WO2012029812A1 - 伸線性に優れた高強度ばね用鋼線材およびその製造方法、並びに高強度ばね - Google Patents
伸線性に優れた高強度ばね用鋼線材およびその製造方法、並びに高強度ばね Download PDFInfo
- Publication number
- WO2012029812A1 WO2012029812A1 PCT/JP2011/069664 JP2011069664W WO2012029812A1 WO 2012029812 A1 WO2012029812 A1 WO 2012029812A1 JP 2011069664 W JP2011069664 W JP 2011069664W WO 2012029812 A1 WO2012029812 A1 WO 2012029812A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel wire
- less
- strength
- strength spring
- wire
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 94
- 239000010959 steel Substances 0.000 title claims abstract description 94
- 239000000463 material Substances 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 238000005491 wire drawing Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims description 62
- 230000008569 process Effects 0.000 title claims description 44
- 238000010438 heat treatment Methods 0.000 claims abstract description 47
- 229910001562 pearlite Inorganic materials 0.000 claims abstract description 30
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 17
- 238000010583 slow cooling Methods 0.000 claims description 38
- 238000001816 cooling Methods 0.000 claims description 29
- 238000005098 hot rolling Methods 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 15
- 238000000137 annealing Methods 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 24
- 230000000694 effects Effects 0.000 description 22
- 230000009467 reduction Effects 0.000 description 17
- 238000005096 rolling process Methods 0.000 description 11
- 239000002436 steel type Substances 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 8
- 230000009466 transformation Effects 0.000 description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000005496 tempering Methods 0.000 description 6
- 229910001563 bainite Inorganic materials 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005261 decarburization Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 229910000639 Spring steel Inorganic materials 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 206010016256 fatigue Diseases 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
- F16F1/021—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F35/00—Making springs from wire
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/02—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/525—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
- F16F1/04—Wound springs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/16—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49609—Spring making
- Y10T29/49611—Spring making for vehicle or clutch
Definitions
- the present invention relates to a steel wire for a high-strength spring having high workability (drawing property, and SV property described later) used for a valve spring of an internal combustion engine, a suspension spring of an automobile, and the like, and a method for producing the same.
- the present invention relates to a high-strength spring obtained by using a steel wire for a high-strength spring.
- the steel wire for a high-strength spring according to the present invention is a wire after hot rolling (steel wire), and has high wire drawing property (drawing workability) and the like despite its tensile strength being 1050 MPa or more. It is what you have.
- the present invention also relates to a technique that makes it possible to omit heat treatment for improving workability in secondary processing of the wire.
- valve springs mainly used in engines and suspension springs that soften vibrations from tires are known springs used in automobiles.
- the manufacturing method of the valve spring is as follows. First, a steel ingot that has been refined and divided so as to have a predetermined chemical composition is processed into a round wire having a diameter of about 5.5 to 8.0 mm by hot rolling, wound into a coil, and cooled. Thereafter, annealing is performed at around 700 ° C. to soften, and then a skin removing process (hereinafter, sometimes referred to as “SV process”) is performed to remove the decarburized portion of the surface layer. Thereafter, in order to improve processability, the wire is heated to 900 ° C.
- SV process skin removing process
- the above-mentioned heat treatment for isothermal transformation is mainly required to prevent manufacturing troubles such as disconnection during processing.
- these heat treatments become production bottlenecks and cause productivity to deteriorate.
- the heat treatment for improving the workability tends to take a long time, which is a major factor that pushes up the price of the steel wire for high strength springs.
- the patenting process described above may require several tens of hours to process one bundle of 2 ton coils. Therefore, if simplification of the heat treatment (for example, shortening the heat treatment time) or complete omission of the heat treatment can be realized, the merit in production is very large.
- the heat treatment is naturally a source of CO 2 emission, and the lead patenting treatment using lead, which is a harmful substance, has a large environmental load.
- the heat treatment can be omitted or simplified, significant productivity improvement, cost reduction, and environmental load reduction can be expected. Therefore, a high-strength spring that has good workability even if heat treatment is omitted or simplified.
- the reality is that realization of steel wire rods is desired.
- the workability includes the cutting rate (SV step), which is a processing step performed from rolling to quenching-tempering treatment, and the wire breakage rate and die life in the wire drawing step (hereinafter, referred to as “process”).
- SV step is a processing step performed from rolling to quenching-tempering treatment
- process wire breakage rate and die life in the wire drawing step
- the workability during the SV process is sometimes referred to as “SV property” in particular).
- Patent Document 1 discloses that the heating temperature in hot rolling is set to 1000 ° C. or lower, finish rolling is performed at 1000 ° C. or lower, forcibly cooled to 650 to 750 ° C., and then coiled. And then cooled to 600 ° C. at a cooling rate of 1 to 10 ° C./s to produce a wire rod that achieves a drawing value of 40% or more and exhibits good wire drawing even if heat treatment is omitted. It is disclosed that it can be done.
- This method is intended to suppress the occurrence of supercooled structure and obtain a fine pearlite structure.
- this method is simply fine pearlite. It is not enough to just get an organization. Rather, there is a problem that the hardness increases with the refinement of the pearlite structure, the drawability decreases, and disconnection is likely to occur.
- forced cooling is performed to 650 to 750 ° C. before mounting on the coil in the manufacturing process. However, when such a process is applied to a steel wire for a high-strength spring, it is sufficiently predicted that deformation resistance will increase and a mounting failure will occur.
- Patent Document 2 after finishing rolling, the ring pitch when placed in a coil shape is tightly wound to 1/10 or less of the ring diameter and gradually cooled to reduce the hardness of the rolled material.
- a technique that enables the SV process to be performed while being rolled has been proposed. In this method, the hardness of the structure is reduced, but the coarsening of the crystal grains during the slow cooling proceeds and the variation in the crystal grain size increases, so that it is difficult to ensure excellent workability of the steel wire. In addition, decarburization during slow cooling increases, and the quality of the product spring is reduced.
- the present invention has been made to solve such problems in the prior art, and its purpose is to prevent an increase in deformation resistance accompanying an increase in hardness, omit heat treatment that impairs productivity, or shorten the time.
- Steel wire for high-strength springs that can exhibit good drawability (and SV properties) even if simplified to heat treatment, and a useful method for producing such steel wires for high-strength springs
- the present invention also provides a high-strength spring or the like obtained using a steel wire for a high-strength spring as a raw material.
- simplification refers to substituting with a low-cost process in a shorter time than the current heat treatment.
- the patenting process may be replaced with a high-speed continuous process using annealing or high-frequency heating.
- the steel wire for high-strength springs of the present invention that has solved the above problems is a steel wire after hot rolling, and C: 0.4 to 0.8% (meaning “mass%”, chemical composition The same applies to the composition below), Si: 0.5 to 2.5%, Mn: 0.3 to 2.0%, and Cr: 0.4 to 3.0%, and V: 0.05 to Containing one or more selected from the group consisting of 0.5%, Nb: 0.05 to 0.5%, Ni: 0.1 to 2.0% and Mo: 0.1 to 0.5%, The balance is composed of iron and inevitable impurities, and is a structure mainly composed of pearlite, and the average value Pave of the pearlite nodule particle size number and its standard deviation P ⁇ satisfy the following expressions (1) and (2), respectively.
- the steel wire for a high-strength spring of the present invention preferably has an average value HVave of Vickers hardness of 360 or less. 9.5 ⁇ Pave ⁇ 12.0 (1) 0.2 ⁇ P ⁇ ⁇ 0.7 (2)
- the steel wire for high-strength spring of the present invention may further include (a) Cu: 0.7% or less (not including 0%), (b) Ti: 0.5% or less (not including 0%) as necessary. (C) B: 0.01% or less (not including 0%) or the like is also effective, and the characteristics of the steel wire for high-strength springs are further improved according to the components contained.
- the steel wire after hot rolling is coiled at a mounting temperature of 750 to 950 ° C., and then 1 ° C./second on a cooling conveyor.
- the wire is rapidly and uniformly cooled to a temperature of 750 ° C. or lower at the above cooling rate, and the starting temperature of the subsequent slow cooling is set so that both the dense and sparse portions of the coil are in the range of 650 to 750 ° C. Just do it.
- regulated by following (3) Formula into less than 1 degree-C / sec in the said area
- the slow cooling region residence time t in the following formula (3) is preferably 30 seconds or more.
- V (° C./second) (Tin ⁇ Tout)/t (3)
- Tin Steel wire temperature (° C.) on the entry side of the slow cooling region
- Tout Steel wire temperature (° C.) on the exit side of the slow cooling region
- t Residence time of the steel wire in the slow cooling region (seconds)
- a high-strength spring exhibiting desired characteristics can be obtained by forming the spring through the process.
- the chemical component composition and making the manufacturing conditions appropriate by appropriately adjusting the chemical component composition and making the manufacturing conditions appropriate, a structure mainly composed of pearlite is obtained, and the average value Pave of the pearlite nodule particle size number and its standard deviation P ⁇ are predetermined. Since the relational expression is satisfied, it is possible to prevent an increase in deformation resistance due to an increase in hardness, and even if the heat treatment that impairs productivity is omitted or simplified to a short time heat treatment, good elongation can be achieved.
- a steel wire for a high-strength spring that can exhibit linearity and SV characteristics can be realized. Such a steel wire for a high strength spring is extremely useful as a material for producing a high strength spring.
- FIG. 1 shows a state of a coiled steel wire rod (hereinafter sometimes simply referred to as “coil”) on the cooling conveyor.
- the steel wire rods are relatively densely overlapped (referred to as “dense part”) and relatively sparse (referred to as “sparse part”).
- DI critical diameter
- the present inventors examined the relationship between the structure of a steel wire rod (rolled material) for high-strength springs and workability (drawing workability, SV property). As a result, it has been found that the workability is improved by controlling the rolled material structure to a fine and uniform pearlite structure.
- the variation in the structure granularity variation
- the variation caused by the longitudinal direction that is, the coil sparse portion and the dense portion
- the variation in the wire cross section circular cross section
- the average value HVave of the Vickers hardness in the longitudinal direction of the wire is 360 or less. Is preferred.
- the present inventors further examined the conditions for satisfying these requirements. As a result, if the structure is mainly composed of pearlite and the average value Pave of the pearlite nodule particle size number and its standard deviation P ⁇ satisfy the following expressions (1) and (2), respectively, The present invention has been completed by finding that a suitable steel wire for high strength spring can be realized. 9.5 ⁇ Pave ⁇ 12.0 (1) 0.2 ⁇ P ⁇ ⁇ 0.7 (2)
- the average value Pave of the pearlite nodule particle size number and its standard deviation P ⁇ are preferably 10.0 ⁇ Pave ⁇ 11.5 and 0.3 ⁇ P ⁇ ⁇ 0.6.
- the structure mainly composed of pearlite means a structure containing pearlite in an area of 60 area% or more (preferably 80 area% or more, most preferably 100 area%). The purpose of is achieved.
- the procedure for producing a steel wire for high strength springs is as follows. First, a steel billet having a predetermined chemical composition is hot rolled until a desired wire diameter is obtained.
- the heating temperature at the time of rolling is not particularly limited, but is preferably as low as possible from the viewpoint of refining the structure. However, when the heating temperature is lowered, the deformation resistance of the steel material increases and the equipment load increases. Therefore, the heating temperature is appropriately set according to the equipment owned. Usually, the heating temperature (steel billet heating temperature) at the time of hot rolling is about 950 to 1000 ° C.
- the steel wire after hot rolling is coiled and placed on the cooling conveyor.
- the temperature (mounting temperature) at this time exceeds 950 ° C., the structure becomes coarse, and when it becomes less than 750 ° C.
- the mounting temperature is set to 750 to 950 ° C., because the deformation resistance increases to cause a defective package appearance.
- This mounting temperature is preferably 775 ° C. or higher (more preferably 800 ° C. or higher), preferably 925 ° C. or lower (more preferably 900 ° C. or lower).
- the structure after rolling (the structure of the steel wire material, the structure of the rolled material) is controlled within a predetermined range.
- the structure after rolling is controlled within a predetermined range.
- slow cooling is usually performed by installing a slow cooling cover on the cooling conveyor, so in the following, the slow cooling region will be referred to as “in the slow cooling cover” and the slow cooling start position will be referred to as “slow cooling cover inlet”. Sometimes called.
- the wire temperature at the inlet of the slow cooling cover In order to control the wire temperature at the inlet of the slow cooling cover so that both the sparse and dense portions are within the range of 650 to 750 ° C., it depends on the overlapping condition of the placed wire (coil) and each part of the ring. This is possible by comprehensively controlling the air volume. Then, it transforms by gradually cooling in the slow cooling cover.
- the cooling rate V in the slow cooling cover is defined by the following formula (3), but the cooling rate V is preferably less than 1 ° C./second.
- V (° C./second) (Tin ⁇ Tout)/t (3)
- Tin Steel wire temperature (° C.) on the entry side of the slow cooling region
- Tout Steel wire temperature (° C.) on the exit side of the slow cooling region
- t Residence time of the steel wire in the slow cooling region (seconds)
- the installation of the slow cooling cover as described above is also useful for suppressing temperature variation of the wire and preventing local tissue variation.
- the stay time in the slow cooling cover (slow cooling region stay time t, slow cooling time) is too short, the slow cooling ends before the transformation is completed, and the subsequent cooling (usually water cooling) causes bainite or Since the overcooled structure such as martensite may occur, it is preferable to secure the stay time of 30 seconds or more.
- the chemical composition of the steel wire rod for high-strength springs of the present invention needs to be adjusted appropriately in order to exhibit the characteristics as the final product (high-strength spring).
- the reasons for limiting the range of each component (element) in the chemical component composition are as follows.
- C is an element effective in increasing the strength and sag resistance after spring processing, and for that purpose, it is necessary to contain 0.4% or more. As the C content increases, the strength and sag resistance of the spring are improved. However, if the C content is excessive, the ductility and toughness are reduced.
- the preferable lower limit of the C content is 0.5% or more, and the preferable upper limit is 0.7% or less.
- Si 0.5-2.5%
- Si is an element necessary for deoxidation of steel, and also exhibits an effect of increasing the strength of steel by dissolving in ferrite. In order to exhibit these effects, it is necessary to contain 0.5% or more. However, if the Si content is excessive, the ductility and toughness are reduced, and surface decarburization and flaws are increased to deteriorate the fatigue characteristics.
- the preferable lower limit of the Si content is 0.7% or more (more preferably 0.8% or more, more preferably 1.0% or more), and the preferable upper limit is 2.3% or less (more preferably 2.1%). Hereinafter, more preferably 2.0% or less.
- Mn 0.3 to 2.0%
- Mn is an element necessary for deoxidation of steel, and contributes to improvement of spring strength by improving hardenability. In order to exhibit these effects, it is necessary to contain 0.3% or more. However, if the Mn content is excessive, the transformation time becomes long and it becomes difficult to control the structure in hot rolling, so it is necessary to make it 2.0% or less.
- the preferable lower limit of the Mn content is 0.35% or more (more preferably 0.40% or more, further preferably 0.50% or more), and the preferable upper limit is 1.8% or less (more preferably 1.6%). Hereinafter, it is more preferably 1.2% or less.
- Cr 0.4-3.0%
- Cr has the effect of reducing the activity of C to prevent decarburization during rolling or heat treatment and to suppress graphitization of carbides.
- it is necessary to contain 0.4% or more of Cr.
- the preferable lower limit of the Cr content is 0.45% or more (more preferably 0.50% or more, still more preferably 0.8% or more, still more preferably 1.0% or more), and the preferable upper limit is 2.8. % Or less (more preferably 2.6% or less, still more preferably 2.0% or less).
- V 0.05-0.5%
- Nb 0.05-0.5%
- Ni 0.1-2.0%
- Mo 0.1-0.5%
- V, Nb, Ni, and Mo all have the effect of improving the ductility and toughness of the spring and the wire, and the effect is exhibited by containing a predetermined amount of one or more of these.
- V has an effect of refining crystal grains in hot rolling and quenching-tempering treatments, and has an effect of increasing workability after rolling and improving the ductility and toughness of the spring. Furthermore, secondary precipitation hardening occurs during strain relief annealing after spring formation, contributing to improvement of spring strength. However, if it is contained excessively, large carbides and nitrides are produced during the casting of the steel material, leading to an increase in fatigue breakage starting from inclusions. Therefore, the range of V amount is set to 0.05 to 0.5%.
- the preferable lower limit of the V content is 0.06% or more (more preferably 0.07% or more, more preferably 0.10% or more), and the preferable upper limit is 0.4% or less (more preferably 0.35%). Hereinafter, it is more preferably 0.30% or less.
- Nb also has the effect of refining crystal grains in hot rolling and quenching-tempering treatments, and has the effect of increasing workability after rolling and improving the ductility and toughness of the spring. However, even if it contains excessively, the effect will be saturated and the harmful effect which presses down a steel material price will become larger. Therefore, the range of Nb content is set to 0.05 to 0.5%.
- the preferable lower limit of the Nb content is 0.06% or more (more preferably 0.07% or more, more preferably 0.10% or more), and the preferable upper limit is 0.4% or less (more preferably 0.35%). Hereinafter, it is more preferably 0.30% or less.
- Ni has the effect of increasing ductility and toughness after quenching and tempering. It also has the effect of improving corrosion resistance. However, if it is excessively contained, the hardenability increases, the transformation time becomes longer, and the structure control in hot rolling becomes difficult. Therefore, the range of Ni content is set to 0.1 to 2.0%.
- the preferable lower limit of the Ni content is 0.12% or more (more preferably 0.15% or more, further preferably 0.20% or more), and the preferable upper limit is 1.9% or less (more preferably 1.8%).
- the ratio is further preferably 1.5% or less, and still more preferably 1.2% or less.
- Mo has the effect of increasing ductility and toughness after quenching and tempering. It also has the effect of increasing the hardenability and contributing to higher spring strength. However, excessive inclusion increases hardenability and makes it difficult to control the structure, and increases the price of steel. Therefore, the range of Mo content is set to 0.1 to 0.5%.
- the preferable lower limit of the Mo content is 0.15% or more (more preferably 0.20% or more), and the preferable upper limit is 0.4% or less.
- the basic components of the steel wire for high-strength spring according to the present invention are as described above, and the balance is iron and inevitable impurities (for example, P, S, etc.).
- the steel wire for high-strength springs according to the present invention if necessary, (a) Cu: 0.7% or less (not including 0%), (b) Ti: 0.5% or less (not including 0%) (C) B: 0.01% or less (not including 0%) or the like may be contained, and the properties of the steel wire are further improved depending on the type of element to be contained.
- the reason for setting a preferable range of these elements is as follows.
- Cu 0.7% or less (excluding 0%)
- Cu has an effect of suppressing decarburization. It also contributes to improved corrosion resistance. However, if excessively contained, the hot ductility is lowered and there is a risk of cracking during hot rolling, so 0.7% or less is preferable.
- the preferable minimum when containing Cu is 0.05% or more, and a more preferable upper limit is 0.6% or less.
- Ti 0.5% or less (excluding 0%)]
- Ti has the effect
- the content is preferably 0.5% or less.
- the preferable minimum when containing Ti is 0.01% or more, and a more preferable upper limit is 0.4% or less.
- B 0.01% or less (excluding 0%)
- B has an effect of improving ductility and toughness.
- a composite compound of Fe and B precipitates and causes cracking during hot rolling, so it is preferably made 0.01% or less.
- the preferable minimum when containing B is 0.0005% or more, and a more preferable upper limit is 0.008% or less.
- the steel wire for a high-strength spring of the present invention is assumed after hot rolling.
- the steel wire for high strength spring is then processed without being subjected to heat treatment and formed into a high strength spring, but may be subjected to rapid heat treatment (for example, high frequency heating). That is, using the steel wire for high-strength spring of the present invention, after passing through any of the following (a) to (c), or a combination of (a) and (b) or (a) and (c), By forming the spring, a spring exhibiting good characteristics can be obtained.
- A) The skinning process is performed without heat treatment.
- B) After the shaving process a drawing process is performed without performing a patenting process.
- softening annealing or high-frequency heating is performed to perform drawing.
- the wire obtained in the present invention exhibits good workability even if it is processed through the steps (a) and (b) or both.
- a hardened layer may be generated in the surface portion of the wire rod that has been subjected to the cutting process during the skin cutting process, which may be an obstacle during the drawing process.
- the above (c) is replaced with the above (b) process. It is preferable to carry out the process.
- heat treatment is applied after skinning for the purpose of softening the surface layer hardened layer, and there is an effect of reducing troubles such as disconnection during the drawing process.
- annealing, high-frequency heating, or the like is conceivable.
- treatment using high-frequency heating is preferable because of high productivity.
- Example 1 A steel ingot having a chemical composition shown in Table 1 below was melted in a converter, and then the steel ingot was subjected to ingot rolling to produce a steel billet having a cross section of 155 mm ⁇ 155 mm, heated to 1000 ° C., and the wire diameter : Processed (hot rolled) into a round wire of 5.5 to 8.0 mm ⁇ .
- Table 1 also shows the ideal critical diameter DI, which is determined by ASTM A 255-02 from a Jominy curve measured by the method described in JIS G0561 using a test piece cut from a steel piece before rolling. Measured based on the following formula (4).
- one ring is cut out from the non-defective part terminal of each coil, and the sample obtained by dividing into 8 pieces in the circumferential direction (corresponding to 8 divisions in the longitudinal direction of the wire) as shown in FIG.
- the cross section (circular cross section perpendicular to the rolling direction) of the 8 divided samples was observed with an optical microscope, and the surface layer of each cross section, the position of D / 4, D / 2 (D is the wire material)
- the P nodule indicates a region where the ferrite crystal grains in the pearlite structure have the same orientation
- the ferrite area ratio is 40% or less, the area of pro-eutectoid ferrite can be excluded. P nodules can be measured.
- the SV property is obtained by performing a skinning process (SV process) without applying heat treatment to the coil, and checking for the presence or absence of disconnection in this SV process, the dimensional tolerance of the wire diameter after skinning, and the appearance inspection. evaluated. Further, the wire drawing property was evaluated by drawing a 2 ton coil after the SV process and obtaining a limit area reduction rate (drawing limit area reduction rate) at which disconnection occurs.
- SV process skinning process
- test no. Examples Nos. 1 to 12 are examples satisfying the requirements defined in the present invention
- test Nos. Examples Nos. 13 to 20 are examples in which the chemical composition is satisfied (steel type L) but the manufacturing conditions do not satisfy the requirements defined in the present invention
- No. 21 has a chemical composition outside the range defined in the present invention.
- test no. Nos. 1 to 12 are such that the P nodules have a fine pearlite structure that satisfies the requirements defined by the above formulas (1) and (2), and the average value HVave of the Vickers hardness is as soft as 360 or less. All of the steel wire materials have good results in both drawability and SV property.
- Test No. No. 16 satisfied the chemical component composition (steel type L), but because the annealing cover inlet temperature was low, the structure was excessively refined (bainite was also generated) and the hardness increased. As a result, disconnection occurred during the SV process, and early disconnection also occurred in wire drawing (drawing limit area reduction ratio: less than 10%).
- Test No. No. 21 uses a steel type with a high C content of 0.90% (steel type M in Table 1), so the average value HVave of Vickers hardness is high, wire breakage occurs during the SV process, and the wire drawing limit The area reduction rate was also low (less than 10%).
- FIG. 3 shows the relationship between the average value Pave of the P nodule particle size number and the standard deviation P ⁇ .
- the relationship between the average value Pave of the P nodule particle size number and the average value HVave of the Vickers hardness is shown in FIG.
- FIG. 5 shows the relationship between the standard deviation P ⁇ of the P nodule particle size number and the average value HVave of the Vickers hardness, respectively.
- ⁇ means that the wire drawing property is good
- x means that the wire drawing property is poor.
- annealing soft annealing, 700 to 900 ° C. for 1 to 2 hours
- the 2 ton coil is drawn, and the above-mentioned wire drawing limit area reduction ratio (the limit at which disconnection occurs) Area reduction ratio).
- Test No. In each of 22 to 33, five 2 ton coils were used, the above annealing was performed after skinning (SV), and then the wire was drawn to a diameter of 4.5 to 2.5 mm. Disconnection frequency) was measured.
- FIG. 6 is a graph showing the effect of the presence or absence of heat treatment after the SV process on the disconnection frequency for each steel type (A to L).
- the disconnection frequency of 1 to 12 is sufficiently low.
- the frequency of disconnection can be further reduced and the wire drawing can be further improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
9.5≦Pave≦12.0 …(1)
0.2≦Pσ≦0.7 …(2)
V(℃/秒)=(Tin-Tout)/t …(3)
但し、Tin:徐冷領域入り側における鋼線材温度(℃)、Tout:徐冷領域出側における鋼線材温度(℃)、t:鋼線材の徐冷領域滞在時間(秒)
(a)熱処理を施すことなく皮削り工程を実施する。
(b)皮削り工程後、パテンティング処理を施すことなく引き抜き加工を加える。
(c)皮削り工程後、軟化焼鈍若しくは高周波加熱を施して引き抜き加工を加える。
9.5≦Pave≦12.0 …(1)
0.2≦Pσ≦0.7 …(2)
V(℃/秒)=(Tin-Tout)/t …(3)
但し、Tin:徐冷領域入り側における鋼線材温度(℃)、Tout:徐冷領域出側における鋼線材温度(℃)、t:鋼線材の徐冷領域滞在時間(秒)
Cは、ばね加工後の強度・耐へたり性の上昇に有効な元素であり、そのためには0.4%以上含有させる必要がある。C含有量の増加に伴ってばねの強度・耐へたり性は向上するが、過剰になると延性・靱性が低下するため、0.8%以下とする必要がある。C含有量の好ましい下限は0.5%以上であり、好ましい上限は0.7%以下である。
Siは、鋼の脱酸のために必要な元素であり、またフェライト中に固溶して鋼の強度を高める効果も発揮する。これらの効果を発揮させるためには、0.5%以上含有させる必要がある。しかしながら、Si含有量が過剰になると、延性・靱性を低下させる他、表面の脱炭や傷が増加して疲労特性を低下させるため、2.5%以下とする必要がある。Si含有量の好ましい下限は0.7%以上(より好ましくは0.8%以上、更に好ましくは1.0%以上)であり、好ましい上限は2.3%以下(より好ましくは2.1%以下、更に好ましくは2.0%以下)である。
MnもSiと同様に、鋼の脱酸のために必要な元素であり、また焼入れ性を高めてばね強度の向上に貢献する。これらの効果を発揮させるためには、0.3%以上含有させる必要がある。しかしながら、Mn含有量が過剰になると、変態時間が長時間化して熱間圧延での組織制御が困難になるため、2.0%以下とする必要がある。Mn含有量の好ましい下限は0.35%以上(より好ましくは0.40%以上、更に好ましくは0.50%以上)であり、好ましい上限は1.8%以下(より好ましくは1.6%以下、更に好ましくは1.2%以下)である。
Crは、ばね強度を向上させる他、Cの活量を低下させて圧延時や熱処理時の脱炭を防止すると共に炭化物の黒鉛化を抑制する効果がある。こうした効果を発揮させるためにはCrは0.4%以上含有させる必要がある。しかしながら、Crの含有量が過剰になると延性・靱性の低下を招くため、その含有量は3.0%以下とする必要がある。Cr含有量の好ましい下限は0.45%以上(より好ましくは0.50%以上、更に好ましくは0.8%以上、より更に好ましくは1.0%以上)であり、好ましい上限は2.8%以下(より好ましくは2.6%以下、更に好ましくは2.0%以下)である。
V、Nb、NiおよびMoは、いずれもばねや線材の延性・靱性を向上する効果があり、これらの1種以上を所定量含有させることによって、その効果が発揮される。
Cuは脱炭を抑制する効果がある。また、耐腐食性の向上にも寄与する。しかしながら、過剰に含有させると熱間延性を低下させ、熱間圧延時に割れが生じる危険があるため、0.7%以下とすることが好ましい。尚、Cuを含有させるときの好ましい下限は0.05%以上であり、より好ましい上限は0.6%以下である。
Tiは、炭化物や窒化物を生成して組織を微細化する作用がある。しかしながら、過剰に含有させると粗大な介在物を形成して早期疲労折損の原因となるため、0.5%以下とすることが好ましい。尚、Tiを含有させるときの好ましい下限は0.01%以上であり、より好ましい上限は0.4%以下である。
Bは延性・靱性を向上する作用がある。しかしながら、過剰に含有させるとFeとBの複合化合物が析出し、熱間圧延時の割れを引き起こすため、0.01%以下とすることが好ましい。尚、Bを含有させるときの好ましい下限は0.0005%以上であり、より好ましい上限は0.008%以下である。
(a)熱処理を施すことなく皮削り工程を実施する。
(b)皮削り工程後、パテンティング処理を施すことなく引き抜き加工を加える。
(c)皮削り工程後、軟化焼鈍若しくは高周波加熱を施して引き抜き加工を加える。
下記表1に示す化学成分組成の鋼塊を転炉で溶製した後、この鋼塊を分塊圧延して断面が155mm×155mmの鋼ビレットを作製し、1000℃に加熱した後、線径:5.5~8.0mmφの丸線に加工(熱間圧延)した。尚、表1には、理想臨界直径DIも示したが、これは、圧延前の鋼片から切り出した試験片を用いてJIS G0561に記載の方法で測定したジョミニーカーブから、ASTM A 255-02に記載の下記(4)式に基づいて測定したものである。尚、鋼材の化学成分組成がASTM規格の適用範囲から外れている場合については(例えば、鋼種E、G等)参考値として記載した。
22.974+6.214[C]+356.364[C]2-1091.488[C]3+1464.88[C]4-750.441[C]5 …(4)
但し、[C]は鋼材のC含有量(質量%)を示す。
上記実施例1で得られた試験No.1~12のコイルを用い、上記SV工程後に下記の焼鈍を行ってから伸線を行った場合の、伸線性(伸線限界減面率、断線頻度)を評価した(試験No.22~33)。
Claims (19)
- 熱間圧延後の鋼線材であり、C:0.4~0.8%(「質量%」の意味、化学成分組成について以下同じ)、Si:0.5~2.5%、Mn:0.3~2.0%およびCr:0.4~3.0%を夫々含有すると共に、V:0.05~0.5%、Nb:0.05~0.5%、Ni:0.1~2.0%およびMo:0.1~0.5%よりなる群から選ばれる1種以上を含有し、残部が鉄および不可避的不純物からなり、パーライトを主体とする組織であり、且つパーライトノジュールの粒度番号の平均値Paveおよびその標準偏差Pσが、夫々下記(1)式、(2)式を満足することを特徴とする伸線性に優れた高強度ばね用鋼線材。
9.5≦Pave≦12.0 …(1)
0.2≦Pσ≦0.7 …(2) - 線材長手方向におけるビッカース硬度の平均値HVaveが360以下である請求項1に記載の高強度ばね用鋼線材。
- 更に、Cu:0.7%以下(0%を含まない)を含有する請求項1に記載の高強度ばね用鋼線材。
- 更に、Ti:0.5%以下(0%を含まない)を含有する請求項1に記載の高強度ばね用鋼線材。
- 更に、B:0.01%以下(0%を含まない)を含有する請求項1に記載の高強度ばね用鋼線材。
- 請求項1に記載の高強度ばね用鋼線材を製造する方法であって、熱間圧延後の鋼線材を載置温度:750~950℃としてコイル状に巻き取った後、冷却コンベヤ上にて1℃/秒以上の冷却速度で750℃以下の温度まで急速且つ均一に線材を冷却し、引き続き行う徐冷の開始温度を、コイルの密部と疎部のいずれも650~750℃の範囲内となるようにすることを特徴とする高強度ばね用鋼線材の製造方法。
- 前記鋼線材は、更に、Cu:0.7%以下(0%を含まない)を含有する請求項6に記載の製造方法。
- 前記鋼線材は、更に、Ti:0.5%以下(0%を含まない)を含有する請求項6に記載の製造方法。
- 前記鋼線材は、更に、B:0.01%以下(0%を含まない)を含有する請求項6に記載の製造方法。
- 前記徐冷する領域において、下記(3)式で規定される冷却速度Vを1℃/秒未満とする請求項6に記載の製造方法。
V(℃/秒)=(Tin-Tout)/t …(3)
但し、Tin:徐冷領域入り側における鋼線材温度(℃)、Tout:徐冷領域出側における鋼線材温度(℃)、t:鋼線材の徐冷領域滞在時間(秒) - 前記鋼線材の徐冷領域滞在時間tを30秒以上とする請求項10に記載の製造方法。
- 請求項1に記載の高強度ばね用鋼線材を用いて、下記(a)~(c)の工程のいずれか、または(a)と(b)若しくは(a)と(c)を組み合わせた工程を経てばねに成形加工することを特徴とする高強度ばねの製造方法。
(a)熱処理を施すことなく皮削り工程を実施する。
(b)皮削り工程後、パテンティング処理を施すことなく引き抜き加工を加える。
(c)皮削り工程後、軟化焼鈍若しくは高周波加熱を施して引き抜き加工を加える。 - 前記鋼線材は、更に、Cu:0.7%以下(0%を含まない)を含有する請求項12に記載の製造方法。
- 前記鋼線材は、更に、Ti:0.5%以下(0%を含まない)を含有する請求項12に記載の製造方法。
- 前記鋼線材は、更に、B:0.01%以下(0%を含まない)を含有する請求項12に記載の製造方法。
- 請求項12に記載の方法で得られた高強度ばね。
- 請求項13に記載の方法で得られた高強度ばね。
- 請求項14に記載の方法で得られた高強度ばね。
- 請求項15に記載の方法で得られた高強度ばね。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137004929A KR101600146B1 (ko) | 2010-08-30 | 2011-08-30 | 신선성이 우수한 고강도 스프링용 강 선재와 그의 제조방법, 및 고강도 스프링 |
US13/813,961 US9097306B2 (en) | 2010-08-30 | 2011-08-30 | Steel wire rod for high-strength spring excellent in wire drawability, manufacturing method therefor, and high-strength spring |
BR112013004944A BR112013004944A2 (pt) | 2010-08-30 | 2011-08-30 | vergalhão de arame de aço para mola de alta resistência excelente na capacidade de trefilação do arame, método de fabricação para ele e mola de alta resistência |
EP11821827.0A EP2612941B1 (en) | 2010-08-30 | 2011-08-30 | Steel wire material for high-strength spring which has excellent wire-drawing properties and process for production thereof, and high-strength spring |
CN201180035085.1A CN103003461B (zh) | 2010-08-30 | 2011-08-30 | 拉丝性优异的高强度弹簧用钢线材及其制造方法和高强度弹簧 |
MX2013002305A MX344834B (es) | 2010-08-30 | 2011-08-30 | Alambron de acero para resorte de alta resistencia de excelente aptitud para el estirado de alambre, metodo de fabricacion para el mismo, y resorte de alta resistencia. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010192836 | 2010-08-30 | ||
JP2010-192836 | 2010-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012029812A1 true WO2012029812A1 (ja) | 2012-03-08 |
Family
ID=45772892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/069664 WO2012029812A1 (ja) | 2010-08-30 | 2011-08-30 | 伸線性に優れた高強度ばね用鋼線材およびその製造方法、並びに高強度ばね |
Country Status (8)
Country | Link |
---|---|
US (1) | US9097306B2 (ja) |
EP (1) | EP2612941B1 (ja) |
JP (1) | JP5595358B2 (ja) |
KR (1) | KR101600146B1 (ja) |
CN (1) | CN103003461B (ja) |
BR (1) | BR112013004944A2 (ja) |
MX (1) | MX344834B (ja) |
WO (1) | WO2012029812A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013108828A1 (ja) * | 2012-01-20 | 2013-07-25 | 新日鐵住金株式会社 | 圧延線材、及びその製造方法 |
WO2013133070A1 (ja) * | 2012-03-07 | 2013-09-12 | 株式会社神戸製鋼所 | ばね加工性に優れた高強度ばね用鋼線材およびその製造方法、並びに高強度ばね |
WO2013146675A1 (ja) * | 2012-03-30 | 2013-10-03 | 株式会社神戸製鋼所 | 皮削り性に優れた高強度ばね用鋼線材および高強度ばね |
CN103981469A (zh) * | 2014-05-16 | 2014-08-13 | 吴江市英力达塑料包装有限公司 | 一种高强度弹簧钢及其制备方法 |
CN105051230A (zh) * | 2013-03-25 | 2015-11-11 | 株式会社神户制钢所 | 拉丝加工性和拉丝加工后的弯曲加工性优异的高强度弹簧用钢线材及其制造方法、和高强度弹簧及其制造方法 |
US20160002755A1 (en) * | 2013-03-28 | 2016-01-07 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire |
CN105658348A (zh) * | 2013-10-29 | 2016-06-08 | 新日铁住金株式会社 | 线材冷却装置以及线材冷却方法 |
CN113462982A (zh) * | 2021-07-06 | 2021-10-01 | 江苏永钢集团有限公司 | 一种绞线用盘条及生产工艺 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH708231B1 (fr) * | 2013-06-27 | 2017-03-15 | Nivarox Far Sa | Ressort d'horlogerie en acier inoxydable austénitique. |
RU2530603C1 (ru) * | 2013-08-29 | 2014-10-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева", НГТУ | Способ изготовления горячекатаного проката под холодную объемную штамповку крепежных изделий |
JP6149711B2 (ja) * | 2013-11-27 | 2017-06-21 | 新日鐵住金株式会社 | 極細鋼線用線材及びその製造方法 |
JP2016014169A (ja) * | 2014-07-01 | 2016-01-28 | 株式会社神戸製鋼所 | 鋼線用線材および鋼線 |
CN106574343B (zh) * | 2014-08-08 | 2019-06-25 | 日本制铁株式会社 | 拉丝加工性优异的高碳钢线材 |
JP2016132823A (ja) * | 2015-01-22 | 2016-07-25 | アイシン精機株式会社 | 剪断加工部の焼入れ方法、焼入れされた剪断加工部を有する鋼材、及び、焼入れされた剪断加工部を有する鋼材の製造方法 |
CN105112774B (zh) * | 2015-08-28 | 2017-12-01 | 浙江美力科技股份有限公司 | 高强韧性低中碳微合金风冷硬化弹簧钢及其成形和热处理工艺 |
US20170137921A1 (en) * | 2015-11-18 | 2017-05-18 | Yuanji Zhu | Systems and Methods for Producing Hardwearing And IMPACT-RESISTANT ALLOY STEEL |
KR101745192B1 (ko) | 2015-12-04 | 2017-06-09 | 현대자동차주식회사 | 초고강도 스프링강 |
KR101745191B1 (ko) | 2015-12-04 | 2017-06-09 | 현대자동차주식회사 | 초고강도 스프링강 |
KR101745196B1 (ko) | 2015-12-07 | 2017-06-09 | 현대자동차주식회사 | 초고강도 스프링강 |
JP6614245B2 (ja) * | 2016-01-20 | 2019-12-04 | 日本製鉄株式会社 | 非調質機械部品用鋼線及び非調質機械部品 |
KR101776491B1 (ko) * | 2016-04-15 | 2017-09-20 | 현대자동차주식회사 | 내식성이 우수한 고강도 스프링강 |
KR101776490B1 (ko) | 2016-04-15 | 2017-09-08 | 현대자동차주식회사 | 내식성이 우수한 고강도 스프링강 |
KR101795278B1 (ko) | 2016-06-21 | 2017-11-08 | 현대자동차주식회사 | 초고강도 스프링강 |
KR101867709B1 (ko) * | 2016-12-06 | 2018-06-14 | 주식회사 포스코 | 부식피로 저항성이 우수한 스프링용 선재, 강선 및 그들의 제조방법 |
KR102042062B1 (ko) * | 2017-12-22 | 2019-11-08 | 주식회사 포스코 | 냉간압조용 선재 및 이의 제조방법 |
CN108149146A (zh) * | 2017-12-27 | 2018-06-12 | 苏州贝尔纳德铁路设备有限公司 | 一种直驱式电液伺服阀阀芯对中定位板式弹簧 |
HUE055332T2 (hu) * | 2019-02-26 | 2021-11-29 | Bekaert Sa Nv | Mûködtetõ szerkezet egy autó ajtajának vagy csomagtér ajtajának nyitására és zárására |
WO2020173647A1 (en) * | 2019-02-26 | 2020-09-03 | Nv Bekaert Sa | Helical compression spring for an actuator for opening and closing a door or a tailgate of a car |
CN110016620A (zh) * | 2019-05-29 | 2019-07-16 | 苏州誉高紧固系统有限公司 | 一种冷镦螺栓用耐高低温铁素体材料及其生产工艺 |
KR102355675B1 (ko) * | 2019-07-12 | 2022-01-27 | 주식회사 포스코 | 고강도 스프링용 선재, 강선 및 그 제조방법 |
PL3783120T3 (pl) * | 2019-08-23 | 2024-02-19 | Vossloh Fastening Systems Gmbh | Drut sprężynowy, zacisk napinający uformowany z niego i sposób wytwarzania takiego drutu sprężynowego |
KR102326263B1 (ko) * | 2019-12-20 | 2021-11-15 | 주식회사 포스코 | 초고강도 스프링용 선재, 강선 및 그 제조방법 |
CN111910124A (zh) * | 2020-07-31 | 2020-11-10 | 深圳市润安科技发展有限公司 | 一种腕带内抗拉折部件及其制备方法 |
CN113136525A (zh) * | 2021-03-06 | 2021-07-20 | 浙江荣鑫带钢有限公司 | 一种耐疲劳弹簧钢 |
WO2024161659A1 (ja) * | 2023-02-03 | 2024-08-08 | 日本製鉄株式会社 | 線材、鋼線、ロープ、及びロープの製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07173577A (ja) * | 1993-11-04 | 1995-07-11 | Kobe Steel Ltd | 高耐食性高強度ばね用鋼材 |
JPH11199977A (ja) * | 1998-01-09 | 1999-07-27 | Kobe Steel Ltd | 伸線加工性に優れた線材 |
JPH11315349A (ja) * | 1998-04-30 | 1999-11-16 | Kobe Steel Ltd | 耐遅れ破壊性に優れた高強度線材およびその製造方法並びに高強度ボルト |
JP2007231347A (ja) * | 2006-02-28 | 2007-09-13 | Kobe Steel Ltd | 伸線加工性に優れた線材およびその製造方法 |
JP2009046763A (ja) * | 2007-07-20 | 2009-03-05 | Kobe Steel Ltd | ばね用線材及びその製造方法 |
JP2009068030A (ja) * | 2007-09-10 | 2009-04-02 | Kobe Steel Ltd | 耐脱炭性および伸線加工性に優れたばね用鋼線材およびその製造方法 |
JP2010132943A (ja) * | 2008-12-02 | 2010-06-17 | Kobe Steel Ltd | 伸線加工性およびメカニカルデスケーリング性に優れた熱間圧延線材およびその製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2761046B2 (ja) | 1989-08-19 | 1998-06-04 | 株式会社神戸製鋼所 | 伸線性に優れたSi―Cr系ばね用線材の製造方法 |
JPH057912A (ja) | 1991-06-28 | 1993-01-19 | Aichi Steel Works Ltd | 焼鈍省略可能なばね鋼線材の製造方法 |
KR100368530B1 (ko) * | 1998-12-21 | 2003-01-24 | 가부시키가이샤 고베 세이코쇼 | 가공성이 우수한 스프링용 강 |
US6783609B2 (en) * | 2001-06-28 | 2004-08-31 | Kabushiki Kaisha Kobe Seiko Sho | High-carbon steel wire rod with superior drawability and method for production thereof |
JP4088220B2 (ja) * | 2002-09-26 | 2008-05-21 | 株式会社神戸製鋼所 | 伸線前の熱処理が省略可能な伸線加工性に優れた熱間圧延線材 |
JP4476846B2 (ja) * | 2005-03-03 | 2010-06-09 | 株式会社神戸製鋼所 | 冷間加工性と品質安定性に優れた高強度ばね用鋼 |
KR101018054B1 (ko) * | 2006-06-01 | 2011-03-02 | 신닛뽄세이테쯔 카부시키카이샤 | 고연성의 고탄소강 선재 |
JP4310359B2 (ja) * | 2006-10-31 | 2009-08-05 | 株式会社神戸製鋼所 | 疲労特性と伸線性に優れた硬引きばね用鋼線 |
CN102268604A (zh) | 2007-07-20 | 2011-12-07 | 株式会社神户制钢所 | 弹簧用钢线材及其制造方法 |
JP4694537B2 (ja) * | 2007-07-23 | 2011-06-08 | 株式会社神戸製鋼所 | 疲労特性に優れたばね用線材 |
JP2009045763A (ja) | 2007-08-14 | 2009-03-05 | ▲こう▼暉実業股▲分▼有限公司 | 表面に3次元構造が成形された基材モジュール及びその作製方法 |
US9121080B2 (en) * | 2010-04-01 | 2015-09-01 | Kobe Steel, Ltd. | High-carbon steel wire excellent in wire drawability and fatigue property after wiredrawing |
-
2011
- 2011-08-30 EP EP11821827.0A patent/EP2612941B1/en not_active Not-in-force
- 2011-08-30 MX MX2013002305A patent/MX344834B/es active IP Right Grant
- 2011-08-30 KR KR1020137004929A patent/KR101600146B1/ko active IP Right Grant
- 2011-08-30 CN CN201180035085.1A patent/CN103003461B/zh not_active Expired - Fee Related
- 2011-08-30 US US13/813,961 patent/US9097306B2/en not_active Expired - Fee Related
- 2011-08-30 JP JP2011187661A patent/JP5595358B2/ja not_active Expired - Fee Related
- 2011-08-30 WO PCT/JP2011/069664 patent/WO2012029812A1/ja active Application Filing
- 2011-08-30 BR BR112013004944A patent/BR112013004944A2/pt active Search and Examination
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07173577A (ja) * | 1993-11-04 | 1995-07-11 | Kobe Steel Ltd | 高耐食性高強度ばね用鋼材 |
JPH11199977A (ja) * | 1998-01-09 | 1999-07-27 | Kobe Steel Ltd | 伸線加工性に優れた線材 |
JPH11315349A (ja) * | 1998-04-30 | 1999-11-16 | Kobe Steel Ltd | 耐遅れ破壊性に優れた高強度線材およびその製造方法並びに高強度ボルト |
JP2007231347A (ja) * | 2006-02-28 | 2007-09-13 | Kobe Steel Ltd | 伸線加工性に優れた線材およびその製造方法 |
JP2009046763A (ja) * | 2007-07-20 | 2009-03-05 | Kobe Steel Ltd | ばね用線材及びその製造方法 |
JP2009068030A (ja) * | 2007-09-10 | 2009-04-02 | Kobe Steel Ltd | 耐脱炭性および伸線加工性に優れたばね用鋼線材およびその製造方法 |
JP2010132943A (ja) * | 2008-12-02 | 2010-06-17 | Kobe Steel Ltd | 伸線加工性およびメカニカルデスケーリング性に優れた熱間圧延線材およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2612941A4 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013108828A1 (ja) * | 2012-01-20 | 2013-07-25 | 新日鐵住金株式会社 | 圧延線材、及びその製造方法 |
US9169530B2 (en) | 2012-01-20 | 2015-10-27 | Nippon Steel & Sumitomo Metal Corporation | Rolled wire rod and manufacturing method thereof |
WO2013133070A1 (ja) * | 2012-03-07 | 2013-09-12 | 株式会社神戸製鋼所 | ばね加工性に優れた高強度ばね用鋼線材およびその製造方法、並びに高強度ばね |
JP2013185203A (ja) * | 2012-03-07 | 2013-09-19 | Kobe Steel Ltd | ばね加工性に優れた高強度ばね用鋼線材およびその製造方法、並びに高強度ばね |
JP2013213238A (ja) * | 2012-03-30 | 2013-10-17 | Kobe Steel Ltd | 皮削り性に優れた高強度ばね用鋼線材および高強度ばね |
KR20140129262A (ko) * | 2012-03-30 | 2014-11-06 | 가부시키가이샤 고베 세이코쇼 | 피삭성이 우수한 고강도 스프링용 강 선재 및 고강도 스프링 |
CN104169453A (zh) * | 2012-03-30 | 2014-11-26 | 株式会社神户制钢所 | 剥皮性优异的高强度弹簧用钢线材和高强度弹簧 |
WO2013146675A1 (ja) * | 2012-03-30 | 2013-10-03 | 株式会社神戸製鋼所 | 皮削り性に優れた高強度ばね用鋼線材および高強度ばね |
KR101601582B1 (ko) | 2012-03-30 | 2016-03-08 | 가부시키가이샤 고베 세이코쇼 | 피삭성이 우수한 고강도 스프링용 강 선재 및 고강도 스프링 |
EP2832891A4 (en) * | 2012-03-30 | 2016-04-27 | Kobe Steel Ltd | STEEL WIRE ROD WITH EXCELLENT EQUALIZATION CAPACITY FOR HIGH RESISTANCE SPRING, AND HIGH RESISTANCE SPRING |
CN105051230A (zh) * | 2013-03-25 | 2015-11-11 | 株式会社神户制钢所 | 拉丝加工性和拉丝加工后的弯曲加工性优异的高强度弹簧用钢线材及其制造方法、和高强度弹簧及其制造方法 |
US20160002755A1 (en) * | 2013-03-28 | 2016-01-07 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire |
US9540718B2 (en) * | 2013-03-28 | 2017-01-10 | Kobe Steel, Ltd. | High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire |
CN105658348A (zh) * | 2013-10-29 | 2016-06-08 | 新日铁住金株式会社 | 线材冷却装置以及线材冷却方法 |
CN105658348B (zh) * | 2013-10-29 | 2019-06-21 | 日本制铁株式会社 | 线材冷却装置以及线材冷却方法 |
CN103981469A (zh) * | 2014-05-16 | 2014-08-13 | 吴江市英力达塑料包装有限公司 | 一种高强度弹簧钢及其制备方法 |
CN113462982A (zh) * | 2021-07-06 | 2021-10-01 | 江苏永钢集团有限公司 | 一种绞线用盘条及生产工艺 |
Also Published As
Publication number | Publication date |
---|---|
US9097306B2 (en) | 2015-08-04 |
EP2612941A1 (en) | 2013-07-10 |
MX344834B (es) | 2017-01-09 |
JP5595358B2 (ja) | 2014-09-24 |
CN103003461B (zh) | 2015-03-18 |
JP2012072492A (ja) | 2012-04-12 |
EP2612941B1 (en) | 2019-02-27 |
MX2013002305A (es) | 2013-10-28 |
US20130127100A1 (en) | 2013-05-23 |
CN103003461A (zh) | 2013-03-27 |
KR20130035274A (ko) | 2013-04-08 |
EP2612941A4 (en) | 2015-07-01 |
BR112013004944A2 (pt) | 2016-08-16 |
KR101600146B1 (ko) | 2016-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5595358B2 (ja) | 伸線性に優れた高強度ばね用鋼線材およびその製造方法、並びに高強度ばね | |
JP5076347B2 (ja) | ファインブランキング加工性に優れた鋼板およびその製造方法 | |
JP6180351B2 (ja) | 生引き性に優れた高強度鋼線用線材および高強度鋼線 | |
JP5776623B2 (ja) | 冷間加工性に優れた鋼線材・棒鋼とその製造方法 | |
JP5195009B2 (ja) | 焼鈍後の冷間鍛造性に優れた鋼線材及びその製造方法 | |
US20180251876A1 (en) | Mechanical structure steel for cold-working and manufacturing method therefor | |
KR20140050110A (ko) | 비조질 기계 부품용 선재, 비조질 기계 부품용 강선 및 비조질 기계 부품과 그들의 제조 방법 | |
JP6249846B2 (ja) | 伸線加工性、および伸線加工後の曲げ加工性に優れた高強度ばね用鋼線材、およびその製造方法、並びに高強度ばね、およびその製造方法 | |
US10570478B2 (en) | Steel for mechanical structure for cold working, and method for producing same | |
JP2009275250A (ja) | 冷間加工性に優れた鋼線材およびその製造方法 | |
JP5796781B2 (ja) | ばね加工性に優れた高強度ばね用鋼線材およびその製造方法、並びに高強度ばね | |
JP2010229469A (ja) | 冷間加工特性に優れる高強度線材及びその製造方法 | |
JP6460883B2 (ja) | 加工性に優れた熱処理鋼線の製造方法 | |
JP5941439B2 (ja) | コイルばね、およびその製造方法 | |
WO2016158562A1 (ja) | 疲労特性に優れた熱処理鋼線 | |
JP7226083B2 (ja) | 線材及び鋼線 | |
WO2023190994A1 (ja) | 線材 | |
JP7392904B1 (ja) | 高強度鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11821827 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13813961 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20137004929 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/002305 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011821827 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013004944 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013004944 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130228 |