WO2012026116A1 - 水素精製装置およびそれを用いた燃料電池システム - Google Patents

水素精製装置およびそれを用いた燃料電池システム Download PDF

Info

Publication number
WO2012026116A1
WO2012026116A1 PCT/JP2011/004690 JP2011004690W WO2012026116A1 WO 2012026116 A1 WO2012026116 A1 WO 2012026116A1 JP 2011004690 W JP2011004690 W JP 2011004690W WO 2012026116 A1 WO2012026116 A1 WO 2012026116A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
catalyst
flow path
methanation
methanation catalyst
Prior art date
Application number
PCT/JP2011/004690
Other languages
English (en)
French (fr)
Inventor
中嶋 知之
脇田 英延
藤原 誠二
幸宗 可児
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180004366.0A priority Critical patent/CN102596799B/zh
Priority to US13/503,606 priority patent/US9614241B2/en
Priority to EP11819592.4A priority patent/EP2610213B1/en
Priority to JP2012513403A priority patent/JP5853137B2/ja
Publication of WO2012026116A1 publication Critical patent/WO2012026116A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/586Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being a methanation reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1088Non-supported catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen purifier that reduces carbon monoxide (hereinafter referred to as CO) contained in a hydrogen-containing gas, and a fuel including a fuel cell that generates electricity using the hydrogen-containing gas that has passed through the hydrogen purifier. It relates to a battery system.
  • CO carbon monoxide
  • the hydrogen purifier includes a CO removal unit that reduces carbon monoxide produced by the reforming reaction.
  • the hydrogen-containing gas is generated by a reforming reaction using a raw material containing at least carbon and hydrogen as constituent elements.
  • the hydrogen-containing gas that has passed through the hydrogen purifier is supplied to the fuel cell and used for power generation of the fuel cell.
  • the CO removal unit generally has a form in which carbon monoxide is reduced by an oxidation reaction, but a form in which carbon monoxide is reduced by a methanation reaction has also been proposed (see, for example, Patent Document 1 and Patent Document 2). .
  • the present invention provides a hydrogen purifier and a fuel equipped with the same, in which the temperature gradient upstream and downstream of the methanation catalyst is reduced and CO methanation reactivity is improved. and an object thereof is to provide a battery system.
  • the hydrogen purifier of the present invention includes a shift catalyst that reduces carbon monoxide contained in a hydrogen-containing gas by a shift reaction, and carbon monoxide included in the hydrogen-containing gas that has passed through the shift catalyst.
  • a methanation catalyst for reducing the amount of hydrogen-containing gas passing through the shift catalyst, and the shift catalyst and the methanation catalyst are configured to exchange heat through the first partition wall.
  • the flow direction and the flow direction of the hydrogen-containing gas passing through the methanation catalyst are configured to face each other.
  • the fuel cell system of the present invention comprises the above-described hydrogen purifier of the present invention and a fuel cell that generates electric power using a hydrogen-containing gas supplied from the hydrogen purifier.
  • the temperature gradient between the upstream and downstream of the methanation catalyst is reduced and the CO methanation reactivity is improved as compared with the conventional hydrogen purifier and fuel cell system.
  • FIG. 1A is a diagram showing a schematic configuration of a hydrogen purifier according to Embodiment 1.
  • FIG. 1B is a diagram showing a schematic configuration of a hydrogen purifier according to Modification 1 of Embodiment 1.
  • FIG. 1C is a diagram showing a schematic configuration of a hydrogen purifier according to Modification 2 of Embodiment 1.
  • FIG. 2 is a schematic diagram showing the structure of a hydrogen purifier representing a conventional embodiment.
  • FIG. 3 is a diagram showing a schematic configuration of the hydrogen purification apparatus according to the second embodiment.
  • FIG. 4 is a diagram showing a schematic configuration of the hydrogen purification apparatus according to the third embodiment.
  • FIG. 5 is a diagram showing a schematic configuration of the hydrogen purification apparatus according to the fourth embodiment.
  • FIG. 6 is a diagram showing a schematic configuration of an example of the hydrogen purifier according to the fourth embodiment.
  • FIG. 7 is a diagram showing a schematic configuration of a comparative example of the hydrogen purifier.
  • FIG. 8 is a diagram showing a schematic configuration of the hydrogen purification apparatus according to the fifth embodiment.
  • FIG. 9 is a diagram showing a schematic configuration of the fuel cell system according to the sixth embodiment.
  • the hydrogen purifier according to the present embodiment includes a shift catalyst that reduces carbon monoxide contained in the hydrogen-containing gas by a shift reaction, and a carbon monoxide contained in the hydrogen-containing gas that has passed through the shift catalyst is reduced by a methanation reaction.
  • the shift catalyst and the methanation catalyst are configured to be capable of heat exchange via the first partition wall, and the direction of the flow of the hydrogen-containing gas passing through the shift catalyst, and the methanation catalyst It is comprised so that the direction of the flow of the hydrogen containing gas to pass may oppose.
  • FIG. 1A is a diagram illustrating a schematic configuration of the hydrogen purification apparatus according to the first embodiment.
  • the hydrogen purification apparatus 100 of the present embodiment includes a shifter 5 including a shift catalyst 5a and a CO remover 6 including a methanation catalyst 6a.
  • a first partition wall 8 is provided between the shift catalyst 5a and the methanation catalyst 6a, and the shift catalyst 5a and the methanation catalyst 6a are configured to be capable of heat exchange via the first partition wall 8. Further, the flow direction of the hydrogen-containing gas passing through the shift catalyst 5a and the flow direction of the hydrogen-containing gas passing through the methanation catalyst are opposed to each other.
  • FIG. 2 is a schematic diagram showing a schematic configuration of a conventional hydrogen purification apparatus 100.
  • the hydrogen purification apparatus 100 includes a shifter 5 including a shift catalyst 5a and a CO remover 6 including a methanation catalyst 6a downstream of the shifter 5. Further, the shift catalyst 5a and the methanation catalyst 6a are not configured to be able to transfer heat through a partition wall.
  • the catalyst metal constituting the shift catalyst 5a for example, a noble metal catalyst such as Pt, a Cu—Zn-based catalyst, or the like is used.
  • the catalyst metal carrier may be any carrier as long as it can carry the catalyst metal.
  • alumina, silica, silica alumina, magnesia, titania, zeolite and the like can be exemplified.
  • pellets, honeycombs, or the like are used as the base material of the shift catalyst 5a.
  • the catalyst metal used for the methanation catalyst 6a a metal that is active in CO methanation is used. Examples of such catalytic metals include metals such as Pt, Ru, Rh, Pd, and Ni.
  • the catalyst metal carrier may be any carrier as long as it can carry the catalyst metal.
  • alumina, silica, silica alumina, magnesia, titania, zeolite and the like can be exemplified.
  • pellets, honeycombs or the like are used for the base material of the methanation catalyst 6a.
  • a suitable temperature for reducing CO by the shift catalyst 5a is higher than a suitable temperature for reducing CO by the methanation catalyst 6a.
  • the CO shift reaction proceeds from the upstream side of the shift catalyst 5a, and the upstream side of the shift catalyst 5a has a larger reaction amount than the downstream side. Since the shift reaction is an exothermic reaction, the temperature upstream of the shift catalyst 5a is higher than the downstream. The temperature distribution from the upstream to the downstream is the same for the methanation catalyst.
  • the shift catalyst 5a and the methanation catalyst 6a are configured to transfer heat through the first partition wall 8, and pass through the shift catalyst 5a.
  • the direction of the flow of the hydrogen-containing gas that flows through and the direction of the flow of the hydrogen-containing gas that passes through the methanation catalyst are configured to face each other.
  • the downstream portion where the temperature is lower than the upstream portion as described above exchanges heat with the relatively high temperature portion of the shift catalyst 5a. Compared to the above, the temperature gradient upstream and downstream of the methanation catalyst 6a is reduced.
  • the most downstream portion of the shift catalyst 5a may be configured to protrude from the most upstream portion of the methanation catalyst 6a. .
  • the upstream portion of the methanation catalyst 6a exchanges heat with a portion having a higher temperature than the most downstream portion of the shift catalyst 5a, so that the possibility that the methanation catalyst 6a falls below the appropriate temperature is reduced. Further, since the most downstream portion of the shift catalyst 5a does not exchange heat with the most upstream portion of the methanation catalyst 6a having a high temperature, the temperature of the most downstream portion of the shift catalyst 5a can be lowered. Thereby, carbon monoxide in the hydrogen-containing gas that has passed through the shift catalyst 5a can be reduced. [Modification 2] As a second modification of the hydrogen purification apparatus 100 of the present embodiment, as shown in FIG. 1C, the most upstream part of the methanation catalyst 6a may be configured to protrude from the most downstream part of the shift catalyst 5a. .
  • FIG. 3 is a diagram showing a schematic configuration of the hydrogen purification apparatus of the present embodiment.
  • the hydrogen purification apparatus 100 of the present embodiment includes a water flow path 11, and the water flowing through the water flow path 11 is configured to be able to exchange heat via the methanation catalyst 6 a and the second partition wall 9. ing.
  • the water flow path 11 and the shift catalyst 5a are disposed so as to sandwich the methanation catalyst 6a therebetween. Since points other than the above are the same as those of the hydrogen purification apparatus 100 of the first embodiment, description thereof is omitted. Note that the above-described configuration of the present embodiment may be applied to at least one of the hydrogen purification apparatuses 100 of Modification 1 and Modification 2.
  • the hydrogen purifier 100 has a shift reaction in which the shift catalyst is excessively lowered in temperature compared to the conventional hydrogen purifier in which the shift catalyst is directly cooled by the water flowing through the water flow path.
  • the possibility of deviating from the preferred temperature range is reduced, which is preferable.
  • the methanation catalyst is directly cooled by the water flowing through the water channel through the partition wall, the possibility of overheating due to acceleration of the CO2 methanation reaction is reduced.
  • FIG. 4 is a diagram showing a schematic configuration of the hydrogen purification apparatus of the present embodiment.
  • the hydrogen purification apparatus 100 of the present embodiment includes a water flow path 11 and a gas flow path 10 through which the hydrogen-containing gas that has passed through the methanation catalyst 6 a flows, and contains hydrogen that flows through the gas flow path 10.
  • the gas is configured to be able to exchange heat with water flowing through the water flow path 11 via the third partition wall 12.
  • the methanation catalyst 6a is configured to be able to exchange heat with the hydrogen-containing gas flowing through the gas flow path 10 via the second partition wall 9, and to be able to exchange heat with water flowing through the water flow path 11 via the gas flow path 10. It is configured. Since points other than the above are the same as those of the hydrogen purification apparatus 100 of the first embodiment, description thereof is omitted. Note that the above-described configuration of the present embodiment may be applied to at least one of the hydrogen purification apparatuses 100 of Modification 1 and Modification 2.
  • the hydrogen purification apparatus 100 of the present embodiment is implemented because the methanation catalyst 6a is configured to be able to exchange heat with water flowing through the water channel 11 indirectly via the gas channel 10. Compared to the hydrogen purification apparatus of the second aspect, the possibility that the methanation catalyst is excessively lowered in temperature and deviated from the suitable temperature range of the methanation reaction is reduced. (Embodiment 4) The hydrogen purification apparatus 100 according to the fourth embodiment will be described.
  • FIG. 5 is a diagram showing a schematic configuration of the hydrogen purification apparatus 100 of the present embodiment.
  • the hydrogen purification apparatus 100 of the present embodiment is configured so that the upstream side of the shift catalyst 5a can exchange heat with water flowing through the water flow path 11 via the third partition wall 12, and
  • the downstream side of the catalyst 5 a is configured to be able to exchange heat with the methanation catalyst 6 a via the first partition wall 8.
  • the upstream side of the shift catalyst into which the high-temperature hydrogen-containing gas flows is prevented from overheating, and the temperature gradient upstream and downstream of the methanation catalyst 6a is reduced. Further, the possibility that the methanation catalyst 6a is heated to an appropriate temperature is improved as compared with the case where the methanation catalyst exchanges heat with the upstream side of the shift catalyst.
  • the upstream side of the shift catalyst 5a is configured to be able to exchange heat with the water flowing through the water channel 11 after heat exchange with the methanation catalyst 6a via the gas channel 10, and the downstream side of the shift catalyst 5a is The heat exchange with the methanation catalyst 6a is possible via the first partition wall 8.
  • the modification catalyst is higher than the methanation catalyst in spite of having a preferable reaction temperature
  • the water flow path 11 has a configuration in which the flow direction of the water flowing through the water flow path 11 is reversed. Since the water flowing through the heat exchanger exchanges heat with the upstream side of the shift catalyst and then exchanges heat with the methanation catalyst via the gas flow path, both the shift catalyst and the methanation catalyst may be out of the suitable temperature range. However, by configuring as described above, in addition to the effect of suppressing the excessive temperature increase on the upstream side of the shift catalyst 5a and the effect of achieving the appropriate temperature of the methanation catalyst 6a, the flow direction of the water flowing through the water passage 11 is reversed. In comparison, both the shift catalyst and the methanation catalyst are within a suitable temperature range and are more likely to be maintained.
  • FIG. 6 is a diagram showing a schematic configuration of the hydrogen purification apparatus 100 of the example of the present embodiment.
  • the hydrogen generator 200 includes a temperature detector 14, a reforming catalyst 4a, and an evaporator 7 in addition to the shift catalyst 5a and the methanation catalyst 6a constituting the hydrogen purifier 100.
  • the burner 2 and the combustion exhaust gas flow path 17 are provided.
  • the evaporator 7 corresponds to the water flow path 11.
  • the temperature detector 14 is a device that detects the temperature of the methanation catalyst 6a.
  • a thermocouple, a thermistor, or the like is used as the temperature detector 14, but any device may be used as long as the temperature can be detected.
  • the reforming catalyst 4a is a catalyst for generating a hydrogen-containing gas by reforming the raw material and steam, and is provided in an annular space between the first cylinder 15 and the second cylinder 18 provided outside thereof. It is.
  • the catalyst metal for example, Ru, Ni or the like is used, but Ni was used in this example.
  • the evaporator 7 is provided upstream of the reforming catalyst 4a in the annular space between the first cylinder 15 and the second cylinder 18, and evaporates the supplied water.
  • the raw material is also supplied to the evaporator 7 and the raw material is preheated.
  • Burner 2 burns using supplied fuel and air.
  • the combustion exhaust gas channel 17 is a channel through which the combustion exhaust gas generated by the burner 2 flows, and is formed by an annular space between the combustion cylinder 3 and the first cylinder 15.
  • the reforming catalyst 4 a and the evaporator 7 are configured to be heated in this order via the first cylinder 15 by the combustion exhaust gas flowing through the combustion exhaust gas passage 17.
  • the heat insulating material 20 is a heat insulating material that covers the hydrogen generating device 200, and specifically, is configured to cover the third tube 16 that is the outermost tube constituting the hydrogen generating device 200.
  • the shift catalyst 5a constituting the hydrogen purifier 100 is provided in an annular space between the second cylinder 18 and the third cylinder 16.
  • the methanation catalyst 6 a is provided in an annular space located between the first partition wall 8 and the second partition wall 9.
  • the first partition wall 8 and the second partition wall 9 provided inside the first partition wall 8 are provided in an annular space between the second cylinder 18 and the third cylinder 16 located on the downstream side of the shift catalyst 5a. .
  • heat is transferred from the shift catalyst 5a to the methanation catalyst 6a via the first partition wall 8.
  • the hydrogen-containing gas that has passed through the shift catalyst 5a turns in the flow direction in the return flow path downstream from the downstream end of the first partition wall 8, and flows into the methanation catalyst 6a.
  • the direction of the flow of the hydrogen-containing gas passing through the shift catalyst 5a and the direction of the flow of the hydrogen-containing gas passing through the methanation catalyst 6a are opposed to each other.
  • a Cu—Zn-based catalyst was used as the shift catalyst 5a, and Ru was used as the methanation catalyst.
  • a dedicated device for adjusting the temperature of the shift catalyst 5a or the methanation catalyst 6a is not provided, but a heater using an electric heater or the like, a cooling fan, a cooler using a radiator or the like is used. and it may be.
  • the outlet temperature of the shift catalyst 5a is 200 ° C.
  • the methanation catalyst 6a The inlet temperature was 220 ° C and the outlet temperature was 210 ° C.
  • the CO concentration in the hydrogen-containing gas at the outlet of the methanation catalyst 6a was 27 ppm.
  • the evaporator 7 constitutes a cooling means in which the upstream side of the shift catalyst 5a is cooled via the second cylinder 18. However, a bypass path that bypasses the evaporator 7 is provided, and the downstream side of the shift catalyst 5a is the first side. You may comprise so that it can cool via the 3 cylinder 16. FIG.
  • the above configuration makes it easier to control the temperature of the downstream portion of the shift catalyst 5a.
  • the cooling means for cooling the shift catalyst 5a is not limited to the evaporator 7, and any configuration may be used as long as the shift catalyst 5a can be cooled.
  • the shift catalyst 5a may be cooled using air supplied to the burner 2.
  • the shift catalyst 5a may be cooled using an oxidant gas supplied to the fuel cell.
  • FIG. 7 is a diagram showing a schematic configuration of a hydrogen purification apparatus 100 of a comparative example.
  • the methanation catalyst 6 a is provided downstream of the shift catalyst 5 a in the annular space between the second cylinder 18 and the third cylinder 16. Therefore, unlike the hydrogen purification apparatus 100 of the above embodiment, the methanation catalyst 6a is not configured to transfer heat from the shift catalyst 5a to the shift catalyst 5a and the methanation catalyst 6a via the partition walls.
  • Other configurations are the same as those in the above embodiment, and the description thereof is omitted.
  • the outlet temperature 200 of the shift catalyst 5a is 200. C.
  • the inlet temperature of the methanation catalyst 6a was 200.degree. C.
  • the outlet temperature was 150.degree. C.
  • the CO concentration at the outlet of the methanation catalyst was 420 ppm.
  • the temperature gradient of the methanation catalyst 6a is 10 ° C., and the temperature range (200 ° C. to 240 ° C.) suitable for reducing CO over the entire methanation catalyst 6a. ), CO could be reduced to 27 ppm by methanation reaction.
  • the temperature gradient of the methanation catalyst 6a is 50 ° C., which is larger than that of the example, and a part of the methanation catalyst 6a (downstream side) is suitable for reducing CO. It was out of the range (200 ° C. to 240 ° C.), and CO could only be reduced to 420 ppm.
  • Embodiment 5 A hydrogen purification apparatus 100 according to Embodiment 5 will be described.
  • FIG. 8 is a diagram showing a schematic configuration of the hydrogen purification apparatus 100 of the present embodiment.
  • the hydrogen purification apparatus 100 of the present embodiment includes a temperature detector 14, a water flow rate adjuster 13 that adjusts the flow rate of water flowing through the water flow path 11, and the water flow rate adjuster 13 based on the detection value of the temperature detector 14. And a controller 50 for controlling the operation amount.
  • the controller 50 may control the opening of the water flow rate regulation valve based on the detection value of the temperature detector 14.
  • the controller 50 controls the detection value of the temperature detector 14 to be equal to or lower than a predetermined upper limit temperature, thereby reducing the possibility of acceleration of the CO2 methanation reaction.
  • the other points are the same as those of the hydrogen purification apparatus according to the fourth embodiment, and thus the description thereof is omitted.
  • the hydrogen purification apparatus of this Embodiment is comprised so that the temperature detector 14, the water flow regulator 13, and the controller 50 may be applied to the hydrogen purification apparatus of Embodiment 4, these apparatuses are used.
  • the embodiment applied to the hydrogen purification apparatus of Embodiment 2 or Embodiment 3 may be adopted. (Embodiment 6) A fuel cell system according to Embodiment 6 will be described.
  • FIG. 9 is a diagram showing a schematic configuration of the fuel cell system 300 of the present embodiment.
  • a fuel cell system includes the hydrogen purification device according to any one of the first to fifth embodiments and a fuel cell that generates power using a hydrogen-containing gas supplied from the hydrogen purification device.
  • the fuel cell system 300 includes a hydrogen purifier 100, a fuel cell 30, and an oxidant gas supplier 31.
  • the fuel cell 30 generates power using the hydrogen-containing gas supplied from the hydrogen purifier 100 and the oxidant gas supplied from the oxidant gas supply unit 31.
  • the oxidant gas supply unit 31 uses an air fan, an air blower, or the like.
  • the fuel cell system of the present embodiment can supply power stably with the hydrogen-containing gas in which CO is sufficiently reduced by the methanation reaction in the hydrogen purification apparatus 100.
  • the temperature gradient upstream and downstream of the methanation catalyst is reduced and the CO methanation reactivity is improved as compared with the conventional hydrogen purifier and fuel cell system.
  • Second partition 10 Gas channel 11 Water channel 12 Third partition 13 Water Flow controller 14 Temperature detector 15 First cylinder 16 Third cylinder 17 Combustion exhaust gas flow path 18 Second cylinder 20 Heat insulating material 30 Fuel cell 31 Oxidant gas supply device 100 Hydrogen purifier 200 Hydrogen generator 300 Fuel cell system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

 水素精製装置(100)は、水素含有ガス中に含まれる一酸化炭素を変成反応により低減する変成触媒(5a)と、変成触媒(5a)を通過した水素含有ガスに含まれる一酸化炭素をメタン化反応により低減するメタン化触媒(6a)とを備え、変成触媒(5a)とメタン化触媒(6a)が、第1の隔壁(8)を介して熱交換可能に構成されるとともに、変成触媒(5a)を通過する水素含有ガスの流れの向きと、メタン化触媒(6a)を通過する水素含有ガスの流れの向きが対向するよう構成されている。

Description

水素精製装置およびそれを用いた燃料電池システム
 本発明は、水素含有ガスに含まれる一酸化炭素(以下、COと記載)を低減する水素精製装置と、この水素精製装置を通過した水素含有ガスを利用して発電する燃料電池を備えた燃料電池システムに関する。
 水素精製装置は、改質反応により生成した水素含有ガスの一酸化炭素を低減するCO除去部を備えている。上記水素含有ガスは、少なくとも炭素及び水素を構成元素とする原料を用いて改質反応で生成される。上記水素精製装置を通過した水素含有ガスは、燃料電池に供給され、燃料電池の発電に用いられる。
 燃料電池は、固体高分子形燃料電池、りん酸形燃料電池、固体酸化物形燃料電池等の種々のタイプが用いられる。上記CO除去部は酸化反応により一酸化炭素を低減する形態が一般的であるが、メタン化反応により一酸化炭素を低減する形態も提案されている(例えば、特許文献1及び特許文献2参照)。
特開2000-256003号公報 特開2005-174860号公報
 上記特許文献に記載の水素精製装置は、CO2のメタン化を抑制するための温度制御については検討されているが、メタン化反応によりCOを効率的に低減するための温度域が狭いという問題に対する検討がなされてない。上記問題についてより具体的に説明すると、通常、メタン化触媒は、上流と下流に温度勾配を生じるため、上記温度域から外れる部分が生じ、これが反応性の低下に繋がっていた。
 本発明は、上記従来の水素精製装置の課題を考慮し、従来よりもメタン化触媒の上流と下流の温度勾配が低減され、COのメタン化反応性が向上する水素精製装置及びこれを備える燃料電池システムを提供することを目的とする。
 上記課題を解決するため、本発明の水素精製装置は、水素含有ガス中に含まれる一酸化炭素を変成反応により低減する変成触媒と、前記変成触媒を通過した水素含有ガスに含まれる一酸化炭素をメタン化反応により低減するメタン化触媒とを備え、前記変成触媒と前記メタン化触媒が、第1の隔壁を介して熱交換可能に構成されるとともに、前記変成触媒を通過する水素含有ガスの流れの向きと、前記メタン化触媒を通過する水素含有ガスの流れの向きが対向するよう構成されていることを特徴とする。
 本発明の燃料電池システムは、上記本発明の水素精製装置と、前記水素精製装置より供給される水素含有ガスを用いて発電する燃料電池とを備えることを特徴とするものである。
 本発明によれば、従来の水素精製装置及び燃料電池システムに比べ、メタン化触媒の上流と下流の温度勾配が低減され、COのメタン化反応性が向上する。
図1Aは実施の形態1の水素精製装置の概略構成を示す図 図1Bは実施の形態1の変形例1の水素精製装置の概略構成を示す図 図1Cは実施の形態1の変形例2の水素精製装置の概略構成を示す図 図2は従来の実施形態を表す水素精製装置の構造を示す概略図 図3は実施の形態2の水素精製装置の概略構成を示す図 図4は実施の形態3の水素精製装置の概略構成を示す図 図5は実施の形態4の水素精製装置の概略構成を示す図 図6は実施の形態4の水素精製装置の実施例の概略構成を示す図 図7は水素精製装置の比較例の概略構成を示す図 図8は実施の形態5の水素精製装置の概略構成を示す図 図9は実施の形態6の燃料電池システムの概略構成を示す図
 以下に、本発明の実施の形態の水素精製装置、及びこれを備える燃料電池システムについて説明する。
(実施の形態1)
 本実施の形態の水素精製装置は、水素含有ガス中に含まれる一酸化炭素を変成反応により低減する変成触媒と、変成触媒を通過した水素含有ガスに含まれる一酸化炭素をメタン化反応により低減するメタン化触媒とを備え、変成触媒とメタン化触媒が、第1の隔壁を介して熱交換可能に構成されるとともに、変成触媒を通過する水素含有ガスの流れの向きと、メタン化触媒を通過する水素含有ガスの流れの向きが対向するよう構成されている。
 図1Aは、実施の形態1の水素精製装置の概略構成を示す図である。
 図1Aに示されるように、本実施の形態の水素精製装置100は、変成触媒5aを備える変成器5と、メタン化触媒6aを備えるCO除去器6を備える。変成触媒5aとメタン化触媒6aとの間には、第1の隔壁8が設けられ、第1の隔壁8を介して変成触媒5aとメタン化触媒6aは、熱交換可能に構成されている。また、変成触媒5aを通過する水素含有ガスの流れの向きとメタン化触媒を通過する水素含有ガスの流れの向きが対向するよう構成されている。
 次に、従来の水素精製装置について説明する。
 図2は、従来の水素精製装置100の概略構成を示す模式図である。
 図2に示されるように、水素精製装置100は、変成触媒5aを備える変成器5と、変成器5の下流にメタン化触媒6aを備えるCO除去器6とを備えている。また、変成触媒5aとメタン化触媒6aは、隔壁を介して伝熱可能なように構成されていない。
 ここで、変成触媒5aを構成する触媒金属としては、例えば、Pt等の貴金属触媒、Cu-Zn系触媒等が用いられる。また、上記触媒金属の担体は、上記触媒金属を担持可能なものであればいずれの担体であっても構わない。例えば、アルミナ、シリカ、シリカアルミナ、マグネシア、チタニア、ゼオライトなどが例示できる。また、上記変成触媒5aの基材には、ペレット、ハニカム等が用いられる。
また、メタン化触媒6aに用いられる触媒金属には、COのメタン化に活性を示す金属が用いられる。このような触媒金属としては、Pt、Ru、Rh、PdおよびNiなどの金属が例示される。特に、触媒金属として、少なくともRu、RhまたはNiを含有することが好ましい。また、上記触媒金属の担体としては、上記触媒金属を担持可能なものであればいずれの担体であっても構わない。例えば、アルミナ、シリカ、シリカアルミナ、マグネシア、チタニア、ゼオライトなどが例示できる。メタン化触媒6aの基材には、ペレット、ハニカム等が用いられる。
 一般的に、変成触媒5aによりCOを低減するための好適な温度は、メタン化触媒6aによりCOを低減するための好適な温度よりも高い。また、COの変成反応は、変成触媒5aの上流より進行し、変成触媒5aの上流側の方が下流側よりもその反応量が大きくなる。変成反応は発熱反応であるため、変成触媒5aの上流の方が下流よりも温度が高くなる。この上流から下流おけての温度分布は、メタン化触媒においても同様である。
 ここで、本実施の形態の水素精製装置100においては、上述の通り、変成触媒5aとメタン化触媒6aは第1の隔壁8を介して伝熱するよう構成されるとともに、変成触媒5aを通過する水素含有ガスの流れの向きと、メタン化触媒を通過する水素含有ガスの流れの向きが対向するよう構成されている。
 従って、メタン化触媒6aは、上述の通り上流側の部分よりも温度の低くなる下流側の部分が、変成触媒5aの相対的に温度の高い部分と熱交換するため、従来の水素精製装置100に比べ、メタン化触媒6aの上流と下流の温度勾配が低減される。
[変形例1]
 本実施の形態の水素精製装置100の変形例1として、図1Bに示すように、変成触媒5aの最下流部が、メタン化触媒6aの最上流部よりも突出するように構成してもよい。
 上記構成により、メタン化触媒6aの上流部は、変成触媒5aの最下流部よりも温度の高い部分と熱交換するので、メタン化触媒6aが、適温を下回る可能性が低減する。また、変成触媒5aの最下流部が、メタン化触媒6aのうち温度の高い最上流部と熱交換しないので、変成触媒5aの最下流部の温度を低下できる。これにより、変成触媒5aを通過した水素含有ガス中の一酸化炭素を低減できる。
[変形例2]
 本実施の形態の水素精製装置100の変形例2として、図1Cに示すように、メタン化触媒6aの最上流部が、変成触媒5aの最下流部よりも突出するように構成してもよい。
 上記構成により、メタン化触媒6の反応熱が変成触媒5aのうち最も温度の低い最下流部に奪われることがないので、メタン化触媒6が適温を下回る可能性が低減する。また、変成触媒5aの最下流部が、メタン化触媒6aのうち温度の高い最上流部と熱交換しないので、変成触媒5aの最下流部の温度を低下できる。これにより、変成触媒5aを通過した水素含有ガス中の一酸化炭素を低減できる。
(実施の形態2)
 実施の形態2の水素精製装置100について説明する。
 図3は、本実施の形態の水素精製装置の概略構成を示す図である。
 図3に示すように本実施の形態の水素精製装置100は、水流路11を備え、水流路11を流れる水は、メタン化触媒6aと第2の隔壁9を介して熱交換可能に構成されている。換言すれば、水流路11及び変成触媒5aは、メタン化触媒6aを間に挟むように配設されている。上記以外の点については、実施の形態1の水素精製装置100と同様であるので説明を省略する。なお、本実施の形態の上記構成を変形例1及び変形例2の少なくともいずれか一方の水素精製装置100に、適用してもよい。
 上記構成により、本実施の形態の水素精製装置100は、変成触媒が水流路を流れる水により隔壁を介して直接冷却される従来の水素精製装置に比べ、変成触媒が過剰に低温化して変成反応の好適な温度範囲から外れる可能性が低減され、好ましい。一方、メタン化触媒が水流路を流れる水により隔壁を介して直接冷却されるので、CO2のメタン化反応の加速による過昇温する可能性が低減する。
(実施の形態3)
 実施の形態3の水素精製装置100について説明する。
 図4は、本実施の形態の水素精製装置の概略構成を示す図である。
 図4に示すように本実施の形態の水素精製装置100は、水流路11と、メタン化触媒6aを通過した水素含有ガスが流れるガス流路10とを備え、ガス流路10を流れる水素含有ガスは、水流路11を流れる水と第3の隔壁12を介して熱交換可能に構成されている。また、メタン化触媒6aは、第2の隔壁9を介してガス流路10を流れる水素含有ガスと熱交換可能に構成され、ガス流路10を介して水流路11を流れる水と熱交換可能に構成されている。上記以外の点については、実施の形態1の水素精製装置100と同様であるので説明を省略する。なお、本実施の形態の上記構成を変形例1及び変形例2の少なくともいずれか一方の水素精製装置100に、適用してもよい。
 上記構成により、本実施の形態の水素精製装置100は、メタン化触媒6aが、ガス流路10を介して間接的に水流路11を流れる水と熱交換可能に構成されているために、実施の形態2の水素精製装置に比べ、メタン化触媒が過剰に低温化してメタン化反応の好適な温度範囲から外れる可能性が低減される。
(実施の形態4)
 実施の形態4の水素精製装置100について説明する。
 図5は、本実施の形態の水素精製装置100の概略構成を示す図である。
 図5に示すように本実施の形態の水素精製装置100は、変成触媒5aの上流側は、第3の隔壁12を介して水流路11を流れる水と熱交換可能に構成されるとともに、変成触媒5aの下流側は、第1の隔壁8を介してメタン化触媒6aと熱交換可能に構成されている。
 上記構成により、高温の水素含有ガスが流入する変成触媒の上流側が過昇温することを抑制するとともに、メタン化触媒6aの上流と下流の温度勾配が低減される。また、メタン化触媒が変成触媒の上流側と熱交換する場合に比べ、メタン化触媒6aが適温化される可能性が向上する。
 また、変成触媒5aの上流側は、ガス流路10を介してメタン化触媒6aと熱交換した後の水流路11を流れる水と熱交換可能に構成されるとともに、変成触媒5aの下流側は、第1の隔壁8を介してメタン化触媒6aと熱交換可能に構成されている。
 ここで、一般的に、メタン化触媒よりも変成触媒の方が、好適な反応温度が高いにも拘わらず、水流路11を流れる水の流れ方向を逆にする構成であると、水流路11を流れる水が変成触媒の上流側と熱交換した後にメタン化触媒とガス流路を介して熱交換するため、変成触媒及びメタン化触媒共に、好適な温度範囲から外れる可能性がある。しかしながら、上記のように構成することで、変成触媒5aの上流側の過昇温抑制効果およびメタン化触媒6aの適温化効果に加え、水流路11を流れる水の流れ方向を逆にする構成に比べて変成触媒及びメタン化触媒共に、好適な温度範囲に収まり、かつ維持される可能性が向上する。
 上記以外の点については、実施の形態1の水素精製装置100と同様であるので説明を省略する。
 なお、本実施の形態の上記構成を変形例1及び変形例2の少なくともいずれか一方の水素精製装置100に、適用してもよい。
 [実施例]
 次に、本実施の形態の水素精製装置100の実施例について説明する。
 図6は、本実施の形態の実施例の水素精製装置100の概略構成を示す図である。
 図6に示すように、本実施例において、水素生成装置200は、水素精製装置100を構成する変成触媒5a及びメタン化触媒6aの他に、温度検知器14、改質触媒4a、蒸発器7、バーナ2、燃焼排ガス流路17を備える。
 蒸発器7は、水流路11に相当する。
 温度検知器14は、メタン化触媒6aの温度を検知する機器である。温度検知器14には、例えば、熱電対、サーミスタなどが用いられるが、温度を検知可能であればいずれの機器を用いても構わない。
 改質触媒4aは、原料及び水蒸気を改質反応により水素含有ガスを生成するために触媒であり、第1筒15と、その外側に設けられた第2筒18との間の環状空間に設けられている。触媒金属としては、例えば、Ru、Ni等が用いられるが、本実施例では、Niを用いた。
 蒸発器7は、第1筒15と第2筒18との間の環状空間において、改質触媒4aの上流に設けられ、供給された水を蒸発させる。本実施例では、蒸発器7に原料も供給され、原料が予熱される。
 バーナ2は、供給された燃料及び空気を用いて燃焼する。燃焼排ガス流路17は、バーナ2で生成された燃焼排ガスが流れる流路であり、燃焼筒3と第1筒15との間の環状空間により形成される。改質触媒4a及び蒸発器7は、燃焼排ガス流路17を流れる燃焼排ガスにより第1筒15を介してこの順に加熱されるよう構成されている。
 また、断熱材20は、水素生成装置200を覆う断熱材であり、具体的には、水素生成装置200を構成する最も外側の筒である第3筒16を覆うように構成されている。
 ここで、上記水素精製装置100を構成する変成触媒5aは、第2筒18と第3筒16との間の環状空間に設けられている。メタン化触媒6aは、第1の隔壁8と第2の隔壁9との間に位置する環状空間に設けられている。上記第1の隔壁8と、その内側に設けられた第2の隔壁9は、変成触媒5aの下流側に位置する第2筒18と第3筒16との間の環状空間に設けられている。これにより、第1の隔壁8を介して変成触媒5aよりメタン化触媒6aに伝熱する。
 そして、変成触媒5aを通過した水素含有ガスは、第1の隔壁8の下流端よりも下流の折り返し流路において流れの向きを転回して、メタン化触媒6aに流入するよう構成されている。これにより、変成触媒5aを通過する水素含有ガスの流れの向きとメタン化触媒6aを通過する水素含有ガスの流れの向きとが対向する。
 また、本実施例では、変成触媒5aにCu-Zn系触媒を用い、メタン化触媒にRuを用いた。
 なお、本実施例では、変成触媒5aまたはメタン化触媒6aの温度を調節するための専用の機器を設けていないが、電気ヒーター等を用いた加熱器や冷却ファン、ラジエター等による冷却器を用いても構わない。
 上記構成を有する水素生成装置200において、原料として都市ガス(13A)を用い、スチーム/カーボン比(S/C)を3となるよう運転すると、変成触媒5aの出口温度200℃、メタン化触媒6aの入口温度220℃、出口温度210℃となった。そして、メタン化触媒6a出口の水素含有ガス中のCO濃度は、27ppmとなった。
 なお、上記の蒸発器7は、変成触媒5aの上流側が第2筒18を介して冷却される冷却手段を構成するが、蒸発器7からバイパスするバイパス経路を設け、変成触媒5aの下流側が第3筒16を介して冷却できるように構成してもよい。
 上記構成により、変成触媒5aの下流部の温度制御を行いやすくなる。
 また、変成触媒5aを冷却する冷却手段は、上記蒸発器7に限定されるものではなく、変成触媒5aを冷却可能であれば、いずれの構成であっても構わない。例えば、バーナ2に供給する空気を用いて、変成触媒5aを冷却してもよい。更に、水素生成装置200からの水素含有ガスを燃料電池の発電に利用する場合は、燃料電池に供給する酸化剤ガスを用いて、変成触媒5aを冷却してもよい。
 [比較例]
 次に、上記実施例に対する比較例を示す。
 図7は、比較例の水素精製装置100の概略構成を示す図である。本比較例は、メタン化触媒6aが、第2筒18と第3筒16との間の環状空間において、変成触媒5aの下流に設けられている。従って、上記実施例の水素精製装置100と異なり、メタン化触媒6aが、変成触媒5aとメタン化触媒6aとを隔壁を介して変成触媒5aより伝熱するよう構成されていない。その他の構成については、上記実施例と同様であるため、その説明を省略する。
 ここで、実施例と同様に、水素生成装置200において、原料として都市ガス(13A)を用い、スチーム/カーボン比(S/C)を3となるように運転すると、変成触媒5aの出口温度200℃、メタン化触媒6aの入口温度200℃、出口温度150℃となり、その際の、メタン化触媒出口CO濃度は、420ppmとなった。
 このように、実施例の水素精製装置100は、メタン化触媒6aの温度勾配が10℃であり、メタン化触媒6a全体に亘ってCOを低減するのに好適な温度範囲(200℃~240℃)に入っているため、メタン化反応によりCOを27ppmにまで低減できた。
 一方、比較例の水素精製装置100は、メタン化触媒6aの温度勾配が50℃と実施例に比べて大きく、メタン化触媒6aの一部(下流側)がCOを低減するのに好適な温度範囲(200℃~240℃)から外れてしまい、COを420ppmにまでしか低減できなかった。
(実施の形態5)
 実施の形態5の水素精製装置100について説明する。
 図8は、本実施の形態の水素精製装置100の概略構成を示す図である。
 本実施の形態の水素精製装置100は、温度検知器14と、水流路11を流れる水の流量を調整する水流量調整器13と、温度検知器14の検出値に基づき水流量調整器13の操作量を制御する制御器50とを備える。水流量調整器13が、例えば、水流量調整弁の場合、制御器50は、温度検知器14の検出値に基づき水流量調整弁の開度を制御するとよい。
 制御器50は、温度検知器14の検出値が、所定の上限温度以下になるよう制御することで、CO2のメタン化反応が加速する恐れが低減される。 その他の点については、実施の形態4の水素精製装置と同様であるので、その説明を省略する。
 なお、本実施の形態の水素精製装置は、温度検知器14、水流量調整器13、及び制御器50を実施の形態4の水素精製装置に適用するよう構成されているが、これらの機器を、実施の形態2または実施の形態3の水素精製装置に適用する形態を採用しても構わない。
(実施の形態6)
 実施の形態6の燃料電池システムについて説明する。
 図9は、本実施の形態の燃料電池システム300の概略構成を示す図である。
 本実施の形態の燃料電池システムは、実施の形態1から5までのいずれかに記載の水素精製装置と、水素精製装置より供給される水素含有ガスを用いて発電する燃料電池とを備える。
 具体的には、燃料電池システム300は、水素精製装置100と、燃料電池30と、酸化剤ガス供給器31とを備える。燃料電池30は、水素精製装置100より供給される水素含有ガスと酸化剤ガス供給器31より供給される酸化剤ガスとを用いて発電する。酸化剤ガス供給器31は、空気ファン、空気ブロア等が用いられる。
 これにより、本実施の形態の燃料電池システムは、水素精製装置100でメタン化反応により十分にCOが低減された水素含有ガスが供給されるので、安定して発電することが可能になる。
 本発明の水素精製装置及び燃料電池システムは、従来の水素精製装置及び燃料電池システムに比べ、メタン化触媒の上流と下流の温度勾配が低減され、COのメタン化反応性が向上する。
 2 バーナ
 3 燃焼筒
 4a 改質触媒
 5 変成器
 5a 変成触媒
 6 CO除去器
 6a メタン化触媒
 7 蒸発器
 8 第1の隔壁
 9 第2の隔壁
 10 ガス流路
 11 水流路
 12 第3の隔壁
 13 水流量調整器
 14 温度検知器
 15 第1筒
 16 第3筒
 17 燃焼排ガス流路
 18 第2筒
 20 断熱材
 30 燃料電池
 31 酸化剤ガス供給器
 100 水素精製装置
 200 水素生成装置
 300 燃料電池システム

Claims (10)

  1.  水素含有ガス中に含まれる一酸化炭素を変成反応により低減する変成触媒と、前記変成触媒を通過した水素含有ガスに含まれる一酸化炭素をメタン化反応により低減するメタン化触媒とを備え、前記変成触媒と前記メタン化触媒が、第1の隔壁を介して熱交換可能に構成されるとともに、前記変成触媒を通過する水素含有ガスの流れの向きと、前記メタン化触媒を通過する水素含有ガスの流れの向きが対向するよう構成されている、水素精製装置。
  2.  水流路を備え、前記水流路を流れる水は、前記メタン化触媒と第2の隔壁を介して熱交換可能に構成されている、請求項1記載の水素精製装置。
  3.  前記水流路及び前記変成触媒は、前記メタン化触媒を間に挟むように配設されている、請求項2記載の水素精製装置。
  4.  水流路と、前記メタン化触媒を通過した水素含有ガスが流れるガス流路とを備え、前記ガス流路を流れる水素含有ガスは、前記水流路を流れる水と第3の隔壁を介して熱交換可能に構成されている、請求項1記載の水素精製装置。
  5.  前記メタン化触媒は、第2の隔壁を介して前記ガス流路と熱交換可能に構成され、前記ガス流路を介して前記水流路を流れる水と熱交換可能に構成されている、請求項4記載の水素精製装置。
  6.  水流路を備え、前記変成触媒の上流側は、第3の隔壁を介して前記水流路を流れる水と熱交換可能に構成されるとともに、前記変成触媒の下流側は、前記第1の隔壁を介して前記メタン化触媒と熱交換可能に構成されている、請求項1記載の水素精製装置。
  7.  水流路を備え、前記変成触媒の上流側は、前記ガス流路を介して前記メタン化触媒と熱交換した後の前記水流路を流れる水と熱交換可能に構成されるとともに、前記変成触媒の下流側は、前記第1の隔壁を介して前記メタン化触媒と熱交換可能に構成されている、請求項1記載の水素精製装置。
  8.  前記メタン化触媒は、上流側の前記水流路と熱交換可能なように構成されている、請求項1~7のいずれかに記載の水素精製装置。
  9.  前記水流路内の水の流量を調整する水流量調整器と、メタン化触媒の温度に応じて前記水流量調整器の操作量を制御する制御器とを備える、請求項1記載の水素精製装置。
  10.  請求項1~9のいずれかに記載の水素精製装置と、前記水素精製装置より供給される水素含有ガスを用いて発電する燃料電池とを備える燃料電池システム。
PCT/JP2011/004690 2010-08-25 2011-08-24 水素精製装置およびそれを用いた燃料電池システム WO2012026116A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180004366.0A CN102596799B (zh) 2010-08-25 2011-08-24 氢精制装置以及使用其的燃料电池系统
US13/503,606 US9614241B2 (en) 2010-08-25 2011-08-24 Hydrogen-purification apparatus and fuel-cell system using same
EP11819592.4A EP2610213B1 (en) 2010-08-25 2011-08-24 Hydrogen-purification apparatus and fuel-cell system using the same
JP2012513403A JP5853137B2 (ja) 2010-08-25 2011-08-24 水素精製装置およびそれを用いた燃料電池システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-188195 2010-08-25
JP2010188195 2010-08-25

Publications (1)

Publication Number Publication Date
WO2012026116A1 true WO2012026116A1 (ja) 2012-03-01

Family

ID=45723138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004690 WO2012026116A1 (ja) 2010-08-25 2011-08-24 水素精製装置およびそれを用いた燃料電池システム

Country Status (5)

Country Link
US (1) US9614241B2 (ja)
EP (1) EP2610213B1 (ja)
JP (1) JP5853137B2 (ja)
CN (1) CN102596799B (ja)
WO (1) WO2012026116A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256003A (ja) 1999-03-08 2000-09-19 Osaka Gas Co Ltd 水素リッチガス中のco除去方法
JP2004059415A (ja) * 2002-06-03 2004-02-26 Mitsubishi Heavy Ind Ltd 燃料改質器及び燃料電池発電システム
JP2005174860A (ja) 2003-12-15 2005-06-30 Mitsubishi Electric Corp 燃料電池発電装置
JP2007055868A (ja) * 2005-08-26 2007-03-08 Fuji Electric Holdings Co Ltd 燃料改質装置
JP2007534583A (ja) * 2004-01-16 2007-11-29 ジュート−ヒェミー アクチェンゲゼルシャフト 水素製造装置
JP2008303128A (ja) * 2007-06-11 2008-12-18 Panasonic Corp 燃料改質装置
JP2010001187A (ja) * 2008-06-20 2010-01-07 Aisin Seiki Co Ltd 改質装置
JP2010100494A (ja) * 2008-10-24 2010-05-06 Renaissance Energy Research:Kk 水素製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1246287B1 (de) * 2001-03-31 2011-05-11 Viessmann Werke GmbH & Co KG Kombinierte Kraft- Wärmeanlage mit Gaserzeugungssystem und Brennstoffzellen sowie Verfahren zu ihrem Betrieb
JP3706611B2 (ja) * 2002-11-21 2005-10-12 三洋電機株式会社 燃料電池用水素発生装置
US20050025701A1 (en) * 2003-07-30 2005-02-03 Millennium Research Laboratories, Inc. Steam reforming catalyst composition and process
US9079771B2 (en) * 2007-07-18 2015-07-14 Panasonic Corporation Hydrogen generation system, fuel cell system, and method for operation of hydrogen generation system
WO2009011098A1 (ja) * 2007-07-18 2009-01-22 Panasonic Corporation 水素生成装置、燃料電池システム、及び水素生成装置の運転方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256003A (ja) 1999-03-08 2000-09-19 Osaka Gas Co Ltd 水素リッチガス中のco除去方法
JP2004059415A (ja) * 2002-06-03 2004-02-26 Mitsubishi Heavy Ind Ltd 燃料改質器及び燃料電池発電システム
JP2005174860A (ja) 2003-12-15 2005-06-30 Mitsubishi Electric Corp 燃料電池発電装置
JP2007534583A (ja) * 2004-01-16 2007-11-29 ジュート−ヒェミー アクチェンゲゼルシャフト 水素製造装置
JP2007055868A (ja) * 2005-08-26 2007-03-08 Fuji Electric Holdings Co Ltd 燃料改質装置
JP2008303128A (ja) * 2007-06-11 2008-12-18 Panasonic Corp 燃料改質装置
JP2010001187A (ja) * 2008-06-20 2010-01-07 Aisin Seiki Co Ltd 改質装置
JP2010100494A (ja) * 2008-10-24 2010-05-06 Renaissance Energy Research:Kk 水素製造装置

Also Published As

Publication number Publication date
US9614241B2 (en) 2017-04-04
US20120219870A1 (en) 2012-08-30
JP5853137B2 (ja) 2016-02-09
CN102596799A (zh) 2012-07-18
EP2610213A1 (en) 2013-07-03
CN102596799B (zh) 2014-12-17
EP2610213A4 (en) 2014-03-05
EP2610213B1 (en) 2017-05-17
JPWO2012026116A1 (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
JP2008088049A (ja) 水素生成装置及び燃料電池システム
JP6405211B2 (ja) 燃料電池システム
JP4953231B2 (ja) 水素生成装置、およびそれを用いた燃料電池発電装置
JP6814969B2 (ja) 固体酸化物型燃料電池システム
JP6034511B2 (ja) 燃料電池システム
JP5807167B2 (ja) 水素生成装置
JP4204291B2 (ja) 改質装置
JP2007331951A (ja) 水素生成装置および燃料電池システム
JP5895169B2 (ja) 水素生成装置
JP5853137B2 (ja) 水素精製装置およびそれを用いた燃料電池システム
JP2005294207A (ja) 燃料電池システム
JP4531320B2 (ja) 水素含有ガス生成装置の運転制御方法
JP4624382B2 (ja) 水素含有ガス生成装置の運転制御方法
JP2002170583A (ja) 燃料電池コージェネレーションシステム
JP5344935B2 (ja) 水素生成装置
JP4938299B2 (ja) 燃料電池発電装置の運転方法
WO2012032744A1 (ja) 燃料電池システム
WO2012029322A1 (ja) 水素生成装置及びそれを備える燃料電池システム
JP5643706B2 (ja) 水素含有ガス生成装置
JP2003277016A (ja) 水素生成装置
JP4835273B2 (ja) 水素生成装置および燃料電池システム
JP6270507B2 (ja) 水素含有ガス生成装置の起動運転方法及び水素含有ガス生成装置
JP2017001922A (ja) 水素発生装置と水素発生方法
JP5423141B2 (ja) 水素生成装置
JP2003206103A (ja) 燃料改質装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004366.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012513403

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13503606

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011819592

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011819592

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE