WO2012025958A1 - 2連電磁弁および蒸散ガス処理システム - Google Patents

2連電磁弁および蒸散ガス処理システム Download PDF

Info

Publication number
WO2012025958A1
WO2012025958A1 PCT/JP2010/005225 JP2010005225W WO2012025958A1 WO 2012025958 A1 WO2012025958 A1 WO 2012025958A1 JP 2010005225 W JP2010005225 W JP 2010005225W WO 2012025958 A1 WO2012025958 A1 WO 2012025958A1
Authority
WO
WIPO (PCT)
Prior art keywords
solenoid valve
flow rate
valve
solenoid
flow path
Prior art date
Application number
PCT/JP2010/005225
Other languages
English (en)
French (fr)
Inventor
正次 高橋
伊藤 貴幸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/643,762 priority Critical patent/US9103302B2/en
Priority to PCT/JP2010/005225 priority patent/WO2012025958A1/ja
Priority to JP2012530419A priority patent/JP5436679B2/ja
Publication of WO2012025958A1 publication Critical patent/WO2012025958A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87265Dividing into parallel flow paths with recombining
    • Y10T137/87298Having digital flow controller
    • Y10T137/87306Having plural branches under common control for separate valve actuators
    • Y10T137/87314Electromagnetic or electric control [e.g., digital control, bistable electro control, etc.]

Definitions

  • This invention relates to a double solenoid valve for controlling the amount of transpiration gas supplied from a fuel tank to an engine in a transpiration gas treatment system.
  • the transpiration gas treatment system for automobiles temporarily absorbs the transpiration gas volatilized in the fuel tank into the canister and introduces it into the engine using the engine negative pressure to recombust it, thereby preventing the emission to the outside. is doing.
  • the processing capacity of a transpiration gas processing system using engine negative pressure has decreased due to a decrease in the frequency of engine operation due to the HEV (Hybrid Electric Vehicle) of automobiles.
  • HEV Hybrid Electric Vehicle
  • Patent Document 1 a normal suction type solenoid valve and a reverse suction type solenoid valve are arranged in parallel, and the reverse flow occurs in a low flow rate region in which a phenomenon in which the flow rate suddenly increases or decreases when the valve is opened is called jumping.
  • jumping is suppressed by driving both the forward suction type and the reverse suction type in the flow rate range larger than the low flow rate range where jumping does not occur and the low flow rate accuracy is improved. It was.
  • Patent Document 1 When the flow rate of the solenoid valve is increased, the pulsation sound generated by the flow of air also increases. For this reason, as a countermeasure against pulsation noise when the flow rate is increased, a large-capacity chamber is conventionally inserted between the ports of the electromagnetic valve, but the layout is deteriorated. Therefore, in Patent Document 1, two electromagnetic valves are inserted into the chamber and incorporated, and the operation timing is changed, so that pressure fluctuations resulting from the opening / closing operation of the electromagnetic valve are combined and canceled in the chamber. It was.
  • Patent Document 1 the vaporized gas introduced into the two solenoid valves from one input port is led out to output ports branched in two directions, and these output ports merge into one on the downstream side, and the engine side There is a problem that pressure loss occurs. For this reason, the flow rate is reduced due to pressure loss, and the control capability (control flow rate) of each solenoid valve has not been fully utilized. In addition, there have been problems such as deterioration of layout by integrating the chamber for countermeasure against pulsation noise with the solenoid valve and scaling up the base, and complication of control by changing the operation timing.
  • Patent Document 2 Since it is necessary to separately connect a large-capacity chamber between the ports of the two solenoid valves, there is a problem that the layout performance is deteriorated and pressure loss occurs in the connection piping, resulting in a decrease in the flow rate. .
  • the present invention has been made to solve the above-described problems.
  • the flow rate resolution is improved as compared with the case of controlling a large flow rate with a single solenoid valve. It aims at simplifying piping and reducing pressure loss and reducing pulsation noise by improving controllability and integrating with a chamber.
  • the dual solenoid valve includes a housing including a suction port, a discharge port, and a chamber, a flow path portion that is inserted into the chamber and communicates with the suction port and the discharge port, and a valve that is moved to move the flow path portion.
  • a first solenoid valve having a solenoid part for opening and closing the valve, a flow path part inserted into the chamber and communicating with the suction port and the discharge port, and a second solenoid part for moving the valve to open and close the flow path part
  • the electromagnetic valve, and a confluence passage provided in the housing that joins the outlet side of the flow path part of the first electromagnetic valve and the outlet side of the flow path part of the second electromagnetic valve and leads to the suction port.
  • the flow rate is higher than that of a single solenoid valve that controls a large flow rate.
  • the resolution can be improved to improve controllability, and the piping can be simplified to reduce pressure loss and pulsation noise.
  • the transpiration gas processing system of the present invention connects the canister for recovering the transpiration gas volatilized in the fuel tank, the engine for sucking the transpiration gas recovered by the canister by negative pressure and recombusting, and the canister and the engine. And the above-mentioned double solenoid valve for controlling the amount of the transpiration gas flowing through the piping.
  • the amount of transpiration gas can be increased even in an automobile transpiration gas treatment system with a low engine operation frequency due to HEV or the like, thereby improving the processing capacity. be able to.
  • FIG. 1 is an overall configuration diagram of a transpiration gas treatment system to which a dual electromagnetic valve according to Embodiment 1 of the present invention is applied.
  • FIG. 3 is a longitudinal sectional view showing a configuration of a dual electromagnetic valve according to Embodiment 1.
  • 1 is an external perspective view showing a configuration of a dual electromagnetic valve according to Embodiment 1.
  • FIG. 3 is a front view showing the configuration of the dual electromagnetic valve according to Embodiment 1. It is sectional drawing which cut
  • FIG.6 (a) is a 1st solenoid valve
  • FIG.6 (b) is a 2nd solenoid valve
  • FIG.6 (c) is a duplex solenoid.
  • the entire valve is shown.
  • 6 is a graph showing another example of the operation timing of the dual solenoid valve according to the first embodiment.
  • 4 is a graph showing flow characteristics (broken line) of the dual solenoid valve according to Embodiment 1.
  • 6 is a graph showing another example of the flow rate characteristic (broken line) of the dual solenoid valve according to the first embodiment. It is a longitudinal cross-sectional view which shows the structure of the double solenoid valve which concerns on Embodiment 2 of this invention.
  • Embodiment 1 FIG.
  • the transpiration gas volatilized in the fuel tank 1 is temporarily recovered in the canister 2, and the transpiration gas is transferred from the canister 2 to the engine 7 using the negative pressure generated in the engine 7. It is prevented from being discharged to the outside by re-combusting.
  • a dual electromagnetic valve 4 that is integrated with the chamber 5 is disposed, and the amount of vaporized gas is controlled according to the drive signal of the control unit 8.
  • FIG. 2 is a longitudinal sectional view showing the configuration of the dual solenoid valve 4.
  • the double solenoid valve 4 includes a suction port 31, a discharge port 32, and a housing 30 including a chamber 5 communicating with the ports, and a cylindrical shape inserted into the chamber 5 and communicating with the suction port 31 and the discharge port 32.
  • a pair of solenoid valves 10 and 20 each having a solenoid part for moving the flow paths (flow path sections) 18 and 28 and the plungers (valves) 16 and 26 to open and close the cylindrical flow paths 18 and 28, and the cylindrical flow
  • a valve communication path (connection path) 35 that joins the outlet sides of the paths 18 and 28 and connects to the suction port 31 is provided.
  • the first electromagnetic valve 10 and the other as the second electromagnetic valve 20.
  • the first solenoid valve 10 is a solenoid unit that is a coil 11 formed by winding a conducting wire around a bobbin, a power supply terminal 12 that energizes the coil 11, a core 13 that is excited by energizing the coil 11, and a magnet together with the core 13.
  • a sheet metal member yoke 14 and plate 15 constituting a circuit, a plunger 16 sucked by the core 13, and a spring 17 urging the plunger 16 in a direction opposite to the suction direction of the core 13 are provided.
  • the first solenoid valve 10 includes a cylindrical flow path 18 that is inserted into the chamber 5 and opens and closes by the movement of the plunger 16, and O-rings 19 and 19 that close the gap between the chamber 5 and the cylindrical flow path 18. Prepare. One end of the cylindrical flow path 18 serves as a valve seat 18 a with which the plunger 16 abuts, and the other end communicates with the chamber 5.
  • the second electromagnetic valve 20 also includes a coil 21, a power feeding terminal 22, a core 23, a yoke 24, a plate 25, a plunger 26, a spring 27, a cylindrical flow path 28, a valve seat 28a, and an O. Rings 29 and 29 are provided.
  • the control unit 8 is composed of an engine control unit (hereinafter referred to as ECU) that controls the operation of the engine 7 or a dedicated control unit.
  • ECU engine control unit
  • a drive signal having a predetermined frequency is output from the control unit 8 to the power supply terminals 12 and 22, respectively, and the coils 11 and 21 are energized to move the plungers 16 and 26, thereby controlling the opening degree of the valve seats 18a and 28a.
  • the housing 30 has a suction port 31 and a discharge port 32 connected to the suction passage 3, a chamber 5 for reducing pulsation noise communicating with these ports, and an insertion hole for inserting the cylindrical flow path 18 of the first electromagnetic valve 10. 33, the insertion hole 34 into which the cylindrical flow path 28 of the second electromagnetic valve 20 is inserted, and the fluid that has passed through the first electromagnetic valve 10 and the fluid that has passed through the second electromagnetic valve 20 are merged and guided to the suction port 31. And a valve communication path 35.
  • the port that connects between the canister 2 and the chamber 5 and introduces the vaporized gas collected by the canister 2 into the chamber 5 is called an exhaust port 32, and is connected between the chamber 5 and the engine 7.
  • a port through which the vaporized gas introduced into the engine 5 is led to the engine 7 is referred to as a suction port 31.
  • the chamber 5 is formed by welding a lid 30 a to the bottom surface of the housing 30.
  • valve communication path 35 which connects the 1st electromagnetic valve 10 and the 2nd electromagnetic valve 20, and the suction port 31 was formed in the housing 30, piping which connects an electromagnetic valve in parallel can be simplified.
  • the vaporized gas flows from the inner peripheral side of the cylindrical flow paths 18 and 28 to the outer peripheral side through the valve seats 18a and 28a, that is, the negative pressure application direction and the valve opening direction of the plungers 16 and 26 are the same.
  • the 1st solenoid valve 10 and the 2nd solenoid valve 20 of the reverse suction specification which a negative pressure works in the valve opening direction were used, you may make it a normal suction specification, respectively.
  • the forward suction specification will be described in a second embodiment described later.
  • FIG. 3 is an external perspective view of the dual electromagnetic valve 4.
  • FIG. 3 shows a state in which only the first electromagnetic valve 10 is attached to the housing 30.
  • the front view of the double solenoid valve 4 is shown in FIG. 4, and the sectional view cut along the line AA is shown in FIG.
  • the housing 30 has a shape in which a concave portion is formed on one surface of a resin cuboid, and the inside of the cuboid is hollow to be used as the chamber 5.
  • the bottom surface of the housing 30 is formed by welding a separate lid body 30a.
  • insertion holes 33 and 34 are formed on the bottom surface of the recess, and a holding claw 36 that holds the first electromagnetic valve 10 and a holding claw 37 that holds the second electromagnetic valve 20 are formed on the side surface of the recess.
  • the holding claw 36 is locked to the edge of the yoke 14 to hold the first electromagnetic valve 10.
  • the second electromagnetic valve 20 also inserts the cylindrical flow path 28 into the insertion hole 34 and locks the holding claw 37 on the edge of the yoke 24.
  • the suction port 31 and the discharge port 32 are formed on the two opposite surfaces of the housing 30 so that the suction port 31 and the discharge port 32 face in different directions. It is not limited.
  • the suction port 31 by disposing the suction port 31 between the cylindrical flow path 18 and the cylindrical flow path 28, the distance from the valve seats 18a, 28a to the suction port 31 is shortened. There is an effect of reducing ventilation resistance. More preferably, the ventilation resistance is minimized by disposing the position of the central axis X3 of the suction port 31 at an intermediate position between the central axis X1 of the cylindrical flow path 18 and the central axis X2 of the cylindrical flow path 28. It becomes possible. Thereby, the pressure loss can be reduced and the flow rate can be increased.
  • the suction port 31 also serves as the valve communication path 35 as shown in FIG.
  • the same effect can be obtained even if the arrangement positions of the suction port 31 and the discharge port 32 are switched.
  • the fluid is introduced from the discharge port 32 disposed between the cylindrical flow paths 18 and 28, the fluid is branched in the valve communication path 35 and guided to the cylindrical flow paths 18 and 28, and the valve seat 18a. , 28a, merge in the chamber 5 and are led out from the suction port 31 formed in the chamber 5.
  • FIG. 6 is a graph showing the operation timing of the dual solenoid valve 4.
  • FIG. 6A shows the first solenoid valve 10
  • FIG. 6B shows the second solenoid valve 20, and FIG.
  • the whole solenoid valve 4 is shown.
  • the horizontal axis represents time [ms]
  • the vertical axis represents the flow rate Q [L / min].
  • the drive signal output from the control unit 8 has a predetermined duty cycle T, and the flow rate increases as the duty ratio increases. As shown in FIGS.
  • the phases of the drive signals are shifted by 180 degrees, the waveforms are inverted, and the drive cycles of the first solenoid valve 10 and the second solenoid valve 20 are shifted.
  • the pulsation waveform becomes a continuous waveform. As a result, the pulsation of the double solenoid valve 4 can be reduced.
  • the dual solenoid valve 4 may be controlled at the operation timing shown in FIG. As shown in FIG. 7A, the first electromagnetic valve 10 is normally opened (or normally closed), and the duty ratio of the second electromagnetic valve 20 is adjusted as shown in FIG. When controlled, only the pulsation of the second electromagnetic valve 20 occurs as shown in FIG. As a result, the pulsation of the dual electromagnetic valve 4 as a whole can be reduced. Needless to say, the flow rate may be controlled by adjusting the duty ratio of the first electromagnetic valve 10 and the second electromagnetic valve 20 may be normally opened (or normally closed).
  • the pulsation reducing chamber 5 needs only a small capacity. Therefore, the capacity of the chamber 5 required for the dual solenoid valve 4 can be made smaller than the capacity of the chamber for reducing pulsation required when a large flow rate is controlled by a single solenoid valve, leading to an improvement in layout. In addition, the capacity of the chamber 5 required for the double solenoid valve 4 is smaller than the capacity of the chamber for reducing pulsation required when a large flow rate is controlled by connecting a small flow rate solenoid valve in parallel. Sufficient and lead to improved layout.
  • FIG. 8 is a graph showing the flow rate characteristic (broken line) of the dual solenoid valve 4, with the horizontal axis indicating the duty ratio [%] of the drive signal and the vertical axis indicating the flow rate Q [L / min].
  • the maximum flow rates of the first solenoid valve 10 and the second solenoid valve 20 are respectively the same flow rate of 0.5 ⁇ Q 0 , and the maximum flow rate of the entire dual solenoid valve 4 is Q 0 .
  • the solid line shows the flow rate characteristics of the solenoid valve (single unit) with the maximum flow rate Q 0 or the flow rate characteristic when two solenoid valves with the maximum flow rate 0.5 ⁇ Q 0 are driven simultaneously.
  • the dual solenoid valve 4 two small-flow solenoid valves are used, and the first solenoid valve 10 is always closed in the flow rate region from 0 to 0.5 ⁇ Q 0 .
  • the second solenoid valve 20 is duty-driven to control the flow rate, and in the flow rate range of 0.5 ⁇ Q 0 to Q 0, the first solenoid valve 10 is always opened and the second solenoid valve 20 is duty-driven.
  • the second electromagnetic valve 20 may be normally closed or normally opened, and the first electromagnetic valve 10 may be duty-driven.
  • the maximum flow rate of the entire dual solenoid valve 4 is Q 0
  • the maximum flow rate of the first solenoid valve 10 is 0.25 ⁇ Q 0
  • the maximum flow rate of the second solenoid valve 20 is 0.75 ⁇ .
  • the valve seat 18a of the first solenoid valve 10 is reduced in diameter to reduce the flow rate. If only the diameter of the valve seat 18a is reduced, most of the parts of the first electromagnetic valve 10 and the second electromagnetic valve 20 can be used in common, and the versatility is high.
  • the valve seat 28a of the second electromagnetic valve 20 may be expanded and the plunger 26 may be expanded to increase the flow rate, and the coil 21 may be enlarged as the plunger 26 is expanded. Needless to say, the maximum flow rate of the first solenoid valve 10 may be increased and the maximum flow rate of the second solenoid valve 20 may be decreased.
  • the dual electromagnetic valve 4 is inserted into the chamber 5 and communicated with the suction port 31 and the discharge port 32 by the housing 30 including the suction port 31, the discharge port 32, and the chamber 5.
  • the first solenoid valve 10 having a cylindrical flow path 18 and a solenoid part that moves the plunger 16 to open and close the cylindrical flow path 18 is also inserted into the chamber 5 and communicates with the suction port 31 and the discharge port 32.
  • the suction port 31 is formed by joining the cylindrical flow path 28 and the second solenoid valve 20 having a solenoid portion that opens and closes the cylindrical flow path 28 by moving the plunger 26 and one side of the cylindrical flow paths 18 and 28.
  • a valve communication path 35 formed in the housing 30.
  • the housing 30 is arranged such that one of the suction port 31 and the discharge port 32 is disposed between the cylindrical flow paths 18 and 28. Pressure loss can be suppressed.
  • the ventilation resistance can be minimized.
  • the control unit 8 that outputs drive signals to the first solenoid valve 10 and the second solenoid valve 20 and individually adjusts the valve opening degree according to the duty ratio of the drive signal.
  • the phases of the duty cycle of the drive signals are made different from each other, mutual cancellation effects can be expected by shifting the generation timing of pulsation.
  • the chamber 5 can be reduced in size by reducing the pulsation, and the layout is improved.
  • the pulsation waveform can be made continuous and the pulsation can be reduced.
  • the generated pulsation is reduced to a small flow rate solenoid valve 1.
  • the pulsating noise of the dual solenoid valve 4 as a whole can be reduced.
  • the control unit 8 controls a flow rate region exceeding the maximum flow rate of one of the first solenoid valve 10 and the second solenoid valve 20
  • one of the solenoid valves Is fully opened and the opening of the other solenoid valve is adjusted. For this reason, it is possible to improve the flow rate resolution as compared with a single solenoid valve that controls a large flow rate. Further, only the pulsation of one small flow rate solenoid valve is generated, and the pulsation of the dual solenoid valve 4 as a whole can be reduced.
  • the control unit 8 controls a flow rate region less than the maximum flow rate, Is fully closed and the opening of the other solenoid valve is adjusted to control the flow rate region above the maximum flow rate, the one solenoid valve is fully opened and the opening of the other solenoid valve is adjusted. Furthermore, for the dual solenoid valve 4 in which the maximum flow rate of the other solenoid valve is smaller than the maximum flow rate of the one solenoid valve, the control unit 8 controls the flow rate region below the smaller maximum flow rate.
  • FIG. 10 shows a configuration example of the dual electromagnetic valve 4 having a configuration in which the suction specifications of the first electromagnetic valve 10 and the second electromagnetic valve 20 are different. 10 that are the same as or equivalent to those in FIGS. 2 to 6 are given the same reference numerals, and descriptions thereof are omitted.
  • the first electromagnetic valve 10 has a reverse suction specification in which the negative pressure application direction is the same as the plunger 16 valve opening direction and the negative pressure works in the valve opening direction, and the second electromagnetic valve 20 is negative.
  • the positive suction specification is such that the pressure application direction is the same as the plunger 16 valve closing direction and the negative pressure works in the valve closing direction. Accordingly, when the coil 11 is energized in the first electromagnetic valve 10, the plunger 16 is attracted by the core 13 and the valve seat 18 a is opened, and the vaporized gas passes from the inner peripheral side of the cylindrical flow path 18 through the valve seat 18 a. It flows in the direction of the suction port 31.
  • the plunger 26 When the coil 21 is energized in the second electromagnetic valve 20, the plunger 26 is attracted to the core 23 and the valve seat 28 a is opened, and the vaporized gas passes through the valve seat 28 a from the outer peripheral side of the cylindrical flow path 28 and becomes cylindrical. It enters the inner peripheral side of the flow path 28 and flows in the direction of the valve communication path 35 and the suction port 31.
  • FIG. 11 is a graph showing the flow characteristics when the electromagnetic valve is driven in the high negative pressure region
  • FIG. 12 is a graph showing the flow characteristics when the electromagnetic valve is driven in the low negative pressure region.
  • the horizontal axis represents the duty ratio [%] of the drive signal
  • the vertical axis represents the flow rate Q [L / min].
  • a flow rate characteristic of the dual solenoid valve 4 according to the second embodiment is indicated by a broken line.
  • Maximum flow rate of the first solenoid valve 10 and the second solenoid valve 20 is 0.5 ⁇ Q 0 respectively, the maximum flow rate Q 0 throughout duplicate solenoid valve 4.
  • a solenoid valve for reverse suction specification of the maximum flow rate Q 0 of the flow characteristics (alone) by a thick line shows the solenoid valve of a positive suction specification of the maximum flow rate Q 0 of the flow characteristics (alone) by thin lines.
  • the reverse suction type electromagnetic valve requires a closing force in a high negative pressure region
  • the biasing force of a spring that biases the plunger in the valve closing direction is increased. Therefore, the valve closing force in the low negative pressure region also increases, and as shown by the thick line in FIG. 12, the transpiration gas does not flow unless the duty ratio is increased to some extent, and the slope of the subsequent flow rate characteristic (that is, the rising flow rate) also increases. It becomes larger and the operability (flow rate resolution) becomes worse. Therefore, in order to improve the operability in the low negative pressure region, it is necessary to increase the size of the coil or improve the magnetic efficiency to provide a high electromagnetic attraction force. On the other hand, as shown by the thin line in FIG.
  • the solenoid valve of the positive suction specification does not flow the transpiration gas unless the duty ratio is increased to some extent at high negative pressure, and the rising flow rate thereafter increases, and in the high negative pressure region. Poor operability (flow rate resolution). Therefore, in order to improve the operability in the high negative pressure region, it is necessary to increase the size of the coil or improve the magnetic efficiency to provide a high electromagnetic attraction force. In this way, the reverse suction specification requires high electromagnetic attraction to improve operability at low negative pressure, and the positive suction specification requires high electromagnetic force attraction to improve operability at high negative pressure. There is a trade-off, and it is inevitable that the mother scales up for large flow control.
  • the first electromagnetic valve 10 is set to the reverse suction specification and the second electromagnetic valve 20 is set to the normal suction specification while keeping the electromagnetic attractive force and the urging force of the springs 17 and 27 as they are. Then, as shown by the dotted line in FIG. 11, in the high negative pressure region, the first solenoid valve 10 of the reverse suction specification is driven, while the second solenoid valve 20 of the normal suction specification is normally closed or normally opened. Improves operability in the high negative pressure range. Thereby, especially in the low flow rate region of the shaded portion in FIG. 11, the rising flow rate of the first electromagnetic valve 10 indicated by the dotted line is smaller than the large flow reverse suction type solenoid valve indicated by the thick line (single unit). Resolution is improved.
  • the duty ratio at which the vaporized gas of the first solenoid valve 10 indicated by the dotted line starts to flow is smaller than the solenoid valve (single unit) having a large flow rate indicated by the thin line, and the rising flow rate thereafter is also reduced.
  • the flow rate resolution is improved.
  • the first solenoid valve 10 with reverse suction specification is normally closed or normally opened while the second solenoid valve 20 with positive suction specification is driven in the low negative pressure region.
  • a large flow reverse suction type solenoid valve indicated by a thick line (single unit) and a large flow rate positive suction type solenoid valve indicated by a thin line (single unit) are compared.
  • the flow resolution of the second electromagnetic valve 20 indicated by the dotted line is improved.
  • the operability in the entire negative pressure region can be improved while maintaining the low electromagnetic suction force. Therefore, the coils 11 and 21 can be reduced in size, and the dual solenoid valve 4 can be reduced in size and weight. Further, since the pulsation during the operation shown in FIGS. 11 and 12 is only for one unit that is duty-driven, there is an effect of reducing the pulsation as in the case shown in FIG. 7 of the first embodiment.
  • a pressure sensor is installed between the throttle valve 6 and the engine 7, and the control unit 8 determines whether the negative pressure is high or low according to the detection value of the pressure sensor.
  • the electromagnetic valve 20 may be driven and controlled.
  • the first solenoid valve 10 may be of a normal suction specification and the second solenoid valve 20 may be of a reverse suction specification.
  • the suction port 31 and the discharge port 32 are respectively formed on the two opposing surfaces of the housing 30 so that the suction port 31 and the discharge port 32 face in different directions.
  • the present invention is not limited to this. Instead, as shown in FIGS. 3 to 5, either one of the suction port 31 and the discharge port 32 may be disposed between the cylindrical flow paths 18 and 28 to suppress the airflow resistance.
  • one of the first solenoid valve 10 and the second solenoid valve 20 causes the fluid to flow through the cylindrical flow paths 18 and 28 in the valve opening direction.
  • the other solenoid valve is configured such that fluid flows in the cylindrical flow paths 18 and 28 in the valve closing direction, so that the flow rate resolution can be improved and the controllability can be improved.
  • the low flow coils 11 and 21 can be reduced in size, and as a result, the dual electromagnetic valve 4 can be reduced in size and weight. It should be noted that the present invention can be freely combined with or modified from the embodiments within the spirit of the invention.
  • the dual solenoid valve according to the present invention integrates two solenoid valves by inserting them into a common chamber, improves flow rate resolution, improves controllability, and simplifies piping. Since the pressure loss is reduced and the pulsation noise is reduced, it is suitable for use in an electromagnetic valve for controlling the amount of transpiration gas in a transpiration gas treatment system of an automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

 第1電磁弁10の筒状流路18と第2電磁弁20の筒状流路28をチャンバ5に挿入して吸引ポート31および排出ポート32と連通させ、脈動音を低減する。また、吸引ポート31を筒状流路18,28間に配置して、通気抵抗を低減する。

Description

2連電磁弁および蒸散ガス処理システム
 この発明は、蒸散ガス処理システムにおいて燃料タンクからエンジンへ供給する蒸散ガス量を制御する2連電磁弁に関する。
 自動車の蒸散ガス処理システムは、燃料タンク内で揮発した蒸散ガスをキャニスタに一時的に吸着し、エンジン負圧を利用してエンジン内へ導入して再燃焼させることにより、外部への排出を防止している。近年、自動車のHEV(Hybrid Electric Vehicle)化等によるエンジン作動頻度の低下により、エンジン負圧を利用した蒸散ガス処理システムの処理能力が低下している。エンジン作動頻度が低下する分、負圧発生時にエンジンへ供給する蒸散ガス流量を増大させるために、キャニスタとエンジンを連通する通路に設置する電磁弁の大流量化が求められている。
 しかしながら、電磁弁の大流量化は、母体のスケールアップおよび低流量精度(流量分解能)の悪化など様々な弊害が生じる。そこで、従来は小流量の電磁弁を並列に配置することで大流量制御を可能にしている(例えば、特許文献1,2参照)。複数の電磁弁を用いることにより、単体の電磁弁で大流量を制御するものに比べ、流量分解能の向上による制御性の向上が可能になる。特に特許文献1では、正吸引タイプの電磁弁と逆吸引タイプの電磁弁を並列に配置して、ジャンピングと呼ばれる開弁時に急激に流量が増減する現象が生じる可能性のある低流量域では逆吸引タイプのみを駆動すると共に、ジャンピングがほぼ生じない、低流量域よりも大きな流量域では正吸引タイプと逆吸引タイプの両方を駆動するようにしてジャンピングを抑制し、低流量精度の向上を図っていた。
 電磁弁を大流量化すると、空気が流れることにより発生する脈動音も大きくなる。そのため、大流量化した際の脈動音対策として、従来は大容量チャンバを電磁弁のポート間に挿入するが、レイアウト性が悪化してしまう。そこで、特許文献1では、2つの電磁弁をチャンバに挿入して内蔵させ、動作タイミングを変化させることで、電磁弁の開閉動作に起因する圧力変動をチャンバ内で合成して相殺するようにしていた。
国際公開第2007/20736号公報 特開平7-4324号公報
 しかしながら、特許文献1では1つの入力ポートから2つの電磁弁に導入された蒸散ガスが2方向に分岐した出力ポートへとそれぞれ導出され、これら出力ポートが下流側で一本に合流してエンジン側へ接続されているので、圧損が生じる課題があった。そのため、圧損により流量が低下してしまい、個々の電磁弁の制御能力(制御流量)を十分に生かしきれていなかった。また、脈動音対策用のチャンバを電磁弁と一体化して母体をスケールアップすることによるレイアウト性の悪化、および動作タイミングを変化させることによる制御性の複雑化等の問題もあった。
 特許文献2でも、2つ電磁弁のポート間に別途、大容量チャンバを接続する必要があるので、レイアウト性が悪化すると共に、接続配管で圧損が生じて流量が低下してしまう課題があった。
 この発明は、上記のような課題を解決するためになされたもので、2個の電磁弁を使用することにより、単体の電磁弁で大流量を制御するものに比べて流量分解能を向上させて制御性を向上させ、かつ、チャンバと一体化することにより、配管を簡素化して圧損を低減すると共に脈動音を低減することを目的とする。
 この発明の2連電磁弁は、吸引ポート、排出ポート、およびチャンバからなるハウジングと、チャンバ内に挿入されて吸引ポートと排出ポートに連通する流路部、および弁を可動させて該流路部を開閉するソレノイド部を有する第1電磁弁と、チャンバ内に挿入されて吸引ポートと排出ポートに連通する流路部、および弁を可動させて該流路部を開閉するソレノイド部を有する第2電磁弁と、第1電磁弁の流路部の出口側と第2電磁弁の流路部の出口側を合流させて吸引ポートへ導く、ハウジングに設けた合流通路とを備えるものである。
 この発明によれば、一方のポートから導入した流体をチャンバおよび一対の電磁弁を経由して他方のポートから導出するようにしたので、単体の電磁弁で大流量を制御するものに比べて流量分解能を向上させて制御性を向上することができ、かつ、配管を簡素化して圧損を低減すると共に脈動音を低減することができる。
 また、この発明の蒸散ガス処理システムは、燃料タンク内で揮発した蒸散ガスを回収するキャニスタと、キャニスタで回収した蒸散ガスを、負圧により吸引して再燃焼させるエンジンと、キャニスタとエンジンを接続する配管を流れる蒸散ガス量を制御する上記2連電磁弁とを備えるものである。
 この発明によれば、上記2連電磁弁を用いることにより、HEV化等によりエンジン作動頻度の低い自動車の蒸散ガス処理システムであっても蒸散ガス量を増大させることができ、処理能力を向上させることができる。
この発明の実施の形態1に係る2連電磁弁を適用する蒸散ガス処理システムの全体構成図である。 実施の形態1に係る2連電磁弁の構成を示す縦断面図である。 実施の形態1に係る2連電磁弁の構成を示す外観斜視図である。 実施の形態1に係る2連電磁弁の構成を示す正面図である。 実施の形態1に係る2連電磁弁を図4に示すAA線に沿って切断した断面図である。 実施の形態1に係る2連電磁弁の動作タイミングを示すグラフであり、図6(a)は第1電磁弁、図6(b)は第2電磁弁、図6(c)は2連電磁弁全体を示す。 実施の形態1に係る2連電磁弁の動作タイミングの他の例を示すグラフである。 実施の形態1に係る2連電磁弁の流量特性(破線)を示すグラフである。 実施の形態1に係る2連電磁弁の流量特性(破線)の他の例を示すグラフである。 この発明の実施の形態2に係る2連電磁弁の構成を示す縦断面図である。 実施の形態2に係る2連電磁弁の流量特性(破線)を示すグラフであり、高負圧域での駆動例である。 実施の形態2に係る2連電磁弁の流量特性(破線)を示すグラフであり、低負圧域での駆動例である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1に示す蒸散ガス処理システムでは、燃料タンク1内で揮発した蒸散ガスをキャニスタ2内で一時的に回収し、エンジン7内に発生する負圧を利用してキャニスタ2からエンジン7へ蒸散ガスを引き込んで再燃焼させることで、外部への排出を防止する。キャニスタ2とエンジン7をつなぐ吸引通路3には、チャンバ5と一体化した2連電磁弁4が配設され、制御部8の駆動信号に応じて蒸散ガス量を制御する。
 図2は2連電磁弁4の構成を示す縦断面図である。この2連電磁弁4は、吸引ポート31、排出ポート32、およびこれらのポートに連通するチャンバ5からなるハウジング30と、チャンバ5内に挿入されて吸引ポート31と排出ポート32に連通する筒状流路(流路部)18,28、およびプランジャ(弁)16,26を可動させて筒状流路18,28を開閉するソレノイド部をそれぞれ有する一対の電磁弁10,20と、筒状流路18,28のそれぞれの出口側を合流して吸引ポート31へ接続するバルブ連通路(接続通路)35とを備える。説明のため、以下では一方を第1電磁弁10、他方を第2電磁弁20と呼び分ける。
 第1電磁弁10は、ソレノイド部として、ボビンに導線を巻回してなるコイル11と、コイル11へ通電する給電端子12と、コイル11への通電により励磁されるコア13と、コア13と共に磁気回路を構成する板金部材のヨーク14およびプレート15と、コア13に吸引されるプランジャ16と、プランジャ16をコア13の吸引方向とは反対の方向へ付勢するスプリング17とを備える。また第1電磁弁10は、チャンバ5内に挿入されてプランジャ16の可動により開閉する筒状流路18と、チャンバ5と筒状流路18との隙間を閉塞するOリング19,19とを備える。この筒状流路18の一端はプランジャ16が当接するバルブシート18aとなり、他端はチャンバ5に連通する。
 同様に、第2電磁弁20もコイル21と、給電端子22と、コア23と、ヨーク24と、プレート25と、プランジャ26と、スプリング27と、筒状流路28、バルブシート28aと、Oリング29,29とを備える。
 制御部8は、エンジン7の動作制御を行うエンジンコントロールユニット(以下、ECU)または専用の制御ユニットで構成する。制御部8から給電端子12,22へ所定周波数の駆動信号をそれぞれ出力して、コイル11,21に通電してプランジャ16,26を可動させ、バルブシート18a,28aの開度を制御する。
 ハウジング30には、吸引通路3に連結する吸引ポート31および排出ポート32と、これらポートに連通する脈動音低減用のチャンバ5と、第1電磁弁10の筒状流路18を挿入する挿入穴33と、第2電磁弁20の筒状流路28を挿入する挿入穴34と、第1電磁弁10を通過した流体および第2電磁弁20を通過した流体を合流させて吸引ポート31へ導くバルブ連通路35とを備える。図示例では、キャニスタ2とチャンバ5の間を接続して、キャニスタ2で回収した蒸散ガスをチャンバ5に導入するポートを排出ポート32と呼び、チャンバ5とエンジン7の間を接続して、チャンバ5に導入した蒸散ガスをエンジン7へ導出するポートを吸引ポート31と呼ぶ。なお、図示例はハウジング30の底面に蓋体30aを溶着してチャンバ5を形成している。
 給電端子12からコイル11へ通電することで、コア13、ヨーク14、プレート15、プランジャ16に磁界が発生し、プランジャ16がコア13に吸引されて、バルブシート18aが開弁する。すると、排出ポート32、チャンバ5、筒状流路18の内周側、バルブシート18a、吸引ポート31が連通し、エンジン7で発生する負圧により蒸散ガスが吸引されてキャニスタ2からエンジン7へと流入する。
 コイル11への通電を止めると、プランジャ16がスプリング17に付勢されてバルブシート18aを閉弁し、蒸散ガスのエンジン7への流入が止まる。
 同様に、給電端子22からコイル21へ通電することで、コア23、ヨーク24、プレート25、プランジャ26に磁界が発生し、バルブシート28aが開弁する。すると、排出ポート32、チャンバ5、筒状流路28の内周側、バルブシート28a、バルブ連通路35、吸引ポート31が連通し、エンジン7で発生する負圧により蒸散ガスが吸引されてキャニスタ2からエンジン7へと流入する。
 コイル21への通電を止めると、プランジャ26がスプリング27に付勢されてバルブシート28aを閉弁し、蒸散ガスのエンジン7への流入が止まる。
 このように、第1電磁弁10および第2電磁弁20と吸引ポート31とを連通するバルブ連通路35をハウジング30内に形成したので、電磁弁を並列接続する配管を簡素化できる。
 なお、図2では蒸散ガスが筒状流路18,28の内周側からバルブシート18a,28aを通って外周側へ流れる、即ち負圧印加方向とプランジャ16,26の開弁方向が同一であって、負圧が開弁方向に働く逆吸引仕様の第1電磁弁10と第2電磁弁20を用いたが、それぞれ正吸引仕様にしてもよい。正吸引仕様については後述の実施の形態2で説明する。
 次に、ハウジング30の別の構成例を説明する。図3は、2連電磁弁4の外観斜視図である。図3ではハウジング30に第1電磁弁10のみを取り付けた状態を示す。また、2連電磁弁4の正面図を図4に示し、AA線に沿って切断した断面図を図5に示す。
 ハウジング30は、樹脂製の直方体の一面に凹部を形成した形状とし、その直方体の内部を空洞にしてチャンバ5として用いる。ハウジング30の底面は、別体の蓋体30aを溶着してなる。また、凹部の底面に挿入穴33,34を開設し、凹部の側面に第1電磁弁10を保持する保持爪36と、第2電磁弁20を保持する保持爪37とを形成する。ハウジング30に第1電磁弁10を取り付ける際には、第1電磁弁10の筒状流路18を挿入穴33に挿入し、プレート15を挿入穴33の縁へ掛止するように載置し、さらにヨーク14の縁に保持爪36を係止して第1電磁弁10を保持させる。同様に第2電磁弁20も筒状流路28を挿入穴34へ挿入し、ヨーク24の縁に保持爪37を係止する。このように、第1電磁弁10、第2電磁弁20およびチャンバ5を一体化できるので、それぞれを個別に構成した場合に比べて構成を簡素化でき、かつ、部品点数を削減することができる。
 また、図2ではハウジング30の対向する2面に吸引ポート31と排出ポート32をそれぞれ形成して、吸引ポート31と排出ポート32が異なる方向を向くようにしたが、ポートの配置位置はこれに限定されるものではない。例えば図3~図5に示すように、吸引ポート31を、筒状流路18と筒状流路28の間に配置することにより、バルブシート18a,28aから吸引ポート31までの距離が短くなり、通気抵抗を低減させる効果がある。さらに好ましくは、吸引ポート31の中心軸X3の位置を、筒状流路18の中心軸X1と筒状流路28の中心軸X2の中間位置に配置することにより、通気抵抗を最小限に抑えることが可能となる。これにより、圧損を低減して流量を増加させることができる。この構成の場合には、図5に示すように吸引ポート31がバルブ連通路35を兼ねる。
 なお、吸引ポート31と排出ポート32の配置位置を入れ替えても同様の効果がある。その場合には、筒状流路18,28の間に配置した排出ポート32から流体が導入され、バルブ連通路35で流体が分岐して筒状流路18,28へ導かれ、バルブシート18a,28aをそれぞれ通過してチャンバ5内で合流し、チャンバ5に形成した吸引ポート31から導出されることになる。
 また、図3~図5に示すように、給電端子12,22、吸引ポート31、および排出ポート32の突出方向を同じにすることにより、省スペース化およびレイアウト性の向上を図ることができる。
 次に、2連電磁弁4の脈動音を低減させる動作例を説明する。
 図6は、2連電磁弁4の動作タイミングを示すグラフであり、図6(a)は第1電磁弁10、図6(b)は第2電磁弁20、図6(c)は2連電磁弁4全体を示す。各グラフとも横軸に時間[ms]、縦軸に流量Q[L/min]を示す。制御部8が出力する駆動信号は、所定のDuty周期Tを有し、Duty比が大きくなるにつれ流量が増大する。図6(a)および図6(b)に示すように、互いの駆動信号の位相を180度ずらして波形を反転させ、第1電磁弁10と第2電磁弁20の駆動周期をずらすことで、図6(c)に示すように脈動波形が連続波形になる。この結果、2連電磁弁4の脈動を低減することができる。
 あるいは、図7に示す動作タイミングで2連電磁弁4を制御してもよい。図7(a)に示すように第1電磁弁10を常時開弁させ(または常時閉弁させ)、図7(b)に示すように第2電磁弁20のDuty比を調節して流量を制御した場合、図7(c)に示すように第2電磁弁20の脈動のみ発生する。この結果、2連電磁弁4全体としての脈動を低減することができる。なお、第1電磁弁10のDuty比を調節して流量を制御し、第2電磁弁20を常時開弁(または常時閉弁)させてもよいことは言うまでもない。
 図6または図7の動作タイミングで2連電磁弁4を駆動することにより、脈動を低減することができるので、脈動低減用のチャンバ5も小さい容量で足りる。よって、電磁弁単体で大流量を制御する場合に必要な脈動低減用のチャンバの容量に比べ、2連電磁弁4に必要となるチャンバ5の容量を小さくでき、レイアウト性の向上に繋がる。また、小流量の電磁弁を並列に接続して大流量を制御する場合に必要な脈動低減用のチャンバの容量に比べても、2連電磁弁4に必要となるチャンバ5の容量は小さくて足り、レイアウト性の向上に繋がる。
 次に、2連電磁弁4の低流量精度を向上させる動作例を説明する。
 図8は、2連電磁弁4の流量特性(破線)を示すグラフであり、横軸に駆動信号のDuty比[%]、縦軸に流量Q[L/min]を示す。第1電磁弁10と第2電磁弁20の最大流量はそれぞれ0.5×Q0ずつの同一流量とし、2連電磁弁4全体の最大流量をQ0とする。実線は、最大流量Q0の電磁弁(単体)の流量特性、または最大流量0.5×Q0の電磁弁を2個同時駆動させた場合の流量特性を示す。
 自動車における蒸散ガス処理システムにおいて、キャニスタ2内に蓄積した高濃度の蒸散ガスをエンジン7内で燃焼させる上で、2連電磁弁4の流量分解能の悪化は蒸散ガス処理の効率を低下させる。Duty駆動方式の電磁弁を単体で用いて大流量制御を行う場合、または小流量の電磁弁を2個用いて同時駆動により大流量制御を行う場合、図8の実線で示すようにDuty比に応じた流量Qの変化量(ΔQ)が大きいため、流量分解能の悪化は避けられない。そこで、本実施の形態1に係る2連電磁弁4では、小流量の電磁弁を2個用いて、0~0.5×Q0までの流量領域は第1電磁弁10を常時閉弁させると共に第2電磁弁20をDuty駆動させて流量制御を行い、0.5×Q0~Q0までの流量領域は第1電磁弁10を常時開弁させると共に第2電磁弁20をDuty駆動させて流量制御を行う。これにより、大流量制御における低流量精度(流量分解能)の向上が可能となる。なお、第2電磁弁20を常時閉弁または常時開弁させると共に、第1電磁弁10をDuty駆動させてもよいことは言うまでもない。
 図8では、最大流量が同じ第1電磁弁10と第2電磁弁20を使用する場合の例を示したが、最大流量が異なる第1電磁弁10と第2電磁弁20を使用して、低流量域の分解能をさらに向上させることもできる。
 図9の例では、2連電磁弁4全体の最大流量をQ0とし、例えば第1電磁弁10の最大流量を0.25×Q0、第2電磁弁20の最大流量を0.75×Q0とする。0~0.25×Q0までの流量領域は第2電磁弁20を常時閉弁させると共に第1電磁弁10をDuty駆動させて流量制御を行い、0.25×Q0~Q0までの流量領域は第1電磁弁10を常時開弁させると共に第2電磁弁20をDuty駆動させて流量制御を行う。これにより、2連電磁弁4を大流量化させつつ、更なる低流量制御(流量分解能)の向上が可能となる。
 第1電磁弁10を小流量化、第2電磁弁20を大流量化するために、例えば第1電磁弁10のバルブシート18aを縮径して流量を低減させる。バルブシート18aの縮径だけであれば、第1電磁弁10と第2電磁弁20の部品の大部分は共通に使用でき、汎用性が高い。または、例えば第2電磁弁20のバルブシート28aを拡径すると共にプランジャ26を拡径して流量を増大させ、プランジャ26拡径に伴いコイル21を大型化してもよい。
 なお、第1電磁弁10の最大流量を大きく、第2電磁弁20の最大流量を小さくしてもよいことは言うまでもない。
 また、図8および図9に示す動作時の脈動は、Duty駆動させる1台分のみになるので、図7に示す場合と同様に脈動低減効果がある。
 以上より、実施の形態1に係る2連電磁弁4は、吸引ポート31、排出ポート32、およびチャンバ5からなるハウジング30と、チャンバ5内に挿入されて吸引ポート31と排出ポート32に連通する筒状流路18、およびプランジャ16を可動させて筒状流路18を開閉するソレノイド部を有する第1電磁弁10と、同じくチャンバ5内に挿入されて吸引ポート31と排出ポート32に連通する筒状流路28、およびプランジャ26を可動させて筒状流路28を開閉するソレノイド部を有する第2電磁弁20と、筒状流路18,28の各一方側を合流して吸引ポート31へ導く、ハウジング30に形成したバルブ連通路35とを備えるように構成した。このため、2個の電磁弁を使用することにより、単体の電磁弁で大流量を制御するものに比べて流量分解能を向上させて制御性を向上することができる。また、2個の電磁弁をチャンバと一体化すると共に各電磁弁を通過した流体を合流させて吸引ポートへ導くことにより、配管を簡素化して圧損を低減することができると共に脈動音を低減できる。さらに、この2連電磁弁4を蒸散ガス処理システムに用いることにより、HEV化等によりエンジン作動頻度の低い自動車の蒸散ガス処理システムであっても蒸散ガス量を増大させることができ、処理能力を向上させることができる。
 また、実施の形態1によれば、ハウジング30は、吸引ポート31および排出ポート32のいずれか一方を、筒状流路18,28間に配置するようにしたので、通気抵抗を低減させて、圧損を抑えることができる。
 特に、吸引ポート31および排出ポート32のいずれか一方の中心軸位置を、筒状流路18,28間の中心位置に配置することにより、通気抵抗を最小限に抑えることができる。
 また、実施の形態1によれば、第1電磁弁10および第2電磁弁20へそれぞれ駆動信号を出力して、駆動信号のDuty比に応じて弁開度を個別に調整する制御部8を備え、駆動信号のDuty周期の位相を互いに異ならせるようにしたので、脈動の発生タイミングをずらして相互のキャンセル効果を期待できる。また、脈動を低減した分、チャンバ5を小型化でき、レイアウト性が向上する。
 特に、駆動信号のDuty周期の位相を互いに180度反転させることにより、脈動波形を連続波形にして、脈動を低減できる。また、第1電磁弁10と第2電磁弁20のうちの一方の電磁弁を全開または全閉させ、他方の電磁弁の開度を調整させることにより、発生する脈動は小流量の電磁弁1台分のみにでき、2連電磁弁4全体としての脈動音を低減できる。
 また、実施の形態1によれば、制御部8は、第1電磁弁10および第2電磁弁20のうちの一方の電磁弁の最大流量を越える流量領域を制御する場合に、一方の電磁弁を全開させると共に他方の電磁弁の開度を調整するように構成した。このため、単体の電磁弁で大流量を制御するものに比べて流量分解能を向上させることができる。また、小流量の電磁弁1台分の脈動のみが発生し、2連電磁弁4全体としての脈動を低減できる。
 特に、第1電磁弁10と第2電磁弁20の最大流量を同一にした2連電磁弁4に対して、制御部8は、最大流量未満の流量領域を制御する場合に、一方の電磁弁を全閉させると共に他方の電磁弁の開度を調整し、最大流量以上の流量領域を制御する場合に、一方の電磁弁を全開させると共に他方の電磁弁の開度を調整する。
 さらに、一方の電磁弁の最大流量に対し他方の電磁弁の最大流量が小さい2連電磁弁4に対しては、制御部8は、小さい方の最大流量未満の流量領域を制御する場合に、この小さい最大流量の電磁弁の開度を調整すると共に他方の電磁弁を全閉させ、小さい方の最大流量以上の流量領域を制御する場合に、この小さい最大流量の電磁弁を全開させると共に他方の電磁弁の開度を調整することにより、低流量域の流量分解能をさらに向上させることができる。
実施の形態2.
 上記実施の形態1では、第1電磁弁10および第2電磁弁20をともに逆吸引仕様にしたが、異なる吸引仕様にしてもよい。
 図10は、第1電磁弁10および第2電磁弁20の吸引仕様が異なる構成の2連電磁弁4の構成例を示す。なお、図10において図2~図6と同一または相当の部分については同一の符号を付し説明を省略する。
 本実施の形態2では、第1電磁弁10を、負圧印加方向がプランジャ16開弁方向と同一であって負圧が開弁方向に働く逆吸引仕様とし、第2電磁弁20を、負圧印加方向がプランジャ16閉弁方向と同一であって負圧が閉弁方向に働く正吸引仕様とする。従って、第1電磁弁10においてコイル11に通電すると、プランジャ16がコア13に吸引されてバルブシート18aが開弁し、蒸散ガスが筒状流路18の内周側からバルブシート18aを通って吸引ポート31の方向へ流れる。一方の第2電磁弁20においてコイル21に通電するとプランジャ26がコア23に吸引されてバルブシート28aが開弁し、蒸散ガスが筒状流路28の外周側からバルブシート28aを通って筒状流路28内周側に入り、バルブ連通路35、吸引ポート31の方向へ流れる。
 図11は、高負圧域で電磁弁を駆動させた場合の流量特性を示すグラフであり、図12は、低負圧域で電磁弁を駆動させた場合の流量特性を示すグラフである。どちらのグラフも横軸に駆動信号のDuty比[%]、縦軸に流量Q[L/min]を示す。本実施の形態2に係る2連電磁弁4の流量特性を破線で示す。第1電磁弁10および第2電磁弁20の最大流量はそれぞれ0.5×Q0であり、2連電磁弁4全体で最大流量Q0となる。また、最大流量Q0の逆吸引仕様の電磁弁(単体)の流量特性を太線で示し、最大流量Q0の正吸引仕様の電磁弁(単体)の流量特性を細線で示す。
 逆吸引仕様の電磁弁は、高負圧域での閉弁力を必要とすることから、プランジャを閉弁方向へ付勢するスプリングの付勢力を高める。そのため、低負圧域での閉弁力も上昇し、図12に太線で示すようにDuty比をある程度大きくしないと蒸散ガスが流れず、かつ、その後の流量特性の傾き(即ち、立ち上がり流量)も大きくなり、動作性(流量分解能)が悪くなる。そこで、低負圧域での動作性を向上させるために、コイルを大型化したり磁気効率を改善したりして、高電磁吸引力をもたせる必要がある。
 一方、正吸引仕様の電磁弁は、図11に細線で示すように高負圧時にDuty比をある程度大きくしないと蒸散ガスが流れず、かつその後の立ち上がり流量も大きくなり、高負圧域での動作性(流量分解能)が悪い。そこで、高負圧域での動作性を向上させるために、コイルを大型化したり磁気効率を改善したりして、高電磁吸引力をもたせる必要がある。
 このように、逆吸引仕様では低負圧時の動作性向上のために高電磁吸引力が必要となり、正吸引仕様では高負圧時の動作性向上のために高電磁力吸引が必要となるトレードオフの関係にあり、大流量制御のためには母体のスケールアップは避けられない。
 そこで、本実施の形態2では電磁吸引力およびスプリング17,27の付勢力はそのままに、第1電磁弁10を逆吸引仕様とし、第2電磁弁20を正吸引仕様にする。そして、図11に点線で示すように、高負圧域では逆吸引仕様の第1電磁弁10を駆動させつつ、正吸引仕様の第2電磁弁20は常時閉弁または常時開弁させることにより、高負圧域での動作性を向上させる。これにより、特に図11の斜線部分の低流量領域において、太線で示す大流量の逆吸引仕様の電磁弁(単体)と比べて、点線で示す第1電磁弁10の立ち上がり流量が小さくなり、流量分解能が向上する。また、細線で示す大流量の正吸引仕様の電磁弁(単体)と比べて、点線で示す第1電磁弁10の蒸散ガスが流れ始めるDuty比が小さくなり、その後の立ち上がり流量も小さくなるので、流量分解能が向上する。
 また、図12に点線で示すように、低負圧域では正吸引仕様の第2電磁弁20を駆動させつつ、逆吸引仕様の第1電磁弁10は常時閉弁または常時開弁させることにより、低負圧域での動作性を向上させる。これにより、上記同様、図12の斜線部分の低流量領域において、太線で示す大流量の逆吸引仕様の電磁弁(単体)および細線で示す大流量の正吸引仕様の電磁弁(単体)と比べて、点線で示す第2電磁弁20の流量分解能が向上する。
 このように正吸引仕様の電磁弁と逆吸引仕様の電磁弁を並列に接続することで、低電磁吸引力のまま、全負圧域での動作性を向上できる。よって、コイル11,21を小型化でき、2連電磁弁4の小型化および軽量化が可能となる。また、図11および図12に示す動作時の脈動は、Duty駆動させる1台分のみになるので、上記実施の形態1の図7に示す場合と同様に脈動低減効果がある。
 なお、スロットルバルブ6とエンジン7の間に圧力センサを設置し、制御部8が圧力センサの検出値に応じて高負圧か低負圧かを判断して、第1電磁弁10および第2電磁弁20を駆動制御すればよい。
 また、第1電磁弁10を正吸引仕様にして、第2電磁弁20を逆吸引仕様にしてもよいことは言うまでもない。
 さらに、図10ではハウジング30の対向する2面に吸引ポート31と排出ポート32をそれぞれ形成して、吸引ポート31と排出ポート32が異なる方向を向くようにしたが、これに限定されるものではなく、図3~図5に示すように吸引ポート31および排出ポート32のどちらか一方を、筒状流路18,28の間に配置して、通気抵抗を抑制するようにしてもよい。
 以上より、実施の形態2に係る2連電磁弁4は、第1電磁弁10と第2電磁弁20のうちの一方の電磁弁は筒状流路18,28を開弁方向に流体が流れ、他方の電磁弁は筒状流路18,28を閉弁方向に流体が流れるように構成したので、流量分解能を向上させて制御性を向上することができる。また、低流量コイル11,21を小型化できるようになり、結果、2連電磁弁4の小型化および軽量化が可能となる。
 なお、本願発明はその発明の精神の範囲内において、各実施の形態の自由な組合せ、あるいは変形が可能である。
 以上のように、この発明に係る2連電磁弁は、2つの電磁弁を共通のチャンバに挿入して一体化して、流量分解能を向上させて制御性を向上させ、かつ、配管を簡素化して圧損を低減させると共に脈動音を低減させるようにしたので、自動車の蒸散ガス処理システムにおいて蒸散ガス量を制御する電磁弁などに用いるのに適している。

Claims (12)

  1.  吸引ポート、排出ポート、およびチャンバからなるハウジングと、
     前記チャンバ内に挿入されて前記吸引ポートと前記排出ポートに連通する流路部、および弁を可動させて該流路部を開閉するソレノイド部を有する第1電磁弁と、
     前記チャンバ内に挿入されて前記吸引ポートと前記排出ポートに連通する流路部、および弁を可動させて該流路部を開閉するソレノイド部を有する第2電磁弁と、
     前記第1電磁弁の流路部の一方と前記第2電磁弁の流路部の一方を合流して前記吸引ポートおよび前記排出ポートのいずれか一方へ接続する、前記ハウジングに設けた接続通路とを備える2連電磁弁。
  2.  前記ハウジングは、吸引ポートおよび排出ポートのいずれか一方を、前記一対の電磁弁の流路部間に配置することを特徴とする請求項1記載の2連電磁弁。
  3.  前記ハウジングは、吸引ポートおよび排出ポートのいずれか一方の中心軸位置を、前記一対の電磁弁の流路部間の中心位置に配置することを特徴とする請求項2記載の2連電磁弁。
  4.  前記一対の電磁弁のうちの一方の電磁弁は流路部を開弁方向に流体が流れ、他方の電磁弁は流路部を閉弁方向に流体が流れる構成であることを特徴とする請求項3記載の2連電磁弁。
  5.  前記一対の電磁弁へそれぞれ駆動信号を出力して、該駆動信号のDuty比に応じて弁開度を個別に調整する制御部を備えることを特徴とする請求項3記載の2連電磁弁。
  6.  前記制御部は、前記一対の電磁弁へ出力する駆動信号のDuty周期の位相を互いに異ならせることを特徴とする請求項5記載の2連電磁弁。
  7.  前記制御部は、前記一対の電磁弁へ出力する駆動信号のDuty周期の位相を互いに180度反転させることを特徴とする請求項6記載の2連電磁弁。
  8.  前記制御部は、前記一対の電磁弁のうちの一方の電磁弁を全開または全閉させ、他方の電磁弁の開度を調整させることを特徴とする請求項5記載の2連電磁弁。
  9.  前記制御部は、前記一対の電磁弁のうちの一方の電磁弁の最大流量を越える流量領域を制御する場合に、該一方の電磁弁を全開させると共に他方の電磁弁の開度を調整することを特徴とする請求項5記載の2連電磁弁。
  10.  前記一対の電磁弁は、最大流量が同一であり、
     前記制御部は、前記最大流量未満の流量領域を制御する場合に、一方の電磁弁を全閉させると共に他方の電磁弁の開度を調整し、前記最大流量以上の流量領域を制御する場合に、一方の電磁弁を全開させると共に他方の電磁弁の開度を調整することを特徴とする請求項9記載の2連電磁弁。
  11.  前記一対の電磁弁は、一方の電磁弁の最大流量に対し他方の電磁弁の最大流量が小さく、
     前記制御部は、小さい方の最大流量未満の流量領域を制御する場合に、該小さい最大流量の電磁弁の開度を調整すると共に他方の電磁弁を全閉させ、該小さい方の最大流量以上の流量領域を制御する場合に、該小さい最大流量の電磁弁を全開させると共に他方の電磁弁の開度を調整することを特徴とする請求項9記載の2連電磁弁。
  12.  燃料タンク内で揮発した蒸散ガスを回収するキャニスタと、
     前記キャニスタで回収した蒸散ガスを、負圧により吸引して再燃焼させるエンジンと、
     前記キャニスタと前記エンジンを接続する配管を流れる蒸散ガス量を制御する請求項1記載の2連電磁弁とを備える蒸散ガス処理システム。
PCT/JP2010/005225 2010-08-25 2010-08-25 2連電磁弁および蒸散ガス処理システム WO2012025958A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/643,762 US9103302B2 (en) 2010-08-25 2010-08-25 Dual electromagnetic valve and evaporated gas treatment system
PCT/JP2010/005225 WO2012025958A1 (ja) 2010-08-25 2010-08-25 2連電磁弁および蒸散ガス処理システム
JP2012530419A JP5436679B2 (ja) 2010-08-25 2010-08-25 2連電磁弁および蒸散ガス処理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/005225 WO2012025958A1 (ja) 2010-08-25 2010-08-25 2連電磁弁および蒸散ガス処理システム

Publications (1)

Publication Number Publication Date
WO2012025958A1 true WO2012025958A1 (ja) 2012-03-01

Family

ID=45722992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005225 WO2012025958A1 (ja) 2010-08-25 2010-08-25 2連電磁弁および蒸散ガス処理システム

Country Status (3)

Country Link
US (1) US9103302B2 (ja)
JP (1) JP5436679B2 (ja)
WO (1) WO2012025958A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017180363A (ja) * 2016-03-31 2017-10-05 三菱電機株式会社 パージソレノイドバルブ
JP2019143531A (ja) * 2018-02-20 2019-08-29 本田技研工業株式会社 内燃機関の流体制御装置
CN112443703A (zh) * 2019-08-28 2021-03-05 浜名湖电装株式会社 净化控制阀设备
JP2021038738A (ja) * 2019-08-28 2021-03-11 浜名湖電装株式会社 パージ制御弁装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107208577B (zh) * 2015-02-05 2020-10-30 三菱电机株式会社 电磁阀及蒸气处理系统
US10851736B1 (en) * 2019-06-03 2020-12-01 Denso International America, Inc. Dual armature purge valve
JP7205432B2 (ja) * 2019-09-23 2023-01-17 浜名湖電装株式会社 パージ制御弁装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610780A (ja) * 1992-06-26 1994-01-18 Toyota Motor Corp 蒸発燃料処理装置
JPH06272628A (ja) * 1993-03-18 1994-09-27 Mitsubishi Electric Corp エンジンの蒸発燃料制御装置
JPH074324A (ja) * 1993-05-10 1995-01-10 General Motors Corp <Gm> 抽気制御装置
WO2007020736A1 (ja) * 2005-08-12 2007-02-22 Mitsubishi Electric Corporation 燃料蒸発ガス処理装置および電磁バルブ装置
WO2008090657A1 (ja) * 2007-01-24 2008-07-31 Mitsubishi Electric Corporation 流量制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353770A (en) 1992-05-21 1994-10-11 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling flow of evaporated fuel from canister to intake passage of engine using purge control valves
US5551406A (en) * 1995-05-19 1996-09-03 Siemens Electric Limited Canister purge system having improved purge valve
JPWO2002092989A1 (ja) 2001-05-11 2004-09-02 三菱電機株式会社 蒸発燃料処理モジュール
US6769416B2 (en) 2001-05-11 2004-08-03 Mitsubishi Denki Kabushiki Kaisha Evaporated fuel processing module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610780A (ja) * 1992-06-26 1994-01-18 Toyota Motor Corp 蒸発燃料処理装置
JPH06272628A (ja) * 1993-03-18 1994-09-27 Mitsubishi Electric Corp エンジンの蒸発燃料制御装置
JPH074324A (ja) * 1993-05-10 1995-01-10 General Motors Corp <Gm> 抽気制御装置
WO2007020736A1 (ja) * 2005-08-12 2007-02-22 Mitsubishi Electric Corporation 燃料蒸発ガス処理装置および電磁バルブ装置
WO2008090657A1 (ja) * 2007-01-24 2008-07-31 Mitsubishi Electric Corporation 流量制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017180363A (ja) * 2016-03-31 2017-10-05 三菱電機株式会社 パージソレノイドバルブ
JP2019143531A (ja) * 2018-02-20 2019-08-29 本田技研工業株式会社 内燃機関の流体制御装置
US10738751B2 (en) 2018-02-20 2020-08-11 Honda Motor Co., Ltd. Fluid control device for internal combustion engine
CN112443703A (zh) * 2019-08-28 2021-03-05 浜名湖电装株式会社 净化控制阀设备
JP2021038738A (ja) * 2019-08-28 2021-03-11 浜名湖電装株式会社 パージ制御弁装置
US11028790B2 (en) 2019-08-28 2021-06-08 Hamanakodenso Co., Ltd. Purge control valve device

Also Published As

Publication number Publication date
US20130042839A1 (en) 2013-02-21
US9103302B2 (en) 2015-08-11
JP5436679B2 (ja) 2014-03-05
JPWO2012025958A1 (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5436679B2 (ja) 2連電磁弁および蒸散ガス処理システム
KR101783540B1 (ko) 솔레노이드식 유체 제어밸브
JP5717876B2 (ja) 流量制御装置
EP3094898B1 (en) Flow control for aspirators producing vacuum using the venturi effect
US7815165B2 (en) Valve device having barrier for suppressing transmission of pulsating waves
JP4611384B2 (ja) 燃料蒸発ガス処理装置および電磁バルブ装置
US20120255639A1 (en) Solenoid valve
US10495232B2 (en) Dual path dual purge valve system and valve assembly for turbo boosted engine
JP5689983B2 (ja) 電磁弁
CN105089892A (zh) 用于控制气体介质的阀
JP2000170948A (ja) ソレノイドバルブおよび燃料蒸発ガス排出抑止装置
CN105556090B (zh) 进气歧管用促动器
JP2019143531A (ja) 内燃機関の流体制御装置
JP2006305517A (ja) フィルタ装置
JP5507013B2 (ja) ソレノイドバルブ
JP7192728B2 (ja) パージ制御弁装置
JP2016098746A (ja) 過給機付きエンジンの蒸発燃料処理装置
JP6930438B2 (ja) 流量調整装置
JP5604627B2 (ja) 制御弁
JP7488475B2 (ja) 流量制御弁
KR20150029825A (ko) 솔레노이드 밸브
JP2013029178A (ja) 電磁弁
JP2007240010A (ja) ソレノイドバルブ
CN220727281U (zh) 一种多永磁铁组件组合式控制电磁阀
JP2006017129A (ja) ソレノイドバルブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856370

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012530419

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13643762

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856370

Country of ref document: EP

Kind code of ref document: A1