WO2014157661A1 - 磁場値測定装置および磁場値測定方法 - Google Patents

磁場値測定装置および磁場値測定方法 Download PDF

Info

Publication number
WO2014157661A1
WO2014157661A1 PCT/JP2014/059276 JP2014059276W WO2014157661A1 WO 2014157661 A1 WO2014157661 A1 WO 2014157661A1 JP 2014059276 W JP2014059276 W JP 2014059276W WO 2014157661 A1 WO2014157661 A1 WO 2014157661A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
probe
external magnetic
frequency modulation
frequency
Prior art date
Application number
PCT/JP2014/059276
Other languages
English (en)
French (fr)
Inventor
準 齊藤
哲 吉村
幸則 木下
野村 光
中谷 亮一
Original Assignee
国立大学法人秋田大学
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人秋田大学, 国立大学法人大阪大学 filed Critical 国立大学法人秋田大学
Priority to JP2015508785A priority Critical patent/JP5954809B2/ja
Priority to US14/777,667 priority patent/US9482692B2/en
Priority to CN201480016966.2A priority patent/CN105102989B/zh
Publication of WO2014157661A1 publication Critical patent/WO2014157661A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/50MFM [Magnetic Force Microscopy] or apparatus therefor, e.g. MFM probes
    • G01Q60/52Resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/50MFM [Magnetic Force Microscopy] or apparatus therefor, e.g. MFM probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/50MFM [Magnetic Force Microscopy] or apparatus therefor, e.g. MFM probes
    • G01Q60/54Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/50MFM [Magnetic Force Microscopy] or apparatus therefor, e.g. MFM probes
    • G01Q60/54Probes, their manufacture, or their related instrumentation, e.g. holders
    • G01Q60/56Probes with magnetic coating

Definitions

  • the present invention relates to a magnetic field measuring apparatus and a magnetic field measuring method for measuring a DC magnetic field generated by an observation sample.
  • the present invention relates to a magnetic field measuring apparatus and a magnetic field measuring method that can measure the DC magnetic field with high accuracy.
  • MFM magnetic force microscope
  • AC magnetic field alternating magnetic field
  • DC magnetic field direct magnetic field
  • FIG. 6A is an explanatory diagram of a conventional MFM for observing a DC magnetic field (see Patent Document 1).
  • the probe 811 of the cantilever 81 is made of a hard magnetic material.
  • a hard magnetic material is a material in which magnetization reversal hardly occurs once magnetized.
  • an alloy of cobalt and chromium, an alloy of iron and platinum, or the like is used as the hard magnetic material.
  • the cantilever 81 is excited by the piezoelectric element 812 at a resonance frequency or a frequency close to the resonance frequency (for example, about 300 kHz).
  • an excitation power source is indicated by AC.
  • Magnetic interaction occurs between the probe 811 and the observation sample 82. Due to this magnetic interaction, the spring constant of the cantilever 81 changes apparently. Due to the change in the apparent spring constant, the resonance frequency of the cantilever 81 changes. As a result, the vibration state (amplitude and phase) of the probe 811 also changes.
  • 6A optically detects changes in amplitude and phase of the vibration of the probe 811 (change in the spring constant of the cantilever 81). Thereby, the distribution of the magnetic field gradient on the surface of the observation sample 82 can be acquired as an image.
  • the magnetic field of the observation sample 82 is not directly measured, but the magnetic field gradient of the observation sample 82 is determined based on the value of change in the spring constant of the cantilever 81 (value of change in amplitude and phase). Detected. Further, in the MFM of FIG. 6A, the near field force such as van der Waals force near the surface is stronger near the surface of the observation sample 82 than the magnetic force that is a far field force. It is difficult to detect. Therefore, the magnetic field gradient is measured by the distance between the probe and the observation sample where the magnetic force is greater than the short-distance force, and the improvement in spatial resolution is limited to the distance between the probe and the observation sample where the magnetic force is mainly used. Has been.
  • the cantilever 91 is excited by the piezoelectric element 912 at a resonance frequency or a frequency close to the resonance frequency.
  • the excitation power source is indicated by AC.
  • the probe 911 of the tip portion of the cantilever 91 is constituted by a soft magnetic material, providing an alternating external magnetic field H AC with coil 93 to the probe 911. Then, the magnetization of the probe 911 is periodically changed, and the degree of frequency modulation introduced into the forced vibration of the probe 911 by the DC magnetic field from the observation sample 92 is measured.
  • Patent Document 2 is suitable for detecting a magnetic field gradient on the surface of the observation sample 92, the magnetic field itself cannot be detected.
  • the surface magnetic field H SUR is disturbed by the AC external magnetic field HAC when the observation sample 92 has a low coercive force. For this reason, it may not be possible to meet the demand for magnetic field measurement with higher accuracy.
  • An object of the present invention is to measure the DC magnetic field itself with high accuracy without disturbing the DC magnetic field generated from the observation sample.
  • a typical operation of the present invention will be described below.
  • a probe made of excited paramagnetic material or the like (a material whose magnetization intensity is proportional to the magnitude of the external magnetic field) has a non-zero (large) rate of change in the vibration direction of the probe.
  • Apply an alternating external magnetic field (B) An alternating magnetic field having a frequency different from the mechanical vibration frequency of the probe and having a non-zero change rate in the mechanical vibration direction of the probe is applied to the probe tip position.
  • the frequency modulation of the probe vibration is weakened by changing the DC magnetic field from the observation sample applied to the tip of the probe so as to be canceled by the DC external magnetic field.
  • D) The DC external magnetic field is measured when frequency modulation does not occur or when the magnitude of frequency modulation becomes minimum. This is a DC magnetic field generated from the observation sample.
  • the magnetic field measurement apparatus of the present invention includes the following forms.
  • a magnetic field measuring device for detecting a DC magnetic field generated from an observation sample An oscillating probe device having a probe made of one or more materials having the property that the strength of magnetization is proportional to the magnitude of the external magnetic field;
  • a mechanical vibration source for mechanically exciting the probe;
  • a vibration detection device for detecting the mechanical vibration frequency and mechanical vibration amplitude of the probe;
  • An AC magnetic field generator that gives the probe an alternating magnetic field having a frequency different from the mechanical vibration frequency of the probe, wherein the rate of change in the mechanical vibration direction of the probe is not zero;
  • a DC external magnetic field generator for applying a DC external magnetic field in the mechanical vibration direction to the probe;
  • a frequency modulation detection device for detecting frequency modulation generated in the mechanical vibration of the probe from the mechanical vibration frequency detected by the vibration detection device;
  • a DC external magnetic field adjustment device that adjusts the magnitude of the DC external magnetic field in the direction of mechanical vibration given to the probe by the DC external magnetic field generator; Observ
  • the DC external magnetic field adjusting device adjusts the DC external magnetic field so that the DC external magnetic field cancels all of the DC magnetic field.
  • the direct current external magnetic field adjustment device adjusts the direct current external magnetic field so that the direct current external magnetic field cancels a part of the direct current magnetic field.
  • the AC magnetic field generator has an electromagnetic coil, The magnetic field measuring apparatus according to any one of (1) to (3).
  • the AC magnetic field generator has two or more electromagnetic coils, The two or more electromagnetic coils generate a plurality of magnetic fields in directions that cancel each other at the tip of the probe, whereby the AC magnetic field generator generates a magnetic field having a position where the magnetic field amplitude becomes zero, and The magnetic field gradient of the magnetic field generated by the AC magnetic field generator at a position where the magnetic field amplitude becomes zero is greater than any of the magnetic field gradients at the position of the magnetic field generated by each of the two or more electromagnetic coils.
  • the magnetic field measurement apparatus according to any one of (1) to (4).
  • the external magnetic field generator has an electromagnetic coil that applies a magnetic field to the probe
  • the DC external magnetic field adjustment device has a current adjustment device, wherein the magnetic field measurement device according to any one of (1) to (5).
  • the magnetic field measuring apparatus according to any one of (1) to (6), further comprising a mechanism for scanning the surface of the observation sample in one, two, or three dimensions with a probe.
  • a vibration type probe device having a probe made of one or more magnetic materials having a property in which the strength of magnetization is proportional to the magnitude of an external magnetic field
  • a step of mechanically exciting the probe A rate of change in the mechanical vibration direction of the probe is not zero, an alternating magnetic field with a frequency different from the mechanical vibration frequency of the probe is given, and a direct current external magnetic field in the direction of canceling the direct magnetic field generated from the observation sample is probed.
  • a magnetic field measurement method comprising:
  • a probe device including a probe made of one or more materials whose magnetization intensity is proportional to the magnitude of the external magnetic field is excited, and when a DC magnetic field is applied to the probe position, An AC external magnetic field that causes frequency modulation in the mechanical vibration (such that frequency modulation is not generated in the mechanical vibration of the probe when no DC magnetic field is applied to the probe position) is applied to the probe.
  • the DC external magnetic field is Measured or calculated as a DC magnetic field generated from According to the present invention, it is possible to measure the DC magnetic field itself generated from the observation sample with high accuracy without disturbing the DC magnetic field generated from the observation sample.
  • FIG. 6B is a diagram for explaining calculation by extrapolation of the magnitude of the DC magnetic field H zEXT dc when the intensity I FM of the frequency demodulated wave becomes zero. It is a block diagram which shows other embodiment of the magnetic field measuring apparatus of this invention.
  • the probe device is a device that vibrates in accordance with Hooke's law.
  • a typical example is a cantilever.
  • the probe which is the detection unit of the probe device, is made of one or more materials having a property that the strength of magnetization is proportional to the magnitude of the external magnetic field.
  • being proportional to the magnitude of the external magnetic field means, for example, that the strength of magnetization is proportional to the magnitude of the external magnetic field without showing hysteresis. That is, a paramagnetic material or a diamagnetic material whose magnetization intensity is proportional to the external magnetic field is used for the probe. It is also possible to use a ferromagnetic material that does not exhibit hysteresis.
  • the probe device is provided with a mechanical vibration source and can vibrate the probe at a resonance frequency or a frequency close to the resonance frequency.
  • a typical example of the mechanical vibration source is a piezo element.
  • the vibration detection device can optically detect the vibration of the probe device and measure at least the frequency change thereof.
  • the magnitude of the frequency modulation of the probe vibration is determined, for example, by measuring the sideband intensity of the frequency modulation in the probe vibration spectrum or measuring the intensity of the frequency demodulated signal of the frequency demodulator. It is possible to measure.
  • the vibration detection device can be constituted by, for example, a mirror provided in the probe device, a laser that emits a laser beam toward the mirror, and a photodiode that receives reflected light from the mirror.
  • the AC magnetic field generator can be constituted by, for example, two electromagnetic coils driven by AC.
  • the AC magnetic field generator may have three or more electromagnetic coils. It is preferable that the sum at the probe position of the component of the alternating magnetic field generated from each electromagnetic coil of the alternating magnetic field generator in the direction in which the probe vibrates (hereinafter sometimes simply referred to as “vibration direction”) is zero. .
  • the rate of change of the alternating magnetic field generated from the alternating magnetic field generator with respect to the vibration direction is preferably not as zero but as large as possible.
  • the DC external magnetic field generator can be constituted by, for example, an iron core-containing electromagnetic coil driven by a DC current.
  • the DC external magnetic field generator may have two or more electromagnetic coils.
  • the DC external magnetic field generator can be constituted by a permanent magnet moved by an actuator.
  • the DC external magnetic field adjustment device may be a device operated by a human operator or a (automated) control device.
  • This control device for example, uses PID control (Proportional Derivative Controller) or PI control (Proportional Integral Controller) so that the DC external magnetic field generated by the DC external magnetic field generator does not undergo frequency modulation in the mechanical vibration of the probe. In addition, the frequency modulation of the mechanical vibration of the probe is controlled to be minimized.
  • PID control Proportional Derivative Controller
  • PI control Proportional Integral Controller
  • the magnetic field measurement apparatus of the present invention can be configured to specify a DC magnetic field with a DC magnetic field specifying device while scanning the surface of the observation sample in one, two, or three dimensions with a probe by a scanning mechanism.
  • the DC magnetic field specifying device is used when frequency modulation does not occur in the mechanical vibration of the probe, or
  • the magnetic field generated by the observation sample at the probe position can be specified by the direct current value flowing through the electromagnetic coil of the direct current external magnetic field generator when the frequency modulation is minimized.
  • the DC external magnetic field generator has an iron core-containing electromagnetic coil
  • the iron core since the iron core has residual magnetization (hysteresis), an accurate DC external magnetic field is specified by the DC current value flowing through the electromagnetic coil. It may not be possible.
  • the DC external magnetic field can be specified with high accuracy using a magnetic field detector (for example, a magnetic sensor using a coil, a Hall element, etc.).
  • a magnetic field detector can be arranged at the probe position, and a DC external magnetic field can be measured by this detector.
  • the DC magnetic field specifying device can modulate the frequency of the mechanical vibration of the probe.
  • the DC magnetic field generated by the observation sample at the tip position of the probe can be specified by the movement amount (position) of the actuator when it does not occur or when the frequency modulation of the mechanical vibration of the probe is minimized.
  • the direct-current external magnetic field generator can be constituted by an electromagnetic coil or a permanent magnet driven by an actuator.
  • the DC external magnetic field generator is composed of an iron core-containing electromagnetic coil
  • frequency modulation may occur in the probe vibration due to the influence of the DC magnetic field generated by the residual magnetization of the iron core.
  • the DC external magnetic field adjustment device does not cause the frequency modulation of the probe vibration as described later, or the magnitude of the frequency modulation of the probe vibration is extremely small. What is necessary is just to adjust the electric current which flows through an electromagnetic coil so that it may become.
  • the DC magnetic field generated from the observation sample is a value obtained by adding the residual magnetic field to the DC magnetic field specified by the DC external magnetic field specifying device, or a value obtained by subtracting the residual magnetic field from the DC magnetic field specified by the DC external magnetic field specifying device.
  • the magnetic field measuring apparatus of the present invention can be configured to specify a DC magnetic field by a DC magnetic field specifying device while scanning the surface of an observation sample in one, two, or three dimensions with a probe by a scanning mechanism.
  • the measurement result can be output to an output device such as an image display device or a printing device.
  • FIG. 1 is a block diagram showing a magnetic field measuring apparatus 1 of the present invention.
  • a magnetic field measuring apparatus 1 includes a probe device 11, a mechanical vibration source 12, a vibration detection device 13, an AC magnetic field generation device 14, a DC external magnetic field generation device 15, a frequency modulation detection device 16, a DC external magnetic field control device (this In the invention, a “DC external magnetic field adjusting device”) 17 and a DC magnetic field specifying device 18 are provided.
  • the probe device 11 is a cantilever in the magnetic field measurement device 1 of FIG.
  • the cantilever includes an arm 112 and a probe 111 provided at the tip of the arm 112, and a laser light reflecting mirror is provided on the side of the arm 112 where the probe 111 is not provided.
  • the probe 111 is a chip coated with a paramagnetic material for detecting a DC magnetic field H zSMP dc generated from the observation sample 100.
  • the mechanical vibration source 12 is a device that excites the probe device 11 (excites the probe 111). In the magnetic field measuring device 1 of FIG. 1, the mechanical vibration source 12 includes an AC power source 121 and a piezo element 122. Has been.
  • the vibration detector 13 detects the vibration waveform of the probe 111.
  • the vibration detection device 13 includes a laser 131 (indicated by “LD” in FIG. 1) and a photodiode 132 (indicated by “PD” in FIG. 1).
  • the AC magnetic field generator 14 includes two AC coils (air-core coils) 141 and 142 that generate magnetic fields that cancel each other at the tip of the probe, and an AC power source 143.
  • the excitation frequency ⁇ 0 of the probe device 11 is based on the resonance frequency of the cantilever of the probe device 11 and the Q curve (a curve in which the Q value of the cantilever is plotted against the frequency).
  • a frequency having a non-zero gradient in frequency or Q curve can be appropriately selected. Since the spectrum intensity of the frequency-modulated sideband ( ⁇ o ⁇ ⁇ m ) can be increased as the excitation frequency is closer to the resonance frequency, it is preferable to use a frequency near the resonance frequency as the excitation frequency when measuring the magnetic field. . As will be described later, when scanning the sample surface, it is easy to control to keep the probe-sample distance constant while keeping the probe vibration amplitude constant.
  • a frequency with a steep Q curve gradient may be used as the excitation frequency.
  • the frequency of the mechanical vibration of the probe device 11 is usually the resonance frequency ⁇ r or a frequency in the vicinity of the resonance frequency, for example, ⁇ r ⁇ r / 3Q or more and ⁇ r + ⁇ r / 3Q or less, preferably ⁇ r ⁇ . r / 4Q than ⁇ r + ⁇ r / 4Q less (however Q is Q value of the probe apparatus 11.) frequency of is selected.
  • a frequency ⁇ m having a gradient where the Q curve is not zero at the frequency ⁇ 0 ⁇ ⁇ m can be appropriately selected.
  • ⁇ r / 3Q or less a frequency of ⁇ r / 4Q or less (where Q is the Q value of the probe device 11) is selected.
  • Q the Q value of the probe device 11
  • the frequency of the sideband spectrum by the frequency modulation of the probe vibration is ⁇ 0 ⁇ ⁇ m .
  • the DC external magnetic field generator 15 gives the probe 111 a DC external magnetic field H zEXT dc in the vibration direction (z-axis direction).
  • the DC external magnetic field generator 15 is composed of a DC coil (DC electromagnet) containing an iron core.
  • the frequency modulation detection device 16 detects frequency modulation generated in the vibration of the probe 111 from the vibration waveform detected by the vibration detection device 13.
  • the frequency modulation detection device 16 includes a frequency demodulator (PLL: Phase Locked Loop) 161 and a lock-in amplifier 162.
  • the DC external magnetic field control device 17 calculates the DC external magnetic field H zEXT dc in the vibration direction (z-axis direction) generated by the DC external magnetic field generation device 15 based on the detection result of the probe vibration frequency modulation by the frequency modulation detection device 16.
  • the frequency modulation of the probe vibration is controlled to be zero or minimal.
  • the control signal is given to the DC external magnetic field generator 15 as a DC current.
  • FIG. 3A shows a relationship between the DC external magnetic field H zEXT dc and the intensity of the frequency demodulated wave (or the intensity of the sideband spectrum of the frequency modulation).
  • the horizontal axis indicates the DC external magnetic field H zEXT dc
  • the vertical axis indicates the intensity I FM of the frequency demodulated wave.
  • a DC external magnetic field H zext dc intensity I FM DC when the magnetic field H zSMP dc to match frequency demodulation wave from the observation sample is zero or minimum.
  • the DC magnetic field identification device 18 is a DC in the vibration direction (z-axis direction) generated by the observation sample 100 based on the detection result (degree of frequency modulation) of the frequency modulation detection device 16 and the output value of the DC external magnetic field control device 17. Identify the magnetic field H z SMP dc .
  • the magnetic field measuring method of the present invention can be implemented by the magnetic field measuring apparatus 1 of FIG.
  • FIG. 2 is a flowchart showing the magnetic field measurement method of the present invention.
  • the observation sample 100 that generates a DC magnetic field is set at the set position (S110).
  • the probe 111 is forcibly vibrated in the vicinity of the resonance frequency ⁇ 0 (S112).
  • an AC magnetic field H z ac having a non-resonant frequency ⁇ m and having a large AC magnetic field magnitude and a large magnetic field gradient in the vibration direction is applied to the probe 111 (S114).
  • the probe 111 is set to the initial coordinates (x 0 , y 0 ) on the observation sample 100 (S116), and frequency modulation due to an alternating magnetic field is measured (S118). It is detected whether or not frequency modulation has occurred in the mechanical vibration of the probe 111 (S120). When frequency modulation has occurred ("YES" in S120), the DC magnetic field in the vibration direction is reduced to minimize the frequency modulation. (S122), the process returns to S118, and the frequency modulation of the probe vibration due to the AC magnetic field is measured again.
  • the excitation force by the mechanical vibration source 12 is F
  • the spring constant in the z direction (perpendicular to the observation sample surface) of the arm 112 of the probe device 11 is k
  • the alternating magnetic field in the z-axis direction applied to the probe 111 is H z ac and the direct magnetic field is H z dc .
  • the magnetic pole at the tip of the probe due to the DC magnetic field H z dc of the probe 111 is defined as q tip dc
  • the magnetic pole at the tip of the probe due to the AC magnetic field H z ac of the probe 111 is defined as q tip ac .
  • variation .DELTA.k m spring constant due to the magnetic field ((alternating magnetic field H z ac) + (DC magnetic field H z dc)) can be expressed as follows.
  • q tip dc a ⁇ H zSMP dc .
  • a is a constant determined by the material (paramagnetic material or the like) constituting the probe 111. Therefore, ⁇ k m ⁇ 0, and the frequency modulation detection device 16 detects frequency modulation generated in the vibration of the probe 111 from the vibration waveform detected by the vibration detection device 13.
  • the DC magnetic field specifying device 18 specifies the value of the DC external magnetic field H zEXT dc as the value of the DC magnetic field H zSMP dc .
  • dc magnetic field H zSMP dc is the larger than the output value of the maximum DC external magnetic field H zext dc from the DC external magnetic field controller 17, zero DC magnetic field probe 111 It may not be possible.
  • the DC magnetic field H zSMP dc can be calculated from the value of the DC external magnetic field H zEXT dc . That is, when calibrating the alternating magnetic field generator 14 as described above, the DC external magnetic field controller 17, the DC external magnetic field H zext dc, there are times when no Uchikese only a portion of the DC magnetic field H zSMP dc.
  • the DC magnetic field identification device 18 determines the DC magnetic field based on the value of the DC external magnetic field H zEXT dc or the value of the DC current I dc flowing through the DC external magnetic field generator 15 and the magnitude of the frequency-modulated signal. H z SMP dc can be identified.
  • FIG. 3B shows the relationship between the DC external magnetic field H zEXT dc and the intensity of the frequency demodulated wave (or the intensity of the sideband spectrum of the frequency modulation) at this time.
  • the horizontal axis indicates the DC external magnetic field H zEXT dc
  • the vertical axis indicates the intensity I FM of the frequency demodulated wave.
  • the AC magnetic field generator 14 is composed of two AC coils 141 and 142 and an AC current power source 143.
  • the magnetic field measurement apparatus of FIG. 4 performs magnetic field measurement by using the zero position method with respect to the spectral intensity, and the AC magnetic field generation apparatus is composed of one AC coil and an AC power source. Can do.
  • the magnetic field measurement device 3 includes a probe device 31, a mechanical vibration source 32, a vibration detection device 33, an alternating magnetic field generation device 34, a direct current external magnetic field generation device 35, and a frequency modulation detection device 36.
  • the probe device 31, the mechanical vibration source 32, the vibration detection device 33, and the direct current external magnetic field generation device 35 of FIG. 4 are the probe device 11, the mechanical vibration source 12, the vibration detection device 13, and the direct current external device described in FIG. This is the same as the magnetic field generator 15.
  • the probe device 31 is a cantilever and includes an arm 312 and a probe 311 provided at the tip of the arm 312.
  • the probe device 31 (that is, the probe 311 and the arm 312) is the same as the probe device 11 (that is, the probe 111 and the arm 112) shown in FIG.
  • the probe 311 a paramagnetic probe produced by forming a Ni 92.5 Cr 7.5 paramagnetic alloy film on a Si probe to a thickness of about 100 nm was used. Its magnetic susceptibility is about 5 ⁇ 10 ⁇ 8 H / m (relative magnetic permeability is 1.04).
  • the probe 311 is disposed at a distance of about 7 mm from the surface of the observation sample 300 due to space constraints.
  • the mechanical vibration source 32 includes an AC power source 321 and a piezo element 322.
  • the mechanical vibration source 32 (that is, the AC power source 321 and the piezo element 322) is the same as the mechanical vibration source 12 (that is, the AC power source 121 and the piezo element 122) shown in FIG.
  • the vibration detection device 33 detects the vibration of the probe 311.
  • the vibration detection device 33 includes a laser 331 (indicated by “LD” in FIG. 3) and a photodiode 332 (indicated by “PD” in FIG. 3).
  • the vibration detection device 33 (that is, the laser 331 and the photodiode 332) is the same as the vibration detection device 13 (that is, the laser 131 and the photodiode 132) illustrated in FIG.
  • the AC magnetic field generator 34 generates an AC magnetic field having a large AC magnetic field change rate ( ⁇ H z ac / ⁇ z). Then, the AC magnetic field generator 34 applies an AC magnetic field H z ac having a frequency ⁇ m different from the excited frequency ⁇ 0 to the probe 311.
  • the AC magnetic field generator 34 includes one AC coil (air core coil) 341 and an AC current power supply 343.
  • the DC external magnetic field generator 35 gives the probe 311 a DC external magnetic field H zEXT dc in the vibration direction (z-axis direction).
  • the DC external magnetic field generator 35 is the same as the DC external magnetic field generator 15 of FIG.
  • the frequency modulation detection device 36 corresponds to the frequency modulation detection device 16 of FIG.
  • the frequency modulation detection device 36 is a real-time spectrum analyzer, and detects frequency modulation generated in the vibration of the probe 311 from the vibration waveform detected by the vibration detection device 33.
  • the frequency modulation detector 36 has the function of a frequency demodulator (see reference numeral 161 in FIG. 1) and the function of a lock-in amplifier (see reference numeral 162 in FIG. 1).
  • the DC external magnetic field control device (see reference numeral 17 in FIG. 1) not shown in FIG. 4 is a DC external magnetic field generator so that the frequency modulation is zero or small based on the detection result of the frequency modulation by the frequency modulation detector 36.
  • DC external magnetic field H zEXT dc in the vibration direction (z-axis direction) generated by 35 is controlled.
  • the control signal is given to the DC external magnetic field generator 35 as a DC current.
  • an alternating current is supplied from the alternating current power supply 343 to the alternating current coil 341, and an alternating magnetic field having a frequency of 130 Hz and an alternating magnetic field gradient of 50 [Oe / cm] is generated at the probe position.
  • the frequency modulation detector 36 investigated the dependence of the spectrum intensity (waveband spectrum) on the DC external magnetic field H zEXT dc when the vibration of the probe 311 was frequency-modulated.
  • FIG. 5 is a diagram showing the dependence of the spectrum intensity (waveband spectrum) on the DC external magnetic field H zEXT dc when the vibration of the probe 311 is frequency-modulated.
  • the frequency of the sideband spectrum by the frequency modulation of the probe vibration is ⁇ 0 ⁇ ⁇ m .
  • FIG. 5 shows the frequency modulation spectrum intensity I FM of the probe vibration when H zEXT dc is increased in the direction opposite to the direction of the DC magnetic field H zSMP dc generated from the observation sample 300.
  • I FM monotonously decreases with increasing H zEXT dc and starts increasing after becoming minimum.
  • the noise level is about -90 dBV.
  • the DC magnetic field H zSMP dc from the observation sample 300 is canceled by the external DC magnetic field H zEXT dc , and the H zEXT dc at that time corresponds to the DC magnetic field H zSMP dc from the observation sample 300 at the probe position. is doing.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

 磁化の強さが外部磁場の大きさに比例する性質を持つ一種以上の材料からなる探針111を備えた振動式の探針装置11、探針111用の機械振動源12、探針111の振動周波数および振幅を検出する振動検出装置13、探針111の機械振動周波数と異なる周波数の交流磁場を探針111に与える交流磁場発生装置14、直流外部磁場を探針111に与える直流外部磁場発生装置15、探針111の機械振動に生じる周波数変調を検出する周波数変調検出装置16、直流外部磁場発生装置が探針111に与える機械振動方向の直流外部磁場の大きさを調整する直流外部磁場制御装置17、及び、周波数変調の大きさが極小となったときの直流外部磁場発生装置の出力値に基づいて、観察試料100が発生する直流磁場の値を特定する直流磁場特定装置18を備える磁場測定装置。

Description

磁場値測定装置および磁場値測定方法
 本発明は、観察試料が発生する直流磁場を測定する磁場測定装置および磁場測定方法に関する。
 特に、本発明は、前記直流磁場を高い精度で測定することができる磁場測定装置および磁場測定方法に関する。
 従来、観察試料が発生する磁場を観察する装置として、磁気力顕微鏡(Magnetic Force Microscope:MFM)が知られている。
 MFMでは、交流磁場(AC磁場)を観察するものと、直流磁場(DC磁場)を観察するものがある。
 本発明は、DC磁場を観察するMFMにかかる技術なので、以下、DC磁場を観察する従来のMFMについて説明する。
 図6(A)は、DC磁場を観察する従来のMFMの説明図である(特許文献1参照)。図6(A)に示したMFMでは、カンチレバー81の探針811はハード磁性材料からなる。ハード磁性材料は、ひとたび磁化されると磁化反転が生じにくい材料である。図6(A)ではハード磁性材料として、コバルトとクロムとの合金、鉄と白金との合金等が使用される。
 図6(A)のMFMでは、カンチレバー81は圧電素子812により、共振周波数ないし共振周波数に近い周波数(例えば、300kHz程度)で励振される。図6(A)では励振用の電源をACで示す。探針811と観察試料82との間には磁気的な相互作用が生じる。
 この磁気的な相互作用により、カンチレバー81のバネ定数が、見かけ上変化する。この見かけ上のバネ定数の変化により、カンチレバー81の共振周波数が変化する。この結果、探針811の振動の状態(振幅や位相)も変化する。
 図6(A)のMFMでは、探針811の振動の、振幅および位相の変化(カンチレバー81のバネ定数の変化)を光学検出する。これにより、観察試料82の表面の磁場勾配の分布を画像として取得することができる。
特開2003-65935号公報 国際公開2009/0101992号パンフレット
 図6(A)のMFMでは、観察試料82の磁場を直接測定するものではなく、カンチレバー81のバネ定数の変化の値(振幅および位相の変化の値)に基づき、観察試料82の磁場勾配を検出している。
 また、図6(A)のMFMでは、観察試料82の表面近傍では、遠距離力である磁気力と比較して、表面近傍のファンデルワールス力等の近距離力が強いので、磁場勾配の検出が困難である。したがって、磁場勾配は磁気力が近距離力より大きくなる、探針・観察試料間距離で計測されており、空間分解能の向上が、磁気力が主となる前記探針・観察試料間距離に制限されている。
 本願出願人は、この不都合を解消するべく、図6(B)に示す技術を提案している(特許文献2)。この技術では、カンチレバー91は圧電素子912により、共振周波数ないし共振周波数に近い周波数で励振される。図6(B)では励振用の電源をACで示す。カンチレバー91の先端部の探針911をソフト磁性体により構成し、探針911にコイル93を用いて交流外部磁場HACを与える。そして、探針911の磁化を周期的に変化させ、観察試料92からの直流磁場により探針911の強制振動に導入される周波数変調の程度を計測する。この計測結果から観察試料92の表面の直流磁場勾配∂HSUR/∂Zを測定することができる。
 特許文献2の技術を用いると、圧電素子912による探針911の強制振動を交流外部磁場HACで周波数変調することで、観察試料92の表面の直流磁場勾配∂HSUR/∂Zを高い精度で検出することができる。
 しかし、特許文献2の技術では、観察試料92の表面の磁場勾配の検出には向いているが、磁場自体を検出することができない。
 また、特許文献2の技術では、表面磁場HSURが、観察試料92の保磁力が低い場合には、交流外部磁場HACにより乱される。このために、さらに高い精度での磁場測定の要求に応えることができない場合がある。
 本発明の目的は、観察試料から発生する直流磁場を乱さずに、当該の直流磁場自体を高い精度で測定することである。
 本発明の典型的な作用を以下に説明する。
(a)励振させた常磁性体材料等(磁化の強さが外部磁場の大きさに比例する性質を持つ材料)からなる探針に、当該探針の振動方向の変化率がゼロでない(大きな)交流外部磁場を与える。
(b)探針先端位置に、前記探針の機械振動方向の変化率がゼロでない、前記探針の機械振動周波数と異なる周波数の交流磁場を与える。
(c)探針先端に加わる観察試料からの直流磁場を、直流外部磁場により打ち消すように変化させることで、探針振動の周波数変調が弱まる。
(d)周波数変調が生じないとき、または周波数変調の大きさが極小となったときに直流外部磁場を測定する。これが、観察試料から発生する直流磁場である。
 本発明の磁場測定装置は、以下の形態を包含する。
(1)
 観察試料から発生する直流磁場を検出する磁場測定装置であって、
 磁化の強さが外部磁場の大きさに比例する性質を持つ一種以上の材料からなる探針を備えた振動式の探針装置と、
 探針を機械励振させる機械振動源と、
 探針の機械振動周波数および機械振動振幅を検出する振動検出装置と、
 探針の機械振動方向の変化率がゼロでない、探針の機械振動周波数と異なる周波数の交流磁場を探針に与える交流磁場発生装置と、
 機械振動方向の直流外部磁場を探針に与える直流外部磁場発生装置と、
 振動検出装置が検出した機械振動周波数から探針の機械振動に生じる周波数変調を検出する周波数変調検出装置と、
 直流外部磁場発生装置が探針に与える機械振動方向の直流外部磁場の大きさを調整する直流外部磁場調整装置と、
 周波数変調の大きさが極小となったときの直流外部磁場発生装置の出力値、または周波数変調の大きさが極小となるであろうときの直流外部磁場発生装置の予想出力値に基づいて、観察試料が発生する上記振動方向の直流磁場の値を特定する直流磁場特定装置と、
を備えたことを特徴とする磁場測定装置。
(2)
 直流外部磁場調整装置は、直流外部磁場が直流磁場の全部を打ち消すように直流外部磁場を調整することを特徴とする(1)に記載の磁場測定装置。
(3)
 直流外部磁場調整装置は、直流外部磁場が直流磁場の一部を打ち消すように直流外部磁場を調整することを特徴とする(1)に記載の磁場測定装置。
(4)
 交流磁場発生装置が、電磁コイルを有することを特徴とする(1)乃至(3)のいずれかに記載の磁場測定装置。
(5)
 交流磁場発生装置が2つ以上の電磁コイルを有し、
 当該2つ以上の電磁コイルが、探針の先端で互いに打ち消し合う向きの複数の磁場を発生することにより、交流磁場発生装置は磁場振幅がゼロになる位置を有する磁場を発生し、且つ、
 交流磁場発生装置が発生する磁場の、上記磁場振幅がゼロになる位置における磁場勾配が、上記2つ以上の電磁コイルのそれぞれが単独で発生する磁場の当該位置における磁場勾配のいずれよりも大きいことを特徴とする(1)乃至(4)のいずれかに記載の磁場測定装置。
(6)
 外部磁場発生装置が、探針に磁場を印加する電磁コイルを有し、
 直流外部磁場調整装置が電流調整装置を有することを特徴とする(1)乃至(5)のいずれかに記載の磁場測定装置。
(7)
 探針により、観察試料の表面を一次元、二次元または三次元で走査する機構を備えたことを特徴とする(1)乃至(6)のいずれかに記載の磁場測定装置。
(8)
 磁化の強さが外部磁場の大きさに比例する性質を持つ一種以上の磁性材料からなる探針を備えた振動式の探針装置を用いて観察試料から発生する直流磁場を測定する方法において、
 探針を機械励振させる工程と、
 探針の機械振動方向の変化率がゼロでない、探針の機械振動周波数と異なる周波数の交流磁場を与えるとともに、観察試料から発生する直流磁場を打ち消す向きの機械振動方向の直流外部磁場を探針に与える工程と、
 探針の機械振動に生じる周波数変調を検出する工程と、
 周波数変調の検出結果に基づき、探針に与えられる振動方向の直流外部磁場の大きさを調整する工程と、
 周波数変調が生じないとき若しくは周波数変調の大きさが極小となったときの直流外部磁場の値、または周波数変調の大きさが極小となるであろうときの直流外部磁場の予想値に基づいて、観察試料が発生する振動方向の直流磁場の値を特定する工程と、
を有することを特徴とする磁場測定方法。
(9)
 直流外部磁場が直流磁場の全部を打ち消すように直流外部磁場を調整する工程を有することを特徴とする(8)に記載の磁場測定方法。
(10)
 直流外部磁場が直流磁場の一部を打ち消すように直流外部磁場を調整する工程と、
 少なくとも2つの直流外部磁場の値、および少なくとも2つの直流外部磁場の値に対応する周波数変調の大きさに基づいて、観察試料が発生する上記振動方向の直流磁場の値を特定する工程と
を有することを特徴とする(8)に記載の磁場測定方法。
(11)
 観察試料がセットされていないときに、(a)周波数変調がゼロとなるように交流磁場を校正する、又は(b)周波数変調をゼロに近付けるように交流磁場を校正する工程を有することを特徴とする(8)乃至(10)のいずれかに記載の磁場測定方法。
(12)
 探針により、観察試料の表面を一次元、二次元または三次元で走査する工程を有することを特徴とする(8)乃至(11)のいずれかに記載の磁場測定方法。
 本発明では、磁化の強さが外部磁場の大きさに比例する一種以上の材料からなる探針を備えた探針装置を励振し、探針位置に直流磁場が与えられたときに探針の機械振動に周波数変調を生じさせるような(探針位置に直流磁場が与えられていないときは探針の機械振動に周波数変調を生じさせないような)交流外部磁場を探針に与える。
 観察試料から生じる直流磁場に基づいて探針装置の機械振動に生じる周波数変調が、直流外部磁場によりゼロとなるとき、または該周波数変調の大きさが極小となるときの直流外部磁場が、観察試料から生じる直流磁場として実測ないし算出される。
 本発明によれば、観察試料から生じる直流磁場を乱すことなく、観察試料から生じる直流磁場自体を高い精度で測定することが可能である。
本発明の磁場測定装置の一実施形態を示すブロック図である。 図1の磁場測定装置の作用を示すフローチャートである。 直流外部磁場HzEXT dcと周波数変調との関係を示す図であり、(A)は直流外部磁場HzEXT dcが直流磁場HzSMP dcに一致すると周波数復調波の強度IFMがゼロになる様子を示す図、(B)は周波数復調波の強度IFMがゼロになるときの直流磁場HzEXT dcの大きさの外挿による算出を説明する図である。 本発明の磁場測定装置の他の実施形態を示すブロック図である。 探針の振動を周波数変調したときの、スペクトル強度(測波帯スペクトル)の直流外部磁場に対する依存性を示す図である。 従来技術の説明図であり、(A)は従来の磁気力顕微鏡の説明図、(B)は本発明者らの提案にかかる磁気力顕微鏡の説明図である。
 探針装置は、フックの法則に従ってバネ振動する装置であり、典型的な具体例としてはカンチレバーを挙げることができる。
 探針装置の検出部である探針は、磁化の強さが外部磁場の大きさに比例する性質を持つ一種以上の材料からなる。ここで、外部磁場の大きさに比例するとは、たとえば、ヒステリシスを示さずに、磁化の強さが外部磁場の大きさに比例することを意味する。すなわち、探針には、磁化の強さが外部磁場に比例する常磁性材料または反磁性材料が用いられる。また、ヒステリシスを示さない強磁性材料を用いることも可能である。
 探針装置には、機械振動源が設けられており、探針を共振周波数又は共振周波数近傍の周波数で振動させることができる。機械振動源の典型的な具体例としては、ピエゾ素子を挙げることができる。
 振動検出装置は、探針装置の振動を光学検出して、少なくともその周波数変化を計測することができる。本発明において、探針振動の周波数変調の大きさは、例えば、探針振動スペクトル中の周波数変調の側帯波強度を測定することや、周波数復調器の周波数復調信号の強度を測定すること等により計測することが可能である。
 振動検出装置は、例えば探針装置に設けられたミラーと、該ミラーに向けてレーザビームを出射するレーザと、ミラーの反射光を受光するフォトダイオードとから構成できる。
 後述するように、交流磁場発生装置は、例えば、交流で駆動される2つの電磁コイルによって構成することができる。交流磁場発生装置は、3つ以上の電磁コイルを有していてもよい。
 交流磁場発生装置の各電磁コイルから発生する交流磁場の、探針が振動する方向(以下において単に「振動方向」ということがある。)成分の、探針位置における和はゼロとなることが好ましい。
 また、探針位置において、交流磁場発生装置から発生する交流磁場の振動方向についての変化率はゼロではなく、できるだけ大きい値を持つことが好ましい。
 直流外部磁場発生装置は、例えば、直流電流で駆動される鉄心入り電磁コイルによって構成することができる。直流外部磁場発生装置は、2つ以上の電磁コイルを有していてもよい。また、直流外部磁場発生装置は、アクチュエータにより移動される永久磁石により構成することも可能である。
 直流外部磁場調整装置は、人間のオペレータが操作する装置であってもよく、また、(自動化された)制御装置であってもよい。この制御装置は、例えば、PID制御(Proportional Integral Derivative Controller)やPI制御(Proportional Integral Controller)により、直流外部磁場発生装置が発生する直流外部磁場を、探針の機械振動に周波数変調が生じないように、または探針の機械振動の周波数変調の大きさが極小となるように制御するように構成される。
 本発明の磁場測定装置は、走査機構によって探針で観察試料の表面を一次元、二次元または三次元で走査しつつ、直流磁場特定装置によって直流磁場を特定するように構成することができる。
 後述するように直流外部磁場発生装置が鉄心入りの電磁コイルを有してなる場合には、直流磁場特定装置は、探針の機械振動に周波数変調が生じないとき、または探針の機械振動の周波数変調が極小になるときに直流外部磁場発生装置の電磁コイルに流れる直流電流値により、観察試料が探針位置に生成する磁場を特定することができる。
 また、直流外部磁場発生装置が鉄心入りの電磁コイルを有してなる場合には、鉄心が残留磁化(ヒステリシス)を持つために、正確な直流外部磁場を電磁コイルに流れる直流電流値によって特定することができない場合があり得る。このような場合には、磁場検出器(例えば、コイル,ホール素子等を用いた磁気センサ)を用いて、直流外部磁場を高精度で特定することもできる。たとえば、測定に先立って、探針位置に磁場検出器を配置し、この検出器により直流外部磁場を測定することができる。
 また、後述するように直流外部磁場発生装置が永久磁石と、この永久磁石を移動するためのアクチュエータとを有してなる場合には、直流磁場特定装置は、探針の機械振動に周波数変調が生じないとき、または探針の機械振動の周波数変調が極小になるときのアクチュエータの移動量(位置)により、観察試料が探針先端位置に生成する直流磁場を特定することができる。
 上述したように、直流外部磁場発生装置は、電磁コイルによって構成することができるほか、アクチュエータによって駆動される永久磁石により構成することも可能である。
 直流外部磁場発生装置が、鉄心入り電磁コイルから構成される場合には、鉄心の残留磁化によって発生する直流磁場の影響により、探針振動に周波数変調が生じることがある。この影響を回避するためには、上記鉄心の残留磁化をゼロにすることが好ましい。
 電磁コイルの鉄心の残留磁化をゼロにした場合には、直流外部磁場調整装置は、後述するように探針振動の周波数変調が生じないように、または探針振動の周波数変調の大きさが極小となるように、電磁コイルを流れる電流を調整すればよい。
 観察試料から生じる直流磁場は、直流外部磁場特定装置が特定した直流磁場に残留磁場を加えた値、または直流外部磁場特定装置が特定した直流磁場から残留磁場を差し引いた値となる。
 本発明の磁場測定装置は、走査機構によって探針で観察試料の表面を一次元、二次元または三次元で走査しつつ、直流磁場特定装置によって直流磁場を特定するように構成され得る。そしてその測定結果を、画像表示装置や印刷装置等の出力装置に出力するように構成され得る。
 以下、図1を参照しつつ本発明の構成および作用を説明する。
 図1は本発明の磁場測定装置1を示すブロック図である。
 図1において磁場測定装置1は、探針装置11、機械振動源12、振動検出装置13、交流磁場発生装置14、直流外部磁場発生装置15、周波数変調検出装置16、直流外部磁場制御装置(本発明における、「直流外部磁場調整装置」)17および直流磁場特定装置18を備えている。
 探針装置11は、図1の磁場測定装置1においてはカンチレバーである。カンチレバーは、アーム112と、アーム112の先端に設けた探針111からなり、アーム112の先端の探針111が設けられていない側にはレーザ光反射用のミラーが設けられている。探針111は、観察試料100から発生する直流磁場HzSMP dcを検出するための、常磁性体材料を被覆したチップである。
 機械振動源12は、探針装置11を励振させる(探針111を励振させる)装置であり、図1の磁場測定装置1においては機械振動源12は、交流電源121とピエゾ素子122とから構成されている。
 振動検出装置13は、探針111の振動波形を検出する。図1の磁場測定装置1においては、振動検出装置13は、レーザ131(図1では「LD」で示す)と、フォトダイオード132(図1では「PD」で示す)を備えている。
 交流磁場発生装置14は、探針先端において交流磁場の大きさがゼロ(H ac=0)であり且つ探針振動方向(z軸方向)の交流磁場変化率(∂H ac/∂z)が大きい交流磁場を発生する。そして、交流磁場発生装置14は、探針を励振させた周波数ωと異なる周波数ωの交流磁場H acを探針111に与える。本実施形態では、交流磁場発生装置14は、探針の先端で互いに打ち消しあう磁場を生成する2つの交流コイル(空心コイル)141、142と、交流電源143とを有してなる。
 磁場測定装置1において、探針装置11の励振周波数ωとしては、探針装置11のカンチレバーの共振周波数とQカーブ(カンチレバーのQ値を周波数に対してプロットしたカーブ)とに基づいて、共振周波数またはQカーブがゼロでない勾配を有する周波数を適宜選択することができる。励振周波数が共振周波数に近いほど周波数変調の側帯波(ω±ω)のスペクトル強度を高めることができるので、磁場測定の際には共振周波数近傍の周波数を励振周波数に採用することが好ましい。なお後述するように試料表面を走査する場合には、探針振動の振幅を一定にして探針-試料間距離を一定に保つ制御が容易になる点から、周波数変化によるQ値の変化が大である、Qカーブの勾配が急峻な周波数を励振周波数に採用してもよい。探針装置11の機械振動の周波数としては通常、共振周波数ωまたは共振周波数近傍の周波数であって、例えばω-ω/3Q以上ω+ω/3Q以下、好ましくはω-ω/4Q以上ω+ω/4Q以下(ただしQは探針装置11のQ値である。)の周波数が選択される。交流磁場発生装置14が発生させる交流磁場の振動数ωとしては、周波数ω±ωにおいてQカーブがゼロでない勾配を有する周波数ωを適宜選択することができ、例えばω/3Q以下、好ましくはω/4Q以下(ただしQは探針装置11のQ値である。)の周波数が選択される。一例として、共振周波数ω=300kHz、Q=500の場合には、例えばω=300.01kHz、ω=100Hz等とすることができる。
 このとき、探針振動の周波数変調による側帯波スペクトルの周波数は、ω±ωとなる。
 直流外部磁場発生装置15は、探針111に、振動方向(z軸方向)の直流外部磁場HzEXT dcを与える。本実施形態では、直流外部磁場発生装置15は、鉄心入りの直流コイル(直流電磁石)からなる。
 周波数変調検出装置16は、振動検出装置13が検出した振動波形から探針111の振動に生じる周波数変調を検出する。周波数変調検出装置16は、周波数復調器(PLL:Phase Locked Loop)161とロックインアンプ162とからなる。
 直流外部磁場制御装置17は、周波数変調検出装置16による探針振動の周波数変調の検出結果に基づき、直流外部磁場発生装置15が発生する振動方向(z軸方向)の直流外部磁場HzEXT dcを、探針振動の周波数変調がゼロまたは極小になるように制御する。制御信号は、直流電流として直流外部磁場発生装置15に与えられる。
 図3(A)は、直流外部磁場HzEXT dcと周波数復調波の強度(または周波数変調の側帯波スペクトルの強度)との関係を示している。横軸が直流外部磁場HzEXT dc、縦軸が周波数復調波の強度IFMを示している。図3(A)に示すように、直流外部磁場HzEXT dcが観察試料からの直流磁場HzSMP dcに一致すると周波数復調波の強度IFMはゼロまたは極小になる。
 直流磁場特定装置18は、周波数変調検出装置16の検出結果(周波数変調の程度)および直流外部磁場制御装置17の出力値に基づいて、観察試料100が発生する振動方向(z軸方向)の直流磁場HzSMP dcを特定する。
 本発明の磁場測定方法は、図1の磁場測定装置1により実施することができる。図2は本発明の磁場測定方法を示すフローチャートである。以下、図1の磁場測定装置1の作用を、図2のフローチャートを参照しながら説明する。
 直流磁場を発生する観察試料100がセット位置にセットされる(S110)。
 探針111を共振周波数ωの近傍で強制振動させる(S112)。
 探針先端で、交流磁場の大きさがゼロでかつ振動方向についての磁場勾配が大きい、非共振周波数ωの交流磁場H acを探針111に与える(S114)。
 探針111を観察試料100上の初期座標(x,y)にセットし(S116)し、交流磁場による周波数変調を測定する(S118)。
 探針111の機械振動に周波数変調が生じているかが検出され(S120)、周波数変調が生じているとき(S120の「YES」)には振動方向の直流磁場を、周波数変調が極小になるように制御し(S122)、処理をS118に戻し交流磁場による探針振動の周波数変調を再度測定する。
 S120において、周波数変調が生じていないとき(S120の「NO」)、または周波数変調の大きさが極小になるときには、変調の検出結果および直流磁場(直流外部磁場HzEXT dc)の値に基づいて、観察試料100が発生する振動方向の直流磁場(直流磁場HzSMP dc)が直流磁場特定装置18により特定される(S124)。
 特定された直流磁場HzSMP dcの値は、直流磁場特定装置18内の記憶装置に記憶される(S126)。
 全ての座標について、S118~S126の処理が行われたかが判断され、未処理の座標があると判断されたとき(S128の「NO」)は、次の座標を指定し(S130)、S118~S126の処理を再度行う。S128において未処理の座標がないと判断されたとき(S128の「YES」)は処理を終了する。
 以下、本実施形態をさらに詳しく説明する。
 機械振動源12による励振力をF、探針装置11のアーム112のz方向(観察試料面に垂直方向)のバネ定数をk、探針111の振動方向(z軸方向)のゼロ点(無負荷位置)からの変位をzとすると、F=k×zが成立する。
 探針111に与えられるz軸方向の交流磁場をH ac、直流磁場をH dcとする。探針111の直流磁場H dcによる探針先端の磁極をqtip dcとし、探針111の交流磁場H acによる探針先端の磁極をqtip acとする。
 探針111が磁場から受ける力をFとすると、磁場((交流磁場H ac)+(直流磁場H dc))によるバネ定数の変化分Δkは以下のように表される。
Figure JPOXMLDOC01-appb-M000001
 (1)式において、qtip dc∝H dcである。したがって、H dcを高感度で検出するには、qtip dc(∂H ac/∂z)の項を大きくすることが必要になる。ここで振動方向(z軸方向)についての交流磁場変化率である、(∂H ac/∂z)を大きくするには、2個の空心コイルを発生する磁場の方向が反対向きになるように組み合わせたものが有効である。この空心コイルでは、交流磁場H acの極性が反転する、H acの大きさがゼロ、かつ(∂H ac/∂z)が最大となる場所が2個の空心コイルの間に存在し、この場所に探針先端を置くことにより、最大の検出感度が得られる。図1では、簡略化のために2個の空心コイルの紙面上方にカンチレバーの探針を記載しているが、実際には、この2個の空心コイルの間に探針先端を置くように配置がなされている。さらにこの場所では振動している探針先端が受けるH acの大きさがゼロに近くなるので、qtip ac≒0となる。
 したがって、(1)式は次の(2)式のように表される。
Figure JPOXMLDOC01-appb-M000002
 (2)式から、直流成分qtip dcがゼロのときは、Δk=0となり探針111のバネ定数はkであり、変調は生じない。よって、磁場測定装置1は、観察試料100がセットされていないときに(qtip dc=0すなわちH dc=0のときに)、周波数変調がゼロとなるように(qtip ac=0すなわちH ac=0となるように)交流磁場発生装置14を校正することができる。
 このように校正した場合に、観察試料100がセットされたときは、qtip dc=a×HzSMP dcとなる。ここで、aは探針111を構成する材料(常磁性体等)により定まる定数である。したがって、Δk≠0となり、周波数変調検出装置16は、振動検出装置13が検出した振動波形から探針111の振動に生じる周波数変調を検出する。
 直流外部磁場制御装置17が直流磁場HzSMP dcを直流外部磁場HzEXT dcにより打ち消したとき(直流磁場HzSMP dcの大きさが直流外部磁場HzEXT dcと同じで方向が逆方向のとき)は、直流磁場特定装置18は、直流外部磁場HzEXT dcの値を直流磁場HzSMP dcの値として特定する。
 すなわち、この場合には、qtip dc=0すなわちH dc=0となるので(Δk=0となるので)、探針111の振動に周波数変調が生じなくなり、周波数変調検出装置16は、探針111の振動の周波数変調を検出しない。
 なお、振動方向(z軸方向)での交流磁場を1個の空心コイルで発生させることも可能であるが、その場合には、H acの大きさがゼロにならないので、qtip ac≠0である。したがって、cos(ωt)で変化する1次の変調成分は、次のように表される。
Figure JPOXMLDOC01-appb-M000003
 この場合には、観察試料100からの直流磁場HzSMP dcを直流外部磁場HzEXT dcにより打ち消すことで、qtip dc=0を実現し第2項を消去できても、第1項のqtip ac(∂H dc/∂z)が残るので、Δkの大きさは極小を示すもののゼロにはならない。また、(∂H ac/∂z)の大きさも2個の空心コイルを組み合わせた場合と比較して大幅に小さくなるので、周波数変調の大きさが極小になる直流外部磁場HzEXT dcを求めるのに際して、測定ノイズの影響を受けやすくなり、計測精度が低下する。
 したがって、交流磁場の発生には、2個の空心コイルを組み合わせて、探針先端の位置においてH acの大きさをゼロ、かつ(∂H ac/∂z)を最大とすることが望ましい。
 例えば、直流磁場HzSMP dcの計測において、直流磁場HzSMP dcが、直流外部磁場制御装置17による最大の直流外部磁場HzEXT dcの出力値よりも大きいために、探針111の直流磁場をゼロにできない場合がある。この場合には、直流磁場HzSMP dcは、直流外部磁場HzEXT dcの値から計算することができる。
 すなわち、上記のように交流磁場発生装置14を校正した場合に、直流外部磁場制御装置17が、直流外部磁場HzEXT dcによっては、直流磁場HzSMP dcの一部しか打ち消せないときがある。この場合には、直流磁場特定装置18は、直流外部磁場HzEXT dcの値または直流外部磁場発生装置15を流れる直流電流Idcの値と、周波数変調された信号の大きさに基づき、直流磁場HzSMP dcを特定することができる。
 図3(B)は、このときの直流外部磁場HzEXT dcと周波数復調波の強度(または周波数変調の側帯波スペクトルの強度)との関係を示している。横軸が直流外部磁場HzEXT dc、縦軸が周波数復調波の強度IFMを示す。図3(B)に示すように、2つの直流外部磁場HzEXT dcについての周波数変調の値がわかれば、周波数復調波の強度がゼロになるときの直流外部磁場HzEXT dcすなわち直流磁場HzSMP dcを推定(図3(B)では直線近似)することができる。
 具体的には、以下のようにして直流磁場HzSMP dcを特定することができる。
 観察試料100がセットされていないときには周波数変調がゼロとなるように、装置が初期化されているものとする。
 観察試料100がセットされた場合において、直流外部磁場HzEXT dcを与えていないときの周波数変調(探針振動の周波数変調による側帯波スペクトル成分ω=ω±ω)の大きさがAEXT=0であるとする。
 そして周波数変調(側帯波スペクトル成分ω=ω±ω)の大きさがAEXT1(≠0)であるときに、直流外部磁場HzEXT dc=EXT1を与えていたとする。
 周波数変調の大きさが、AEXT=0-AEXT1だけ変化したときに、直流外部磁場HzEXT dcは、ゼロからEXT1まで変化している。
 したがって、周波数変調の大きさが、AEXT=0-0だけ変化したとすると、直流外部磁場HzEXT dcは、ゼロからEXT1×AEXT=0/(AEXT=0-AEXT1)まで変化することになり、直流磁場HzSMP dcが特定される。
 以下に、本発明の他の実施形態を説明する。
 図1の実施形態では、交流磁場発生装置14は、2つの交流コイル141、142と、交流電流電源143とから構成した。
 これに対し、図4の磁場測定装置は、スペクトル強度に対してゼロ位法を用いることにより磁場測定を行うもので、交流磁場発生装置は、1つの交流コイルと、交流電源とから構成することができる。
 図4において、磁場測定装置3は、探針装置31、機械振動源32、振動検出装置33、交流磁場発生装置34、直流外部磁場発生装置35および周波数変調検出装置36を備えている。
 図4の探針装置31、機械振動源32、振動検出装置33、および直流外部磁場発生装置35は、図1で説明した探針装置11、機械振動源12、振動検出装置13、および直流外部磁場発生装置15と同じである。
 探針装置31は、カンチレバーであり、アーム312と、アーム312の先端に設けた探針311から構成される。探針装置31(すなわち、探針311およびアーム312)は、図1に示した探針装置11(すなわち、探針111およびアーム112)と同じである。探針311には、Si探針にNi92.5Cr7.5常磁性合金を膜厚100nm程度成膜して作製した常磁性探針を用いた。その磁化率は5×10-8H/m(比透磁率は1.04)程度である。
 ここでは、空間的制約により、探針311は、観察試料300の表面から約7mmの距離に配置されている。
 機械振動源32は交流電源321とピエゾ素子322とから構成されている。機械振動源32(すなわち、交流電源321とピエゾ素子322)は、図1に示した機械振動源12(すなわち、交流電源121とピエゾ素子122)と同じである。
 振動検出装置33は、探針311の振動を検出する。振動検出装置33は、レーザ331(図3では「LD」で示す)と、フォトダイオード332(図3では「PD」で示す)とから構成されている。振動検出装置33(すなわち、レーザ331とフォトダイオード332)は、図1に示した振動検出装置13(すなわち、レーザ131とフォトダイオード132)と同じである。
 交流磁場発生装置34は、交流磁場変化率(∂H ac/∂z)が大きい交流磁場を発生する。
 そして、交流磁場発生装置34は、励振させた周波数ωと異なる周波数ωの交流磁場H acを探針311に与える。
 本実施形態では、交流磁場発生装置34は、1つの交流コイル(空心コイル)341と、交流電流電源343とからなる。
 直流外部磁場発生装置35は、探針311に、振動方向(z軸方向)の直流外部磁場HzEXT dcを与える。本実施形態では、直流外部磁場発生装置35は、図1の直流外部磁場発生装置15と同じである。
 周波数変調検出装置36は、図1の周波数変調検出装置16に対応する。図4では、周波数変調検出装置36は、リアルタイムスペクトルアナライザであり、振動検出装置33が検出した振動波形から探針311の振動に生じる周波数変調を検出する。
 周波数変調検出装置36は、周波数復調器(図1の符号161参照)の機能およびロックインアンプ(図1の符号162参照)の機能を備えている。
 図4では図示しない直流外部磁場制御装置(図1の符号17参照)は、周波数変調検出装置36による周波数変調の検出結果に基づき、周波数変調がゼロあるいは、小さくなるように、直流外部磁場発生装置35が発生する振動方向(z軸方向)の直流外部磁場HzEXT dcを制御する。
 制御信号は、直流電流として直流外部磁場発生装置35に与えられる。
 本実施形態では、交流電流電源343から交流コイル341に交流電流を流し、探針位置に周波数130Hz、交流磁場勾配が50[Oe/cm]の交流磁場を発生させた。
 そして、探針311の振動を周波数変調したときの、スペクトル強度(測波帯スペクトル)の直流外部磁場HzEXT dcに対する依存性を、周波数変調検出装置36により調べた。
 図5は、探針311の振動を周波数変調したときの、スペクトル強度(測波帯スペクトル)の直流外部磁場HzEXT dcに対する依存性を示す図である。
 図5に示すように、本実施形態では、HzEXT dc=0のときの探針311の励振周波数ωは301kHz程度であり、交流磁場の周波数ω=130Hzである。
 このとき、探針振動の周波数変調による側帯波スペクトルの周波数は、ω±ωとなる。
 図5では、観察試料300から生じる直流磁場HzSMP dcの向きとは逆向きにHzEXT dcを増加させたときの、探針振動の周波数変調スペクトル強度IFMが示されている。
 HzEXT dcの増加に伴いIFMは単調に低下し、極小となった後に増加に転じる様子が示されている。ここで、ノイズレベルは約-90dBVである。
 極小値では観察試料300からの直流磁場HzSMP dcが外部直流磁場HzEXT dcによって打ち消されており、そのときのHzEXT dcが探針位置での観察試料300からの直流磁場HzSMP dcに対応している。
 図5では、HzEXT dcが約40[Oe]のときにIFMが極小となっており、したがって、直流磁場HzSMP dcは約40[Oe]であることがわかる。
 以上のように、本発明においては、単一の電磁コイルを有する交流磁場発生装置を用い、スペクトル強度ゼロ位計測法によって観察試料の直流磁場値の計測を行うことも可能である。
 1、3 磁場測定装置
 11、31 探針装置
 12、32 機械振動源
 13、33 振動検出装置
 14、34 交流磁場発生装置
 15、35 直流外部磁場発生装置
 16、36 周波数変調検出装置
 17 直流外部磁場制御装置
 18 直流磁場特定装置
 111、311 探針
 112、312 アーム
 100、300 観察試料
 131 レーザ
 132 フォトダイオード
 141、142 交流コイル
 143 交流電源
 161 周波数復調器
 162 ロックインアンプ

Claims (12)

  1.  観察試料から発生する直流磁場を検出する磁場測定装置であって、
     磁化の強さが外部磁場の大きさに比例する性質を持つ一種以上の材料からなる探針を備えた振動式の探針装置と、
     前記探針を機械励振させる機械振動源と、
     前記探針の機械振動周波数および機械振動振幅を検出する振動検出装置と、
     前記探針の機械振動方向の変化率がゼロでない、前記探針の機械振動周波数と異なる周波数の交流磁場を前記探針に与える交流磁場発生装置と、
     前記機械振動方向の直流外部磁場を前記探針に与える直流外部磁場発生装置と、
     前記振動検出装置が検出した前記機械振動周波数から前記探針の機械振動に生じる周波数変調を検出する周波数変調検出装置と、
     前記直流外部磁場発生装置が前記探針に与える前記機械振動方向の直流外部磁場の大きさを調整する直流外部磁場調整装置と、
     前記周波数変調の大きさが極小となったときの前記直流外部磁場発生装置の出力値、または前記周波数変調の大きさが極小となるであろうときの前記直流外部磁場発生装置の予想出力値に基づいて、前記観察試料が発生する前記振動方向の前記直流磁場の値を特定する直流磁場特定装置と、
    を備えたことを特徴とする磁場測定装置。
  2.  前記直流外部磁場調整装置は、前記直流外部磁場が前記直流磁場の全部を打ち消すように前記直流外部磁場を調整することを特徴とする請求項1に記載の磁場測定装置。
  3.  前記直流外部磁場調整装置は、前記直流外部磁場が前記直流磁場の一部を打ち消すように前記直流外部磁場を調整することを特徴とする請求項1に記載の磁場測定装置。
  4.  前記交流磁場発生装置が、電磁コイルを有することを特徴とする請求項1~3のいずれかに記載の磁場測定装置。
  5.  前記交流磁場発生装置が2つ以上の電磁コイルを有し、
     該2つ以上の電磁コイルが、前記探針の先端で互いに打ち消し合う向きの複数の磁場を発生することにより、前記交流磁場発生装置は磁場振幅がゼロになる位置を有する磁場を発生し、且つ、
     前記交流磁場発生装置が発生する磁場の、前記磁場振幅がゼロになる位置における磁場勾配が、該位置において前記2つ以上の電磁コイルのそれぞれが単独で発生する磁場の磁場勾配のいずれよりも大きいことを特徴とする、
    請求項1~4のいずれかに記載の磁場測定装置。
  6.  直流外部磁場発生装置が、前記探針に磁場を印加する電磁コイルを有し、
     前記直流外部磁場調整装置が電流調整装置を有することを特徴とする請求項1~5のいずれかに記載の磁場測定装置。
  7.  前記探針により、前記観察試料の表面を一次元、二次元または三次元で走査する機構を備えたことを特徴とする請求項1~6のいずれかに記載の磁場測定装置。
  8.  磁化の強さが外部磁場の大きさに比例する性質を持つ一種以上の磁性材料からなる探針を備えた振動式の探針装置を用いて観察試料から発生する直流磁場を測定する方法において、
     前記探針を機械励振させる工程と、
     前記探針の機械振動方向の変化率がゼロでない、前記探針の機械振動周波数と異なる周波数の交流磁場を与えるとともに、前記観察試料から発生する前記直流磁場を打ち消す向きの前記機械振動方向の直流外部磁場を前記探針に与える工程と、
     前記探針の機械振動に生じる周波数変調を検出する工程と、
     前記周波数変調の検出結果に基づき、前記探針に与えられる前記振動方向の直流外部磁場の大きさを調整する工程と、
     前記周波数変調が生じないとき若しくは前記周波数変調の大きさが極小となったときの前記直流外部磁場の値、または前記周波数変調の大きさが極小となるであろうときの前記直流外部磁場の予想値に基づいて、前記観察試料が発生する前記振動方向の前記直流磁場の値を特定する工程と、
    を有することを特徴とする磁場測定方法。
  9.  前記直流外部磁場が前記直流磁場の全部を打ち消すように前記直流外部磁場を調整する工程を有することを特徴とする請求項8に記載の磁場測定方法。
  10.  前記直流外部磁場が前記直流磁場の一部を打ち消すように前記直流外部磁場を調整する工程と、
     少なくとも2つの前記直流外部磁場の値、および該少なくとも2つの前記直流外部磁場の値に対応する周波数変調の大きさに基づいて、前記観察試料が発生する前記振動方向の前記直流磁場の値を特定する工程と
    を有することを特徴とする請求項8に記載の磁場測定方法。
  11.  前記観察試料がセットされていないときに、(a)前記周波数変調がゼロとなるように前記交流磁場を校正する、又は(b)前記周波数変調をゼロに近付けるように前記交流磁場を校正する工程を有することを特徴とする請求項8~10のいずれかに記載の磁場測定方法。
  12.  前記探針により、前記観察試料の表面を一次元、二次元または三次元で走査する工程を有することを特徴とする請求項8~11のいずれかに記載の磁場測定方法。
PCT/JP2014/059276 2013-03-28 2014-03-28 磁場値測定装置および磁場値測定方法 WO2014157661A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015508785A JP5954809B2 (ja) 2013-03-28 2014-03-28 磁場値測定装置および磁場値測定方法
US14/777,667 US9482692B2 (en) 2013-03-28 2014-03-28 Magnetic field value measuring device and method for measuring magnetic field value
CN201480016966.2A CN105102989B (zh) 2013-03-28 2014-03-28 磁场值测定装置以及磁场值测定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-069762 2013-03-28
JP2013069762 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014157661A1 true WO2014157661A1 (ja) 2014-10-02

Family

ID=51624618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059276 WO2014157661A1 (ja) 2013-03-28 2014-03-28 磁場値測定装置および磁場値測定方法

Country Status (4)

Country Link
US (1) US9482692B2 (ja)
JP (1) JP5954809B2 (ja)
CN (1) CN105102989B (ja)
WO (1) WO2014157661A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10649051B2 (en) * 2017-12-21 2020-05-12 Raytheon Company System and method for detection of chemicals using frequency modulated nuclear quadrupole resonance signals
EP3848715A1 (en) * 2020-01-10 2021-07-14 Centre National de la Recherche Scientifique Device for measuring a magnetic field, associated system and method
CN111415687B (zh) * 2020-03-16 2021-12-17 大连海事大学 一种硬盘垂直磁写头高频交流磁场的测量装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275313A (ja) * 1999-03-24 2000-10-06 Fujitsu Ltd 磁気記録媒体特性測定装置および方法
WO2012029973A1 (ja) * 2010-09-03 2012-03-08 国立大学法人秋田大学 磁場観察装置及び磁場観察方法
JP2013002970A (ja) * 2011-06-16 2013-01-07 Hitachi Ltd 磁気力顕微鏡及びそれを用いた磁場観察方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753814A (en) * 1994-05-19 1998-05-19 Molecular Imaging Corporation Magnetically-oscillated probe microscope for operation in liquids
EP0726444B1 (en) * 1995-02-10 2001-10-31 Bruker Analytik Gmbh Magnetic resonance method and apparatus for detecting an atomic structure of a sample along a surface thereof
JP3057222B2 (ja) * 1997-04-03 2000-06-26 北海道大学長 交換相互作用力の測定方法および交換相互作用力による磁気特性の評価方法
JP2002063706A (ja) * 2000-08-21 2002-02-28 Toshiba Corp 磁気抵抗効果型素子の特性測定装置及び方法、磁気再生ヘッドの特性測定装置及び方法
US6873163B2 (en) * 2001-01-18 2005-03-29 The Trustees Of The University Of Pennsylvania Spatially resolved electromagnetic property measurement
JP3926990B2 (ja) * 2001-02-05 2007-06-06 株式会社東芝 磁気ヘッド測定装置及び同装置に適用する測定方法
SG103357A1 (en) * 2001-08-31 2004-04-29 Toshiba Kk Method and apparatus for measuring magnetic head
JP3842669B2 (ja) * 2002-02-26 2006-11-08 株式会社東芝 磁気ヘッド測定装置及び同装置に適用する測定方法
JP2003065935A (ja) 2002-07-26 2003-03-05 Matsushita Electric Ind Co Ltd 非接触原子間力顕微鏡、磁気力顕微鏡、および静電気力顕微鏡
JP2004069445A (ja) * 2002-08-06 2004-03-04 Seiko Instruments Inc 走査型プローブ顕微鏡
JP2004294218A (ja) * 2003-03-26 2004-10-21 Kansai Tlo Kk 物性値の測定方法および走査形プローブ顕微鏡
US8245316B2 (en) * 2006-12-15 2012-08-14 Specs Zürich GmbH Scanning probe microscope with periodically phase-shifted AC excitation
WO2009101991A1 (ja) 2008-02-12 2009-08-20 Akita University 表面状態計測装置及び該装置を用いた表面状態計測方法
CN201749130U (zh) * 2010-07-13 2011-02-16 苏州海兹思纳米科技有限公司 磁力像原子力显微镜
WO2013047538A1 (ja) * 2011-09-26 2013-04-04 国立大学法人秋田大学 交流磁場の磁気プロファイル測定装置および磁気プロファイル測定方法
JP5813608B2 (ja) * 2012-09-28 2015-11-17 株式会社日立ハイテクノロジーズ 熱アシスト磁気ヘッド検査方法及び熱アシスト磁気ヘッド検査装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275313A (ja) * 1999-03-24 2000-10-06 Fujitsu Ltd 磁気記録媒体特性測定装置および方法
WO2012029973A1 (ja) * 2010-09-03 2012-03-08 国立大学法人秋田大学 磁場観察装置及び磁場観察方法
JP2013002970A (ja) * 2011-06-16 2013-01-07 Hitachi Ltd 磁気力顕微鏡及びそれを用いた磁場観察方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUKINORI KINOSHITA ET AL.: "Koban Jikiryoku Kenbikyo o Mochiita Jiba no Zettaichi Keisokuho no Teian", DAI 37 KAI THE MAGNETICS SOCIETY OF JAPAN GAKUJUTSU KOENKAI GAIYOSHU, 3 September 2013 (2013-09-03), pages 110 *

Also Published As

Publication number Publication date
CN105102989B (zh) 2017-06-23
JP5954809B2 (ja) 2016-07-20
US20160109478A1 (en) 2016-04-21
US9482692B2 (en) 2016-11-01
JPWO2014157661A1 (ja) 2017-02-16
CN105102989A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
JP4769918B1 (ja) 磁場観察装置及び磁場観察方法
JP5307244B2 (ja) 走査プローブ顕微鏡によりピエゾ電気応答を測定する方法
JP2012103171A (ja) 磁場測定装置
JP5954809B2 (ja) 磁場値測定装置および磁場値測定方法
US8912789B2 (en) Magnetic force microscope and magnetic field observation method using same
CN103443632B (zh) 磁力显微镜及高空间分辨率磁场测定方法
US9128157B2 (en) Surface scanning radio frequency antenna for magnetic resonance force microscopy
Ono et al. Magnetic force and optical force sensing with ultrathin silicon resonator
JP6167265B2 (ja) 磁性微粒子の磁気特性評価装置および磁気特性評価方法
JP6528334B2 (ja) 磁気力顕微鏡用探針の評価装置および評価方法、ならびに磁気力顕微鏡および磁気力顕微鏡の制御用磁場調整方法
JP3637297B2 (ja) 磁気記録ヘッド測定装置及び同装置に適用する測定方法
JP6358788B2 (ja) 交流磁場測定装置および交流磁場測定方法
JP6544562B2 (ja) 磁性体の磁気特性の測定装置および測定方法
JP5579516B2 (ja) 走査プローブ顕微鏡
JP6624737B2 (ja) 強磁場計測および磁場値測定用磁気力顕微鏡用探針、ならびに、強磁場発生試料の磁場観察方法および装置
JP2010071674A (ja) 走査型プローブ顕微鏡
JP6481191B2 (ja) 交流磁場測定装置および交流磁場測定方法
KR101069000B1 (ko) 진동형 탐지 코일 및 진동형 탐지 코일을 이용한 자기장 분포 측정 장치
JP6482129B2 (ja) 電気力/磁気力顕微鏡および電場/磁場同時測定方法
JPH05302965A (ja) 走査表面磁気顕微鏡

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016966.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508785

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14777667

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774089

Country of ref document: EP

Kind code of ref document: A1