WO2012029973A1 - 磁場観察装置及び磁場観察方法 - Google Patents

磁場観察装置及び磁場観察方法 Download PDF

Info

Publication number
WO2012029973A1
WO2012029973A1 PCT/JP2011/070146 JP2011070146W WO2012029973A1 WO 2012029973 A1 WO2012029973 A1 WO 2012029973A1 JP 2011070146 W JP2011070146 W JP 2011070146W WO 2012029973 A1 WO2012029973 A1 WO 2012029973A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
magnetic
probe
sample
alternating
Prior art date
Application number
PCT/JP2011/070146
Other languages
English (en)
French (fr)
Inventor
準 齊藤
哲 吉村
Original Assignee
国立大学法人秋田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人秋田大学 filed Critical 国立大学法人秋田大学
Priority to EP11821984.9A priority Critical patent/EP2613160B1/en
Priority to US13/819,486 priority patent/US8621658B2/en
Publication of WO2012029973A1 publication Critical patent/WO2012029973A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/50MFM [Magnetic Force Microscopy] or apparatus therefor, e.g. MFM probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/50MFM [Magnetic Force Microscopy] or apparatus therefor, e.g. MFM probes
    • G01Q60/54Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/022Measuring gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/038Measuring direction or magnitude of magnetic fields or magnetic flux using permanent magnets, e.g. balances, torsion devices
    • G01R33/0385Measuring direction or magnitude of magnetic fields or magnetic flux using permanent magnets, e.g. balances, torsion devices in relation with magnetic force measurements

Definitions

  • the present invention relates to a magnetic field observation apparatus and a magnetic field observation method.
  • non-contact atomic force microscope a microscope capable of measuring a force field from a sample without touching the surface of the sample
  • a scanning probe microscope In the vicinity of the sample surface where the near force such as the atomic force is dominant, it is difficult to measure the far force such as the magnetic force with the conventional non-contact atomic force microscope.
  • To measure long-range force it is necessary to move the microscope probe away from the sample to a distance where the long-distance force becomes dominant. By separating the probe and sample, the spatial resolution is compared with the atomic resolution. The problem was that it deteriorated significantly.
  • the magnetization transition at the boundary of recording bits becomes a signal, and the spatial non-uniformity becomes a noise source. For this reason, observation of the magnetic domain at the recording bit boundary portion is particularly important, and a high spatial resolution equal to or smaller than the grain size of the crystal grains constituting the magnetic recording medium is required.
  • the conventional MFM has insufficient spatial resolution for the above applications. Also, in the conventional MFM, when measuring the magnetic force, the zero point of the magnetic force is not determined by the superposition of the surface force, which is a strong attractive force working at a short distance, and the attractive force and repulsive force of the magnetic force alone are identified. It was difficult.
  • the conventional MFM identifies the polarity (N pole, S pole) of the magnetic pole on the surface of the magnetic recording medium by superimposing the surface force which is a strong attractive force working at a short distance.
  • the boundary of the recording bit cannot be clearly identified.
  • an object of the present invention is to provide a magnetic field observation apparatus and a magnetic field observation method capable of measuring magnetic force with high spatial resolution near the surface of a magnetic material sample and capable of detecting the polarity of a magnetic pole on the surface of the magnetic material sample. To do.
  • a first aspect of the present invention is a magnetic field observation apparatus for observing a leakage magnetic field from a magnetic sample, a probe having a magnetic moment that is easier to reverse magnetization than the magnetic sample, and an excitation mechanism for exciting the probe.
  • a scanning mechanism that moves the probe and the magnetic sample relative to each other to scan the magnetic sample, and a size that can periodically reverse the magnetization of the probe and does not reverse the magnetization of the magnetic sample.
  • the degree of periodic frequency modulation of the probe vibration which occurs when the apparent spring constant changes due to the alternating force applied to the probe by magnetic interaction, is determined by frequency demodulation or frequency modulation.
  • Occur A modulation measuring mechanism which can be measured by the measuring of one sideband intensity of the spectrum of the sideband spectrum, a magnetic field observation device comprising a.
  • alternating force means a force applied to the probe whose intensity changes periodically due to the magnetic interaction between the magnetization of the probe and the magnetization of the magnetic material sample.
  • Do not reverse the magnetization of the magnetic sample means that the magnetization of the magnetic sample is not reversed at least for the portion to be observed. For example, when a perpendicular magnetic recording medium is used as a magnetic sample and the recording layer of the perpendicular magnetic recording medium is observed, it means that at least the magnetization of the recording layer is not reversed.
  • the magnetic field observation apparatus of the present invention can be suitably used when the leakage magnetic field is a DC magnetic field.
  • the magnetic moment of the probe generates a magnetic pole at the tip of the probe.
  • the strength of the magnetic pole at the tip of the probe changes in proportion to the magnitude of the magnetic moment component perpendicular to the surface of the tip.
  • the strength of the residual magnetic pole at the tip of the probe that does not change even when an AC magnetic field is applied from the AC magnetic field generation mechanism, and the spatial change gradient of the AC magnetic field applied to the probe from the AC magnetic field generation mechanism Is less than the product of the strength of the magnetic pole at the tip of the probe, which changes when an alternating magnetic field is applied from the alternating magnetic field generation mechanism, and the spatial gradient of the magnetic field applied to the probe from the magnetic sample. Is preferred.
  • the AC magnetic field generation mechanism is preferably a mechanism that applies an AC magnetic field having a spatially uniform size to a measurement space between the magnetic sample and the probe. Furthermore, it is preferable that the AC magnetic field generation mechanism is a mechanism that applies an AC magnetic field perpendicular to the observation surface of the magnetic sample.
  • the probe preferably includes a soft magnetic material.
  • the magnetic field observation apparatus of the present invention can be suitably used when the magnetic material sample is a magnetic recording medium.
  • the magnetic field observation apparatus of the present invention observes the amplitude of the alternating force and the phase lag with respect to the alternating magnetic field generated from the alternating magnetic field generating mechanism based on the degree of frequency modulation measured by the modulation measuring mechanism, thereby It is preferable to provide a magnetic field imaging mechanism that images the magnitude and direction of the magnetic field generated from the magnetic sample.
  • a magnetic field observation method for observing a leakage magnetic field from a magnetic sample, wherein a probe that is easier to reverse the magnetization than the magnetic sample is disposed on the magnetic sample, and the probe is excited.
  • the surface of the magnetic sample can be reversed with the probe while applying an alternating magnetic field large enough to periodically reverse the magnetization of the magnetic moment of the probe and not to reverse the magnetization of the magnetic sample.
  • an alternating force due to magnetic interaction between the magnetization of the probe whose magnetization direction is periodically changed by the alternating magnetic field applied by the alternating magnetic field generation mechanism and the magnetization of the magnetic sample is provided.
  • a force that periodically changes in intensity is applied to the probe, the apparent spring constant of the probe is periodically changed by the periodic force, and vibration of the probe due to the periodic change of the spring constant is reduced.
  • the degree of periodic frequency modulation, the frequency The demodulation or a magnetic field observation method comprising: a modulation measurement step, the measuring by the measurement of a single sideband intensity of the spectrum of the sideband spectrum generated by the frequency modulation.
  • the magnetic field observation method of the present invention can be suitably used when the leakage magnetic field is a DC magnetic field.
  • the strength of the residual magnetic pole at the tip of the probe that does not change even when an AC magnetic field is applied from the AC magnetic field generation mechanism and the AC magnetic field applied to the probe from the AC magnetic field generation mechanism.
  • the product of the spatial variation gradient is the product of the strength of the magnetic pole at the tip of the probe, which is changed by applying an alternating magnetic field from the alternating magnetic field generation mechanism, and the spatial variation gradient of the magnetic field applied to the probe from the magnetic material sample. It is preferable to make it smaller.
  • the magnetic field observation method of the present invention further measures the amplitude of the alternating force and the phase lag with respect to the alternating magnetic field generated from the alternating magnetic field generation mechanism based on the degree of frequency modulation measured by the modulation measuring step, Accordingly, it is preferable to include a magnetic field imaging step for imaging the magnitude and direction of the magnetic field generated from the magnetic sample.
  • the magnetic force can be measured with high resolution near the surface of the magnetic sample, and the polarity of the magnetic pole on the surface of the magnetic sample can be detected.
  • FIG. 1 is a diagram schematically showing a configuration of a magnetic field observation apparatus 100 of the present invention according to one embodiment.
  • the magnetic field observation apparatus 100 is an apparatus that observes a leakage magnetic field from the magnetic material sample 1.
  • the magnetic field observation apparatus 100 can be suitably used when the leakage magnetic field to be observed is a DC magnetic field.
  • the magnetic field observation apparatus 100 includes a probe 10, an excitation mechanism 20, an AC magnetic field generation mechanism 30, and a modulation measurement mechanism 40.
  • the magnetic field observation apparatus 100 includes a scanning mechanism that relatively moves the probe 10 and the magnetic sample 1 to cause the probe 10 to scan the observation surface of the magnetic sample 1.
  • the magnetic field observation apparatus 100 preferably includes a magnetic field imaging mechanism described later. Hereinafter, these components will be described.
  • Magnetic material sample 1 The magnetic material 1 that is the measurement target of the magnetic field observation apparatus 100 is made of a magnetic material that is difficult to reverse the magnetization as compared with the probe 10. Specific examples of the magnetic material sample 1 include a magnetic recording medium. When a magnetic recording medium is used for the magnetic sample 1, the boundary of the magnetic recording bit can be detected with high spatial resolution, as will be described later.
  • Probe 10 As the probe 10, a probe having magnetism that is more easily magnetized than the magnetic sample 1 is used.
  • the probe 10 is affected by the leakage magnetic field generated from the magnetic sample 1 by being disposed on the magnetic sample 1. Further, as will be described in detail later, the magnetization of the probe 10 is periodically reversed by the alternating magnetic field generated from the alternating magnetic field generation mechanism 30. At this time, the alternating force due to the magnetic interaction between the magnetization of the probe 10 and the magnetization of the magnetic sample 1 applies a force that periodically changes the intensity to the probe 10, and the apparent spring of the probe 10. The constant changes periodically. The degree of periodic frequency modulation of the vibration of the probe 10 is measured by a modulation measuring mechanism 40 described later.
  • a probe 10 having a small residual magnetic moment it is preferable to use a probe 10 having a small residual magnetic moment. Specifically, the strength of the residual magnetic pole at the tip of the probe 10 that does not change even when an AC magnetic field is applied from the AC magnetic field generation mechanism 30 of the probe 10, and the AC magnetic field applied to the probe 10 from the AC magnetic field generation mechanism 30. Of the magnetic field applied to the probe 10 from the magnetic material sample 1 and the strength of the magnetic pole applied to the probe 10 from the magnetic material sample 1. It is preferably smaller than the product of the change gradient. In order to reduce the strength of the residual magnetic pole of the probe 10, it is conceivable to use a soft magnetic material for the probe 10.
  • the magnetic field observation apparatus 100 can use a soft magnetic material for the probe 10 as described above.
  • a soft magnetic material for the probe 10 there is an advantage that a magnetic material such as an FeCo alloy having a large saturation magnetization capable of increasing detection sensitivity can be selected as compared with a conventional MFM CoCr-based probe.
  • the thickness of the magnetic thin film constituting the probe 10 can be reduced to 5 nm or less, and a dramatic improvement in spatial resolution of the magnetic field observation apparatus 100 can be expected.
  • the probe 10 is provided in the vicinity of one end (free end) of the cantilever 11, and the other end (fixed end) of the cantilever 11 is fixed. By exciting such a cantilever 11 at an arbitrary frequency by the excitation mechanism 20, the probe 10 can be excited at an arbitrary frequency.
  • the structure of the excitation mechanism 20 is not particularly limited as long as the probe 10 can be excited at an arbitrary frequency.
  • the excitation mechanism 20 can be configured by, for example, an excitation actuator attached near the fixed end of the cantilever 11 and an AC voltage power source connected to the excitation actuator.
  • the AC magnetic field generation mechanism 30 is a mechanism that can periodically reverse the magnetization of the probe 10 and applies an AC magnetic field having a magnitude that does not reverse the magnetization of the magnetic sample 1 to the probe 10.
  • Such an alternating magnetic field generation mechanism 30 can be constituted by, for example, a coil 32 surrounding the probe 10 and an alternating current power supply 31 for supplying an alternating current to the coil 32 as shown in FIG.
  • the alternating magnetic field generated from the alternating magnetic field generation mechanism 30 has a small spatial change. Specifically, the product of the strength of the residual magnetic pole at the tip of the probe 10 and the spatial gradient of the AC magnetic field applied from the AC magnetic field generating mechanism 30 to the probe 10 applies the AC magnetic field from the AC magnetic field generating mechanism 30. It is preferable to be smaller than the product of the strength of the magnetic pole at the tip of the probe 10 that changes as a result of this and the spatial change gradient of the magnetic field applied from the magnetic sample 1 to the probe 10. In order to reduce the spatial change gradient of the alternating magnetic field, it is conceivable to apply an alternating magnetic field having a uniform size to the measurement space between the magnetic sample 1 and the probe 10.
  • the AC magnetic field generation mechanism 30 is preferably a mechanism that applies an AC magnetic field in a direction perpendicular to the observation surface of the magnetic sample 1.
  • the frequency of the alternating magnetic field generated from the alternating magnetic field generation mechanism 30 is optimized to a frequency at which the magnetization reversal of the probe 10 is efficiently performed in accordance with the magnetic material used for the probe 10.
  • the installation position of the elements constituting the AC magnetic field generation mechanism 30 is not particularly limited, but in order to incorporate the AC magnetic field generation mechanism 30 into a conventional general-purpose MFM in which the space around the probe 10 is narrow, an AC magnetic field is generated. It is conceivable to install a pot core or the like under the MFM sample mounting table. However, in this case, if a perpendicular magnetic recording medium is used for the magnetic sample, the following problems may occur. That is, the perpendicular magnetic recording medium has a recording layer with a thickness of several tens of nanometers that has hard magnetism on the surface on the observation surface side, and an underlayer with a thickness of several ⁇ m that has soft magnetism under the recording layer.
  • the AC magnetic field generation mechanism 30 is preferably a mechanism that can apply an AC magnetic field to the probe 10 without passing through the perpendicular magnetic recording medium (magnetic sample 1). Specifically, the space around the probe 10 is widened, and the AC magnetic field generation mechanism 30 can be installed so that an AC magnetic field can be applied to the probe 10 from the probe 10 side rather than the magnetic material sample 1. preferable.
  • Modulation measurement mechanism 40 The alternating force due to the magnetic interaction between the magnetization of the probe 10 and the magnetization of the magnetic sample 1 applies a force that periodically changes the intensity to the probe 10. The force whose intensity changes periodically changes the apparent spring constant of the probe 10 periodically. In this way, the apparent spring constant of the probe 10 is periodically changed, so that the vibration frequency of the probe 10 is periodically modulated.
  • the modulation measurement mechanism 40 determines the degree of periodic frequency modulation of the vibration of the probe 10 by frequency demodulation or by measuring the intensity of one sideband spectrum of the sideband spectrum generated by frequency modulation. It is a mechanism that can measure.
  • the modulation measuring mechanism 40 of the form shown in FIG. 1 includes a light source 41 that irradiates a laser beam onto the free end of the cantilever 11, an optical displacement sensor 42 that detects the laser beam reflected by the cantilever 11, and a demodulation.
  • An FM demodulator 43 composed of an analog circuit or a digital circuit as a device and a lock-in amplifier 44 as an intensity measuring device are provided.
  • the modulation measurement mechanism 40 may include a phase detection circuit and an amplitude detection circuit that are functions of a conventional magnetic force microscope.
  • the optical displacement sensor 42 can detect the displacement of the probe 10 as an output.
  • the output from the optical displacement sensor 42 detected while scanning the observation surface of the magnetic sample 1 with the probe 10 by the following scanning mechanism is input to the FM demodulator 43.
  • the output terminal of the FM demodulator 43 is connected to the input signal terminal of the lock-in amplifier 44, and the reference signal terminal of the lock-in amplifier 44 is the voltage of the AC current power supply 31 provided in the AC magnetic field generating mechanism 30. The signal is connected.
  • An amplifier may be provided between the optical displacement sensor 42 and the FM demodulator 43, and a signal from the optical displacement sensor 42 may be input to the FM demodulator 43 via the amplifier.
  • the amplitude and phase of the frequency demodulated signal demodulated by the FM demodulator 43 can be measured by the lock-in amplifier 44.
  • a PLL circuit phase locked loop circuit
  • the degree of periodic frequency modulation of the vibration of the probe 10 can be measured by frequency demodulation as described above. Further, as described below, the degree of periodic frequency modulation of the vibration of the probe 10 may be measured by measuring the intensity of one sideband spectrum of the sideband spectrum generated by the frequency modulation. it can. In general, a spectrum analyzer (which measures the intensity of a signal or the like with respect to a frequency) is used for the intensity of the spectrum. The intensity of the sideband spectrum by the spectrum analyzer can be measured, for example, at point A or point B shown in FIG.
  • the method of measuring at point A is a method of selecting and measuring one of the sideband spectrum before frequency demodulation.
  • the resonance frequency ⁇ 0 of the probe 10 is a magnetic field gradient ( ⁇ H z dc / ⁇ z) of the vertical magnetic field H z dc from the magnetic material sample 1 at the position of the probe 10 or the like, as shown in equation (4) described later.
  • the following (*) formula At this time, since the omega 0 sideband spectrum ⁇ omega m appears, measured by selecting the sideband spectrum of one of them.
  • omega 0 is changed by the observation location (position of the probe 10). Therefore, according to the method of measuring at point A, the error becomes large unless the change in ⁇ 0 is corrected, so that it is more difficult to accurately measure the sideband spectrum than the method of measuring at point B described below. become.
  • the method of measuring at point B is a method of selecting and measuring one of the sideband spectrum remaining after frequency demodulation. According to this method, there is no influence of fluctuation of ⁇ 0 depending on the observation place (the position of the probe 10). Therefore, it is not necessary to compensate for changes in the omega 0, is possible to measure accurately the sideband spectrum is easier than when measuring at the point A.
  • the frequency is lower than when measuring at the point A, so the time required for the measurement becomes longer. However, there is almost no adverse effect on the actual measurement due to the longer measurement time.
  • the scanning mechanism is a mechanism that can relatively change the positions of the probe 10 and the magnetic sample 1.
  • the scanning mechanism for example, the probe 10 is moved by moving the sample mounting table on which the magnetic material sample 1 is mounted by a driving device, thereby changing the position of the sample mounting table relative to the probe 10.
  • the magnetic material sample 1 can be a mechanism capable of relatively changing the position.
  • the scanning mechanism provided in the magnetic field observation apparatus 100 is not limited to the above form, and the movement of the probe 10 or the magnetic sample 1 is controlled to relatively position the probe 10 and the magnetic sample 1. Any mechanism that can be changed is acceptable.
  • the scanning mechanism a known mechanism (for example, a piezo element) used in a conventional scanning probe microscope can be used.
  • the magnetic field imaging mechanism is based on the degree of frequency modulation measured by the modulation measuring mechanism 40, and the alternating force amplitude due to the magnetic interaction between the magnetization of the probe 10 and the magnetization of the magnetic sample 1, and the alternating current. This is a mechanism for observing the phase lag with respect to the AC magnetic field generated from the magnetic field generating mechanism 30 and thereby imaging the magnitude and direction of the DC magnetic field generated from the magnetic material sample 1.
  • the magnetic field imaging mechanism is not particularly limited as long as the measurement result by the modulation measuring mechanism 40 can be imaged as described above.
  • a display device capable of imaging an external input signal as provided in a conventional scanning microscope can be used.
  • FIG. 2A schematically shows a state where an alternating magnetic field having a frequency different from the resonance frequency of the probe 10 is applied to the probe 10 vibrating at a constant frequency.
  • FIG. 2B schematically shows a model in which the movement of the probe 10 is compared to a spring having a mass m attached to the tip.
  • the frequency modulation phenomenon that uses the alternating force in the vibration of the probe 10 as a modulation source is to consider the motion of the harmonic oscillator (formula (1) below) in which the spring constant periodically changes according to the alternating force as shown in FIG. Is derived by
  • probe 10 is the change amount of the effective spring constant of the cantilever 11 due to the application of an alternating force
  • ⁇ m is the excitation angular frequency
  • F 0 is the amplitude of the excitation force
  • ⁇ 0 is the resonance angular frequency of the probe 10.
  • H z Magnetic field component in the displacement direction of the probe 10 applied to the probe 10.
  • the displacement direction of the probe 10 is the z direction perpendicular to the sample surface, as shown in FIG. 2A).
  • the frequency demodulation signal is provided in the AC magnetic field generation mechanism 30 using the lock-in amplifier 44.
  • the magnetic field gradient of the vertical magnetic field H z dc from the magnetic sample 1 ( ⁇ H z dc / It can be seen that measurement of ⁇ z) is possible near the sample surface.
  • H z dc reflects the polarity of the surface magnetic pole (N pole, S pole) of the magnetic sample 1, and when the sign is inverted, the effective spring constant changes.
  • k eff changes as in the following equation (7), and the phase changes by 180 °.
  • the left side is a necessary signal and the right side is an unnecessary signal, so it corresponds to noise.
  • the necessary signal is large with respect to noise, and the ratio of necessary signal to noise (necessary signal / noise) is preferably 3 or more, and more preferably 9 or more. Therefore, for example, in order to obtain a required signal to noise ratio of 9, it is necessary to satisfy the following expression (8).
  • the magnetic field observation apparatus of the present invention it is possible to observe the fine magnetic domain structure of a magnetic sample having hard magnetism such as a magnetic recording medium that generates a DC magnetic field.
  • a magnetic material exhibiting hard magnetism is characterized by a fine magnetic domain structure as compared with a magnetic material exhibiting soft magnetism. Therefore, the magnetic field observation apparatus of the present invention that can observe the fine magnetic domain structure of a magnetic sample having hard magnetism has wide versatility.
  • high measurement sensitivity can be obtained even in measurement in the atmosphere, as in measurement in a vacuum.
  • the magnetic field observation method of the present invention is a method for observing a leakage magnetic field from a magnetic sample, and has a scanning step and a modulation measurement step described below.
  • the magnetic field observation method of the present invention can be performed using, for example, the magnetic field observation apparatus 100 of the present invention described above.
  • the scanning process and the modulation measuring process will be described with reference to FIG.
  • the probe 10 that is easier to reverse the magnetization than the magnetic sample 1 is disposed on the magnetic sample 1, and the probe 10 can be excited and simultaneously the magnetization of the probe 10 can be periodically reversed.
  • This is a step of scanning the surface of the magnetic sample 1 with the probe 10 while applying an AC magnetic field of a magnitude that does not reverse the magnetization of the magnetic sample 1 to the probe 10.
  • the probe 10 can be excited by the excitation mechanism 20.
  • the application of an alternating magnetic field to the probe 10 can be performed by the alternating magnetic field generation mechanism 30.
  • the scanning of the surface of the magnetic sample 1 with the probe 10 can be performed by the scanning mechanism.
  • Modulation measurement process In the modulation measurement step, a force whose intensity is periodically changed by an alternating force due to a magnetic interaction between the magnetization of the probe 10 and the magnetization of the magnetic sample 1 is applied to the probe 10, and the periodic attractive force and The apparent spring constant of the probe 10 is periodically changed by repulsive force, and the degree of periodic frequency modulation of the vibration of the probe 10 due to the periodic change of the spring constant is determined by frequency demodulation or frequency modulation.
  • This is a step of measuring by measuring the intensity of one sideband spectrum of the generated sideband spectrum. The measurement can be performed by the modulation measurement mechanism 40.
  • the magnetic field observation method of the present invention can be suitably used for observation of a DC magnetic field. Further, in the scanning process, the product of the strength of the residual magnetic pole at the tip of the probe 10 and the spatial gradient of the alternating magnetic field applied from the alternating magnetic field generating mechanism 30 to the probe 10 gives the alternating magnetic field from the alternating magnetic field generating mechanism 30. It is preferable to make it smaller than the product of the strength of the magnetic pole at the tip of the probe 10 that changes when applied and the spatial change gradient of the magnetic field applied from the magnetic sample 1 to the probe 10.
  • the amplitude of the alternating force due to the magnetic interaction between the magnetization of the probe 10 and the magnetization of the magnetic sample 1 and the AC magnetic field generation mechanism It is preferable to provide a magnetic field imaging step of measuring the phase lag with respect to the alternating magnetic field to be generated, thereby imaging the magnitude and direction of the magnetic field generated from the magnetic sample 1.
  • the leakage magnetic field from the magnetic sample was observed using the magnetic field observation apparatus of the present invention.
  • a CoCrPt—SiO 2 perpendicular magnetic recording medium was used as the magnetic sample.
  • the magnetic field observation apparatus of the present invention is based on a commercially available MFM (scanning probe microscope, JSPM-5400 manufactured by JEOL Ltd.), and supplies a power to the pot core made of soft magnetic ferrite as an AC magnetic field generation mechanism.
  • an FM demodulator manufactured by Nanosurf, easyPLL
  • the pot core was installed under the MFM sample mounting table.
  • the amplitude of the alternating magnetic field generated from the pot core was about 50 Oe, and the frequency was 100 Hz.
  • the probe used was a soft magnetic probe in which a permalloy thin film having a thickness of about 20 nm was formed on the surface of the Si probe.
  • the holding force of the soft magnetic probe was about 5 Oe.
  • the distance between the probe and the observation surface of the magnetic sample at the time of observation was 10 nm.
  • the magnetic moment of the soft magnetic probe was periodically reversed by the AC magnetic field from the pot core without changing the magnetic moment of the recording layer of the perpendicular magnetic recording medium.
  • the frequency modulation signal of the probe vibration generated by applying an alternating magnetic field after acquiring the surface shape image of the observation surface (the surface on the recording layer side) of the magnetic material sample using the Tapping-Lift mode is used as an FM demodulator.
  • the AC voltage power source connected to the pot core was detected as a reference signal, and the static magnetic field information of the recording layer of the perpendicular magnetic recording medium was obtained from the amplitude image and phase image of the alternating magnetic force.
  • FIG. 3 shows the observation results near the surface of the perpendicular magnetic recording medium.
  • 3A is an image of the intensity of a perpendicular magnetic field (magnetic field perpendicular to the observation surface) from the perpendicular magnetic recording medium
  • FIG. 3B is an image of the phase difference of the alternating force with respect to the AC voltage power source connected to the pot core. It is.
  • FIG. 3C shows a line profile of the image of FIG. 3A
  • FIG. 3D shows a line profile of the image of FIG. 3B.
  • the magnetic field could not be detected because of the vicinity of the sample surface.
  • FIG. 3B is a binary image having a contrast of light and dark, and the phase difference is 180 °. Therefore, the direction of the vertical magnetic field generated from the perpendicular magnetic recording medium is opposite to the upward and downward directions. It shows that there is. That is, it shows that the N pole and S pole on the surface of the perpendicular magnetic recording medium that generates the magnetic field can be clearly identified. This result is the first successful detection of the surface magnetic pole of a magnetic sample for the first time by MFM. It can be seen that at the recording portion, the boundary between these light and dark contrasts becomes the boundary of the recording bit, and the position can be clearly observed. Thus, according to the present invention, it is possible to directly observe the polarity of the surface magnetic pole, which has been difficult in the past.
  • the dark magnetic field intensity shows a dark contrast at the boundary of the light and dark contrast of the magnetic field phase image. This shows that the boundary of the recording bit can be clearly observed in the magnetic field intensity image.
  • the magnetic field strength changes in a granular form, and it is assumed that the magnetic cluster is composed of a plurality of magnetically coupled crystal grains that are the main cause of noise. Inhomogeneities are clearly observed.
  • the magnetic force in the vicinity of the observation surface of the magnetic sample can be detected, an improvement in spatial resolution can be expected.
  • the magnetic non-uniformity of the medium which is important for the research and development of the magnetic recording medium, can be clearly imaged.
  • the magnetic field observation apparatus and magnetic field observation method of the present invention can be used, for example, in the process of manufacturing a magnetic recording medium.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

磁性体試料の表面近傍において高分解能で磁気力を計測でき、該磁性体試料表面の磁極の極性検出も可能な磁場観察装置及び磁場観察方法を提供する。探針と、探針を励振させる励振機構と、探針及び磁性体試料を相対的に移動させる走査機構と、探針を周期的に磁化反転させることができ、かつ磁性体試料を磁化反転させない大きさの交流磁場を探針に印加する交流磁場発生機構と、探針の磁化と磁性体試料の磁化との間の磁気的相互作用による交番力が探針に加える周期的に強度が変化する力によって周期的に変化する探針の見かけ上のバネ定数に起因する、探針の振動の周期的な周波数変調の程度を、周波数復調により、又は周波数変調により発生する側帯波スペクトルのうちの1つの側帯波スペクトルの強度の計測により、計測することができる変調計測機構と、を備える磁場観察装置、及び該装置を用いて行う磁場観察方法とする。

Description

磁場観察装置及び磁場観察方法
 本発明は、磁場観察装置及び磁場観察方法に関する。
 走査型プローブ顕微鏡の一形態として、非接触原子間力顕微鏡(試料からの力の場を、該試料の表面に触れずに計測できる顕微鏡)がある。原子間力等の近距離力が支配的となる試料表面近傍においては、従来の非接触原子間力顕微鏡では磁気力等の遠距離力を計測することが困難であった。遠距離力を計測するには、遠距離力が支配的となる距離まで顕微鏡の探針を試料から遠ざける必要があるが、探針と試料とを離すことによって、空間分解能が原子分解能と比較して大幅に劣化することが問題であった。
 一方、近年、高密度磁気ストレージデバイスの主要部品である磁気記録媒体の高密度化・大容量化について、各メーカーの激しい技術競争により、磁気記録媒体の高密度化が指数関数的に進んでいる。このような磁気記録媒体の研究開発には、磁気記録媒体の微細磁区構造を観察する手法が必須であり、磁気力を計測できる非接触型原子間力顕微鏡(磁気力顕微鏡(MFM))が用いられている。磁気力顕微鏡(MFM)として用いることができるものとしては、例えば、特許文献1にその一例が開示されている。
国際公開第2009/101991号
 高密度磁気ストレージデバイスの主要部品である磁気記録媒体においては、記録ビットの境界の磁化遷移が信号となり、その空間的不均一性がノイズ源となる。このため、記録ビット境界部分の磁区観察が特に重要になり、磁気記録媒体を構成する結晶粒の粒径以下の高い空間分解能が求められている。しかしながら、従来のMFMでは、上記の用途としては空間分解能が不十分であった。また、従来のMFMでは、磁気力を計測する際に、近距離で働く強い引力である表面力の重畳により、磁気力のゼロ点が定まらず、磁気力単独での引力及び斥力を識別することが困難であった。すなわち、記録ビットの境界部分を観察する場合、従来のMFMでは、近距離で働く強い引力である表面力の重畳により、磁気記録媒体表面の磁極の極性(N極、S極)を識別することが困難であり、明確に記録ビットの境界を識別できないという問題があった。
 そこで、本発明は、磁性体試料の表面近傍において高い空間分解能で磁気力を計測でき、該磁性体試料表面の磁極の極性検出も可能な磁場観察装置及び磁場観察方法を提供することを課題とする。
 以下、本発明について説明する。
 本発明の第1の態様は、磁性体試料からの漏洩磁場を観察する磁場観察装置であって、磁性体試料より磁化反転し易い磁気モーメントを有する探針と、探針を励振させる励振機構と、探針及び磁性体試料を相対的に移動させて探針に磁性体試料上を走査させる走査機構と、探針を周期的に磁化反転させることができ、かつ磁性体試料を磁化反転させない大きさの交流磁場を探針に印加する交流磁場発生機構と、交流磁場発生機構によって印加された交流磁場により周期的に磁化方向を変化させた探針の磁化と磁性体試料の磁化との間の磁気的相互作用によって探針に加えられる交番力を原因として見かけ上のバネ定数が変化することで発生する、探針の振動の周期的な周波数変調の程度を、周波数復調により、又は周波数変調により発生する側帯波スペクトルのうちの1つの側帯波スペクトルの強度の計測により計測することができる変調計測機構と、を備える磁場観察装置である。
 ここに、「交番力」とは、探針の磁化と磁性体試料の磁化との間の磁気的相互作用によって周期的に強度が変化する探針に加えられる力を意味する。また、「磁性体試料を磁化反転させない」とは、磁性体試料のうち、少なくとも観察対象となる部分については磁化反転させないことを意味する。例えば、磁性体試料に垂直磁気記録媒体を用いて、該垂直磁気記録媒体の記録層を観察する場合、少なくとも当該記録層の磁化は反転させないことを意味する。
 上記本発明の磁場観察装置は、漏洩磁場が直流磁場である場合に好適に用いることができる。
 探針の磁気モーメントは、探針の先端に磁極を発生させる。探針先端の磁極の強度は先端部の面に垂直な磁気モーメント成分の大きさに比例して変化する。
 上記本発明の磁場観察装置において、交流磁場発生機構から交流磁場を印加しても変化しない探針の先端の残留磁極の強度と、交流磁場発生機構から探針に印加する交流磁場の空間変化勾配との積が、交流磁場発生機構から交流磁場を印加することにより変化する探針の先端の磁極の強度と、磁性体試料から探針に印加される磁場の空間変化勾配との積より小さいことが好ましい。また、当該交流磁場発生機構は、磁性体試料と探針との間の計測空間に、空間的に一様な大きさの交流磁場を印加する機構であることが好ましい。さらに、当該交流磁場発生機構が、磁性体試料の観察面に対して垂直方向の交流磁場を印加する機構であることが好ましい。
 上記本発明の磁場観察装置において、探針はソフト磁性体を含むことが好ましい。
 上記本発明の磁場観察装置は、磁性体試料が磁気記録媒体である場合に好適に用いることができる。
 上記本発明の磁場観察装置は、変調計測機構により計測された周波数変調の程度に基づいて、上記交番力の振幅と、交流磁場発生機構から発生する交流磁場に対する位相遅れとを観測し、それにより、磁性体試料から発生する磁場の大きさの程度と方向を画像化する磁場画像化機構を備えていることが好ましい。
 本発明の第2の態様は、磁性体試料からの漏洩磁場を観察する磁場観察方法であって、磁性体試料より磁化反転し易い探針を磁性体試料上に配置し、探針を励振させると同時に、探針の磁気モーメントを周期的に磁化反転させることができ、かつ磁性体試料を磁化反転させない程度の大きさの交流磁場を探針に印加しながら、探針で磁性体試料の表面を走査する走査工程と、交流磁場発生機構によって印加された前記交流磁場により周期的に磁化方向を変化させた探針の磁化と磁性体試料の磁化との間の磁気的相互作用による交番力によって周期的に強度が変化する力を探針に加え、該周期的な力によって探針の見かけ上のバネ定数を周期的に変化させ、該バネ定数の周期的変化に起因する探針の振動の周期的な周波数変調の程度を、周波数復調により、又は周波数変調により発生する側帯波スペクトルのうちの1つの側帯波スペクトルの強度の計測により計測する変調計測工程と、を有する磁場観察方法である。
 上記本発明の磁場観察方法は、漏洩磁場が直流磁場である場合に好適に用いることができる。
 上記本発明の磁場観察方法は、走査工程において、交流磁場発生機構から交流磁場を印加しても変化しない探針先端の残留磁極の強度と、交流磁場発生機構から探針に印加する交流磁場の空間変化勾配との積が、交流磁場発生機構から交流磁場を印加することにより変化する探針の先端の磁極の強度と、磁性体試料から探針に印加される磁場の空間変化勾配との積より小さくなるようにすることが好ましい。
 上記本発明の磁場観察方法は、さらに、変調計測工程により計測された周波数変調の程度に基づいて、上記交番力の振幅と、交流磁場発生機構から発生する交流磁場に対する位相遅れとを計測し、それにより、磁性体試料から発生する磁場の大きさの程度と方向を画像化する磁場画像化工程を備えることが好ましい。
 本発明によれば、磁性体試料の表面近傍において高分解能で磁気力を計測でき、該磁性体試料表面の磁極の極性検出も可能である。
一つの実施形態にかかる本発明の磁場観察装置の構成を概略的に示す図である。 本発明の磁場観察装置による計測原理を説明するための図である。 本発明の磁場観察装置による、垂直磁気記録媒体の表面近傍での観察結果を示す図である。
 1.磁場観察装置
 <構成>
 図1は、一つの実施形態にかかる本発明の磁場観察装置100の構成を概略的に示す図である。磁場観察装置100は、磁性体試料1からの漏洩磁場を観察する装置である。磁場観察装置100は、観察対象の漏洩磁場が直流磁場である場合に好適に用いることができる。
 図1に示すように、磁場観察装置100は、探針10、励振機構20、交流磁場発生機構30、及び変調計測機構40を備えている。また、磁場観察装置100は、図示していないが、探針10及び磁性体試料1を相対的に移動させて探針10に磁性体試料1の観察面上を走査させる走査機構を備えている。さらに、磁場観察装置100は後に説明する磁場画像化機構を備えていることが好ましい。以下に、これらの構成要素について説明する。
 (磁性体試料1)
 磁場観察装置100の計測対象である磁性体試料1には、探針10と比較して磁化反転し難い磁性材料を用いる。磁性体試料1の具体例としては、磁気記録媒体等を挙げることができる。磁性体試料1に磁気記録媒体を用いた場合、後に説明するように、磁気記録ビットの境界の検出を高い空間分解能で行うことができる。
 (探針10)
 探針10には、磁性を有しており、磁性体試料1より磁化反転し易いものを用いる。探針10は、磁性体試料1上に配置されることによって、磁性体試料1から発生する漏洩磁場の影響を受ける。また、後に詳述するように、交流磁場発生機構30から発生する交流磁場によって、探針10の磁化は周期的に磁化反転させられる。このとき、探針10の磁化と磁性体試料1の磁化との間の磁気的相互作用による交番力が探針10に周期的に強度が変化する力を加え、探針10の見かけ上のバネ定数が周期的に変化する。この探針10の振動の周期的な周波数変調の程度を、後に説明する変調計測機構40によって計測する。
 探針10には残留磁気モーメントが小さいものを用いることが好ましい。具体的には、探針10の交流磁場発生機構30から交流磁場を印加しても変化しない探針10の先端の残留磁極の強度と、交流磁場発生機構30から探針10に印加する交流磁場の空間変化勾配との積が、交流磁場発生機構30から交流磁場を印加することにより変化する探針10の先端の磁極の強度と、磁性体試料1から探針10に印加される磁場の空間変化勾配との積より小さいことが好ましい。探針10の残留磁極の強度を小さくするには、探針10にソフト磁性材料を用いることが考えられる。
 従来のMFMによる磁性体試料の観察では、ソフト磁性材料を用いた探針の場合には、磁性体試料1からの漏洩磁場により、探針の磁気モーメントの方向が変化し、計測する磁場方向が測定場所により変化する問題があるので、ハード磁性材料を用いた探針が必須であった。一方、磁場観察装置100は、上述したように探針10にソフト磁性材料を用いることができる。探針10にソフト磁性材料を用いることによって、従来のMFMのCoCr系探針と比較して、検出感度を高くできる飽和磁化の大きなFeCo合金等の磁性材料を選択できるメリットがある。検出感度の高い飽和磁化が大きな磁性材料を用いることで、探針10を構成する磁性体薄膜の膜厚を5nm以下に低減できるので、磁場観察装置100の飛躍的な空間分解能の向上が望める。
 (励振機構20)
 上記探針10はカンチレバー11の一方の端部(自由端)近傍に備えられており、該カンチレバー11の他方の端部(固定端)は固定されている。このようなカンチレバー11を励振機構20によって任意の周波数で励振させることにより、探針10を任意の周波数で励振させることができる。
 探針10を任意の周波数で励振させることができる機構であれば、励振機構20の構成は特に限定されない。励振機構20は、例えば、カンチレバー11の固定端近傍に取り付けられた励振用アクチュエータと、該励振用アクチュエータに接続された交流電圧電源とによって構成することができる。
 (交流磁場発生機構30)
 交流磁場発生機構30は、探針10を周期的に磁化反転させることができ、かつ磁性体試料1を磁化反転させない大きさの交流磁場を探針10に印加する機構である。このような交流磁場発生機構30は、例えば、図1に示したように、探針10を囲むコイル32と該コイル32に交流電流を供給する交流電流電源31とによって構成することができる。
 交流磁場発生機構30から発生させる交流磁場は、空間変化が小さいことが好ましい。具体的には、探針10の先端の残留磁極の強度と、交流磁場発生機構30から探針10に印加する交流磁場の空間変化勾配との積が、交流磁場発生機構30から交流磁場を印加することにより変化する探針10の先端の磁極の強度と、磁性体試料1から探針10に印加される磁場の空間変化勾配との積より小さいことが好ましい。交流磁場の空間変化勾配を小さくするには、磁性体試料1と探針10との間の計測空間に、一様な大きさの交流磁場を印加することが考えられる。
 また、交流磁場発生機構30は、磁性体試料1の観察面に対して垂直方向の交流磁場を印加する機構であることが好ましい。
 さらに、交流磁場発生機構30から発生させる交流磁場の周波数は、探針10に用いる磁性材料に合わせて、探針10の磁化反転が効率的に行われる周波数に最適化することが好ましい。
 交流磁場発生機構30を構成する要素の設置位置は特に限定されないが、探針10の周りの空間が狭い従来の汎用型のMFMに交流磁場発生機構30を組み込むためには、交流磁場を発生するポットコア等をMFMの試料設置台の下に設置することが考えられる。しかしながら、この場合、磁性体試料に垂直磁気記録媒体を用いると、以下のような問題を生じる虞がある。すなわち、垂直磁気記録媒体は、観察面側の表面にハード磁性を有する数十nmの膜厚の記録層を有し、該記録層の下部にソフト磁性を有する数μmの膜厚の下地層を有しているので、ポットコアからの交流磁場の強度が、このソフト磁性下地層の磁場シールド効果によって減衰する虞がある。したがって、交流磁場発生機構30は、垂直磁気記録媒体(磁性体試料1)を通さずに探針10に交流磁場を印加できる機構であることが好ましい。具体的には、探針10の周りの空間を広くして、磁性体試料1よりも探針10側から探針10に交流磁場を印加できるように、交流磁場発生機構30を設置することが好ましい。
 (変調計測機構40)
 探針10の磁化と磁性体試料1の磁化との間の磁気的相互作用による交番力が、周期的に強度が変化する力を探針10に加える。この周期的に強度が変化する力が、探針10の見かけ上のバネ定数を周期的に変化させる。このようにして探針10の見かけ上のバネ定数が周期的に変化することによって、探針10の振動の周波数が周期的に変調する。変調計測機構40は、この探針10の振動の周期的な周波数変調の程度を、周波数復調により、又は、周波数変調により発生する側帯波スペクトルのうちの1つの側帯波スペクトルの強度の計測により、計測することができる機構である。
 図1に示した形態の変調計測機構40は、カンチレバー11の自由端側の先端にレーザー光を照射する光源41と、カンチレバー11に反射された該レーザー光を検知する光学変位センサー42と、復調装置としてアナログ回路またはデジタル回路で構成したFM復調器43と、強度計測装置としてのロックインアンプ44とを有している。なお、変調計測機構40は、従来の磁気力顕微鏡の機能である位相検出回路や振幅検出回路を備えていてもよい。
 光源41から照射されてカンチレバー11の自由端側の先端で反射したレーザー光を光学変位センサー42で検知することにより、探針10の変位を出力として取り出すことができる。下記走査機構によって、探針10で磁性体試料1の観察面を走査しながら検知した光学変位センサー42からの出力は、FM復調器43に入力される。また、FM復調器43の出力端子は、ロックインアンプ44の入力信号端子に接続されており、ロックインアンプ44の参照信号端子には交流磁場発生機構30に備えられた交流電流電源31の電圧信号を接続している。光学変位センサー42とFM復調器43との間にアンプを設け、該アンプを介して光学変位センサー42からの信号がFM復調器43に入力されるようにしてもよい。FM復調器43によって復調された周波数復調信号の振幅及び位相は、ロックインアンプ44で計測することができる。FM復調器43としては、PLL回路(位相同期ループ回路)を用いることができる。
 変調計測機構40によれば、上述したようにして探針10の振動の周期的な周波数変調の程度を周波数復調により計測することができる。また、下記のようにして、探針10の振動の周期的な周波数変調の程度を、周波数変調により発生する側帯波スペクトルのうちの1つの側帯波スペクトルの強度を計測することによって計測することもできる。スペクトルの強度はスペクトラムアナライザ(周波数に対して、信号等の強度等を計測するもの)を用いるのが一般的である。スペクトラムアナライザによる側帯波スペクトルの強度の計測は、例えば図1に示したA点又はB点で行うことができる。
 A点で計測する方法は、周波数復調前に側帯波スペクトルの一方を選択して計測する方法である。探針10の共振周波数ωは、後述する(4)式のように、探針10の位置における磁性体試料1からの垂直磁場H dcの磁場勾配(∂H dc/∂z)等に依存して、下記(※)式のようになる。このとき、ω±ωに側帯波スペクトルが現れるので、これらのうち一方の側帯波スペクトルを選択して計測する。
Figure JPOXMLDOC01-appb-M000001
 なお、ωは観察場所(探針10の位置)によって変化する。そのため、A点で計測する方法によれば、ωの変化を補正しなければ誤差が大きくなるため、側帯波スペクトルを正確に計測することが以下に説明するB点で計測する方法よりも困難になる。
 B点で計測する方法は、周波数復調後に残る側帯波スペクトルの一方を選択して計測する方法である。この方法によれば、観察場所(探針10の位置)によるωの変動の影響がない。よって、ωの変化を補正する必要がないため、側帯波スペクトルを正確に計測することが、A点で計測する場合よりも容易である。一方、B点で計測する方法によれば、A点で計測する場合よりも周波数が低くなるため、計測にかかる時間が長くなる。ただし、実際の計測に対して、このように計測時間が長くなることによる悪影響はほとんどない。
 (走査機構)
 走査機構は、探針10と磁性体試料1との位置を相対的に変化させることができる機構である。走査機構としては、例えば、磁性体試料1が載置される試料設置台を駆動装置によって動かすことにより、試料設置台の位置を探針10に対して相対的に変化させることによって、探針10と磁性体試料1との位置を相対的に変化させることができる機構とすることができる。
 しかしながら、磁場観察装置100に備えられる走査機構は、上記形態に限定されず、探針10又は磁性体試料1の移動を制御して、探針10と磁性体試料1との位置を相対的に変化させることができる機構であれば良い。走査機構としては、従来の走査型プローブ顕微鏡などに用いられている公知の機構(例えば、ピエゾ素子など。)を用いることができる。
 (磁場画像化機構)
 磁場画像化機構は、変調計測機構40により計測された周波数変調の程度に基づいて、探針10の磁化と磁性体試料1の磁化との間の磁気的相互作用による交番力の振幅と、交流磁場発生機構30から発生する交流磁場に対する位相遅れとを観測し、それにより、磁性体試料1から発生する直流磁場の大きさの程度と方向を画像化する機構である。
 磁場画像化機構は、上記のようにして変調計測機構40による計測結果を画像化できるものであれば特に限定されない。磁場画像化機構としては、例えば、従来の走査型顕微鏡に備えられるような、外部入力信号を画像化できる表示装置を用いることができる。
 <計測原理>
 本発明の磁場観察装置100を用いて磁性体材料1の表面近傍において高分解能で磁気力を計測でき、磁性体試料1表面の磁極の極性検出も可能である原理について、以下に説明する。
 上述したように、探針10の磁化と磁性体試料1の磁化との間の磁気的相互作用による交番力に起因して、探針10の振動の周波数が周期的に変調する。その理論モデルを図2に示した。図2(a)は、一定周波数で加振している探針10に、探針10の共振周波数と異なる周波数の交流磁場を印加した様子を概略的に示している。図2(b)は、このような探針10の運動を先端に質量mのおもりが取り付けられたバネに例えたモデルを概略的に示している。
 探針10の振動における交番力を変調源とする周波数変調現象は、図2に示すようなバネ定数が交番力により周期的に変化する調和振動子の運動(下記(1)式)を考えることで導出される。
Figure JPOXMLDOC01-appb-M000002
(m:探針10の有効質量、t:時間、z:探針10の振幅、γ:減衰係数、k:探針10に交番力を加える前のカンチレバー11のバネ定数、Δk:探針10に交番力を加えたことによるカンチレバー11の実効的なバネ定数の変化量、ω:加振角周波数、F:加振力の振幅、ω:探針10の共振角周波数)
 ここでは、探針10をその共振角周波数ωで励振させる場合を考える。
  Δkcos(ωt)=keffは交番力による実効的なバネ定数の変化であり、この解は、Δk<<kの場合、下記(2)式のようになる。
Figure JPOXMLDOC01-appb-M000003
 上記(2)式より、交番力を発生源として、探針10の振動に周波数変調が発生することがわかる。ここで、探針10にソフト磁性材料を用い、磁性体試料1の磁化状態を乱さない範囲で角周波数ωの交流磁場を探針10に印加することにより、探針10の磁化を周期的に反転させることを考える。磁性体試料1の観察面に垂直方向の直流磁場H dcを受けている探針10の先端の磁極が、磁性体試料1の観察面に垂直方向の交流磁場H accos(ωt)により下記(3)式のように変化すると、探針10の実効的なバネ定数の変化keffは下記(4)式で与えられる。ここで、探針10の先端の磁極の強度は、探針10の磁気モーメントの試料面に垂直方向成分の大きさに比例して変化している。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
(H:探針10に加わる探針10の変位方向の磁場成分。探針10の変位方向は、図2(a)に示すように、試料面に垂直なz方向である。)
 探針10の先端の残留磁極の強度と探針10に印加する交流磁場の空間変化の積を小さくして下記(5)式が満たされるようにすることで、(4)式の第2項は下記(6)式のようになる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 したがって、これらの条件下で交流磁場印加により発生する探針10の振動の周波数変調信号を周波数復調した後に、上記周波数復調信号を、ロックインアンプ44を用いて、交流磁場発生機構30に備えられた交流電流電源31への出力を参照信号として、交流電流電源31の角周波数ωでロックイン検出することで、磁性体試料1からの垂直磁場H dcの磁場勾配(∂H dc/∂z)の計測が試料表面近傍で可能になることがわかる。
 ここで、H dcの符号(上向き、下向きの極性)は、磁性体試料1の表面磁極の極性(N極、S極)を反映し、符号が反転した場合、実効的なバネ定数の変化keffは下記(7)式のように変化し、位相が180°変化する。
Figure JPOXMLDOC01-appb-M000008
 したがって、磁性体試料1の表面磁極の極性(N極、S極)を反映したH dcの符号(上向き、下向きの極性)を直接検出することも可能になる。
 上記(5)式では、左辺が必要な信号であり、右辺が不要な信号であるのでノイズに対応する。本発明において、この必要な信号はノイズに対して大きく、必要な信号とノイズとの比率(必要な信号/ノイズ)は3以上であることが好ましく、9以上であることがより好ましい。したがって、例えば必要な信号とノイズとの比率9にするには、下記(8)式を満たす必要がある。
Figure JPOXMLDOC01-appb-M000009
 上記(8)式において、(∂H dc/∂z)は磁性体試料1の磁気的不均一性を反映するので、測定場所に対してナノスケールで変化するのに対して、(∂H ac/∂z)はコイル32のサイズを反映して、測定場所に対してミリサイズで変化するので、微細磁区構造に及ぼすノイズの影響は通常は小さい。
 このように、本発明の磁場観察装置によれば、直流磁場を発生する磁気記録媒体等のハード磁性を有する磁性体試料の微細磁区構造を観察することができる。ハード磁性を示す磁性体は、ソフト磁性を示す磁性体と比較して微細な磁区構造を示す特徴がある。したがって、ハード磁性を有する磁性体試料の微細磁区構造を観察できる本発明の磁場観察装置は、広い汎用性を有する。また、本発明の磁場観察装置によれば、大気中における計測でも真空中における計測と同様に高い計測感度を得られる。
 2.磁場観察方法
 次に、本発明の磁場観察方法について説明する。
 本発明の磁場観察方法は、磁性体試料からの漏洩磁場を観察する方法であり、以下に説明する走査工程と変調計測工程とを有する。また、本発明の磁場観察方法は、例えば、上記した本発明の磁場観察装置100を用いて行うことができる。図1を参照しつつ、走査工程及び変調計測工程について説明する。
 (走査工程)
 走査工程は、磁性体試料1より磁化反転し易い探針10を磁性体試料1上に配置し、探針10を励振させると同時に、探針10を周期的に磁化反転させることができ、かつ磁性体試料1を磁化反転させない大きさの交流磁場を探針10に印加しながら、探針10で磁性体試料1の表面を走査する工程である。探針10の励振は、上記励振機構20によって行うことができる。また、探針10への交流磁場の印加は、上記交流磁場発生機構30によって行うことができる。さらに、探針10での磁性体試料1の表面の走査は、上記走査機構によって行うことができる。
 (変調計測工程)
 変調計測工程は、探針10の磁化と磁性体試料1の磁化との間の磁気的相互作用による交番力によって周期的に強度が変化する力を探針10に加え、該周期的な引力及び斥力によって探針10の見かけ上のバネ定数を周期的に変化させ、該バネ定数の周期的変化に起因する探針10の振動の周期的な周波数変調の程度を、周波数復調により又は周波数変調により発生する側帯波スペクトルのうちの1つの側帯波スペクトルの強度の計測により計測する工程である。当該計測は、上記変調計測機構40によって行うことができる。
 本発明の磁場観察方法は、直流磁場の観察に好適に用いることができる。また、走査工程において、探針10の先端の残留磁極の強度と、交流磁場発生機構30から探針10に印加する交流磁場の空間変化勾配との積が、交流磁場発生機構30から交流磁場を印加することにより変化する探針10の先端の磁極の強度と、磁性体試料1から探針10に印加される磁場の空間変化勾配との積より小さくすることが好ましい。さらに、変調計測工程により計測された周波数変調の程度に基づいて、探針10の磁化と磁性体試料1の磁化との間の磁気的相互作用による交番力の振幅と、交流磁場発生機構から発生する交流磁場に対する位相遅れとを計測し、それにより、磁性体試料1から発生する磁場の大きさの程度と方向を画像化する磁場画像化工程を備えることが好ましい。
 以下に、実施例にて本発明をさらに詳しく説明するが、本発明は実施例に限定されるものではない。
 本発明の磁場観察装置を用いて磁性体試料からの漏洩磁場を観察した。磁性体試料には、CoCrPt-SiO系垂直磁気記録媒体を用いた。本発明の磁場観察装置は、市販のMFM(日本電子株式会社製走査型プローブ顕微鏡、JSPM-5400)をベースとし、交流磁場発生機構として、ソフト磁性フェライトで作製したポットコア及び該ポットコアに電力を供給する交流電圧電源を加え、さらに変調計測機構の一部としてFM復調器(ナノサーフ社製、easyPLL)を追加して構成した。なお、ポットコアはMFMの試料設置台の下に設置した。ポットコアから発生させた交流磁場の振幅は50Oe程度、周波数は100Hzであった。また、探針には、Si探針の表面にパーマロイ薄膜を20nm程度の厚さで成膜したソフト磁性探針を用いた。当該ソフト磁性探針の保持力は5Oe程度であった。観察時における探針と磁性体試料の観察面との距離は10nmであった。
 ポットコアからの交流磁場によって、垂直磁気記録媒体の記録層の磁気モーメントは変化させずに、ソフト磁性探針の磁気モーメントを周期的に反転させた。Tapping-Lift modeを用いて、磁性体試料の観察面(記録層側の面)の表面形状像を取得後、交流磁場を印加することによって発生した探針振動の周波数変調信号を、FM復調器を用いて周波数復調し、ポットコアに接続した交流電圧電源を参照信号としてロックイン検出し、交番磁気力の振幅像及び位相像より、垂直磁気記録媒体の記録層の静磁場情報を得た。
 図3に、垂直磁気記録媒体の表面近傍での観察結果を示した。図3(a)は垂直磁気記録媒体からの垂直磁場(観察面に垂直な磁場)の強度を、図3(b)はポットコアに接続した交流電圧電源に対する交番力の位相差を画像化したものである。図3(c)は図3(a)の像のラインプロファイルを示しており、図3(d)は、図3(b)の像のラインプロファイルを示している。なお、通常のMFMの観察モードでは試料表面近傍のため、磁場を検出できなかった。
 図3(b)は明暗コントラストからなる2値画像になっており、その位相差が180°であることから、垂直磁気記録媒体から発生している垂直磁場の方向が上向き・下向きと逆方向であることを示している。すなわち、磁場を発生する垂直磁気記録媒体表面のN極・S極が明瞭に識別できたことを示している。この結果は、MFMで初めて磁性体試料の表面磁極を直接検出するのに成功したものである。記録部分ではこれらの明暗コントラストの境界が記録ビットの境界となり、その位置を明瞭に観察できることがわかる。このように、本発明によれば、従来は困難であった表面磁極の極性を直接観察することが可能である。
 図3(a)の垂直磁場強度像を図3(b)の磁場位相像と比較すると、磁場位相像の明暗コントラストの境界で磁場強度がゼロ値となる暗コントラストを示すことがわかる。これより磁場強度像においても記録ビットの境界を明瞭に観察できていることがわかる。
 さらに、図3(a)の垂直磁場強度像では、磁場強度が粒状で変化しており、ノイズの主因となる磁気的に結合した複数の結晶粒からなる磁気クラスターが起因と推察される磁気的不均一性が明瞭に観察されている。
 以上のように、本発明によれば、磁性体試料の観察面近傍の磁気力も検出可能であることから、空間分解能の向上を期待できる。また、磁気記録媒体の研究開発に重要となる媒体の磁気的不均一性を明瞭に画像化できる。
 以上、現時点において最も実践的であり、かつ好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う磁場観察装置及び磁場観察方法も本発明の技術的範囲に包含されるものとして理解されなければならない。
 本発明の磁場観察装置及び磁場観察方法は、例えば、磁気記録媒体の製造過程において用いることができる。
 1 磁性体試料
 10 探針
 11 カンチレバー
 20 励振機構
 30 交流磁場発生機構
 31 交流電流電源
 32 コイル
 40 変調計測機構
 41 光源
 42 光学変位センサー
 43 FM復調器
 44 ロックインアンプ

Claims (12)

  1.  磁性体試料からの漏洩磁場を観察する磁場観察装置であって、
     前記磁性体試料より磁化反転し易い磁気モーメントを有する探針と、
     前記探針を励振させる励振機構と、
     前記探針及び前記磁性体試料を相対的に移動させて前記探針に前記磁性体試料上を走査させる走査機構と、
     前記探針を周期的に磁化反転させることができ、かつ前記磁性体試料を磁化反転させない大きさの交流磁場を前記探針に印加する交流磁場発生機構と、
     前記交流磁場発生機構によって印加された前記交流磁場により周期的に磁化方向を変化させた前記探針の磁化と前記磁性体試料の磁化との間の磁気的相互作用によって前記探針に加えられる交番力を原因として見かけ上のバネ定数が変化することで発生する、前記探針の振動の周期的な周波数変調の程度を、周波数復調により、又は前記周波数変調により発生する側帯波スペクトルのうちの1つの側帯波スペクトルの強度の計測により計測することができる変調計測機構と、
    を備える磁場観察装置。
  2.  前記漏洩磁場が直流磁場である、請求項1に記載の磁場観察装置。
  3.  前記交流磁場発生機構から交流磁場を印加しても変化しない前記探針の先端の残留磁極の強度と、前記交流磁場発生機構から前記探針に印加する交流磁場の空間変化勾配との積が、前記交流磁場発生機構から交流磁場を印加することにより変化する前記探針の先端の磁極の強度と、前記磁性体試料から前記探針に印加される磁場の空間変化勾配との積より小さい、請求項1又は2に記載の磁場観察装置。
  4.  前記交流磁場発生機構が、前記磁性体試料と前記探針との間の計測空間に、空間的に一様な大きさの交流磁場を印加する機構である、請求項3に記載の磁場観察装置。
  5.  前記交流磁場発生機構が、前記磁性体試料の観察面に対して垂直方向の交流磁場を印加する機構である、請求項3又は4に記載の磁場観察装置。
  6.  前記探針がソフト磁性体を含む、請求項1~5のいずれかに記載の磁場観察装置。
  7.  前記磁性体試料が磁気記録媒体である、請求項1~6のいずれかに記載の磁場観察装置。
  8.  前記変調計測機構により計測された周波数変調の程度に基づいて、前記交番力の振幅と、前記交流磁場発生機構から発生する前記交流磁場に対する位相遅れとを観測し、それにより、前記磁性体試料から発生する直流磁場の大きさの程度と方向を画像化する磁場画像化機構を備えた、請求項2~7のいずれかに記載の磁場観察装置。
  9.  磁性体試料からの漏洩磁場を観察する磁場観察方法であって、
     前記磁性体試料より磁化反転し易い探針を前記磁性体試料上に配置し、前記探針を励振させると同時に、前記探針の磁気モーメントを周期的に磁化反転させることができ、かつ前記磁性体試料を磁化反転させない程度の大きさの交流磁場を前記探針に印加しながら、前記探針で前記磁性体試料の表面を走査する走査工程と、
     前記交流磁場発生機構によって印加された前記交流磁場により周期的に磁化方向を変化させた前記探針の磁化と前記磁性体試料の磁化との間の磁気的相互作用による交番力によって周期的に強度が変化する力を前記探針に加え、該周期的な力によって前記探針の見かけ上のバネ定数を周期的に変化させ、該バネ定数の周期的変化に起因する前記探針の振動の周期的な周波数変調の程度を、周波数復調により、又は前記周波数変調により発生する側帯波スペクトルのうちの1つの側帯波スペクトルの強度の計測により計測する変調計測工程と、
    を有する磁場観察方法。
  10.  前記漏洩磁場が直流磁場である、請求項9に記載の磁場観察方法。
  11.  前記走査工程において、前記交流磁場発生機構から交流磁場を印加しても変化しない前記探針の先端の残留磁極の強度と、前記交流磁場発生機構から前記探針に印加する交流磁場の空間変化勾配との積が、前記交流磁場発生機構から交流磁場を印加することにより変化する前記探針の先端の磁極の強度と、前記磁性体試料から前記探針に印加される磁場の空間変化勾配との積より小さくなるようにする、請求項9又は10に記載の磁場観察方法。
  12.  さらに、前記変調計測工程により計測された周波数変調の程度に基づいて、前記交番力の振幅と、前記交流磁場発生機構から発生する前記交流磁場に対する位相遅れとを計測し、それにより、前記磁性体試料から発生する磁場の大きさの程度と方向を画像化する磁場画像化工程を備えた、請求項9~11のいずれかに記載の磁場観察方法。
PCT/JP2011/070146 2010-09-03 2011-09-05 磁場観察装置及び磁場観察方法 WO2012029973A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11821984.9A EP2613160B1 (en) 2010-09-03 2011-09-05 Magnetic field observation device and magnetic field observation method
US13/819,486 US8621658B2 (en) 2010-09-03 2011-09-05 Magnetic field observation device and magnetic field observation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010198054A JP4769918B1 (ja) 2010-09-03 2010-09-03 磁場観察装置及び磁場観察方法
JP2010-198054 2010-09-03

Publications (1)

Publication Number Publication Date
WO2012029973A1 true WO2012029973A1 (ja) 2012-03-08

Family

ID=44693612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070146 WO2012029973A1 (ja) 2010-09-03 2011-09-05 磁場観察装置及び磁場観察方法

Country Status (4)

Country Link
US (1) US8621658B2 (ja)
EP (1) EP2613160B1 (ja)
JP (1) JP4769918B1 (ja)
WO (1) WO2012029973A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147866A1 (ja) * 2013-03-18 2014-09-25 国立大学法人東北大学 高周波電磁界測定装置
WO2014157661A1 (ja) * 2013-03-28 2014-10-02 国立大学法人秋田大学 磁場値測定装置および磁場値測定方法
JP2015049134A (ja) * 2013-08-31 2015-03-16 国立大学法人秋田大学 交流磁場測定装置および交流磁場測定方法
JP2015049165A (ja) * 2013-09-02 2015-03-16 国立大学法人秋田大学 交流磁場測定装置および交流磁場測定方法
WO2016024636A1 (ja) * 2014-08-15 2016-02-18 国立大学法人秋田大学 強磁場計測および磁場値測定用磁気力顕微鏡用探針、ならびに、強磁場発生試料の磁場観察方法および装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4769918B1 (ja) * 2010-09-03 2011-09-07 国立大学法人秋田大学 磁場観察装置及び磁場観察方法
WO2013047537A1 (ja) * 2011-09-26 2013-04-04 国立大学法人秋田大学 直流磁場の磁気プロファイル測定装置および磁気プロファイル測定方法
JP5975535B2 (ja) * 2011-09-26 2016-08-23 国立大学法人秋田大学 交流磁場の磁気プロファイル測定装置および磁気プロファイル測定方法
JP6482129B2 (ja) * 2014-01-30 2019-03-13 国立大学法人秋田大学 電気力/磁気力顕微鏡および電場/磁場同時測定方法
WO2015182564A1 (ja) * 2014-05-24 2015-12-03 国立大学法人秋田大学 磁気力顕微鏡用探針の評価装置および評価方法、ならびに磁気力顕微鏡および磁気力顕微鏡の制御用磁場調整方法
CN109443403B (zh) * 2018-11-21 2021-09-07 北京遥测技术研究所 一种光纤efpi传感器解调装置
CN113238175A (zh) * 2021-04-30 2021-08-10 北京航空航天大学 反射光生成组件、磁性测量系统及磁性测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142315A (ja) * 1991-07-08 1993-06-08 Hitachi Ltd 表面顕微鏡用探針及びそれを用いた表面顕微鏡
JP2001272327A (ja) * 2000-03-27 2001-10-05 Toshiba Corp 磁界特性評価装置及び測定方法
JP2002286613A (ja) * 2001-03-23 2002-10-03 Toshiba Corp 高周波特性測定装置
JP2009101991A (ja) 2007-10-19 2009-05-14 Trw Automotive Electronics & Components Gmbh 通気装置
WO2009101991A1 (ja) * 2008-02-12 2009-08-20 Akita University 表面状態計測装置及び該装置を用いた表面状態計測方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69309318T2 (de) * 1992-01-10 1997-10-30 Hitachi Ltd Verfahren und Vorrichtung zum Beobachten einer Fläche
US6437562B2 (en) * 2000-03-27 2002-08-20 Kabushiki Kaisha Toshiba Magnetic field characteristics evaluation apparatus and magnetic field characteristics measuring method
SG103357A1 (en) * 2001-08-31 2004-04-29 Toshiba Kk Method and apparatus for measuring magnetic head
US8069492B2 (en) * 2008-03-31 2011-11-29 Seagate Technology Llc Spin-torque probe microscope
JP2010175534A (ja) * 2009-01-05 2010-08-12 Hitachi High-Technologies Corp 磁気デバイス検査装置および磁気デバイス検査方法
JP4769918B1 (ja) * 2010-09-03 2011-09-07 国立大学法人秋田大学 磁場観察装置及び磁場観察方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142315A (ja) * 1991-07-08 1993-06-08 Hitachi Ltd 表面顕微鏡用探針及びそれを用いた表面顕微鏡
JP2001272327A (ja) * 2000-03-27 2001-10-05 Toshiba Corp 磁界特性評価装置及び測定方法
JP2002286613A (ja) * 2001-03-23 2002-10-03 Toshiba Corp 高周波特性測定装置
JP2009101991A (ja) 2007-10-19 2009-05-14 Trw Automotive Electronics & Components Gmbh 通気装置
WO2009101991A1 (ja) * 2008-02-12 2009-08-20 Akita University 表面状態計測装置及び該装置を用いた表面状態計測方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147866A1 (ja) * 2013-03-18 2014-09-25 国立大学法人東北大学 高周波電磁界測定装置
JPWO2014147866A1 (ja) * 2013-03-18 2017-02-16 国立大学法人東北大学 高周波電磁界測定装置
WO2014157661A1 (ja) * 2013-03-28 2014-10-02 国立大学法人秋田大学 磁場値測定装置および磁場値測定方法
CN105102989A (zh) * 2013-03-28 2015-11-25 国立大学法人秋田大学 磁场值测定装置以及磁场值测定方法
JP5954809B2 (ja) * 2013-03-28 2016-07-20 国立大学法人秋田大学 磁場値測定装置および磁場値測定方法
US9482692B2 (en) 2013-03-28 2016-11-01 Akita University Magnetic field value measuring device and method for measuring magnetic field value
CN105102989B (zh) * 2013-03-28 2017-06-23 国立大学法人秋田大学 磁场值测定装置以及磁场值测定方法
JP2015049134A (ja) * 2013-08-31 2015-03-16 国立大学法人秋田大学 交流磁場測定装置および交流磁場測定方法
JP2015049165A (ja) * 2013-09-02 2015-03-16 国立大学法人秋田大学 交流磁場測定装置および交流磁場測定方法
WO2016024636A1 (ja) * 2014-08-15 2016-02-18 国立大学法人秋田大学 強磁場計測および磁場値測定用磁気力顕微鏡用探針、ならびに、強磁場発生試料の磁場観察方法および装置

Also Published As

Publication number Publication date
EP2613160A4 (en) 2017-03-01
EP2613160B1 (en) 2019-07-24
US20130174302A1 (en) 2013-07-04
JP4769918B1 (ja) 2011-09-07
US8621658B2 (en) 2013-12-31
JP2012053020A (ja) 2012-03-15
EP2613160A1 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP4769918B1 (ja) 磁場観察装置及び磁場観察方法
JP5424404B2 (ja) 表面状態計測装置及び該装置を用いた表面状態計測方法
CN103443632B (zh) 磁力显微镜及高空间分辨率磁场测定方法
JP5592841B2 (ja) 磁気力顕微鏡及びそれを用いた磁場観察方法
KR101346523B1 (ko) 포텐셜 취득 장치, 자장 현미경, 검사 장치 및 포텐셜 취득 방법
JP3141555B2 (ja) 走査表面磁気顕微鏡
JP6167265B2 (ja) 磁性微粒子の磁気特性評価装置および磁気特性評価方法
JP2006017557A (ja) 磁気力顕微鏡を利用した垂直磁気記録媒体中の保磁力分布解析法並びにその解析装置
JP5954809B2 (ja) 磁場値測定装置および磁場値測定方法
EP2762896B1 (en) Dc magnetic field magnetic profile measuring device and magnetic profile measuring method
JP5579516B2 (ja) 走査プローブ顕微鏡
JP2012053956A (ja) 磁気ヘッド素子評価装置及び磁気ヘッド素子評価方法
JP6624737B2 (ja) 強磁場計測および磁場値測定用磁気力顕微鏡用探針、ならびに、強磁場発生試料の磁場観察方法および装置
JP6358788B2 (ja) 交流磁場測定装置および交流磁場測定方法
JP4344812B2 (ja) 走査型プローブ顕微鏡と計測方法
JP6482129B2 (ja) 電気力/磁気力顕微鏡および電場/磁場同時測定方法
JP6481191B2 (ja) 交流磁場測定装置および交流磁場測定方法
JP2004279099A (ja) 外部磁場掃引磁気力顕微鏡および計測方法
JP2010071674A (ja) 走査型プローブ顕微鏡
JP2008292373A (ja) 走査型プローブ顕微鏡における走査方法及び強磁場走査型プローブ顕微鏡装置
JPH04116401A (ja) 磁場観測装置及び方法
JPH0996644A (ja) 磁気力顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821984

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011821984

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13819486

Country of ref document: US