WO2012029169A1 - 光通信システム - Google Patents

光通信システム Download PDF

Info

Publication number
WO2012029169A1
WO2012029169A1 PCT/JP2010/065128 JP2010065128W WO2012029169A1 WO 2012029169 A1 WO2012029169 A1 WO 2012029169A1 JP 2010065128 W JP2010065128 W JP 2010065128W WO 2012029169 A1 WO2012029169 A1 WO 2012029169A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
low
speed
optical
optical signal
Prior art date
Application number
PCT/JP2010/065128
Other languages
English (en)
French (fr)
Inventor
十倉 俊之
和行 石田
水落 隆司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012531636A priority Critical patent/JP5318287B2/ja
Priority to CN201080068880.6A priority patent/CN103098401B/zh
Priority to US13/814,513 priority patent/US9036995B2/en
Priority to PCT/JP2010/065128 priority patent/WO2012029169A1/ja
Priority to EP10856718.1A priority patent/EP2613459A4/en
Publication of WO2012029169A1 publication Critical patent/WO2012029169A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0777Monitoring line amplifier or line repeater equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • H04J14/0276Transmission of OAMP information using pilot tones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2916Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/074Monitoring an optical transmission system using a supervisory signal using a superposed, over-modulated signal

Definitions

  • the present invention relates to an optical communication system.
  • a monitoring signal for monitoring may be superimposed on the optical signal and transmitted.
  • a high-speed main signal is amplified and relayed as it is without being regenerated by an optical repeater.
  • the monitor signal is a low-speed signal having a lower bit rate than the main signal, and is transmitted by being superimposed on the intensity modulation of the optical signal.
  • the supervised low-speed signal is extracted and received, whereby the monitoring signal is transmitted to the repeater.
  • the submarine cable system has a long design life of more than 20 years, and the transmission capacity can be increased by adding equipment to transmit and receive optical signals of new wavelengths to land stations at both ends according to line demand. Often expanding.
  • an existing submarine cable system includes an optical signal transmission unit that transmits an optical signal, a transmitter that generates a low-speed electrical signal for low-speed monitoring, and a low-speed signal that superimposes and modulates the low-speed signal on the intensity of the optical signal
  • a superimposing unit, a repeater, a low-speed signal receiving unit that extracts a low-speed signal for monitoring, an optical signal receiving unit that receives an existing optical signal, and an optical signal transmitted through the repeater are demultiplexed and separated. It is assumed that a duplexer that outputs the waved optical signal to the low-speed signal receiver and the optical signal receiver is provided.
  • an additional optical signal receiver that receives a new additional optical signal, a multiplexer that multiplexes the new additional optical signal with an existing optical signal, and an optical signal transmitted via a repeater are demultiplexed.
  • Extension demultiplexer an extension optical signal transmitter that sends out a new extension optical signal, an optical signal transmitted through a repeater, demultiplexes the demultiplexed optical signal, and an additional optical signal receiver And an additional demultiplexer that outputs to each other.
  • the optical signal transmitted from the optical signal transmission unit and the additional optical signal transmission unit is not limited to a single wavelength optical signal, and a plurality of wavelengths are often multiplexed. Further, a plurality of repeaters are generally installed as necessary, and the optical signal reaches the opposite end of the submarine cable via these repeaters.
  • the existing device and the extension device described above are installed at the opposite end of the submarine cable.
  • the existing optical signal is transmitted from the optical signal transmitter, and the low-speed signal superimposing unit transmits the optical signal with the low-speed signal superimposed thereon. Further, the adder adds the additional optical signal to the repeater. It reaches.
  • the present invention has been made in view of the above, and an optical communication system capable of maintaining monitoring with a repeater without reducing the degree of modulation of a monitoring low-speed signal even if an optical signal is added.
  • the purpose is to obtain.
  • the present invention superimposes a first optical signal transmitter for transmitting a first optical signal and a low-speed signal on the first optical signal by intensity modulation.
  • a first low-speed signal superimposing unit wherein the low-speed signal is extracted from the first optical signal on which the low-speed signal is superimposed, and the extracted low-speed signal is converted into a low-speed electric signal.
  • a second low-speed signal extraction unit that transmits a second optical signal, a second optical signal transmission unit that transmits a second optical signal, and a second signal that superimposes the low-speed signal on the second optical signal by intensity modulation based on the low-speed electric signal.
  • a low-speed signal superimposing unit and a repeater that relays the second optical signal on which the low-speed signal is superimposed to a transmission destination.
  • the optical communication system according to the present invention has an effect that even if the number of optical signals is increased, monitoring by the repeater can be maintained without reducing the modulation degree of the low-speed signal for monitoring.
  • FIG. 1 is a diagram illustrating a configuration example of the optical communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the optical communication system according to the second embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of the optical communication system according to the third embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a first embodiment of an optical communication system according to the present invention.
  • the optical communication system according to the present embodiment is an optical communication system in which a device for transmitting and receiving an additional optical signal is added to an existing optical communication system.
  • the optical communication system according to the present embodiment can be applied to, for example, an optical communication system that transmits an optical signal using an optical submarine cable.
  • a part or all of the transmission section is an optical communication system in a land section. Can also be applied.
  • the optical communication system includes, as an existing optical communication system, an optical signal transmission unit (WDM-TX: first optical signal transmission unit) 1 that transmits an existing optical signal, and a low-speed for low-speed monitoring.
  • a supervisory signal transmission unit (SV-TX) 2 that generates an electrical signal
  • SV-MOD low-speed signal superposition unit
  • SV-MOD first low-speed signal
  • SV-RX low-speed signal receiving unit
  • an additional optical signal transmission unit (WDM-TX: second optical signal transmission unit) 4 for transmitting a new additional optical signal to the existing optical communication system, and a repeater 5
  • a demultiplexer 6 that demultiplexes the optical signal transmitted through the optical fiber
  • an additional optical signal receiver (WDM-RX) 8 that receives a new additional optical signal, and extracts a low-speed monitoring signal by receiving the optical signal.
  • MOD a second low-speed signal superimposing unit 10 and the number of units is increased.
  • These transmission / reception systems are respectively provided at both ends of the.
  • a plurality of repeaters 5 are installed between the transmission / reception systems at both ends as necessary.
  • the repeater 5 compensates for the propagation loss of the received optical signal and relays the optical signal, and receives a low-speed signal superimposed on the optical signal.
  • the optical signal transmitted from one transmission / reception system is transmitted to the transmission / reception system at the other end via the repeater 5 and received by the transmission / reception system at the other end.
  • a section in which a signal is transmitted by an optical signal is indicated by a thin solid arrow
  • a section in which a signal is transmitted by an electric signal is indicated by a thick solid arrow.
  • the existing signal is transmitted from the optical signal transmitter 1, but is not transmitted through the repeater 5, and the optical signal transmitted through the repeater 5 is added. Let it be an optical signal.
  • an existing optical signal is transmitted from the optical signal transmitter 1.
  • the low-speed signal superimposing unit 3 superimposes the monitoring signal on the existing optical signal by modulating the intensity of the existing optical signal based on the low-speed monitoring low-speed electric signal. Up to this point, it is the same as the conventional optical communication system.
  • the low speed signal superimposing unit 3 outputs an optical signal on which the low speed signal, which is a monitoring signal, is superimposed, to the low speed signal extracting unit 9.
  • the low speed signal extraction unit 9 extracts a low speed signal from the optical signal output from the low speed signal superimposing unit 3 and outputs the extracted low speed signal to the low speed signal superimposing unit 10 as an electrical signal.
  • the low-speed signal extraction unit 9 is, for example, a photodetector that converts an optical signal into an electric signal, a low-pass filter (low-pass filter) that extracts a desired low-speed signal from the electric signal, or a band-pass filter (band-pass filter). Can be realized.
  • the low-speed signal superimposing unit 10 superimposes the low-speed signal extracted by the low-speed signal extracting unit 9 on the added optical signal transmitted from the additional optical signal transmitting unit 4 (hereinafter referred to as an additional optical signal). Output to.
  • the low-speed signal superimposing unit 10 can be configured by, for example, a Raman amplifier that amplifies the intensity of the optical signal using the Raman effect in the optical fiber.
  • a Raman amplifier it is known that the intensity of an optical signal can be amplified according to the intensity of the excitation light by inputting light having a wavelength shorter by about 100 nm as the excitation light than the wavelength of the optical signal to be amplified.
  • the gain of the Raman amplifier changes, and the low-speed signal can be superimposed on the intensity of the optical signal that passes.
  • the Raman amplifier has a high response in principle, and can be sufficiently modulated if it is a low-speed signal of about several hundred kHz, for example.
  • the propagation delay of the optical signal and the pump light in the optical fiber to be amplified is reduced. Therefore, it is possible to perform modulation at higher speed. If the modulation speed of the low-speed signal is relatively low, for example, several tens of kHz or less, the pump light can be modulated with the low-speed signal using an erbium-doped fiber amplifier (EDFA). A similar function can be realized. In addition, it is possible to superimpose a low-speed signal using an intensity modulator.
  • EDFA erbium-doped fiber amplifier
  • the additional optical signal transmitted from the low-speed signal superimposing unit 10 reaches the transmission / reception system at the other end via the repeater 5 (via a plurality of repeaters 5 installed as necessary). Further, the repeater 5 performs a predetermined monitoring process using the monitoring signal superimposed on the additional optical signal transmitted from the low-speed signal superimposing unit 10. In the transmission / reception system at the other end, the duplexer 6 demultiplexes the additional optical signal transmitted by the repeater 5, and outputs the demultiplexed additional optical signal to the additional optical signal receiving unit 8 and the low-speed signal receiving unit 7, respectively. To do.
  • the additional optical signal receiving unit 8 performs predetermined reception processing on the received additional optical signal, and the low-speed signal receiving unit 7 extracts a monitoring signal that is a low-speed signal from the additional optical signal, and outputs the monitoring signal to the monitoring signal. A predetermined process is performed.
  • the low-speed signal extraction unit 9 extracts the monitoring signal from the existing optical signal
  • the low-speed signal superposition unit 10 converts the monitoring signal extracted by the low-speed signal extraction unit 9 into the additional light.
  • the signal is superimposed on the signal and output to the repeater 5. For this reason, it is possible to transmit the monitoring signal to the repeater 5 even when the existing optical signal from the optical signal transmission unit 1 is stopped and only the additional optical signal is transmitted. That is, even if the number of optical signals is increased, monitoring by the repeater can be maintained without reducing the degree of modulation of the low-speed signal for monitoring.
  • the overall transmission capacity of the optical communication system can be increased compared to the case of transmitting an existing optical signal.
  • the additional optical receiving unit has the old-type monitoring signal.
  • a transmission / reception function may not be provided, and the range of selection of a device that can be introduced as an additional optical receiver is widened.
  • FIG. FIG. 2 is a diagram illustrating a configuration example of the second embodiment of the optical communication system according to the present invention.
  • the transmission / reception system that constitutes the optical communication system of the present embodiment is different from the transmission / reception system that constitutes the optical communication system of the first embodiment in that a duplexer 11 and a canceller (SV-CNCL) 1 canceller unit) 12, multiplexer 13, demultiplexer 14, and optical signal receiver unit (WDM-RX) 15, except for the addition and reception of the optical communication system of the first embodiment. It is the same as the system.
  • Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
  • the demultiplexer 11 demultiplexes the existing optical signal on which the monitoring signal is superimposed, and inputs one of the demultiplexed optical signals to the low-speed signal extraction unit 9 and the other to the canceller unit 12.
  • the canceller unit 12 Is controlled to cancel the low-speed signal superimposed on the existing optical signal.
  • the canceller unit 12 may be arranged as necessary. For example, when the interference generated between the low-speed signal superimposed on the existing optical signal and the low-speed signal superimposed on the new optical signal can be ignored. Is unnecessary.
  • the canceller unit 12 can be realized by, for example, a Raman amplifier whose gain is modulated so as to cancel the superimposed low-speed signal.
  • the canceller unit 12 generates a cancellation signal obtained by inverting the low-speed signal, and performs intensity modulation by a Raman amplifier based on the cancellation signal.
  • the low-speed signal may be canceled by performing control to maintain the output power of the Raman amplifier constant using a Raman amplifier. If the modulation speed of the low-speed signal is relatively low, for example, several tens of kHz or less, it is possible to cancel the low-speed signal by controlling the output power to be constant using an erbium-doped optical fiber amplifier. .
  • the multiplexer 13 multiplexes the existing optical signal in which the low-speed monitoring signal is canceled by the canceller unit 12 and the additional optical signal on which the monitoring signal transmitted from the low-speed signal superimposing unit 10 is superimposed, and relays it. Output to the device 5.
  • the optical signal transmitted from the transmission / reception system at the other end output from the repeater 5 is demultiplexed by the demultiplexer 6, and one of the demultiplexed optical signals is input to the additional optical signal receiving unit 8, The other optical signal is input to the duplexer 14.
  • the demultiplexer 14 demultiplexes the input optical signal, inputs one to the low-speed signal receiving unit 7, and inputs the other to the optical signal receiving unit 15.
  • an optical signal receiver provided in an existing optical communication system can be used as the optical signal receiver 15.
  • the operations of the present embodiment other than those described above are the same as those of the first embodiment.
  • the canceller unit 12 cancels the low-speed signal of the existing optical signal
  • the multiplexer 13 superimposes the existing optical signal and the monitoring signal transmitted from the low-speed signal superimposing unit 10.
  • the added optical signals are combined and output to the repeater 5.
  • the demultiplexer 14 demultiplexes the transmitted optical signal input from the repeater 5, one is input to the low-speed signal receiving unit 7, and the other is input to the optical signal receiving unit 15. Therefore, the same effect as in the first embodiment can be obtained, and the existing optical signal and the additional optical signal can coexist and be multiplexed and transmitted.
  • FIG. 3 is a diagram illustrating a configuration example of a third embodiment of the optical communication system according to the present invention.
  • the optical communication system according to the present embodiment is different from the optical communication system according to the second embodiment in that an optical signal transmitter (WDM-TX) 21, a repeater (REP) 22, and a duplexer 23 are used.
  • an optical signal receiving unit (WDM-RX) 24 and a canceller unit (SV-CNCL: second canceller unit) 25 are added, and is the same as the optical communication system of the second embodiment.
  • WDM-TX optical signal transmitter
  • REP repeater
  • SV-CNCL second canceller unit
  • the optical signal transmission unit 21, the repeater 22, the duplexer 23, the optical signal reception unit 24, and the canceller 25 are adjacent to the transmission / reception system (hereinafter referred to as the first transmission / reception system) described in the second embodiment.
  • the second transmission / reception system is configured.
  • the second transmission / reception system transmits an optical signal via a repeater 22 through a different path from the first transmission / reception system.
  • the first transmission / reception system multiplexes and transmits the existing optical signal and the additional optical signal as in the second embodiment, but further relays the second transmission / reception system.
  • the optical signal relayed by the device 22 is also multiplexed and transmitted.
  • the optical signal transmission unit 21 transmits an optical signal, and transmits the optical signal to the second transmission / reception system at the other end via the repeater 22 (a plurality of repeaters 22 as necessary). Further, the demultiplexer 23 demultiplexes the optical signal output from the second transmission / reception system output from the repeater 22, one to the optical signal transmission unit 24, and the other to the canceller unit 25. Output to.
  • the canceller unit 25 cancels the low-speed signal with respect to the input optical signal, and inputs the optical signal after canceling the low-speed signal to the multiplexer 13 in the same manner as the canceller unit 12.
  • the multiplexer 13 combines the existing optical signal input from the canceller unit 12, the additional optical signal input from the low-speed signal superimposing unit 10, and the optical signal input from the canceller unit 25, and relays Input to the device 5.
  • the canceller unit 25 can be realized with the same configuration as the canceller unit 12 described in the second embodiment.
  • a low-speed monitoring signal may be superimposed on the optical signal relayed by the repeater 22.
  • the multiplexer 13 combines the optical signals received from the repeater 22 as they are, two types of low-speed monitoring signals are mixed and superimposed, causing interference and the like.
  • the canceller unit 25 cancels the low-speed monitoring signal of the optical signal relayed by the repeater 22, the multiplexer 13 can only perform the low-speed signal superimposed by the low-speed signal superimposing unit 10. Can be sent to the repeater 5. Note that when the low-speed monitoring signal is not superimposed on the optical signal relayed by the repeater 22, the canceller unit 25 may not be provided.
  • the multiplexer 13 combines the existing optical signal in which the low-speed signal is canceled, the additional optical signal on which the low-speed signal is superimposed, and the optical signal relayed through another path.
  • the canceller unit 25 cancels out the low-speed signal superimposed on the optical signal and inputs the signal to the multiplexer 13. Therefore, the same effect as in the second embodiment can be obtained, and even when a low-speed signal is superimposed on an optical signal relayed through another path, two types of low-speed monitoring signals are not mixed.
  • the optical communication system according to the present invention is useful for an optical communication system that transmits a low-speed signal for superimposition on an optical signal, and is particularly suitable for a submarine cable system.
  • WDM-TX 1,21 Optical signal transmitter
  • SV-TX Monitoring signal transmitter
  • SV-MOD Low-speed signal superposition part
  • WDM-TX Additional optical signal transmitter
  • REP Repeater
  • WDM-RX Additional optical signal receiver
  • SV-REG Low-speed signal extraction unit
  • Canceller SV-CNCL
  • Multiplexer 24 Optical signal receiver (WDM-RX)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

 既存光信号を送出する光信号送信部1と、強度変調により既存光信号に低速信号を重畳する低速信号重畳部3と、を備える光通信システムであって、低速信号が重畳された既存光信号から前記低速信号を抽出し、抽出した前記低速信号を低速電気信号に変換する低速信号抽出部9と、増設光信号を送出する増設光信号送信部4と、前記低速電気信号に基づいて、強度変調により増設光信号に低速信号を重畳する低速信号重畳部10と、低速信号が重畳された増設光信号を伝送先に向けて中継する中継器5と、を備える。

Description

光通信システム
 本発明は、光通信システムに関する。
 海底ケーブルシステムのような長距離の光通信システムでは、光中継器の状態を監視するために、監視のための監視信号を光信号に重畳して伝送されることがある。このような光通信システムでは、例えば下記特許文献1に記載されているように、高速の主信号は、光中継器で再生されること無く光のまま増幅して中継される。一方、監視信号は、主信号に比べて低いビットレートの低速信号であり、光信号の強度変調に重畳して伝送される。中継器では、重畳された低速信号を抽出して受信することで、監視信号が中継器に伝達される。
 例えば、海底ケーブルシステムは、設計寿命が20年以上と長く、回線需要にあわせて、両端の陸上局に新たな波長の光信号を送受信するための装置を増設していくことで、伝送容量を拡大していくことが多い。
 一方、技術の進歩により、海底ケーブル建設当初の設計での最大容量を超えるような光信号の増設が可能となっている。新しい技術を導入した装置を陸上局に増設して、既存の波長の光信号と増設された装置により送信される増設光信号とを合波して、海底ケーブルに伝送することで、当初の限界を超えるような容量の拡大が可能となる。
 例えば、既存の海底ケーブルシステムは、光信号を送出する光信号送信部と、低速の監視用の低速電気信号を生成する送信器と、光信号の強度に低速信号を重畳して変調する低速信号重畳部と、中継器と、監視用の低速信号を抽出する低速信号受信部と、既存の光信号を受信する光信号受信部と、中継器を介して伝送した光信号を分波して分波した光信号をそれぞれ低速信号受信部と光信号受信部とに出力する分波器と、を備えているとする。この海底ケーブルシステムに、新しい増設光信号を受信する増設光信号受信部と、既存の光信号に新しい増設光信号を合波する合波器と、中継器を介して伝送した光信号を分波する増設分波器と、新しい増設光信号を送出する増設光信号送信部と、中継器を介して伝送した光信号を分波し、分波した光信号を分波器と増設光信号受信部とに出力する増設分波器と、を増設する。
 光信号送信部および増設光信号送信部から送出される光信号は、1波長の光信号とは限らず、複数の波長が多重されている場合が多い。また、中継器は一般には必要に応じて複数台設置され、光信号はこれらの中継器を介して海底ケーブルの反対端に至る。海底ケーブルの反対端には、上述の既存装置および増設装置が設置される。
 既存の光信号は、光信号送信部から送出されて、低速信号重畳部によりこの光信号に低速信号が重畳されて送信され、さらに、合波器により増設光信号が合波され、中継器に至る。
特開平2-119328号公報
 しかしながら、上記従来の技術によれば、増設光信号には監視視号が重畳されていないため、増設光信号の数が多くなるにしたがって、中継器に届く監視信号の変調度が下がる。そのため、中継器で監視信号を抽出・受信できなくなり、中継器での監視が維持できない可能性がある、という問題がある。
 また、既存の光信号を送信せず、増設光信号だけを伝送する場合には、監視信号が重畳されないという、問題がある。
 本発明は、上記に鑑みてなされたものであって、光信号を増設しても監視用の低速信号の変調度を低下させることなく、中継器での監視を維持することができる光通信システムを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、第1の光信号を送出する第1の光信号送信部と、強度変調により前記第1の光信号に低速信号を重畳する第1の低速信号重畳部と、を備える光通信システムであって、前記低速信号が重畳された前記第1の光信号から前記低速信号を抽出し、抽出した前記低速信号を低速電気信号に変換する低速信号抽出部と、第2の光信号を送出する第2の光信号送信部と、前記低速電気信号に基づいて、強度変調により前記第2の光信号に低速信号を重畳する第2の低速信号重畳部と、前記低速信号が重畳された前記第2の光信号を伝送先に向けて中継する中継器と、を備えることを特徴とする。
 本発明にかかる光通信システムは、光信号を増設しても監視用の低速信号の変調度を低下させることなく、中継器での監視を維持することができる、という効果を奏する。
図1は、実施の形態1の光通信システムの構成例を示す図である。 図2は、実施の形態2の光通信システムの構成例を示す図である。 図3は、実施の形態3の光通信システムの構成例を示す図である。
 以下に、本発明にかかる光通信システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明にかかる光通信システムの実施の形態1の構成例を示す図である。本実施の形態の光通信システムは、既存の光通信システムに対し、増設光信号を送受信するための装置を増設した光通信システムである。
 本実施の形態の光通信システムは、例えば、光海底ケーブルを用いて光信号を伝送する光通信システムに適用することができるが、伝送区間の一部またはすべてが陸上の区間の光通信システムにも適用することができる。
 本実施の形態の光通信システムは、既存の光通信システムとして、既存の光信号を送出する光信号送信部(WDM-TX:第1の光信号送信部)1と、低速の監視用の低速電気信号を生成する監視信号送信部(SV-TX)2と、光信号を強度変調することにより光信号に低速信号を重畳して変調する低速信号重畳部(SV-MOD:第1の低速信号重畳部)3と、中継器(REP)5と、監視用の低速信号を抽出する低速信号受信部(SV-RX)7と、を備えている。
 本実施の形態の光通信システムでは、既存の光通信システムに対して、新しい増設光信号を送出する増設光信号送信部(WDM-TX:第2の光信号送信部)4と、中継器5を介して伝送された光信号を分波する分波器6と、新しい増設光信号を受信する増設光信号受信部(WDM-RX)8と、光信号を受けて低速の監視信号を抽出し、電気信号に変換する低速信号抽出部(SV-REG)9と、変換された電気信号に基づいて、増設光信号送信部4からの光信号に低速信号を重畳する低速信号重畳部(SV-MOD:第2の低速信号重畳部)10と、増設している。
 本実施の形態の光通信システムでは、図1に示した光信号送信部(WDM-TX)1、監視信号送信部2、低速信号重畳部3と、増設光信号送信部4、中継器5、分波器6、低速信号受信部7、増設光信号受信部8、低速信号抽出部9および低速信号重畳部10を1式の送受信システムとし、中継器5を介して接続される、光通信システムの両端に、この送受信システムをそれぞれ備える。両端の送受信システムの間には、中継器5が必要に応じて複数台設置される。中継器5は、受信した光信号の伝搬損失を補償して当該光信号を中継するとともに、当該光信号に重畳された低速信号を受信する。
 一方の送受信システムから送出された光信号は、中継器5を介して他端の送受信システムに伝送され、他端の送受信システムで受信される。なお、図1では、光信号により信号が伝送される区間を細い実線矢印で示し、電気信号で信号が伝送される区間を太い実線矢印で示している。
 つぎに、本実施の形態の動作を説明する。なお、本実施の形態では、既存の信号は、光信号送信部1から送出されるが、中継器5を介して伝送はされず、中継器5を介して伝送される光信号は増設された光信号とする。
 まず、既存の光信号は、光信号送信部1から送出される。低速信号重畳部3は、この既存の光信号の強度を低速の監視用の低速電気信号に基づいて変調することにより、既存の光信号に監視信号を重畳する。ここまでは、従来の光通信システムと同様である。
 低速信号重畳部3は、監視信号である低速信号を重畳した光信号を低速信号抽出部9へ出力する。低速信号抽出部9は、低速信号重畳部3から出力された光信号から低速信号を抽出し、抽出した低速信号を電気信号として低速信号重畳部10へ出力する。低速信号抽出部9は、例えば、光信号を電気信号に変換するフォトディテクタと、電気信号から所望の低速信号を抽出するローパスフィルタ(低域通過フィルタ)、あるいは、バンドパスフィルタ(帯域通過フィルタ)などで実現することができる。
 低速信号重畳部10は、増設光信号送信部4から送信される増設された光信号(以下、増設光信号という)に、低速信号抽出部9が抽出した低速信号を重畳して、中継器5へ出力する。低速信号重畳部10は、例えば、光ファイバ中のラマン効果を利用して光信号の強度を増幅するラマン増幅器(Raman amplifier)により構成することができる。ラマン増幅器では、増幅する光信号の波長に比べて100nm程度短い波長の光を励起光として入力することで、励起光の強度に応じて光信号の強度が増幅できることが知られている。低速信号を励起光として用いて強度を変調することで、ラマン増幅器の利得が変化して、通過する光信号の強度に低速信号を重畳することができる。ラマン増幅器は原理的に応答が高速であり、例えば数百kHz程度の低速信号であれば、十分変調可能である。
 なお、ラマン増幅器の光ファイバを短尺化したり、ラマン増幅器の励起光を光信号と同一伝搬方向に入射したりすることにより、増幅する光ファイバ内での光信号と励起光の伝搬遅延が少なくなり、より高速に変調することが可能となる。また、低速信号の変調速度が比較的低く、例えば数十kHz以下であれば、エルビウム添加光ファイバ増幅器(EDFA;Erbium-doped fiber amplifier)を用いて、その励起光を低速信号で変調することで、同様な機能が実現可能である。その他、強度変調器を用いて低速信号を重畳することも可能である。
 低速信号重畳部10から送出された増設光信号は、中継器5を経由して(必要に応じて設置された複数の中継器5を経由して)、他端の送受信システムに至る。また、中継器5は、低速信号重畳部10から送出された増設光信号に重畳されている監視信号を用いて、所定の監視処理を実施する。他端の送受信システムでは、分波器6が、中継器5により伝送された増設光信号を分波し、分波した増設光信号をそれぞれ増設光信号受信部8と低速信号受信部7に出力する。
 増設光信号受信部8は、受信した増設光信号に対して所定の受信処理を行い、低速信号受信部7は、増設光信号から低速信号である監視信号を抽出して、監視信号に対して所定の処理を実施する。
 以上のように、本実施の形態では、低速信号抽出部9が既存の光信号から監視信号を抽出し、低速信号重畳部10が、低速信号抽出部9により抽出された監視信号を、増設光信号に重畳して、中継器5へ出力するようにした。そのため、光信号送信部1からの既存の光信号を伝送することをやめて、増設光信号だけを伝送する場合でも、監視信号を中継器5に伝達することができる。すなわち、光信号を増設しても監視用の低速信号の変調度を低下させることなく、中継器での監視を維持することができる。
 増設光信号として、周波数利用効率が高く、変調速度が高速なものを用いることにより、既存の光信号を伝送する場合に比べて、光通信システムの全体の伝送容量を増加させることができる。また、低速の監視信号の送信装置、受信装置(低速信号重畳部3,低速信号受信部7)は、既存の装置を継続利用することができるため、増設光受信部は古い形式の監視信号の送受信機能を備えなくてもよく、増設光受信部として導入することができる装置の選択の幅が広くなる。
実施の形態2.
 図2は、本発明にかかる光通信システムの実施の形態2の構成例を示す図である。図2に示すように本実施の形態の光通信システムを構成する送受信システムは、実施の形態1の光通信システムを構成する送受信システムに、分波器11と、キャンセラ部(SV-CNCL:第1のキャンセラ部)12と、合波器13と、分波器14と、光信号受信部(WDM-RX)15と、を追加する以外は、実施の形態1の光通信システムを構成する送受信システムと同様である。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して、重複する説明を省略する。
 つぎに、本実施の形態の動作を説明する。分波器11は、監視信号が重畳された既存の光信号を分波し、分波した光信号の一方を低速信号抽出部9へ、他方をキャンセラ部12へそれぞれ入力する。
 キャンセラ部12は、既存の光信号(以下、既存光信号という)に重畳された低速信号と新しい光信号に重畳された低速信号との間で干渉することを避けるために、既存光信号の強度を制御することにより、既存光信号に重畳された低速信号を打ち消す処理を行う。キャンセラ部12は、必要に応じて配置すれば良く、例えば、既存の光信号に重畳された低速信号と新しい光信号に重畳された低速信号との間で生じる干渉が無視できるような場合等には、不要である。
 キャンセラ部12は、例えば、重畳された低速信号を打ち消すように利得を変調されたラマン増幅器で実現することができる。例えば、キャンセラ部12は、低速信号を反転させた相殺信号を生成し、相殺信号に基づいてラマン増幅器により強度変調を実施する。あるいは、ラマン増幅器を用いて、ラマン増幅器の出力パワーを一定に保つ制御を施すことで、低速信号を打ち消すようにしてもよい。低速信号の変調速度が比較的低く、例えば数十kHz以下であれば、エルビウム添加光ファイバ増幅器を用いて、その出力パワーを一定に保つ制御を施すことで、低速信号を打ち消すことも可能である。
 合波器13は、キャンセラ部12により低速の監視信号を打ち消された既存光信号と、低速信号重畳部10から送出された監視信号が重畳された増設光信号と、を合波して、中継器5へ出力する。
 また、中継器5から出力される他端の送受信システムから送信された光信号は、分波器6により分波され、分波された一方の光信号は増設光信号受信部8に入力され、他方の光信号は分波器14に入力される。分波器14は、入力された光信号を分波し、一方を低速信号受信部7へ入力し、他方を光信号受信部15へ入力する。光信号受信部15としては、既存の光通信システムが備える光信号受信部を用いることができる。以上述べた以外の本実施の形態の動作は、実施の形態1と同様である。
 以上のように、本実施の形態では、キャンセラ部12が既存光信号の低速信号を打ち消し、合波器13が、この既存光信号と、低速信号重畳部10から送出された監視信号が重畳された増設光信号と、を合波して、中継器5へ出力する。また、分波器14は、中継器5から入力された伝送された光信号を分波し、一方を低速信号受信部7へ入力し、他方を光信号受信部15へ入力するようにした。そのため、実施の形態1と同様の効果が得られるとともに、既存の光信号と、増設光信号を共存させて多重伝送することができる。
実施の形態3.
 図3は、本発明にかかる光通信システムの実施の形態3の構成例を示す図である。図3に示すように本実施の形態の光通信システムは、実施の形態2の光通信システムに、光信号送信部(WDM-TX)21と、中継器(REP)22と、分波器23と、光信号受信部(WDM-RX)24と、キャンセラ部(SV-CNCL:第2のキャンセラ部)25と、を追加する以外は、実施の形態2の光通信システムと同様である。実施の形態2と同様の機能を有する構成要素は、実施の形態2と同一の符号を付して、重複する説明を省略する。
 光信号送信部21、中継器22、分波器23、光信号受信部24およびキャンセラ25は、実施の形態2で説明した送受信システム(以下、第1の送受信システムという)に隣接する送受信システム(以下、第2の送受信システムという)を構成する。第2の送受信システムは、中継器22を経由して第1の送受信システムとは別経路で光信号の伝送を行う。本実施の形態では、第1の送受信システムは、第2の実施の形態と同様に既存光信号と、増設光信号と、を合波して送信するが、さらに、第2の送受信システムの中継器22が中継した光信号についても合波して送信する。
 光信号送信部21は、光信号を送出し、中継器22(必要に応じて複数の中継器22)を経由して他端の第2の送受信システムに光信号を送信する。また、分波器23は、中継器22から出力される、他端の第2の送受信システムから送信された光信号を分波して、一方を光信号送信部24へ、他方をキャンセラ部25へ出力する。
 キャンセラ部25は、入力された光信号に対してキャンセラ部12と同様に、低速信号を打ち消し、低速信号を打ち消した後の光信号を合波器13へ入力する。合波器13は、キャンセラ部12から入力される既存光信号と、低速信号重畳部10から入力される増設光信号と、キャンセラ部25から入力される光信号と、を合波して、中継器5へ入力する。なお、キャンセラ部25は、実施の形態2で述べたキャンセラ部12と同様の構成で実現可能である。
 このように、ある経路により中継された光信号の一部を、別経路へ送出するような構成では、中継器22により中継された光信号に低速の監視信号が重畳されていることがある。その場合に、合波器13が、そのまま中継器22から受信した光信号を合波すると、2種類の低速監視信号が混ざって重畳され、干渉等が生じる。本実施の形態では、キャンセラ部25が中継器22により中継された光信号の低速の監視信号を打ち消すようにしているので、合波器13は、低速信号重畳部10で重畳された低速信号のみを中継器5に送出することができる。なお、中継器22により中継された光信号に低速の監視信号が重畳されていない場合には、キャンセラ部25を備えなくてもよい。
 以上のように、本実施の形態では、合波器13が、低速信号を打ち消された既存光信号と、低速信号を重畳した増設光信号と、別経路で中継された光信号を、合波して送信する場合に、キャンセラ部25が、当該光信号に重畳されている低速信号を打ち消して、合波器13に入力するようにした。そのため、実施の形態2と同様の効果が得られるとともに、別経路で中継された光信号に低速信号が重畳されている場合でも、2種類の低速監視信号が混ざることがない。
 以上のように、本発明にかかる光通信システムは、監視のための低速信号を光信号に重畳して伝送する光通信システムに有用であり、特に、海底ケーブルシステムに適している。
 1,21 光信号送信部(WDM-TX)
 2 監視信号送信部(SV-TX)
 3,10 低速信号重畳部(SV-MOD)
 4 増設光信号送信部(WDM-TX)
 5,22 中継器(REP)
 6,11,14,23 分波器
 7 低速信号受信部(SV-RX)
 8 増設光信号受信部(WDM-RX)
 9 低速信号抽出部(SV-REG)
 12,25 キャンセラ部(SV-CNCL)
 13 合波器
 15,24 光信号受信部(WDM-RX)

Claims (9)

  1.  第1の光信号を送出する第1の光信号送信部と、強度変調により前記第1の光信号に低速信号を重畳する第1の低速信号重畳部と、を備える光通信システムであって、
     前記低速信号が重畳された前記第1の光信号から前記低速信号を抽出し、抽出した前記低速信号を低速電気信号に変換する低速信号抽出部と、
     第2の光信号を送出する第2の光信号送信部と、
     前記低速電気信号に基づいて、強度変調により前記第2の光信号に低速信号を重畳する第2の低速信号重畳部と、
     前記低速信号が重畳された前記第2の光信号を伝送先に向けて中継する中継器と、
     を備えることを特徴とする光通信システム。
  2.  前記低速信号が重畳された前記第1の光信号と、前記低速信号が重畳された前記第2の光信号と、を合波した合波信号を生成する合波器、
     をさらに備え、
     前記中継器は、前記合波信号を伝送先に向けて中継する、
     ことを特徴とする請求項1に記載の光通信システム。
  3.  前記低速信号が重畳された前記第1の光信号の前記低速信号を打ち消すよう前記第1の光信号の強度を制御するキャンセラ部、
     をさらに備え、
     前記合波器は、前記キャンセラ部により前記低速信号を打ち消された前記第1の光信号と、前記低速信号が重畳された前記第2の光信号と、を合波して前記合波信号を生成する、
     ことを特徴とする請求項2に記載の光通信システム。
  4.  前記キャンセラ部は、
     ラマン増幅器、
     を備え、
     前記第1の光信号に重畳された低速信号を反転させた相殺信号に基づいて前記ラマン増幅器の利得を変化させることにより前記低速信号が重畳された前記第1の光信号の強度変調を行なう、
     ことを特徴とする請求項3に記載の光通信システム。
  5.  前記キャンセラ部は、
     出力パワーを一定に保つように制御されたラマン増幅器、
     を備えることを特徴とする請求項3に記載の光通信システム。
  6.  前記合波器は、前記合波信号として、さらに前記中継器以外の中継器により中継された第3の光信号、を合波する、
     ことを特徴とする請求項2~5のいずれか1つに記載の光通信システム。
  7.  前記キャンセラ部を第1のキャンセラ部とし、
     前記第3の光信号の強度に重畳されている低速信号を打ち消すよう前記第3の光信号の強度を制御する第2のキャンセラ部、
     をさらに備え、
     前記合波器は、前記中継器以外の中継器により中継された第3の光信号として前記第2のキャンセラ部により前記低速信号を打ち消された前記第3の光信号を合波する、
     ことを特徴とする請求項6に記載の光通信システム。
  8.  前記低速信号抽出部は、
     入力された光信号を電気信号に変換するフォトディテクタと、
     前記電気信号から前記低速電気信号を抽出するローパスフィルタまたはバンドパスフィルタと、
     を備えることを特徴とする請求項1~7のいずれか1つに記載の光通信システム。
  9.  前記第2の低速信号重畳部は、
     ラマン増幅器、
     を備え、
     前記低速電気信号に応じて前記ラマン増幅器の利得を変化させることにより前記第2の光信号の強度を変調することを特徴とする請求項1~8のいずれか1つに記載の光通信システム。
PCT/JP2010/065128 2010-09-03 2010-09-03 光通信システム WO2012029169A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012531636A JP5318287B2 (ja) 2010-09-03 2010-09-03 光通信システム
CN201080068880.6A CN103098401B (zh) 2010-09-03 2010-09-03 光通信系统
US13/814,513 US9036995B2 (en) 2010-09-03 2010-09-03 Optical communication system
PCT/JP2010/065128 WO2012029169A1 (ja) 2010-09-03 2010-09-03 光通信システム
EP10856718.1A EP2613459A4 (en) 2010-09-03 2010-09-03 Optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065128 WO2012029169A1 (ja) 2010-09-03 2010-09-03 光通信システム

Publications (1)

Publication Number Publication Date
WO2012029169A1 true WO2012029169A1 (ja) 2012-03-08

Family

ID=45772302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065128 WO2012029169A1 (ja) 2010-09-03 2010-09-03 光通信システム

Country Status (5)

Country Link
US (1) US9036995B2 (ja)
EP (1) EP2613459A4 (ja)
JP (1) JP5318287B2 (ja)
CN (1) CN103098401B (ja)
WO (1) WO2012029169A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989571B2 (en) * 2012-09-14 2015-03-24 Fujitsu Limited In-band supervisory data modulation using complementary power modulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119328A (ja) 1988-10-28 1990-05-07 Kokusai Denshin Denwa Co Ltd <Kdd> 光中継器の監視制御方式
JPH05344072A (ja) * 1992-06-05 1993-12-24 Nec Corp 光中継器
JPH1041889A (ja) * 1996-07-26 1998-02-13 Fujitsu Ltd 光分岐挿入装置、該装置を有するシステム及び光分岐挿入方法
JPH10126341A (ja) * 1996-10-21 1998-05-15 Fujitsu Ltd 光送信機及び光ネットワークシステム
JP2004228761A (ja) * 2003-01-21 2004-08-12 Fujitsu Ltd 中継装置およびラマン増幅中継システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2502750B2 (ja) 1989-06-07 1996-05-29 国際電信電話株式会社 光中継器のレベル制御方式
JP3846918B2 (ja) * 1994-08-02 2006-11-15 富士通株式会社 光伝送システム、光多重伝送システム及びその周辺技術
US6233077B1 (en) * 1995-05-11 2001-05-15 Ciena Corporation Remodulating channel selectors for WDM optical communication systems
JPH118590A (ja) * 1997-04-25 1999-01-12 Oki Electric Ind Co Ltd 光伝送システム及びその監視制御方法
DE19736695A1 (de) * 1997-08-22 1999-03-18 Siemens Ag Verfahren und Anordnung zum Übertragen eines mit einem Zusatzsignal modulierten optischen Datensignals über nicht transparente Funktionseinheiten
US7099597B2 (en) * 2000-08-25 2006-08-29 Pts Corporation Method of adaptive signal degradation compensation
JP3813063B2 (ja) * 2001-02-01 2006-08-23 富士通株式会社 通信システム及び波長分割多重装置
JP3898086B2 (ja) 2002-05-24 2007-03-28 三菱電機株式会社 光変調方式
KR100606030B1 (ko) * 2004-07-20 2006-07-28 삼성전자주식회사 듀오바이너리 광 전송장치 및 전송방법
JP4900483B2 (ja) * 2007-07-20 2012-03-21 富士通株式会社 光伝送装置,波長多重光通信システムおよび光伝送方法
JP5029409B2 (ja) * 2008-02-14 2012-09-19 富士通株式会社 ラマン増幅を用いた光伝送システムおよびその制御方法
JP5091739B2 (ja) * 2008-03-21 2012-12-05 株式会社日立製作所 光信号伝送装置
WO2010020295A1 (en) * 2008-08-19 2010-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Improvements in or relating to modulation in an optical network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119328A (ja) 1988-10-28 1990-05-07 Kokusai Denshin Denwa Co Ltd <Kdd> 光中継器の監視制御方式
JPH05344072A (ja) * 1992-06-05 1993-12-24 Nec Corp 光中継器
JPH1041889A (ja) * 1996-07-26 1998-02-13 Fujitsu Ltd 光分岐挿入装置、該装置を有するシステム及び光分岐挿入方法
JPH10126341A (ja) * 1996-10-21 1998-05-15 Fujitsu Ltd 光送信機及び光ネットワークシステム
JP2004228761A (ja) * 2003-01-21 2004-08-12 Fujitsu Ltd 中継装置およびラマン増幅中継システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2613459A4

Also Published As

Publication number Publication date
EP2613459A4 (en) 2017-07-05
CN103098401B (zh) 2015-12-09
CN103098401A (zh) 2013-05-08
US20130129356A1 (en) 2013-05-23
US9036995B2 (en) 2015-05-19
JP5318287B2 (ja) 2013-10-16
EP2613459A1 (en) 2013-07-10
JPWO2012029169A1 (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
WO2018198478A1 (ja) 伝送装置及び伝送方法
US9184864B2 (en) Optical transmission system, optical transmitting apparatus, and optical receiving apparatus
JP5536209B2 (ja) 光伝送システム
US6661973B1 (en) Optical transmission systems, apparatuses, and methods
JP5387311B2 (ja) 波長多重光ネットワークシステム及び波長多重光の送受信方法
US20030081295A1 (en) Transmission device and repeater
JP6965937B2 (ja) 海底分岐装置、光海底ケーブルシステム、光通信方法
JP2011035735A (ja) 伝送装置,伝送システムおよび通信方法
JP5318287B2 (ja) 光通信システム
US20190103917A1 (en) Optical Pumping Technique
JP2011250037A (ja) 偏波多重光伝送システム
JP2007208499A (ja) 光伝送ネットワーク
CN210927630U (zh) 一种用于海底观测网长距离网络传输系统
WO2007034545A1 (ja) 波長多重伝送システムにおける監視制御光伝送方法および波長多重伝送装置
JP6155803B2 (ja) 光波長多重通信システム、光波長多重通信方法、及び光合分波装置
US8509615B2 (en) Optical amplifier
CN110784264A (zh) 一种用于海底观测网长距离网络传输系统及其传输方法
WO2022137504A1 (ja) バースト光中継装置及びバースト光中継方法
JP7435729B2 (ja) モニタ信号光出力装置、海底機器及び光通信システム
EP3120471A1 (en) Multi-span optical communications link having remote optically pumped amplifier
US11316593B2 (en) Optical DWDM data and QKD transmission system
JP2015039110A (ja) 伝送装置
CN104993871B (zh) 一种新型塔内光中继放大器装置
JP2015070421A (ja) 光伝送装置、光伝送システムおよび光伝送方法
JP2003114453A (ja) ラマン増幅器、システム監視制御装置および光伝送システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068880.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012531636

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13814513

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010856718

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE