以上や、ホスファゼン化合物以外の難燃化剤を混合して用いることも可能である。このような難燃化剤としては、上述した温度範囲で熱分解し活物質の熱分解反応やその連鎖反応による温度上昇を抑制することができるものであればよい。
 また、本実施形態では、特に言及していないが、難燃化剤層W6に多孔を形成してリチウムイオン透過性を向上させるように多孔化してもよい。多孔化するためには、難燃化剤層W6を形成するときに造孔剤(孔形成剤)を配合するようにすればよい。造孔剤としては、例えば、酸化アルミニウム等を用いることができ、形成する多孔の割合にあわせて造孔剤の配合割合を調整することができる。このようにすれば、通常の電池使用(充放電)時におけるリチウムイオンの正負極板間の移動性を向上させることができ、電池性能を向上させることができる。更に、難燃化剤層W6に導電剤を含有させるようにしてもよい。このようにすれば、難燃化剤層W6におけるイオン伝導性に加えて、電子伝導性も向上するため、電池性能の向上を図ることができる。導電剤としては、例えば、黒鉛や非晶質炭素等の炭素材を挙げることができる。
 更に、本実施形態では、ハイブリッド自動車に搭載される円柱型リチウムイオン二次電池20を例示したが、本発明はこれに限定されるものではなく、電池容量が約3Ahを超える大型のリチウムイオン二次電池に適用することができる。また、本実施形態では、正極板、負極板を捲回した電極群6を例示したが、本発明はこれに限定されるものではなく、例えば、矩形状の正極板、負極板を積層した電極群としてもよい。更に、電池形状についても、円柱型以外に角型等としてもよいことはもちろんである。また、本発明はリチウムイオン二次電池に制限されるものではなく、非水電解液を用いた非水電解液電池に適用できることはいうまでもない。
 また更に、本実施形態では、正極活物質に、層状結晶構造を有するマンガンニッケルコバルト複酸リチウム粉末、スピネル結晶構造を有するマンガン酸リチウム粉末のいずれかのリチウム遷移金属複酸化物を用いる例を示したが、本発明で用いることのできる正極活物質としてはリチウム遷移金属複酸化物であればよい。また、本実施形態では、負極活物質に非晶質炭素を用いる例を示したが、本発明はこれに限定されるものではない。負極活物質としては、リチウムイオンを吸蔵、放出可能な炭素材であればよく、例えば、黒鉛系の材料を用いてもよい。更に、非水電解液の組成等、すなわち、有機溶媒の種類や組み合わせ、リチウム塩の種類や配合量等についても特に制限されるものではない。
 本発明は電池異常時の安全性を確保し、電池使用時の容量や出力の低下を抑制することができる非水電解液電池を提供するものであるため、非水電解液電池の製造、販売に寄与するので、産業上の利用可能性を有する。

Claims (6)

  1.  活物質を含む正極合剤が集電体に塗着された正極板と、活物質を含む負極合剤が集電体に塗着された負極板とが多孔質セパレータを介して配置された非水電解液電池において、前記正極板、負極板およびセパレータの少なくとも1種の片面または両面に、難燃化剤のホスファゼン化合物およびイオン伝導性を有するバインダを含む難燃化剤層が配されたことを特徴とする非水電解液電池。
  2.  前記難燃化剤は60℃以上400℃以下の温度環境で熱分解することを特徴とする請求項1に記載の非水電解液電池。
  3.  前記難燃化剤は前記正極合剤に対して10wt%以上の割合で含有されていることを特徴とする請求項1に記載の非水電解液電池。
  4.  前記バインダはポリエーテル系高分子化合物であることを特徴とする請求項1に記載の非水電解液電池。
  5.  前記ポリエーテル系高分子化合物はポリエチレンオキサイドを含むことを特徴とする請求項4に記載の非水電解液電池。
  6.  前記難燃化剤層には、前記難燃化剤が50wt%~91wt%の範囲の割合、前記バインダが9wt%~50wt%の範囲の割合でそれぞれ含まれていることを特徴とする請求項1に記載の非水電解液電池。
PCT/JP2011/070122 2010-09-06 2011-09-05 非水電解液電池 WO2012033034A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11823509.2A EP2615681A4 (en) 2010-09-06 2011-09-05 NONAQUEOUS ELECTROLYTE BATTERY
KR1020137005731A KR20140027043A (ko) 2010-09-06 2011-09-05 비수 전해액 전지
CN201180042815.0A CN103125045B (zh) 2010-09-06 2011-09-05 非水电解液电池
US13/820,817 US9515353B2 (en) 2010-09-06 2011-09-05 Non-aqueous electrolyte battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010198752A JP5623199B2 (ja) 2010-09-06 2010-09-06 非水電解液電池
JP2010-198752 2010-09-06

Publications (1)

Publication Number Publication Date
WO2012033034A1 true WO2012033034A1 (ja) 2012-03-15

Family

ID=45810635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070122 WO2012033034A1 (ja) 2010-09-06 2011-09-05 非水電解液電池

Country Status (6)

Country Link
US (1) US9515353B2 (ja)
EP (1) EP2615681A4 (ja)
JP (1) JP5623199B2 (ja)
KR (1) KR20140027043A (ja)
CN (1) CN103125045B (ja)
WO (1) WO2012033034A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190916A (zh) * 2023-05-04 2023-05-30 合肥长阳新能源科技有限公司 一种阻燃耐高温锂电池隔膜及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5809888B2 (ja) * 2011-09-02 2015-11-11 株式会社Nttファシリティーズ 非水電解液電池
JP5809889B2 (ja) * 2011-09-02 2015-11-11 株式会社Nttファシリティーズ 非水電解液電池の製造方法
JP5896374B2 (ja) * 2011-09-05 2016-03-30 株式会社Nttファシリティーズ 非水電解液電池
CN104485478A (zh) * 2014-11-07 2015-04-01 东莞市鸿德电池有限公司 一种柔性锂离子电池及其制备方法
EP3353844B1 (en) 2015-03-27 2022-05-11 Mason K. Harrup All-inorganic solvents for electrolytes
US11050284B2 (en) * 2015-05-11 2021-06-29 Eaglepicher Technologies, Llc Electrolyte, a battery including the same, and methods of reducing electrolyte flammability
CN105118970B (zh) * 2015-10-14 2018-06-29 中航锂电(洛阳)有限公司 一种锂离子电池复合极片及其制备方法以及一种锂离子电池
CN107492660B (zh) * 2016-06-13 2020-04-24 宁德新能源科技有限公司 正极浆料、正极片及锂离子电池
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN111048788B (zh) * 2019-12-26 2021-06-01 珠海冠宇电池股份有限公司 一种集流体及其制备方法和应用
CN115315840A (zh) * 2020-03-31 2022-11-08 三井化学株式会社 电池用非水电解液、锂二次电池前体、锂二次电池的制造方法、锂二次电池、磷腈化合物、及电池用添加剂

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184870A (ja) 1990-11-19 1992-07-01 Mitsubishi Petrochem Co Ltd リチウム電池用電解液の難燃化剤
JPH0653535A (ja) * 1992-03-23 1994-02-25 Canon Inc 太陽電池
JPH06168739A (ja) * 1992-11-30 1994-06-14 Canon Inc 二次電池
JP2000173619A (ja) * 1998-09-29 2000-06-23 Sanyo Electric Co Ltd リチウムイオン電池
JP2003272635A (ja) * 2002-03-19 2003-09-26 Bridgestone Corp リチウム1次電池用正極及びその製造方法、並びに該正極を備えたリチウム1次電池
JP2006127839A (ja) 2004-10-27 2006-05-18 Bridgestone Corp 電池用セパレータ及びそれを備えた非水電解質電池
JP2007035391A (ja) * 2005-07-26 2007-02-08 Sony Corp 正極材料,正極および電池
JP2009016106A (ja) * 2007-07-03 2009-01-22 Ntt Facilities Inc リチウムイオン二次電池
JP2010050075A (ja) * 2008-07-24 2010-03-04 Hitachi Chem Co Ltd 電気化学素子用セパレータ、及びそれを用いた電気化学素子、リチウム系電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332631A (en) * 1990-10-24 1994-07-26 E.I.C. Corp. Solid polymer electrolytes to alleviate voltage delay of lithiium cells
US6893772B2 (en) * 1993-11-19 2005-05-17 Medtronic, Inc. Current collector for lithium electrode
US7560595B2 (en) 2001-07-05 2009-07-14 Bridgestone Corporation Non-aqueous electrolyte cell, electrolyte stabilizing agent, and phosphazene derivative and method for preparation thereof
JP3729112B2 (ja) * 2001-09-20 2005-12-21 ソニー株式会社 固体電解質電池
KR100413608B1 (ko) * 2001-10-16 2004-01-03 주식회사 에너랜드 리튬이온 2차 전지용 격리막, 그의 제조방법 및 그를포함하여 제조되는 리튬이온 2차 전지
EP1798792B1 (en) * 2004-10-05 2011-01-05 Bridgestone Corporation Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
JP4911888B2 (ja) * 2004-10-05 2012-04-04 株式会社ブリヂストン 非水電解液及びそれを備えた非水電解液2次電池
US20120003514A1 (en) * 2009-03-03 2012-01-05 Tomonobu Tsujikawa Non-aqueous electrolyte battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184870A (ja) 1990-11-19 1992-07-01 Mitsubishi Petrochem Co Ltd リチウム電池用電解液の難燃化剤
JPH0653535A (ja) * 1992-03-23 1994-02-25 Canon Inc 太陽電池
JPH06168739A (ja) * 1992-11-30 1994-06-14 Canon Inc 二次電池
JP2000173619A (ja) * 1998-09-29 2000-06-23 Sanyo Electric Co Ltd リチウムイオン電池
JP2003272635A (ja) * 2002-03-19 2003-09-26 Bridgestone Corp リチウム1次電池用正極及びその製造方法、並びに該正極を備えたリチウム1次電池
JP2006127839A (ja) 2004-10-27 2006-05-18 Bridgestone Corp 電池用セパレータ及びそれを備えた非水電解質電池
JP2007035391A (ja) * 2005-07-26 2007-02-08 Sony Corp 正極材料,正極および電池
JP2009016106A (ja) * 2007-07-03 2009-01-22 Ntt Facilities Inc リチウムイオン二次電池
JP2010050075A (ja) * 2008-07-24 2010-03-04 Hitachi Chem Co Ltd 電気化学素子用セパレータ、及びそれを用いた電気化学素子、リチウム系電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2615681A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190916A (zh) * 2023-05-04 2023-05-30 合肥长阳新能源科技有限公司 一种阻燃耐高温锂电池隔膜及其制备方法
CN116190916B (zh) * 2023-05-04 2023-08-01 合肥长阳新能源科技有限公司 一种阻燃耐高温锂电池隔膜及其制备方法

Also Published As

Publication number Publication date
US20130252090A1 (en) 2013-09-26
EP2615681A1 (en) 2013-07-17
JP2012059390A (ja) 2012-03-22
KR20140027043A (ko) 2014-03-06
EP2615681A4 (en) 2014-07-16
JP5623199B2 (ja) 2014-11-12
CN103125045B (zh) 2016-08-10
US9515353B2 (en) 2016-12-06
CN103125045A (zh) 2013-05-29

Similar Documents

Publication Publication Date Title
JP5509193B2 (ja) 非水電解液電池
JP5623199B2 (ja) 非水電解液電池
JP5753671B2 (ja) 非水電解液二次電池
JP5820662B2 (ja) リチウムイオン二次電池
JP5623198B2 (ja) 非水電解液電池
JP5753672B2 (ja) 非水電解液二次電池
JP2007103356A (ja) 非水系二次電池
JP5509192B2 (ja) 非水電解液電池
JP5868640B2 (ja) 非水電解液二次電池
JP5809889B2 (ja) 非水電解液電池の製造方法
JP2014194857A (ja) リチウムイオン二次電池
JP5809888B2 (ja) 非水電解液電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042815.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137005731

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011823509

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13820817

Country of ref document: US