WO2012032797A1 - 放射線画像検出器の製造方法および放射線画像検出器 - Google Patents

放射線画像検出器の製造方法および放射線画像検出器 Download PDF

Info

Publication number
WO2012032797A1
WO2012032797A1 PCT/JP2011/053470 JP2011053470W WO2012032797A1 WO 2012032797 A1 WO2012032797 A1 WO 2012032797A1 JP 2011053470 W JP2011053470 W JP 2011053470W WO 2012032797 A1 WO2012032797 A1 WO 2012032797A1
Authority
WO
WIPO (PCT)
Prior art keywords
rigid plate
scintillator panel
scintillator
image detector
photoelectric conversion
Prior art date
Application number
PCT/JP2011/053470
Other languages
English (en)
French (fr)
Inventor
古井 孝志
平井 葉子
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to US13/819,123 priority Critical patent/US9269741B2/en
Priority to JP2012532874A priority patent/JP5966925B2/ja
Publication of WO2012032797A1 publication Critical patent/WO2012032797A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements

Definitions

  • the present invention relates to a radiological image detector used for forming a radiographic image of a subject and a method for manufacturing the radiographic image detector for manufacturing the same.
  • radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field.
  • a radiographic image by an intensifying screen-film system has long been used as a general imaging system in the medical field because of its high sensitivity and high image quality.
  • an X-ray image detection device using a solid-state image pickup device (CCD, CMOS, etc.) is known as a direct method. Used for dentistry to collect images.
  • a phosphor layer (scintillator layer) containing a phosphor is used, X-rays are once converted into visible light, and the visible light is converted into a photoelectric having a photoelectric conversion element such as a photodiode, CCD, or CMOS.
  • the signal is converted into signal charges by the conversion substrate and led to the charge storage capacitor.
  • the indirect method is used in a wide range of applications because it is simpler and has higher sensitivity than the direct method.
  • the radiation image detector used in the indirect method includes a radiation image detector of a method in which a phosphor layer is directly provided on the surface of a planar light receiving element, a phosphor layer provided on a scintillator panel substrate, and a photoelectric conversion substrate.
  • a radiation image detector of a type in which a photoelectric conversion element that is two-dimensionally arranged thereon is bonded is known.
  • the uniformity of adhesion between the phosphor layer and the photoelectric conversion element affects the image quality.
  • a transparent adhesive is applied to the photoelectric conversion substrate and bonded to the scintillator panel under reduced pressure, and then returned to atmospheric pressure to return to the transparent adhesive.
  • the manufacturing method (refer patent document 1) which has the process of hardening an agent is known.
  • An object of the present invention is to provide a method of manufacturing a radiographic image detector that can be easily manufactured and provides a radiographic image detector excellent in image uniformity, and a radiographic image detector obtained thereby.
  • a scintillator panel having a scintillator layer on a base material, a rigid plate disposed on the base material side of the scintillator panel, and a plurality of surfaces on one side of the base disposed on the scintillator layer side of the scintillator panel
  • a photoelectric conversion substrate having a photoelectric conversion element, and a method for producing a radiation image detector, (1) A scintillator panel production process for producing a scintillator panel by forming a scintillator layer on the substrate; (2) A composite rigid plate production step of producing a composite rigid plate by bonding a flexible polymer film to the rigid plate via an adhesive.
  • the surface of the photoelectric conversion substrate on which the photoelectric conversion element is disposed and the surface of the scintillator layer side of the scintillator panel with the composite rigid plate face each other, and the photoelectric conversion substrate and the scintillator panel with the composite rigid plate
  • a radiological image detection member production process for producing a radiographic image detection member by bonding The manufacturing method of the radiographic image detector characterized by having.
  • the method of manufacturing the scintillator panel with the composite rigid plate by bonding the composite rigid plate and the scintillator panel is an adhesive between the composite rigid plate and the scintillator panel.
  • a scintillator panel having a scintillator layer on a base material, a rigid plate disposed on the base material side of the scintillator panel, and a plurality of surfaces on one side of the base disposed on the scintillator layer side of the scintillator panel
  • a radiation image detector comprising: a photoelectric conversion substrate having a photoelectric conversion element; and a flexible polymer film on a side opposite to the scintillator panel side of the rigid plate.
  • a method for manufacturing a radiographic image detector which can be easily manufactured and provides a radiographic image detector having excellent image uniformity due to a small ratio of deformation (warping) of the apparatus, and a method obtained thereby It is to provide a radiation image detector.
  • the present invention provides a scintillator panel having a scintillator layer on a substrate, a rigid plate disposed on the substrate side of the scintillator panel, and one of the bases disposed on the scintillator layer side of the scintillator panel.
  • the present invention can provide a method for manufacturing a radiation image detector that provides a radiation image detector having excellent image uniformity, particularly by using a rigid plate having a flexible polymer film for the scintillator panel.
  • FIG. 1 is a schematic cross-sectional view of an example of a radiation image detector of the present invention.
  • the radiation image detector 1 includes a scintillator panel 10, a rigid plate 21, and a photoelectric conversion substrate 30.
  • the scintillator panel 10 has a scintillator layer 12 on a base material 11.
  • the photoelectric conversion substrate 30 has a photoelectric conversion element 31 on a base 53.
  • a plurality of photoelectric conversion elements 31 are two-dimensionally arranged on the base 53.
  • the rigid plate 21 has a flexible polymer film 23 through an adhesive layer A22 formed of an adhesive.
  • the rigid plate 21 and the base material 11 of the scintillator panel 10 are bonded via an adhesive layer B13.
  • the rigid plate 21 and the photoelectric conversion substrate 30 are bonded to each other through the bonding layer C40 at a portion where the scintillator panel 10 does not exist.
  • the production method of the present invention includes the steps (1) to (4).
  • a scintillator layer is formed on a base material to manufacture a scintillator panel.
  • the scintillator panel according to the present invention has a scintillator layer on the base material, but an embodiment having an undercoat layer between the base material and the scintillator layer is preferable, and a reflective layer is provided on the base material. And a structure of a scintillator layer.
  • each constituent layer and constituent elements will be described.
  • the scintillator layer according to the present invention contains a phosphor.
  • CsI cesium iodide
  • CsI alone has low luminous efficiency
  • various activators are added and used.
  • a mixture of CsI and sodium iodide (NaI) in an arbitrary molar ratio can be mentioned.
  • CsI as disclosed in Japanese Patent Application Laid-Open No. 2001-59899 is deposited, and thallium (Tl), europium (Eu), indium (In), lithium (Li), potassium (K), rubidium (Rb) ), CsI containing an activating substance such as sodium (Na) is preferred.
  • sodium (Na), thallium (Tl), and europium (Eu) are preferable, and thallium (Tl) is particularly preferable.
  • the scintillator layer containing cesium iodide is formed using, as raw materials, an additive containing one or more thallium compounds and cesium iodide. That is, thallium activated cesium iodide (CsI: Tl) is preferable because it has a wide emission wavelength from 400 nm to 750 nm.
  • thallium compound as an additive containing one or more kinds of thallium compounds, various thallium compounds (compounds having oxidation numbers of + I and + III) can be used.
  • Preferred thallium compounds are thallium iodide (TlI), thallium bromide (TlBr), thallium chloride (TlCl), or thallium fluoride (TlF, TlF 3 ).
  • the melting point of the thallium compound is preferably in the range of 400 to 700 ° C. from the viewpoint of luminous efficiency.
  • fusing point here is melting
  • the content of the additive is preferably an optimum amount according to the target performance and the like, but is 0.001 mol% to 50 mol% with respect to the content of cesium iodide. Further, it is preferably 0.1 mol% to 10.0 mol% from the viewpoint of maintaining the light emission luminance and the properties and functions of cesium iodide.
  • the thickness of the scintillator layer is preferably 50 to 600 ⁇ m, more preferably 120 to 400 ⁇ m.
  • a reflective layer is preferably provided on the substrate.
  • the reflective layer reflects light emitted from the phosphor (scintillator) to increase the light extraction efficiency.
  • the reflective layer is preferably formed of a material containing any element selected from the element group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au.
  • the thickness of the reflective layer is preferably 0.005 to 0.3 ⁇ m, more preferably 0.01 to 0.2 ⁇ m, from the viewpoint of emission light extraction efficiency.
  • the undercoat layer includes a method of forming a polyparaxylylene film by a CVD method (vapor phase chemical growth method) and a method using a polymer binder (binder). From the viewpoint of attaching a film, a polymer binder ( A method using a binder is more preferable.
  • the thickness of the undercoat layer is preferably 0.5 to 4 ⁇ m from the viewpoints of sharpness and prevention of columnar crystal disorder.
  • the undercoat layer is preferably formed by applying and drying a polymer binder (hereinafter also referred to as “binder”) dissolved or dispersed in a solvent.
  • a polymer binder hereinafter also referred to as “binder”
  • the polymer binder include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer.
  • Polymer polyamide resin, polyvinyl butyral, polyester, cellulose derivative (nitrocellulose, etc.), styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea resin, melamine resin, phenoxy resin, silicone resin , Acrylic resins, urea formamide resins, and the like.
  • polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, and nitrocellulose are preferably used.
  • polyurethane polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, nitrocellulose and the like are particularly preferable in terms of close contact with the scintillator layer.
  • a polymer having a glass transition temperature (Tg) of 30 to 100 ° C. is preferable from the viewpoint of attaching a film between the deposited crystal and the substrate. From this viewpoint, a polyester resin is particularly preferable.
  • Solvents that can be used to prepare the undercoat layer include lower alcohols such as methanol, ethanol, n-propanol and n-butanol, hydrocarbons containing chlorine atoms such as methylene chloride and ethylene chloride, acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • the undercoat layer may contain a pigment or a dye to prevent scattering of light emitted from the phosphor (scintillator) and improve sharpness.
  • the substrate according to the present invention is a resin film made of resin, and as the resin film, cellulose acetate film, polyester film, polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polyamide film, polyimide (PI)
  • a polymer film (plastic film) such as a film, a triacetate film, a polycarbonate film, or a carbon fiber reinforced resin sheet can be used.
  • a resin film containing polyimide or polyethylene naphthalate is suitable when a phosphor columnar crystal is formed by a vapor phase method using cesium iodide as a raw material.
  • the thickness of the substrate is preferably 100 ⁇ m to 1 mm, more preferably 300 to 500 ⁇ m.
  • a metal thin film (Al film, Ag film, etc.) as a reflective layer is formed on one surface of the substrate by sputtering.
  • a resin film is used as a base material
  • various types of films in which an Al film is sputter-deposited on the resin film are available on the market, and these can also be used as a base material.
  • the undercoat layer is formed by applying and drying a composition in which a polymer binder is dispersed and dissolved in an organic solvent.
  • the polymer binder is preferably a hydrophobic resin such as a polyester resin or a polyurethane resin from the viewpoint of adhesiveness and corrosion resistance of the reflective layer.
  • the scintillator layer can be formed by a vapor deposition method such as an evaporation method. Below, the typical example of the vapor deposition method is demonstrated.
  • the vapor deposition apparatus 961 has a box-shaped vacuum vessel 962, and a vacuum vapor deposition boat 963 is arranged inside the vacuum vessel 962.
  • the boat 963 is a member to be deposited as an evaporation source, and an electrode is connected to the boat 963. When current flows through the electrode to the boat 963, the boat 963 generates heat due to Joule heat.
  • a mixture containing cesium iodide and an activator compound is filled in the boat 963 so that an electric current flows through the boat 963 so that the mixture can be heated and evaporated. It has become.
  • an alumina crucible around which a heater is wound may be applied, or a refractory metal heater may be applied.
  • a holder 964 for holding the base material 11 is disposed inside the vacuum vessel 962 and immediately above the boat 963.
  • the holder 964 is provided with a heater (not shown), and the base material 11 attached to the holder 964 can be heated by operating the heater.
  • the base material 11 is heated, the adsorbate on the surface of the base material 11 is removed or removed, or an impurity layer is formed between the base material 11 and the phosphor layer formed on the surface. It is possible to prevent, to enhance the adhesion between the base material 11 and the scintillator layer formed on the surface thereof, or to adjust the film quality of the scintillator layer formed on the surface of the base material 11. ing.
  • the holder 964 is provided with a rotation mechanism 965 that rotates the holder 964.
  • the rotating mechanism 965 includes a rotating shaft 965a connected to the holder 964 and a motor (not shown) as a driving source for the rotating shaft 965. When the motor is driven, the rotating shaft 965a rotates to disengage the holder 964 from the boat. It can be rotated in a state facing 963.
  • a vacuum pump 966 is disposed in the vacuum vessel 962.
  • the vacuum pump 966 exhausts the inside of the vacuum vessel 962 and introduces gas into the inside of the vacuum vessel 962.
  • the inside of the vacuum vessel 962 has a gas atmosphere at a constant pressure. Can be maintained below.
  • the base material 11 provided with the reflective layer and the undercoat layer as described above is attached to the holder 964, and a plurality of (not shown) boats 963 are filled with a powdery mixture containing cesium iodide and thallium iodide. (Preparation process).
  • the distance between the boat 963 and the base material 11 is set to 100 to 1500 mm, and the vapor deposition process described later is performed while remaining within the set value range. More preferably, the distance between the boat 963 and the base material 11 is set to 400 mm or more and 1500 mm or less, and the plurality of boats 963 are heated at the same time for vapor deposition.
  • the vacuum pump 966 is operated to evacuate the inside of the vacuum vessel 962, and the inside of the vacuum vessel 962 is brought to a vacuum atmosphere of 0.1 Pa or less (vacuum atmosphere forming step).
  • under vacuum atmosphere means under a pressure atmosphere of 100 Pa or less, and preferably under a pressure atmosphere of 0.1 Pa or less.
  • an inert gas such as argon is introduced into the vacuum vessel 962, and the inside of the vacuum vessel 962 is maintained in a vacuum atmosphere of 0.001 to 5 Pa, more preferably 0.01 to 2 Pa.
  • the heater of the holder 964 and the motor of the rotation mechanism 965 are driven, and the base material 11 attached to the holder 964 is rotated while being heated while facing the boat 963.
  • the temperature of the substrate 11 on which the phosphor layer is formed is preferably set to room temperature 25 to 50 ° C. at the start of vapor deposition, and is preferably set to 100 to 300 ° C., more preferably 150 to 250 ° C. during vapor deposition. preferable.
  • the rigid plate according to the present invention refers to a plate-like body having an elastic modulus of 10 GPa or more.
  • Examples of the rigid plate include metal, glass, carbon, and composite materials thereof.
  • the thickness value of the rigid plate is preferably 300 ⁇ m to 5000 ⁇ m, more preferably 300 ⁇ m to 1000 ⁇ m.
  • the flexible polymer film refers to a film made of a polymer compound and having an elastic modulus (E120) at 120 ° C. of 1000 to 6000 N / mm 2 .
  • “Elastic modulus” is a tensile tester and is used to calculate the slope of the stress relative to the strain amount in a region where the strain indicated by the standard line of the sample conforming to JIS C 2318 and the corresponding stress show a linear relationship. It is a thing. This is a value called Young's modulus, and in the present invention, the Young's modulus is defined as an elastic modulus.
  • polymer films include polymer films containing polyimide or polyethylene naphthalate.
  • a flexible film has a thermal expansion coefficient equivalent to the above-mentioned scintillator panel.
  • the equivalent thermal expansion coefficient of the thermal expansion coefficient epsilon a scintillator of the flexible film and epsilon b that is in the formula is established relationship 0.8 ⁇ ⁇ b ⁇ ⁇ a ⁇ 1.2 ⁇ ⁇ b Say.
  • the flexible film has a high ultraviolet transmittance.
  • High ultraviolet transmittance means having a transmittance of 30% or more in a wavelength region of 360 nm or less.
  • the adhesive used in the composite rigid plate production process according to the present invention is not particularly limited as long as it is an adhesive capable of adhering the polymer film and the rigid plate, but an adhesive mainly composed of a thermoplastic resin is preferable. Can be used.
  • the thickness of the adhesive layer A formed of an adhesive is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 60 ⁇ m or less, from the viewpoint of preventing adhesive strength and image quality unevenness.
  • the hot melt adhesive described below is preferably used.
  • the hot melt sheet refers to a hot melt adhesive formed in a sheet shape.
  • a hot-melt adhesive is an adhesive mainly composed of a thermoplastic resin and is solid at room temperature and liquefied by being heated and melted. Bonding is formed by liquefying the hot melt adhesive and bonding the joining members together, further cooling and solidifying the hot melt adhesive.
  • the rigid plate (composite rigid plate) to which the flexible polymer film is bonded is obtained by placing the adhesive between the flexible polymer film and the rigid plate and pressing them. In particular, heating at the time of pressure bonding is a preferred embodiment.
  • a method using a hot melt sheet as an adhesive which is a particularly preferable embodiment, will be described.
  • the hot polymer sheet is sandwiched between the flexible polymer film and the rigid plate, and the flexible polymer film and the rigid plate are joined by pressurization and subsequent heat melting.
  • Hot melt sheets do not produce adhesive force at room temperature, so positioning is much easier when joining flexible polymer films and rigid plates than room temperature adhesives such as double-sided adhesive tape. It is. That is, since positioning is performed in a state where no adhesive force is generated, and the resultant is heated and melted to generate an adhesive force and bonded, alignment of the flexible film and the rigid plate can be performed accurately and easily.
  • the hot melt sheet As the hot melt sheet, a known one can be used. Moreover, as a kind of hot-melt sheet, polyolefin type, polyamide type, polyester type, polyurethane type, EVA type etc. are mentioned by the main component, for example. However, it is not limited to these.
  • the pressure at the time of bonding the hot melt sheet is preferably 0.001 MPa to 10 MPa, more preferably 0.01 MPa to 1 MPa.
  • the amount of pressurization is preferably 0.001 MPa to 10 MPa, more preferably 0.01 MPa to 1 MPa.
  • the heat treatment temperature is preferably 70 ° C. to 200 ° C., more preferably 90 ° C. to 160 ° C., although it depends on the type of hot melt sheet.
  • the adhesive In order to bond the composite rigid plate and the scintillator panel, it is preferable to bond the composite rigid plate and the scintillator panel via an adhesive.
  • the adhesive the above-described adhesive may be used. it can.
  • a method having a heating step is particularly preferable, and for example, a method using the hot melt sheet is a particularly preferable embodiment.
  • the composite rigid plate after the composite rigid plate is manufactured, it may be bonded to the scintillator panel.
  • the composite rigid plate is manufactured and bonded to the scintillator panel at the same time to prevent image unevenness and productivity. To a particularly preferred embodiment.
  • the conditions for using the hot melt sheet can be the same as those described above.
  • the surface on which the photoelectric conversion element of the photoelectric conversion substrate is arranged faces the surface on the scintillator layer side of the scintillator panel with a rigid plate, and the photoelectric conversion substrate and the scintillator panel with a rigid plate are attached. In combination, a radiological image detection member is produced.
  • the above scintillator layer and a photoelectric conversion element described later are bonded to each other.
  • a portion where the scintillator panel does not exist is provided on the rigid plate, and as shown in FIG. 1, the scintillator panel 10 with the photoelectric conversion substrate 30 and the rigid plate attached thereto.
  • the adhesive C for example, a photo-curing adhesive that is cured when irradiated with light such as ultraviolet rays or a thermosetting adhesive that is cured by heating is preferably used.
  • the space formed by the adhesive layer C and the scintillator panel is decompressed and the above bonding is performed.
  • FIG. 3 is a schematic configuration diagram of a photoelectric conversion substrate in the radiation image detector.
  • 3A is a top view of the device
  • FIG. 3B is a cross-sectional view.
  • the photoelectric conversion element portion 51 on which the photoelectric conversion element is formed is bonded onto the base 53 by the adhesive layer D54.
  • This is a photoelectric conversion substrate 30.
  • the photoelectric conversion elements formed in the photoelectric conversion element unit 51 are typified by CCD, CMOS, A-Si photodiode (PIN type, MIS type), and are arranged in the photoelectric conversion element unit 51 in two dimensions. ing.
  • a plurality of photoelectric conversion element portions 51 (10 in FIG. 3) are bonded together and regularly arranged in a two-dimensional manner.
  • the base 53 is made of a material such as glass, ceramic, CFRP, or aluminum. In consideration of heat applied during manufacture, the scintillator panel 10, the photoelectric conversion element 51, and the base 53 have a thermal expansion coefficient as much as possible. It is desirable to choose to be close.
  • Example 1 (Production of radiation image detector 1)) (Production of scintillator panel) Formation of Reflective Layer A nickel chromium alloy thin film having a thickness of 20 nm was formed as a first metal thin film on one surface of a 125 ⁇ m thick polyimide substrate by sputtering. Subsequently, a silver thin film having a thickness of 100 nm was formed by sputtering deposition as the second metal thin film.
  • protective layer Byron 630 (manufactured by Toyobo Co., Ltd .: polymer polyester resin) 100 parts by weight Methyl ethyl ketone 90 parts by weight Toluene 90 parts by weight
  • the above formulation was mixed and dispersed in a bead mill for 15 hours to obtain a coating solution for coating. .
  • This coating solution was applied to the sputtering surface of the polyimide substrate with a bar coater so that the dry film thickness was 1.0 ⁇ m, and then dried at 100 ° C. for 8 hours to form a protective layer.
  • the base material (CsI: no activator) and activator (TlI) are filled into a resistance heating crucible, and the substrate is placed on a metal frame of a rotating holder, and the distance between the substrate and the evaporation source is adjusted to 400 mm. did.
  • the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.5 Pa, and then the substrate was rotated at a speed of 6 rpm. Also, heating of the substrate was started simultaneously with the resistance heating crucible, and the temperature was maintained at 200 ° C. after the substrate temperature reached 200 ° C. After completion of vapor deposition, the substrate was removed from the holder to obtain a plate on which a scintillator layer was formed. The plate was cut to 300 mm with a cutter.
  • a hot melt sheet NP608 (same as above) is sandwiched between the side surface of the scintillator layer of the scintillator panel and the side surface of the composite rigid plate opposite to the flexible polymer film, and the pressure is reduced to 100 kPa.
  • a scintillator layer and a rigid plate were joined by heating and melting at 10 ° C. for 10 minutes to produce a scintillator panel with a composite rigid plate.
  • a 350 mm ⁇ 350 mm photoelectric conversion substrate having TFTs on a base is prepared.
  • a photocurable adhesive (NOA68, manufactured by Norland) is applied at a thickness of 5 mm from the end of the scintillator to a photoelectric conversion substrate. And stuck.
  • the adhered panel was put into a vacuum desiccator, and the pressure was reduced while irradiating light of 6 kW and 9000 J using a metal halide lamp manufactured by Oak Co. in the desiccator.
  • the pressure in the chamber was 1000 Pa, and after holding at 1000 Pa for 1 minute, the pressure was returned to atmospheric pressure to obtain a radiation image detection member. This was put in a housing to obtain a radiation image detector 1.
  • a hot melt sheet M1083 (manufactured by Lichtlab) is installed on the opposite side of the scintillator layer, and a rigid plate (glass), hot melt sheet M1083 (manufactured by Lichtlab), a flexible film (polyethylene terephthalate (0.125 mm thick) ) In this order.
  • the pressure is reduced to 100 kPa, and then heated and melted at 100 ° C. for 10 minutes, whereby the scintillator layer, the rigid plate, and the flexible film are joined via the hot melt sheet, and the scintillator with the composite rigid plate A panel was obtained.
  • a 350 mm ⁇ 350 mm photoelectric conversion substrate having TFTs on a base is prepared.
  • an adhesive epoxy UV curable resin
  • the adhered panel was put into a vacuum desiccator, and the pressure was reduced while irradiating light of 6 kW and 9000 J using a metal halide lamp manufactured by Oak Co. in the desiccator.
  • the pressure in the chamber was 1000 Pa, and after holding at 1000 Pa for 1 minute, the pressure was returned to atmospheric pressure to obtain a radiation image detection member. This was put in a housing to obtain a radiation image detector 2.
  • the radiation incident surface side of the produced radiation image detector is irradiated with 1.0 mR X-rays at a tube voltage of 70 kVp, and a digital signal indicating light emission of the scintillator is recorded on a hard disk to obtain an image.
  • the luminance is measured for 25 points in a range divided at equal intervals of 1 mm, and the average value is calculated.
  • the difference between the maximum value and the minimum value of the measured luminance was calculated, and the result obtained by dividing the difference by the average value was taken as the luminance unevenness value.
  • a smaller value indicates less luminance unevenness.
  • a practically good range is 1.5 or less.

Landscapes

  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Measurement Of Radiation (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

 本発明は、シンチレータパネル作製工程、剛性板に、接着剤を介して可撓性高分子フィルムを貼合し、複合剛性板を作製する複合剛性板作製工程、複合剛性板とシンチレータパネルとを貼合して複合剛性板付きシンチレータパネルを作製する、複合剛性板付きシンチレータパネル作製工程および、光電変換基板の該光電変換素子が配置された面と、剛性板付きシンチレータパネルの該シンチレータ層側の面とを対面させ、光電変換基板と剛性板付きシンチレータパネルとを貼合して放射線画像検出部材を作製する放射線画像検出部材作製工程、の各工程を有することを特徴とし、画像均一性に優れる放射線画像検出器を与える、放射線画像検出器の製造方法およびそれによって得られる放射線画像検出器が提供できる。

Description

放射線画像検出器の製造方法および放射線画像検出器
 本発明は、被写体の放射線画像を形成する際に用いられる放射線画像検出器およびそれを製造する放射線画像検出器の製造方法に関する。
 従来から、X線画像のような放射線画像は医療現場において病状の診断に広く用いられている。特に、増感紙-フィルム系による放射線画像は、高感度と高画質のため、長い間一般的な撮像システムとして、医療現場で用いられている。
 しかしながらこれら画像情報はいわゆるアナログ画像情報であって、近年発展を続けているデジタル画像情報のような、自由な画像処理や瞬時の電送ができない。
 このため、近年ではコンピューテッドラジオグラフィ(CR)やフラットパネル型の放射線ディテクタ(FPD)等に代表されるデジタル方式の放射線画像検出装置が登場している。
 デジタル方式のX線画像検出装置に用いられる方式としては、直接方式と間接方式とがある。
 直接方式によるものとしては、例えば固体撮像素子(CCDやCMOS等)を用いたX線画像検出装置が知られており、その用途としては、工業用の非破壊検査や口腔内に挿入して静止画像を収集する歯科用等に用いられている。
 また、間接方式は、蛍光体を含有する蛍光体層(シンチレータ層)を使用し、X線を一旦可視光に変換し、可視光を、フォトダイオード、CCD、CMOS等の光電変換素子を有する光電変換基板により信号電荷に変換して電荷蓄積用キャパシタに導く方式である。
 間接方式は、直接方式に比較して、簡易である感度が高いなどにより広い用途で用いられている。
 間接方式に用いられる放射線画像検出器としては、平面受光素子面の上に直接蛍光体層を設ける方式の放射線画像検出器、シンチレータパネルの基材上に設けられた蛍光体層と、光電変換基板上に2次元上に配置された光電変換素子とを貼り合わせる方式の放射線画像検出器が知られている。
 この貼り合わせる方式の放射線画像検出器においては、蛍光体層と光電変換素子との密着の均一性が画像品質に影響を及ぼす。
 このため、蛍光体層と光電変換素子との間に生ずる気泡を低減させるために、例えば、光電変換基板に透明接着剤を塗布し、減圧下でシンチレータパネルと貼り合わせ、大気圧に戻し透明接着剤を硬化させる工程を有する製造方法(特許文献1参照)が知られている。
 しかしながら、このような製造方法によって得られた放射線画像検出器においても、画像ムラなどを生ずる場合があり、さらに画像のムラの発生が少ない放射線画像検出器が要望されていた。
特開2007-285709号公報
 本発明の目的は、簡単に製造することができ、画像均一性に優れる放射線画像検出器を与える、放射線画像検出器の製造方法およびそれによって得られる放射線画像検出器を提供することにある。
 上記課題は本発明の以下の手段により解決される。
 1.基材上にシンチレータ層を有するシンチレータパネルと、該シンチレータパネルの該基材側に配置された剛性板と、該シンチレータパネルの該シンチレータ層側に配置された、基台の一方の面に複数の光電変換素子を有する光電変換基板と、を有する放射線画像検出器の製造方法であって、
(1)該基材上にシンチレータ層を形成してシンチレータパネルを作製するシンチレータパネル作製工程、
(2)該剛性板に、接着剤を介して可撓性高分子フィルムを貼合し、複合剛性板を作製する複合剛性板作製工程
(3)該複合剛性板の、該剛性板の該可撓性高分子フィルム側とは反対側の面と、該シンチレータパネルの、基材の該シンチレータ層とは反対側の面とを対面させ、該複合剛性板と該シンチレータパネルとを貼合して複合剛性板付きシンチレータパネルを作製する、複合剛性板付きシンチレータパネル作製工程および、
(4)該光電変換基板の該光電変換素子が配置された面と、該複合剛性板付きシンチレータパネルの該シンチレータ層側の面とを対面させ、該光電変換基板と該複合剛性板付きシンチレータパネルとを貼合して放射線画像検出部材を作製する放射線画像検出部材作製工程、
を有することを特徴とする放射線画像検出器の製造方法。
 2.前記複合剛性板付きシンチレータパネル作製工程において、前記複合剛性板と前記シンチレータパネルとを貼合して前記複合剛性板付きシンチレータパネルを作製する方法が、前記複合剛性板と前記シンチレータパネルとを接着剤を介して貼合して前記複合剛性板付きシンチレータパネルを作製する方法であることを特徴とする1に記載の放射線画像検出器の製造方法。
 3.前記複合剛性板作製工程で用いられる接着剤がホットメルト接着剤であることを特徴とする1または2に記載の放射線画像検出器の製造方法。
 4.前記複合剛性板付きシンチレータパネル作製工程が、加熱工程を有することを特徴とする1から3のいずれか1項に記載の放射線画像検出器の製造方法。
 5.前記複合剛性板作製工程と、複合剛性板付きシンチレータパネル作製工程とが同時に行われることを特徴とする1から4のいずれか1項に記載の放射線画像検出器の製造方法。
 6.前記放射線画像検出部材作製工程における前記光電変換基板と前記複合剛性板付きシンチレータパネルとの貼合が、減圧下に行われることを特徴とする1から5のいずれか1項に記載の放射線画像検出器の製造方法。
 7.1から6のいずれか1項に記載の放射線画像検出器の製造方法により製造されたことを特徴とする放射線画像検出器。
 8.基材上にシンチレータ層を有するシンチレータパネルと、該シンチレータパネルの該基材側に配置された剛性板と、該シンチレータパネルの該シンチレータ層側に配置された、基台の一方の面に複数の光電変換素子を有する光電変換基板と、を有する放射線画像検出器であって、該剛性板の該シンチレータパネル側と反対側に可撓性高分子フィルムを有することを特徴とする放射線画像検出器。
 本発明の上記手段により、簡単に製造することができ、装置の変形(反り)する割合が少ないことにより画像均一性に優れる放射線画像検出器を与える、放射線画像検出器の製造方法およびそれによって得られる放射線画像検出器を提供することにある。
本発明の放射線画像検出器の例の模式断面図である。 シンチレータ層を形成するための装置の例の模式断面図である。 光電変換基板の例の平面図および断面図である。
 本発明は、基材上にシンチレータ層を有するシンチレータパネルと、該シンチレータパネルの該基材側に配置された剛性板と、該シンチレータパネルの該シンチレータ層側に配置された、基台の一方の面に複数の光電変換素子を有する光電変換基板と、を有する放射線画像検出器の製造方法であって、(1)該基材上にシンチレータ層を形成してシンチレータパネルを作製するシンチレータパネル作製工程、(2)該剛性板に、接着剤を介して該可撓性高分子フィルムを貼合し、複合剛性板を作製する複合剛性板作製工程、(3)該複合剛性板の、該剛性板の該可撓性高分子フィルム側とは反対側の面と、該シンチレータパネルの、基材の該シンチレータ層とは反対側の面とを対面させ、該複合剛性板と該シンチレータパネルとを貼合して複合剛性板付きシンチレータパネルを作製する、複合剛性板付きシンチレータパネル作製工程および、(4)該光電変換基板の該光電変換素子が配置された面と、該剛性板付きシンチレータパネルの該シンチレータ層側の面とを対面させ、該光電変換基板と該剛性板付きシンチレータパネルとを貼合して放射線画像検出部材を作製する放射線画像検出部材作製工程、を有することを特徴とする。
 本発明では、特にシンチレータパネルに可撓性高分子フィルムを有する剛性板を用いることで、画像均一性に優れる放射線画像検出器を与える、放射線画像検出器の製造方法が提供できる。
 (放射線画像検出器の構成)
 図1は、本発明の放射線画像検出器の例の模式断面図である。
 放射線画像検出器1は、シンチレータパネル10と、剛性板21と、光電変換基板30とを有する。
 シンチレータパネル10は、基材11上に、シンチレータ層12を有する。
 光電変換基板30は、基台53上に光電変換素子31を有する。光電変換素子31は、基台53上に2次元上に複数配置されている。
 剛性板21は、接着剤により形成された接着層A22を介して、可撓性高分子フィルム23を有する。
 剛性板21とシンチレータパネル10の基材11とは、接着層B13を介して接着している。
 剛性板21と、光電変換基板30とは、シンチレータパネル10が存在しない部分で、接着層C40を介して、接着している。
 (放射線画像検出器の製造方法)
 本発明の製造方法は、上記(1)から(4)の工程を有する。
 ((1)シンチレータパネル作製工程))
 シンチレータパネル作製工程では、基材上にシンチレータ層を形成してシンチレータパネルを作製する。
 (シンチレータパネルの構成)
 本発明に係るシンチレータパネルは、基材上にシンチレータ層を有するが、基材とシンチレータ層の間に下引層を有する態様が好ましく、また基材上に反射層を設け反射層、下引層、およびシンチレータ層の構成であってもよい。以下、各構成層および構成要素等について説明する。
 (シンチレータ層)
 本発明に係るシンチレータ層は、蛍光体を含有する。
 シンチレータ層を形成する蛍光体としては、種々の公知の蛍光体を使用することができるが、X線から可視光に対する変更率が比較的高く、蒸着によって容易に蛍光体を柱状結晶構造に形成できる、光ガイド効果により結晶内での発光光の散乱が抑えられ、シンチレータ層の厚さを厚くすることが可能であることから、ヨウ化セシウム(CsI)が好ましく用いられる。
 但し、CsIのみでは発光効率が低いために、各種の賦活剤が添加されて用いられる。例えば、特公昭54-35060号公報の如く、CsIとヨウ化ナトリウム(NaI)を任意のモル比で混合したものが挙げられる。また、例えば特開2001-59899号公報に開示されているようなCsIを蒸着で、タリウム(Tl)、ユウロピウム(Eu)、インジウム(In)、リチウム(Li)、カリウム(K)、ルビジウム(Rb)、ナトリウム(Na)などの賦活物質を含有するCsIが好ましい。これらの中でもナトリウム(Na)、タリウム(Tl)、ユウロピウム(Eu)が好ましく、特にタリウム(Tl)が好ましい。
 また、ヨウ化セシウム(CsI)を含有するシンチレータ層は、特に1種類以上のタリウム化合物を含む添加剤とヨウ化セシウムとを原材料として形成することが好ましい。すなわち、タリウム賦活ヨウ化セシウム(CsI:Tl)は400nmから750nmまでの広い発光波長をもつことから好ましい。
 1種類以上のタリウム化合物を含有する添加剤のタリウム化合物としては、種々のタリウム化合物(+Iと+IIIの酸化数の化合物)を使用することができる。
 好ましいタリウム化合物は、ヨウ化タリウム(TlI)、臭化タリウム(TlBr)、塩化タリウム(TlCl)、またはフッ化タリウム(TlF,TlF)等である。
 タリウム化合物の融点は、発光効率の面から、400~700℃の範囲内にあることが好ましい。なお、ここでの融点とは、常圧下における融点である。
 本発明に係るシンチレータ層において、当該添加剤の含有量は目的性能等に応じて、最適量にすることが望ましいが、ヨウ化セシウムの含有量に対して、0.001モル%~50モル%、さらに0.1モル%~10.0モル%であることが、発光輝度、ヨウ化セシウムの性質・機能の保持の面から好ましい。
 なお、シンチレータ層の厚さは、50~600μmであることが好ましく、120~400μmであることがより好ましい。
 (反射層)
 基材上には反射層を設けることが好ましい。反射層は、蛍光体(シンチレータ)から発した光を反射して、光の取り出し効率を高めるためのものである。当該反射層は、Al,Ag,Cr,Cu,Ni,Ti,Mg,Rh,PtおよびAuからなる元素群の中から選ばれるいずれかの元素を含む材料により形成されることが好ましい。特に、上記の元素からなる金属薄膜、例えば、Ag膜、Al膜などを用いることが好ましい。また、このような金属薄膜を2層以上形成するようにしても良い。なお、反射層の厚さは、0.005~0.3μm、より好ましくは0.01~0.2μmであることが、発光光取り出し効率の観点から好ましい。
 (下引層)
 本発明においては、基材とシンチレータ層の間、または反射層とシンチレータ層の間に下引き層を設けることが好ましい。当該下引層は、CVD法(気相化学成長法)によりポリパラキシリレン膜を成膜する方法や高分子結合材(バインダー)による方法があるが、膜付の観点から高分子結合材(バインダー)による方法がより好ましい。また下引層の厚さは、鮮鋭性、柱状結晶の乱れ発生防止性などの面から0.5~4μmが好ましい。
 下引層は、溶剤に溶解または分散した高分子結合材(以下「バインダー」ともいう。)を塗布、乾燥して形成することが好ましい。高分子結合材としては、具体的には、ポリウレタン、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル、セルロース誘導体(ニトロセルロース等)、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられる。なかでもポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニルブチラール、ニトロセルロースを使用することが好ましい。
 高分子結合材としては、特にシンチレータ層との密着の点でポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニルブチラール、ニトロセルロースなどが好ましい。また、ガラス転移温度(Tg)が30~100℃のポリマーであることが、蒸着結晶と基材との膜付の点で好ましい。この観点からは、特にポリエステル樹脂であることが好ましい。
 下引層の調製に用いることができる溶剤としては、メタノール、エタノール、n-プロパノール、n-ブタノールなどの低級アルコール、メチレンクロライド、エチレンクロライドなどの塩素原子含有炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン、トルエン、ベンゼン、シクロヘキサン、シクロヘキサノン、キシレンなどの芳香族化合物、酢酸メチル、酢酸エチル、酢酸ブチルなどの低級脂肪酸と低級アルコールとのエステル、ジオキサン、エチレングリコールモノエチルエステル、エチレングリコールモノメチルエステルなどのエーテルおよびそれらの混合物を挙げることができる。
 なお、下引層には、蛍光体(シンチレータ)が発光する光の散乱の防止し、鮮鋭性等を向上させるために顔料や染料を含有させても良い。
 (基材)
 本発明に係る基材は、樹脂からなる樹脂フィルムであり、樹脂フィルムとしては、セルロースアセテートフィルム、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリアミドフィルム、ポリイミド(PI)フィルム、トリアセテートフィルム、ポリカーボネートフィルム、炭素繊維強化樹脂シート等の高分子フィルム(プラスチックフィルム)を用いることができる。
 特に、ポリイミド又はポリエチレンナフタレートを含有する樹脂フィルムが、ヨウ化セシウムを原材料として気相法にて蛍光体柱状結晶を形成する場合に、好適である。
 基材の厚さとしては、100μm~1mmが好ましく、300~500μmが好ましい。
 (反射層の形成)
 基材の一方の表面に反射層としての金属薄膜(Al膜、Ag膜等)をスパッタ法により形成する。樹脂フイルムを基材として使用する場合、樹脂フイルム上にAl膜をスパッタ蒸着したフイルムは、各種の品種が市場で流通しており、これらを基材として使用することも可能である。
 (下引層の形成)
 下引層は、有機溶剤に高分子結合材を分散・溶解した組成物を塗布、乾燥して形成する。高分子結合材としては接着性、反射層の耐腐食性の観点でポリエステル樹脂、ポリウレタン樹脂等の疎水性樹脂が好ましい。
 (シンチレータ層の形成)
 シンチレータ層は、蒸着方法などの気相堆積法で形成することができる。以下に、蒸着方法の典型例について説明する。
 〈蒸着装置〉
 図2に示す通り、蒸着装置961は箱状の真空容器962を有しており、真空容器962の内部には真空蒸着用のボート963が配されている。ボート963は蒸着源の被充填部材であり、当該ボート963には電極が接続されている。当該電極を通じてボート963に電流が流れると、ボート963がジュール熱で発熱するようになっている。放射線用シンチレータパネルの製造時においては、ヨウ化セシウムと賦活剤化合物とを含む混合物がボート963に充填され、そのボート963に電流が流れることで、上記混合物を加熱・蒸発させることができるようになっている。
 なお、被充填部材として、ヒータを巻回したアルミナ製のるつぼを適用してもよいし、高融点金属製のヒータを適用してもよい。
 真空容器962の内部であってボート963の直上には基材11を保持するホルダ964が配されている。ホルダ964にはヒータ(図示略)が配されており、当該ヒータを作動させることでホルダ964に装着した基材11を加熱することができるようになっている。基材11を加熱した場合には、基材11の表面の吸着物を離脱・除去したり、基材11とその表面に形成される蛍光体層との間に不純物層が形成されるのを防止したり、基材11とその表面に形成されるシンチレータ層との密着性を強化したり、基材11の表面に形成されるシンチレータ層の膜質の調整をおこなったりすることができるようになっている。
 ホルダ964には当該ホルダ964を回転させる回転機構965が配されている。回転機構965は、ホルダ964に接続された回転軸965aとその駆動源となるモータ(図示略)から構成されたもので、当該モータを駆動させると、回転軸965aが回転してホルダ964をボート963に対向させた状態で回転させることができるようになっている。
 蒸着装置961では、上記構成の他に、真空容器962に真空ポンプ966が配されている。真空ポンプ966は、真空容器962の内部の排気と真空容器962の内部へのガスの導入とをおこなうもので、当該真空ポンプ966を作動させることにより、真空容器962の内部を一定圧力のガス雰囲気下に維持することができるようになっている。
 さらに、ヨウ化セシウムとヨウ化タリウムを用いた場合の例を説明する。
 上記のように反射層と下引層を設けた基材11をホルダ964に取り付けるとともに、複数個(図示しない)のボート963にヨウ化セシウムとヨウ化タリウムとを含む粉末状の混合物を充填する(準備工程)。この場合、ボート963と基材11との間隔を100~1500mmに設定し、その設定値の範囲内のままで後述の蒸着工程の処理をおこなう。より好ましくはボート963と基材11との間隔を400mm以上、1500mm以下とし、複数個のボート963を同時に加熱し蒸着を行う。
 準備工程の処理を終えたら、真空ポンプ966を作動させて真空容器962の内部を排気し、真空容器962の内部を0.1Pa以下の真空雰囲気下にする(真空雰囲気形成工程)。ここでいう「真空雰囲気下」とは、100Pa以下の圧力雰囲気下のことを意味し、0.1Pa以下の圧力雰囲気下であるのが好適である。
 次にアルゴン等の不活性ガスを真空容器962の内部に導入し、当該真空容器962の内部を0.001~5Pa、より好ましくは0.01~2Paの真空雰囲気下に維持する。その後、ホルダ964のヒータと回転機構965のモータとを駆動させ、ホルダ964に取付け済みの基材11をボート963に対向させた状態で加熱しながら回転させる。蛍光体層が形成される基材11の温度は、蒸着開始時は室温25~50℃に設定することが好ましく、蒸着中は100~300℃、より好ましくは150~250℃に設定することが好ましい。
 この状態において、電極からボート963に電流を流し、ヨウ化セシウムとヨウ化タリウムとを含む混合物を700℃程度で所定時間加熱してその混合物を蒸発させる。その結果、基材11の表面に無数の柱状結晶体が順次成長して所望の厚さの結晶が得られ、基材上にヨウ化セシウムを有するシンチレータパネルが得られる。
 ((2)複合剛性板作製工程)
 複合剛性板作製工程では、剛性板に、接着剤を介して該可撓性高分子フィルムを貼合し、複合剛性板を作製する。
 (剛性板)
 本発明に係る剛性板とは、弾性率が10GPa以上の板状体を指す。剛性板としては、金属、ガラス、カーボン、これらの複合材料などが挙げられる。
 剛性板の厚さの値としては、300μm~5000μmが好ましく、300μmから1000μmが好ましい。
 (可撓性高分子フィルム)
 可撓性高分子フィルムは、高分子化合物からなるフィルムであって、120℃での弾性率(E120)が1000~6000N/mmであるフィルムを指す。
 「弾性率」とは、引張試験機を用い、JIS C 2318に準拠したサンプルの標線が示すひずみと、それに対応する応力が直線的な関係を示す領域において、ひずみ量に対する応力の傾きを求めたものである。これがヤング率と呼ばれる値であり、本発明では、係るヤング率を弾性率と定義する。
 可撓性高分子フィルムとしては、例えばポリエチレンナフタレート(E120=4100N/mm)、ポリエチレンテレフタレート(E120=1500N/mm)、ポリブチレンナフタレート(E120=1600N/mm)、ポリカーボネート(E120=1700N/mm)、シンジオタクチックポリスチレン(E120=2200N/mm)、ポリエーテルイミド(E120=1900N/mm)、ポリイミド(E120=1200N/mm)、ポリアリレート(E120=1700N/mm)、ポリスルホン(E120=1800N/mm)、ポリエーテルスルホン(E120=1700N/mm)等からなる高分子フィルムが挙げられる。
 これらは単独で用いてもよく積層あるいは混合して用いてもよい。中でも、特に好ましい高分子フィルムとしては、ポリイミド又はポリエチレンナフタレートを含有する高分子フィルムが挙げられる。
 また、可撓性フィルムは前述のシンチレータパネルと同等の熱膨張率を有することが好ましい。同等とは可撓性フィルムの熱膨張率をεシンチレータの熱膨張率をεとすると、0.8×ε≦ε≦1.2×εの式が成り立つ関係にあることをいう。
 可撓性フィルムは紫外線透過率が高いことが好ましい。紫外線透過率が高いとは波長領域360nm以下において30%以上の透過率を有することを意味する。
 (接着剤)
 本発明に係る、複合剛性板作製工程に用いられる接着剤は、高分子フィルムと剛性板を接着し得る接着剤であれば特に制限はないが、熱可塑性樹脂を主成分とする接着剤を好ましく用いることができる。
 接着剤により形成される接着剤層Aの厚みについては、接着力、画質のムラ防止の面から、好ましくは1μm以上、100μm以下が好ましく、更に好ましくは10μm以上、60μm以下である。
 接着剤としては、下述するホットメルト接着剤が好ましく用いられる。
 ホットメルトシートとは、シート状に形成したホットメルト接着剤のことをいう。ホットメルト接着剤は、熱可塑性樹脂を主成分とした接着剤で、常温では固形であり、加熱溶融することにより液状化する。ホットメルト接着剤を液状化して接合部材を貼り合わせ、更に冷却しホットメルト接着剤を固化することにより接合が形成される。
 (複合剛性板の作製)
 可撓性高分子フィルムが貼合された剛性板(複合剛性板)は、上記可撓性高分子フィルムと剛性板の間に上記接着剤を配置して圧着することにより得られる。特に圧着時加熱することが好ましい態様である。
 特に好ましい態様である、接着剤としてホットメルトシートを用いる方法について説明する。
 可撓性高分子フィルムと剛性板との間にホットメルトシートを挟み、加圧、続いて加熱溶融することにより、可撓性高分子フィルムと剛性板とが接合される。
 ホットメルトシートは常温では接着力を生じないため、可撓性高分子フィルムと剛性板との接合の際、両面粘着テープ等の常温粘着型の接着剤と比較して、位置合わせが非常に容易である。即ち、接着力が生じない状態で位置決めした後、加熱溶融して接着力を生じさせ接合するため、可撓性フィルムと剛性板との位置合わせが正確且つ容易に行うことができる。
 ホットメルトシートとしては、既知のものを用いることができる。また、ホットメルトシートの種類としては、その主成分により、例えばポリオレフィン系、ポリアミド系、ポリエステル系、ポリウレタン系、EVA系等が挙げられる。但し、これらに限定されるものではない。
 ホットメルトシートを貼り合わせる際の圧力としては、0.001MPa~10MPaが好ましく、0.01MPa~1MPaであれば、より好ましい。加圧量を少なくとも0.001MPa以上にすることで空気溜まりなく、均一に接着させることができる。一方、加圧量を少なくとも10MPa以下にすることで、蛍光体へのダメージを抑えることができ、画質を損ねる懸念が小さい。
 熱処理温度については、ホットメルトシートの種類にもよるが、好ましくは70℃~200℃、更に好ましくは90℃~160℃である。
 ((3)複合剛性板付きシンチレータパネル作製工程)
 複合剛性板付きシンチレータパネル作製工程では、上記複合剛性板の、剛性板の可撓性高分子フィルム側とは反対側の面と、上記シンチレータパネルの、基材のシンチレータ層とは反対側の面とを対面させ、複合剛性板とシンチレータパネルとを貼合して複合剛性板付きシンチレータパネルを作製する。
 複合剛性板とシンチレータパネルとを貼合させるには、複合剛性板とシンチレータパネルとの間に接着剤を介して貼合させることが好ましく、この接着剤としては、上述の接着剤を用いることができる。これらの中でも特に、加熱工程を有する方法が好ましく、例えば上記ホットメルトシートを用いる方法が特に好ましい態様である。
 本発明においては、複合剛性板を作製した後、シンチレータパネルと貼合してもよいが、複合剛性板の作製とシンチレータパネルとの貼合を同時に行うことが、画像ムラ防止、生産性の面から特に好ましい態様である。
 即ち、剛性板の両面にホットメルトシートを配置し、さらに一方の面のホットメルトシートの上には上記可撓性高分子フィルムを、他方の面のホットメルトシートの上にはシンチレータパネルを配置して加熱することで、複合剛性板付きシンチレータパネルを作製することができる。
 ホットメルトシートを使用する際の条件としては、上述の条件と同様の条件で行うことができる。
 ((4)放射線画像検出部材作製工程))
 放射線画像検出部材作製工程では、光電変換基板の光電変換素子が配置された面と、剛性板付きシンチレータパネルのシンチレータ層側の面とを対面させ、光電変換基板と剛性板付きシンチレータパネルとを貼合して放射線画像検出部材を作製する。
 光電変換基板と剛性板付きシンチレータパネルとを貼合するには、上記のシンチレータ層と後述する光電変換素子とを対面させて貼合する。
 具体的貼合の方法としては、剛性板にシンチレータパネルが存在しない部分(シンチレータパネルの周辺部)を設けておき、図1に示すように、光電変換基板30と剛性板が付いたシンチレータパネル10とをシンチレータ層12と光電変換素子31とを対面させて積層し、接着剤Cで形成される接着層C40を介して貼合する方法が好ましい態様である。
 接着剤Cとしては、例えば紫外線などの光が照射されると硬化する光硬化型の接着剤や加熱することにより硬化する熱硬化型の接着剤が好ましく用いられる。
 また、本発明においては、接着層C、シンチレータパネルにより形成された空間は減圧にされて上記貼合が行われることが好ましい。
 (光電変換基板)
 本発明に係る光電変換基板について、図3を参照して説明する。図3は、放射線画像検出器における光電変換基板の概略構成図である。図3(a)は当該装置の上面図、図3(b)は断面図である。図3(b)に示すように、基台53上に接着層D54によって、光電変換素子が形成される光電変換素子部51が接着されている。これを光電変換基板30とする。
 光電変換素子部51に形成される光電変換素子は、CCD、CMOS、A-Siフォトダイオード(PIN型、MIS型)に代表されるもので、光電変換素子部51には二次元状に配列されている。
 また、光電変換素子部51は、複数枚(図3中では10枚)貼り合わされており、二次元状に規則正しく配列されている。
 基台53には、ガラス、セラミック、CFRP、アルミなどの材料を用いられるが、製造中に加わる熱を考慮し、シンチレータパネル10と光電変換素子部51と基台53には熱膨張係数が極力近いものになるように選ぶことが望ましい。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。
 (実施例1(放射線画像検出器1の作製))
 (シンチレータパネルの作製)
 反射層の形成
 厚さ125μmのポリイミド基板の一方の表面に第1の金属薄膜として厚さ20nmのニッケルクロム合金薄膜をスパッタ法により形成した。続いて第2の金属薄膜として厚さ100nmの銀薄膜をスパッタ蒸着で形成した。
 保護層の形成
 バイロン630(東洋紡社製:高分子ポリエステル樹脂) 100質量部
 メチルエチルケトン                   90質量部
 トルエン                        90質量部
 上記処方を混合し、ビーズミルにて15時間分散し、塗設用の塗布液を得た。この塗布液を上記ポリイミド基板のスパッタ面に乾燥膜厚が1.0μmになるようにバーコーターで塗布した後、100℃で8時間乾燥することで保護層を形成した。
 蒸着基板の準備
 保護層を形成した基板を金属製の枠に合わせ、図2に示す蒸着装置のホルダ964にセットした。
 シンチレータ層(蛍光体層)の形成
 基板の保護層側に母材(CsI:賦活剤なし)および賦活剤(TlI)を、図2に示した蒸着装置を使用して蒸着させ、次のようにシンチレータ層(蛍光体層)を形成した。
 まず母材(CsI:賦活剤なし)と賦活剤(TlI)を抵抗加熱るつぼに充填し、また回転するホルダの金属製の枠に基板を設置し、基板と蒸発源との間隔を400mmに調節した。
 続いて蒸着装置内を一旦排気し、Arガスを導入して0.5Paに真空度を調整した後、6rpmの速度で基板を回転させた。また、抵抗加熱るつぼと同時に基板の加熱を開始し、基板温度が200℃に達した後は200℃を保持した。蒸着を終了後、ホルダから基板を取り外し、シンチレータ層が形成されたプレートを得た。プレートはカッターにて300mmに断裁した。
 (複合剛性板の作製)
 可撓性高分子フィルムとしてポリエチレンテレフタレート(0.125mm厚)を、剛性板としてガラス(0.5mm厚)を用い、接着剤としてホットメルトシートNP608(ソニーケミカル製)を用い、可撓性高分子フィルムと剛性板との間に、可撓性フィルムと同じ大きさの接着剤を挟み、100kPaに減圧、続いて100℃で10分間加熱溶融することにより、剛性板と可撓性フィルムを接合して、接着剤の厚さが0.05mmである複合剛性板を作製した。
 (複合剛性板付きシンチレータパネルの作製)
 続いて、上記のシンチレータパネルのシンチレータ層側面と上記複合剛性板の可撓性高分子フィルムと反対側面との間にホットメルトシートNP608(上記と同じ)を挟みこみ、100kPaに減圧、続いて100℃で10分間、加熱溶融することにより、シンチレータ層と剛性板を接合して、複合剛性板付きシンチレータパネルを作製した。
 (放射線画像検出部材の作製)
 得られた複合剛性板付きシンチレータパネルと、光電変換基板とを貼り合わせ、放射線画像検出部材を作製した。
 まず、350mm×350mmの、基台上にTFT有する光電変換基板を準備する。続いて、300mm×300mmのシンチレータ層が接着している面において、シンチレータ端部から5mmのところに光硬化性の接着剤(NOA68、ノーランド社製)を0.5mm厚で塗布し、光電変換基板と密着させた。密着させたパネルを減圧デシケータに投入し、デシケータ内でオーク社製メタルハライドランプを用いて6kW、9000Jの光を照射しながら減圧した。庫内の圧力は1000Paとし、1000Paで1分間保持した後、大気圧まで戻し、放射線画像検出部材を得た。これを筐体に入れ、放射線画像検出器1を得た。
 (実施例2(放射線画像検出器2の作製))
 (シンチレータパネルの作製)
 実施例1に記載の方法と同様にして、シンチレータパネルを作製した。
 (複合剛性板の作製および複合剛性板付きインチレータパネルの作製)
 以下のようにして、複合剛性板の作製と、複合剛性板付きシンチレータパネルの作製を同時に行った。
 シンチレータパネルを350mmに切り出し、これを剛性板に貼り合わせる。この時、シンチレータ層の反対側にホットメルトシートM1083(リヒトラブ製)設置し、その上に剛性板(ガラス)、ホットメルトシートM1083(リヒトラブ製)、可撓性フィルム(ポリエチレンテレフタレート(0.125mm厚)の順で積層する。
 続いて、100kPaに減圧しその後、100℃で10分間、加熱溶融することにより、シンチレータ層と、剛性板と、可撓性フィルムとはホットメルトシートを介して接合して、複合剛性板付きシンチレータパネルが得られた。
 (放射線画像検出部材の作製)
 得られた複合剛性板付きシンチレータパネルと、光電変換基板とを貼り合わせ、放射線画像検出部材を作製した。
 まず、350mm×350mmの、基台上にTFTを有する光電変換基板を準備する。続いて、300mm×300mmのシンチレータ層が接着している面において、シンチレータ端部から5mmのところに接着剤(エポキシ性UV硬化樹脂)を0.5mm厚で塗布し、光電変換基板と密着させた。密着させたパネルを減圧デシケータに投入し、デシケータ内でオーク社製メタルハライドランプを用いて6kW、9000Jの光を照射しながら減圧した。庫内の圧力は1000Paとし、1000Paで1分間保持した後、大気圧まで戻し、放射線画像検出部材を得た。これを筐体に入れ、放射線画像検出器2を得た。
 (比較例1(放射線画像検出器3の作製))
 実施例1の放射線画像検出器1の作製において、可撓性高分子フィルムを貼合する工程を有さない他は、実施例1と同様にして、放射線画像検出器3を作製した。
 (評価)
 (画像均一性)
 下記のように、反り量および輝度ムラを測定して、画像均一性の指標とした。
 (反り量評価)
 得られた放射線画像検出器を水平な台に静置したときの端部の浮き量を、隙間ゲージを用いて測定する。なお、端部の浮き量は0.5mm以下ならば実用的に良好な範囲内である。
 (輝度ムラ評価)
 作製した放射線画像検出器の放射線入射面側に管電圧70kVpで1.0mRのX線を照射し、シンチレータの発光を示すデジタル信号をハードディスクに記録し画像を得る。
 前記方法にて得られた画像のうち、5mm×5mmの領域において、1mm毎の等間隔に区切られた範囲の25点について輝度を測定し、これの平均値を算出する。この領域において、測定した輝度の最大値と最小値の差を算出し、これを平均値で除したものを輝度ムラ値とした。これが小さいほど輝度ムラは少ないことを示す。概ね1.5以下が実用的に良好な範囲である。
 上記評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかなように、本発明の製造方法により、貼合して加熱をするという簡単な方法で、画像均一性に優れる放射線画像検出器が得られることが分かる。
 1 放射線画像検出器
 10 シンチレータパネル
 11 基材
 12 シンチレータ層
 13 接着層B
 21 剛性板
 22 接着層A
 23 可撓性高分子フィルム
 30 光電変換基板
 40 接着層C
 51 光電変換素子部
 53 基台
 54 接着層D
 961 蒸着装置
 962 真空容器
 963 ボート
 964 ホルダ
 965 回転機構
 966 真空ポンプ

Claims (8)

  1.  基材上にシンチレータ層を有するシンチレータパネルと、該シンチレータパネルの該基材側に配置された剛性板と、該シンチレータパネルの該シンチレータ層側に配置された、基台の一方の面に複数の光電変換素子を有する光電変換基板と、を有する放射線画像検出器の製造方法であって、
    (1)該基材上にシンチレータ層を形成してシンチレータパネルを作製するシンチレータパネル作製工程、
    (2)該剛性板に、接着剤を介して可撓性高分子フィルムを貼合し、複合剛性板を作製する複合剛性板作製工程
    (3)該複合剛性板の、該剛性板の該可撓性高分子フィルム側とは反対側の面と、該シンチレータパネルの、基材の該シンチレータ層とは反対側の面とを対面させ、該複合剛性板と該シンチレータパネルとを貼合して複合剛性板付きシンチレータパネルを作製する、複合剛性板付きシンチレータパネル作製工程および、
    (4)該光電変換基板の該光電変換素子が配置された面と、該複合剛性板付きシンチレータパネルの該シンチレータ層側の面とを対面させ、該光電変換基板と該複合剛性板付きシンチレータパネルとを貼合して放射線画像検出部材を作製する放射線画像検出部材作製工程、
    を有することを特徴とする放射線画像検出器の製造方法。
  2.  前記複合剛性板付きシンチレータパネル作製工程において、前記複合剛性板と前記シンチレータパネルとを貼合して前記複合剛性板付きシンチレータパネルを作製する方法が、前記複合剛性板と前記シンチレータパネルとを接着剤を介して貼合して前記複合剛性板付きシンチレータパネルを作製する方法であることを特徴とする請求項1に記載の放射線画像検出器の製造方法。
  3.  前記複合剛性板作製工程で用いられる接着剤がホットメルト接着剤であることを特徴とする請求項1または2に記載の放射線画像検出器の製造方法。
  4.  前記複合剛性板付きシンチレータパネル作製工程が、加熱工程を有することを特徴とする請求項1から3のいずれか1項に記載の放射線画像検出器の製造方法。
  5.  前記複合剛性板作製工程と、複合剛性板付きシンチレータパネル作製工程とが同時に行われることを特徴とする請求項1から4のいずれか1項に記載の放射線画像検出器の製造方法。
  6.  前記放射線画像検出部材作製工程における前記光電変換基板と前記複合剛性板付きシンチレータパネルとの貼合が、減圧下に行われることを特徴とする請求項1から5のいずれか1項に記載の放射線画像検出器の製造方法。
  7.  請求項1から6のいずれか1項に記載の放射線画像検出器の製造方法により製造されたことを特徴とする放射線画像検出器。
  8.  基材上にシンチレータ層を有するシンチレータパネルと、該シンチレータパネルの該基材側に配置された剛性板と、該シンチレータパネルの該シンチレータ層側に配置された、基台の一方の面に複数の光電変換素子を有する光電変換基板と、を有する放射線画像検出器であって、該剛性板の該シンチレータパネル側と反対側に可撓性高分子フィルムを有することを特徴とする放射線画像検出器。
PCT/JP2011/053470 2010-09-07 2011-02-18 放射線画像検出器の製造方法および放射線画像検出器 WO2012032797A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/819,123 US9269741B2 (en) 2010-09-07 2011-02-18 Production method of radiation image detector and radiation image detector
JP2012532874A JP5966925B2 (ja) 2010-09-07 2011-02-18 放射線画像検出器の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-199673 2010-09-07
JP2010199673 2010-09-07

Publications (1)

Publication Number Publication Date
WO2012032797A1 true WO2012032797A1 (ja) 2012-03-15

Family

ID=45810405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053470 WO2012032797A1 (ja) 2010-09-07 2011-02-18 放射線画像検出器の製造方法および放射線画像検出器

Country Status (3)

Country Link
US (1) US9269741B2 (ja)
JP (1) JP5966925B2 (ja)
WO (1) WO2012032797A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319573A (zh) * 2014-06-03 2016-02-10 柯尼卡美能达株式会社 放射线图像检测装置及其制造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129611A1 (ja) * 2012-02-29 2013-09-06 昭和電工株式会社 エレクトロルミネッセント素子の製造方法
JP2015025682A (ja) * 2013-07-24 2015-02-05 キヤノン株式会社 放射線撮影装置
JP6707130B2 (ja) * 2017-03-22 2020-06-10 富士フイルム株式会社 放射線検出器及び放射線画像撮影装置
WO2019181568A1 (ja) * 2018-03-19 2019-09-26 富士フイルム株式会社 放射線検出器及び放射線画像撮影装置
JP6880309B2 (ja) * 2018-03-19 2021-06-02 富士フイルム株式会社 放射線検出器、放射線画像撮影装置、及び製造方法
EP3770643A4 (en) * 2018-03-19 2021-04-28 FUJIFILM Corporation RADIATION DETECTOR AND RADIOGRAPHIC IMAGE CAPTURE DEVICE
EP3770641A4 (en) * 2018-03-19 2021-04-28 FUJIFILM Corporation RADIATION DETECTOR, RADIOLOGICAL IMAGING DEVICE AND PRODUCTION PROCESS
EP3859401B1 (en) * 2018-09-27 2023-12-27 FUJIFILM Corporation Radiation detector, radiation imaging apparatus, and manufacturing method
US10825855B2 (en) * 2018-12-13 2020-11-03 Palo Alto Research Center Incorporated Flexible x-ray sensor with integrated strain sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002341038A (ja) * 2001-05-15 2002-11-27 Canon Inc 放射線撮像装置の製造方法
JP2007285709A (ja) * 2006-04-12 2007-11-01 Canon Inc 放射線撮像装置の製造方法及び放射線撮像システム
JP2008215951A (ja) * 2007-03-01 2008-09-18 Toshiba Corp 放射線検出器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805031B2 (ja) * 1995-10-20 2006-08-02 キヤノン株式会社 光電変換装置
JP2001042041A (ja) 1999-07-30 2001-02-16 Toshiba Corp 放射線シンチレータ装置およびその製造方法
JP2003075543A (ja) 2001-08-31 2003-03-12 Canon Inc 放射線変換シート、放射線撮影装置とその製造方法、および放射線撮影システム
JP4289913B2 (ja) * 2003-03-12 2009-07-01 キヤノン株式会社 放射線検出装置及びその製造方法
JP4594188B2 (ja) * 2004-08-10 2010-12-08 キヤノン株式会社 放射線検出装置及び放射線検出システム
JP2008170314A (ja) * 2007-01-12 2008-07-24 Konica Minolta Medical & Graphic Inc 放射線用シンチレータプレート及び放射線画像撮影装置
CN101542635B (zh) * 2007-03-27 2013-01-23 株式会社东芝 闪烁器板和射线检测器
JP5774806B2 (ja) * 2008-08-11 2015-09-09 コニカミノルタ株式会社 放射線検出パネルの製造方法および放射線画像検出器の製造方法
JP2010078415A (ja) * 2008-09-25 2010-04-08 Fujifilm Corp 放射線検出装置及び放射線画像撮影システム
JP2010190610A (ja) * 2009-02-16 2010-09-02 Konica Minolta Medical & Graphic Inc 放射線検出パネルの製造方法および放射線画像検出器の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002341038A (ja) * 2001-05-15 2002-11-27 Canon Inc 放射線撮像装置の製造方法
JP2007285709A (ja) * 2006-04-12 2007-11-01 Canon Inc 放射線撮像装置の製造方法及び放射線撮像システム
JP2008215951A (ja) * 2007-03-01 2008-09-18 Toshiba Corp 放射線検出器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319573A (zh) * 2014-06-03 2016-02-10 柯尼卡美能达株式会社 放射线图像检测装置及其制造方法

Also Published As

Publication number Publication date
JPWO2012032797A1 (ja) 2014-01-20
JP5966925B2 (ja) 2016-08-10
US20130154039A1 (en) 2013-06-20
US9269741B2 (en) 2016-02-23

Similar Documents

Publication Publication Date Title
JP5966925B2 (ja) 放射線画像検出器の製造方法
US8895932B2 (en) Scintillator plate and radiation detection panel
JP5343970B2 (ja) 放射線画像検出装置
JP5720566B2 (ja) シンチレータパネル、シンチレータパネルの製造方法、放射線画像検出器および放射線画像検出器の製造方法
JP5979262B2 (ja) フラットパネルディテクタ
EP2360697B1 (en) Scintillator panel, radiation detector, and processes for producing these
WO2011125383A1 (ja) フラットパネルディテクタの製造方法
JP5862302B2 (ja) 放射線画像変換パネルとそれを用いた放射線画像検出器
JP2008209124A (ja) シンチレータパネル
JP2015230175A (ja) 放射線画像検出装置及びその製造方法
JP2008185393A (ja) シンチレータパネル
WO2010010725A1 (ja) シンチレータパネル及びそれを具備した放射線画像検出装置
JP2009068888A (ja) フラットパネルディテクタ
JP5668691B2 (ja) シンチレータパネル、その製造方法、及び放射線画像検出器
JP2012083186A (ja) シンチレータパネル、及びそれを用いた放射線像検出装置
JP2008224422A (ja) シンチレータパネル
JP5597930B2 (ja) 放射線画像検出装置とその製造方法
JP5267458B2 (ja) シンチレータパネル及び放射線イメージセンサ
JP5577644B2 (ja) 放射線画像検出装置およびその製造方法
JP5369906B2 (ja) 放射線像変換パネル、及び放射線像検出装置
JP2008232781A (ja) シンチレータパネル及び放射線イメージセンサ
WO2010032504A1 (ja) 放射線画像変換パネルとその製造方法
JPWO2008102645A1 (ja) シンチレータパネル及び放射線イメージセンサ
JPWO2008149659A1 (ja) シンチレータパネル及びイメージセンサ
JP2010107354A (ja) 放射線変換パネルおよび放射線変換パネルの作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012532874

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13819123

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823276

Country of ref document: EP

Kind code of ref document: A1