WO2012025034A1 - 一种超高分子量聚乙烯纤维纺丝溶液的制备方法 - Google Patents

一种超高分子量聚乙烯纤维纺丝溶液的制备方法 Download PDF

Info

Publication number
WO2012025034A1
WO2012025034A1 PCT/CN2011/078685 CN2011078685W WO2012025034A1 WO 2012025034 A1 WO2012025034 A1 WO 2012025034A1 CN 2011078685 W CN2011078685 W CN 2011078685W WO 2012025034 A1 WO2012025034 A1 WO 2012025034A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
weight polyethylene
ultrahigh molecular
solvent
solution
Prior art date
Application number
PCT/CN2011/078685
Other languages
English (en)
French (fr)
Inventor
贺鹏
黄兴良
Original Assignee
北京同益中特种纤维技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京同益中特种纤维技术开发有限公司 filed Critical 北京同益中特种纤维技术开发有限公司
Priority to KR1020137006516A priority Critical patent/KR101462362B1/ko
Priority to EP11819409.1A priority patent/EP2610374B1/en
Priority to RU2013111847/05A priority patent/RU2533130C1/ru
Priority to US13/817,483 priority patent/US9296875B2/en
Priority to BR112013003987-6A priority patent/BR112013003987B1/pt
Publication of WO2012025034A1 publication Critical patent/WO2012025034A1/zh
Priority to IL224680A priority patent/IL224680A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene

Definitions

  • the invention relates to a preparation method of ultrahigh molecular weight polyethylene fiber, in particular to a preparation method of ultrahigh molecular weight polyethylene fiber spinning solution.
  • Ultrahigh molecular weight polyethylene fiber also known as high strength and high modulus polyethylene fiber, refers to high performance fiber which is made by spinning, extracting, drying and super-stretching of polyethylene having a relative molecular weight of more than 1 million. Fiber-reinforced composites made of ultra-high molecular weight polyethylene fibers have the advantages of light weight, impact resistance, and high dielectric properties. They are widely used in aerospace, marine defense, weaponry, and everyday industries.
  • the preparation of ultrahigh molecular weight polyethylene fibers is generally carried out using a jelly spinning technique which was first invented by DSM of the Netherlands.
  • a jelly spinning technique which was first invented by DSM of the Netherlands.
  • a polyethylene having a relative molecular weight of 1,000,000 or more is usually used as a raw material, and a suspension obtained by mixing the raw material with a suitable solvent is used as a spinning dope, and then the spinning dope is extruded through a screw.
  • the machine is cut, hooked and unwound, and then extruded into a nascent jelly by a spin pack, and then the nascent jelly is subjected to subsequent extraction, drying and ultra-stretching to obtain ultra-high molecular weight polyethylene fibers.
  • the density of the chain entanglement point in the jelly filament can be increased by increasing the molecular weight of the raw material or the density of the spinning dope.
  • the density of the chain entanglement point in the jelly filament can be increased by increasing the molecular weight of the raw material or the density of the spinning dope.
  • the polymer particles are not easily dissolved during the dissolution process.
  • the phenomenon of agglomeration now causes the spinning dope to dissolve unevenly and affect the performance of the yarn.
  • the spinning dope is not uniformly dissolved, it also affects the increase in the density of the spinning dope.
  • a step of swelling the ultrahigh molecular weight polyethylene by using a step of mixing the ultrahigh molecular weight polyethylene through a plurality of swelling kettles is carried out in sequence.
  • the pre-swelling and swelling are finally carried out in a dissolution vessel having a temperature close to the dissolution temperature of the ultrahigh molecular weight polyethylene to dissolve the ultrahigh molecular weight polyethylene to obtain a spinning dope.
  • the viscosity of the spinning dope is likely to increase sharply, and the weissenberg effect (commonly known as the climbing rod effect) occurs in the material, thereby affecting the smooth progress of the subsequent spinning.
  • the problem to be solved by the present invention is to provide a method for preparing an ultrahigh molecular weight polyethylene fiber spinning dope, wherein the ultrahigh molecular weight polyethylene fiber spinning dope prepared by the invention has high solid content and is prepared by using the spinning dope. Ultra high molecular weight polyethylene fibers are stable in performance and have high strength.
  • the present invention provides a method for preparing a super high molecular weight polyethylene fiber spinning dope, comprising:
  • the ultrahigh molecular weight polyethylene dissolving solution and the ultrahigh molecular weight polyethylene swelling liquid are mixed at a weight ratio of 0.42 2.85 to obtain a spinning dope having an ultrahigh molecular weight polyethylene content of 10% to 15% by weight;
  • the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene swelling liquid has a weight content of 10-50%;
  • the weight ratio of the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene swelling liquid to the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene dissolution liquid is 2.5 to 70.
  • the weight ratio of the ultrahigh molecular weight polyethylene solution to the ultrahigh molecular weight polyethylene swelling liquid is 1.0 to 2.5.
  • the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene swelling liquid has a weight content of 20% to 30%.
  • the weight ratio of the ultrahigh molecular weight polyethylene swelling liquid to the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene solution is 10 to 30.
  • the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene fiber spinning dope has a weight content of 11% to 14%.
  • the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene fiber spinning dope has a weight content of 12% to 13%.
  • the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene fiber spinning dope has a weight average molecular weight of 3 10 6 to 5 10 6 .
  • the solvent in the ultrahigh molecular weight polyethylene spinning dope is a mixed solvent obtained by mixing a cycloalkane and a paraffin in a ratio of 85 to 90: 10-15, and the number of carbon atoms of the cycloalkane is 25 ⁇ 50, the number of carbon atoms of the paraffin is 25 to 50.
  • the ultrahigh molecular weight polyethylene swelling liquid is prepared as follows: adding ultra high molecular weight polyethylene powder to the first solvent for stirring;
  • the first mixture is heated to a temperature of 90 ° C to 130 ° C to swell to obtain an ultrahigh molecular weight polyethylene swelling liquid;
  • the first emulsion solvent is formed by emulsification of a third solvent, an antioxidant, and a surfactant;
  • Second solvent Third solvent: Antioxidant: Surfactant in weight ratio 45 ⁇ 55: 45-55: 1-20: 0.5-5: 0.05-0.1
  • the ultrahigh molecular weight polyethylene solution is prepared as follows: adding a second emulsion solvent, a third emulsion solvent, a fourth emulsion solvent, to the fourth solvent, The second mixture is stirred to obtain a second mixture, and the second mixture is heated to 100 ° C to 190 ° C to obtain an ultrahigh molecular weight polyethylene solution;
  • the second emulsion solvent is formed by emulsifying a sixth solvent and an ultrahigh molecular weight polyethylene in a ratio of from 1 to 5: 0.4 to 0.6;
  • the fourth emulsion solvent is formed by emulsification of a seventh solvent and an antioxidant
  • the fourth solvent: the fifth solvent: the sixth solvent: the seventh solvent weight ratio is 67-75: 15-25: 2-10: 2 ⁇ 4.
  • a high-solid-state spinning dope having a weight content of ultrahigh molecular weight polyethylene of 10-15% is obtained by mixing and stirring a solution in a swelling liquid. Since the dissolving solution can plasticize the swelling liquid, the viscosity of the spinning dope system can be reduced, and the spinning dope has better fluidity and wire continuity, and avoids the appearance of filaments in the subsequent spinning process. Broken wire.
  • the ultrahigh molecular weight polyethylene gel yarn produced during the spinning of the jelly can also contain an appropriate amount of chain entanglement points, thereby ensuring the yarn during the subsequent drawing process. The transmission of the tension in the yarn can be smoothly transmitted to achieve the purpose of super-stretching, preventing the occurrence of broken yarn, and ensuring the stability of the performance of the ultra-high molecular weight polyethylene fiber.
  • the invention provides a preparation method of an ultrahigh molecular weight polyethylene fiber spinning dope, comprising the steps of:
  • the ultrahigh molecular weight polyethylene dissolving solution and the ultrahigh molecular weight polyethylene swelling liquid are mixed at a weight ratio of 0.42 2.85 to obtain a spinning dope having an ultrahigh molecular weight polyethylene content of 10% to 15% by weight;
  • the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene swelling liquid has a weight content of 10-50%;
  • the weight ratio of the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene swelling liquid to the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene dissolution liquid is 2.5 to 70.
  • the ultrahigh molecular weight polyethylene swelling liquid refers to a macromolecule which is well known to those skilled in the art after mixing the ultrahigh molecular weight polyethylene with a solvent, and the small molecules of the solvent penetrate and diffuse into the ultrahigh molecular weight polyethylene.
  • a suspension obtained by expanding an ultrahigh molecular weight polyethylene macromolecule; the ultrahigh molecular weight polyethylene dissolving solution refers to a solution obtained by dissolving ultrahigh molecular weight polyethylene into a solvent well known to those skilled in the art.
  • the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene spinning dope preferably has a weight content of 11% to 14%, more preferably 12% to 13%.
  • the weight content of the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene swelling liquid is preferably from 11% to 49%, more preferably from 15% to 40%, most preferably from 20% to 30%.
  • the weight content of the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene solution is preferably 0.2% to 2%, more preferably 0.3% to 1.5%, still more preferably 0.8% to 1.2%.
  • the ultrahigh molecular weight polyethylene swelling solution and the ultrahigh molecular weight polyethylene dissolving solution are mixed and stirred to prepare a spinning dope, the ultrahigh molecular weight polyethylene dissolving solution and the ultrahigh molecular weight polyethylene are swollen.
  • the weight ratio of the liquid is preferably from 0.42 to 2.85, more preferably from 1.0 to 2.5, still more preferably from 1.4 to 1.8.
  • the weight ratio of the swelling liquid to the ultrahigh molecular weight polyethylene in the solution is preferably 2.570, more preferably 5 to 50, still more preferably 10 to 30.
  • For the stirring time it is preferably 20 min to 120 min, more preferably 45 min - lOOmin, and the last is selected as 60 mii! ⁇ 80min.
  • the ultrahigh molecular weight polyethylene swelling liquid is stirred in a mixing tank at normal temperature and normal pressure, and then the ultrahigh molecular weight polyethylene swelling liquid is heated to a temperature higher than the swelling liquid phase separation temperature, preferably higher than the phase separation temperature 8 °C ⁇ 15 °C, more preferably 10 °C higher than the phase separation temperature.
  • the phase transition temperature of the ultrahigh molecular weight polyethylene is well known to those skilled in the art and varies depending on the molecular weight, which is between about 70 ° C and 90 ° C.
  • an ultrahigh molecular weight polyethylene solution is added to the swelling liquid, and the mixture is stirred and mixed to obtain a spinning dope.
  • the purpose of raising the swelling liquid to a temperature higher than the phase separation is to lower the viscosity of the swelling liquid and increase the fluidity of the swelling liquid.
  • the function of the dissolving liquid is to plasticize the swelling liquid, which can better improve the viscosity of the spinning dope system, and ensure that the spinning dope has good fluidity and filament continuity.
  • the ultrahigh molecular weight polyethylene gel yarn produced during the spinning of the jelly can also contain an appropriate amount of entanglement, and the purpose is to enable the tension during the subsequent drawing process.
  • the transfer in the thread can be carried out smoothly to achieve the purpose of subsequent super-stretching to prevent breakage.
  • the first mixture is heated to 90 ° C ⁇ 130 ° C to swell to obtain an ultra-high molecular weight polyethylene swelling liquid;
  • the first emulsion solvent is formed by emulsification of a third solvent, an antioxidant, and a surfactant;
  • the first solvent: the second solvent: the third solvent: the antioxidant: the surfactant is in the weight ratio of 45-55: 45-55: 1-20: 0.5-5: 0.05-0.1, preferably 45-55: 45-55: 2-10: 1-3: 0.05-0.1, more preferably 50: 50: 4-8: 1.5-2.5: 0.05 0.1.
  • the first emulsion solvent is preferably prepared by adding an antioxidant and a surfactant to the third solvent for stirring and emulsification, and the stirring speed is preferably 2500 rpm (rotation per minute) ⁇ 3500 rpm. Preferably, it is 2750 rpm to 3250 rpm, and the stirring time is preferably 20 min - 100 min, more preferably 30 min - 80 min, and still more preferably 40 min - 100 min.
  • the holding time is adjusted according to the degree of swelling, and the swelling degree of the ultrahigh molecular weight is preferably from 1 to 2, more preferably from 1.1 to 1.8, still more preferably from 1.2 to 2. 1.6, then stop the insulation.
  • the holding time is preferably from 30 to 100 min, more preferably from 40 to 90 min, still more preferably from 50 to 80 min.
  • the solute length ⁇ of the present invention is calculated according to formula (I):
  • Formula (I) In the formula (I), the meaning is: Take one ultra-high molecular weight polyethylene swelling liquid, and weigh it by suction filtration for 20 minutes; W 2 means: the weight fraction obtained by suction filtration The number of swelling materials was subjected to three extractions with decalin and dried at 90 ° C until constant weight was weighed.
  • the stirring speed is preferably 2500 rpm to 3500 rpm, more preferably 3000 rpm, and then the second mixture is heated. Stir to 100 ° C ⁇ 190 ° C to obtain ultra high molecular weight polyethylene solution.
  • the second emulsion solvent is formed by emulsifying a sixth solvent and an ultrahigh molecular weight polyethylene in a ratio of from 1 to 5: 0.4 to 0.6;
  • the fourth emulsion solvent is formed by emulsification of a seventh solvent and an antioxidant, and the seventh solvent preferably accounts for 2% to 4% of the total amount of the solvent in the ultrahigh molecular weight polyethylene solution;
  • the antioxidant preferably accounts for 1% to 8%, more preferably 2% to 7%, and still more preferably 4% to 6% of the total amount of the ultrahigh molecular weight polyethylene in the ultrahigh molecular weight polyethylene solution.
  • the fourth solvent: the fifth solvent: the sixth solvent: the seventh solvent is in the weight ratio of 67 to 75: 15- 25: 2-10: 2-4, more preferably 67-75: 15-25: 3-8: 2-4, more preferably 67-75: 20: 4-6: 3.
  • the sixth solvent and the ultrahigh molecular weight polyethylene may be separately emulsified in two portions, and the emulsification time is preferably 10 min to 60 min, preferably 20 min to 50 min. , more preferably 30min ⁇ 40min.
  • the second mixture is heated to 100 ° C ⁇ 190 ° C to obtain an ultrahigh molecular weight polyethylene solution.
  • the following steps are preferably used: first heating the second mixture to 100 ° C ⁇ 150 ° C, preferably to 120 ° Low-speed stirring is carried out at C ⁇ 140 ° C, and the low-speed stirring speed is preferably 17 rpm to 25 rpm, more preferably 18 rpm to 20 rpm; and the temperature of stirring to the second mixture is preferably 140 ° C to 190 ° C, more preferably 150 ° C to 180 ° °C, then increase the rotation speed to 35rpm ⁇ 45rpm, more preferably to 38rpm ⁇ 42rpm for high-speed stirring, and then keep warm to obtain ultra-high molecular weight polyethylene dissolution.
  • the holding time of the liquid is preferably from 30 min to 100 min, more preferably from 40 min to 80 min.
  • the second mixture is heated first for low-speed agitation, and the purpose is that during the heating and low-speed stirring, the ultra-high molecular weight polyethylene raw material particles completely swell and most of them start to dissolve. At this time, the entanglement between the macromolecular chains of the high polymer in the ultrahigh molecular weight polyethylene has been substantially eliminated.
  • the mixture is stirred at a low speed until the temperature of the second mixture reaches 140 ° C to 190 ° C, preferably 150 ° C to 180 ° C, followed by high-speed stirring for the purpose of promoting dissolution of the ultrahigh molecular weight polyethylene.
  • the solvent used herein is preferably a mixture of a cycloalkane: a chain hydrocarbon isomer in a ratio of 85 to 90: 10-15, and the number of carbon atoms of the cycloalkane and the paraffin is preferably 25 ⁇ 50, more preferably 30 ⁇ 40.
  • the solvent may use a solvent which is well known to those skilled in the art for the ultrahigh molecular weight polyethylene spinning solution, for example, it may be used preferably without gas volatilization below 400 ° C, the initial boiling point is preferably higher than 450 ° C, and the density is preferably 0.84. ⁇ 0.87g/cm 3 , the white point of the flash point is preferably higher than 260 °C.
  • the white oil used in the present invention can be well known to those skilled in the art as 5# white oil, 7# white oil, 10# white oil, 15# white oil, 22# white oil, 26# white oil, 32# white oil, 46. # ⁇ , 68# ⁇ , 100# ⁇ , 150# ⁇ .
  • the antioxidant of the present invention may be a hindered phenolic antioxidant or an aromatic amine antioxidant well known to those skilled in the art, and a specific example may be 2,6-tributyl-4-nonylphenol, double ( 3,5-tert-butyl-4-hydroxyphenyl) sulfide, tetra( ⁇ (3,5-tributyl-4-hydroxyphenyl)propanoic acid) anionic surfactant of pentaerythritol, cationic surface activity
  • the agent nonionic surfactant, stearic acid, sodium dodecylbenzenesulfonate, quaternary ammonium compound, fatty acid glyceride, fatty acid sorbitan (span), polysorbate (Tween), etc. But it is not limited to this.
  • the ultrahigh molecular weight polyethylene used in the present invention preferably has a weight average molecular weight Mw of from 3 to 5 ⁇ 10 6 , more preferably from 3.5 to 4.5 ⁇ 10 6 , and an ultrahigh molecular weight polyethylene having a nonlinearity of ⁇ 5%;
  • the ultrahigh molecular weight polyethylene powder having a Gaussian distribution particle diameter preferably has a particle diameter of 60 mesh to 200 mesh.
  • the prepared ultrahigh molecular weight polyethylene fiber spinning solution can be prepared according to the jelly spinning technique well known to those skilled in the art, and the specific example can be: feeding the spinning solution into the twin screw extrusion Unwrapping, the entrance of the twin-screw extruder
  • the temperature is preferably from 85 ° C to 120 ° C
  • the intermediate extrusion temperature is from 240 ° C to 280 ° C
  • the outlet temperature is from 280 ° C to 320 ° C.
  • the residence time of the suspension in the twin-screw extruder does not exceed 1 Omin.
  • the residence time is from 3 min to 8 min, and more preferably, the residence time is from 4 to 6 min.
  • the rotation speed of the twin-screw extruder is from 70 r/min to 260 r/min.
  • the rotation speed of the twin-screw extruder is from 150 r/min to 230 r/min.
  • the process of the jelly spinning is preferably as follows: the orifice diameter of the orifice is 0.6 mm to 5 mm, the length to diameter ratio of the orifice is 6/1 to 30/1, and the extrusion rate of the spinning solution is 0.5 m/min. ⁇ lOm / min; After extrusion, the spinning solution is cooled and set at 0 ° C ⁇ 36 ° C to obtain a jelly strip.
  • the jelly strip is extracted.
  • the extractant is preferably hexane, heptane, toluene, chlorodecane, mineral spirits, kerosene, more preferably kerosene.
  • the extracted yarn is then dried, preferably at a temperature of 40 ° C to 80 ° C, and then the dried strand is applied 30 to 130 times, preferably 40-60, at a temperature ranging from 70 ° C to 160 ° C. Multiple times of thermal stretching to form ultra high molecular weight polyethylene fibers.
  • the mechanical properties of the fibers in the present invention were tested as follows: ⁇ The strength and modulus of the fibers were measured using a DXLL-20000 electronic tensile machine under the conditions of a clamping distance of 250 mm and a descending speed of 50 mm/min (mm/min) for each type of design. Performance value: Take the performance value of 11 patterns of X l 2 ... 11 ; The performance of the pattern takes the arithmetic mean:
  • the first white oil in the swelling liquid the second white oil:
  • the third white oil is 52: 48: 4 by weight. 2
  • the emulsification time is 30min
  • the stirring speed during emulsification is 3000rpm
  • the fourth white oil in the solution Fifth white oil: Sixth white oil: The seventh white oil is 67: 20: 4: 3 by weight.
  • the swelling liquid prepared in step 1 is stirred at room temperature in a swelling tank, and then the swelling liquid is heated to 90 ° C, and then the solution prepared in step 2 is added to the swelling liquid and stirred for 70 minutes to obtain ultrahigh molecular weight polyethylene fiber spinning.
  • the first white oil in the swelling liquid the second white oil:
  • the third white oil is 50:50:4 by weight.
  • the fourth white oil in the solution Fifth white oil: Sixth white oil: The seventh white oil is 67: 20: 4: 3.2 by weight.
  • the swelling liquid prepared in step 1 is stirred at room temperature in a swelling tank, and then the swelling liquid is heated to 90 ° C, and then the solution prepared in step 2 is added to the swelling liquid and stirred for 70 minutes to obtain ultrahigh molecular weight polyethylene fiber spinning.
  • the active agent is emulsified and stirred to obtain a first emulsified solvent, wherein the stirring speed is 2800 rpm, and the milking time is 40 min;
  • the first emulsion solvent and 49 parts by mass of the second white oil were placed in the swelling kettle, and the mixture was heated to 115 ° C with stirring for 80 minutes to obtain an ultrahigh molecular weight polyethylene swelling liquid having a swelling degree of 1.62.
  • the weight ratio of the ultrahigh molecular weight polyethylene in the swelling liquid was 16.5%.
  • the first white oil in the swelling liquid the second white oil: the third white oil is 51:49:8 by weight.
  • the fourth white oil in the solution Fifth white oil: Sixth white oil: The seventh white oil is 68: 20: 6: 3.2 by weight.
  • the swelling liquid prepared in the first step is stirred at room temperature in the swelling kettle, and then the swelling liquid is heated to 89 ° C, and then the solution prepared in step 2 is added to the swelling liquid and stirred for 70 minutes to obtain ultrahigh molecular weight polyethylene fiber spinning.
  • the stock solution, wherein the weight ratio of the swelling liquid to the solution is 1:0.56, and the obtained spinning dope contains 11.2% by weight of the ultrahigh molecular weight polyethylene.
  • the disk 80 surfactant is emulsified and stirred to obtain a first emulsified solvent, wherein the stirring speed is 3200 rpm, and the emulsification time is 60 min;
  • the first emulsion solvent and 51 parts by mass of the second white oil were placed in the swelling kettle, and the mixture was heated to 120 ° C with stirring for 75 minutes to obtain an ultrahigh molecular weight polyethylene swelling liquid having a swelling degree of 1.51.
  • the weight ratio of the ultrahigh molecular weight polyethylene in the swelling liquid was 25.4%.
  • the first white oil in the swelling liquid the second white oil: the third white oil is 49:51:4 by weight.
  • the fourth white oil in the solution Fifth white oil: Sixth white oil: The seventh white oil weight ratio is 67: 20: 4: 3.
  • the swelling liquid prepared in the step 1 is stirred at room temperature in a swelling tank, and then the swelling liquid is heated to 90 ° C, and then the solution prepared in step 2 is added to the swelling liquid and stirred for 60 minutes to obtain ultrahigh molecular weight polyethylene fiber spinning.
  • the stock solution, wherein the weight ratio of the swelling liquid to the solution is 1:1.62, and the obtained spinning dope contains the ultrahigh molecular weight polyethylene in an amount of 10.5% by weight.
  • the disk 80 surfactant is emulsified and stirred to obtain a first emulsified solvent, wherein the stirring speed is 3200 rpm, and the emulsification time is 40 min;
  • the first emulsion solvent and 45 parts by mass of the second white oil were placed in the swelling kettle, and the mixture was heated to 105 ° C with stirring for 65 minutes to obtain an ultrahigh molecular weight polyethylene swelling liquid having a swelling degree of 1.26.
  • the weight ratio of the ultrahigh molecular weight polyethylene in the swelling liquid was 22.9%.
  • the first white oil in the swelling liquid the second white oil: the third white oil is 55:45:5 by weight.
  • the fourth white oil in the solution Fifth white oil: Sixth white oil: Seventh white oil: White oil weight ratio is 70: 20: 5: 3.
  • the swelling liquid prepared in the step 1 is stirred at a normal temperature in the swelling kettle, and then the swelling liquid is heated. At 91 ° C, the solution prepared in step 2 was added to the swelling solution and stirred for 70 minutes to obtain an ultrahigh molecular weight polyethylene fiber spinning dope, wherein the weight ratio of the swelling liquid to the solution was 1:1.9, and the obtained spinning dope was obtained.
  • the ultrahigh molecular weight polyethylene is contained in an amount of llwt%.
  • the disk 80 surfactant is emulsified and stirred to obtain a first emulsified solvent, wherein the stirring speed is 3200 rpm, and the milking time is 35 min;
  • the first emulsion solvent and 55 parts by mass of the second white oil were placed in the swelling kettle, and the mixture was heated to 105 ° C with stirring for 65 minutes to obtain an ultrahigh molecular weight polyethylene swelling liquid having a swelling degree of 1.38.
  • the weight ratio of the ultrahigh molecular weight polyethylene in the swelling liquid was 18.2%.
  • the first white oil in the swelling liquid the second white oil: the third white oil is 45 by weight:
  • the fourth white oil in the solution the fifth white oil: the sixth white oil: the weight of the seventh white oil
  • the ratio is 69: 18: 7: 2.5.
  • the swelling liquid prepared in step 1 is stirred at room temperature in a swelling tank, and then the swelling liquid is heated to 90 ° C, and then the solution prepared in step 2 is added to the swelling liquid and stirred for 70 minutes to obtain ultrahigh molecular weight polyethylene fiber spinning.
  • the disk 80 surfactant is emulsified and stirred to obtain a first emulsified solvent, wherein the stirring speed is 3200 rpm, and the milk time is 37 min;
  • the first emulsion solvent and 52 parts by mass of the second white oil were placed in the swelling kettle, and the mixture was heated to 100 ° C with stirring for 65 minutes to obtain an ultrahigh molecular weight polyethylene swelling liquid having a swelling degree of 1.43.
  • the weight ratio of the ultrahigh molecular weight polyethylene in the swelling liquid was 24.5%.
  • the first white oil in the swelling liquid the second white oil:
  • the third white oil is 45:55:6 by weight.
  • the fourth white oil was placed in a dissolution kettle and stirred at a speed of 40 rpm, and then a second emulsifier, a third emulsifier, a fourth emulsifier, and 21 parts by mass of a fifth emulsifier were placed in the dissolution vessel.
  • the white oil is mixed, then the temperature is raised to 135 ° C for stirring, and the stirring speed is 20 rpm. After the temperature reached 171 ° C, the stirring was carried out at a speed of 42 rpm, and then the heat preservation was started, and the ultra high molecular weight polyethylene dissolved material was obtained after the holding time was 40 min;
  • the fourth white oil in the solution Fifth white oil: Sixth white oil: The seventh white oil has a weight ratio of 71:21:7:3.3.
  • the swelling liquid prepared in the step 1 is stirred at room temperature in a swelling kettle, and then the swelling liquid is heated to 88 ° C, and then the solution prepared in step 2 is added to the swelling liquid and stirred for 60 minutes to obtain ultrahigh molecular weight polyethylene fiber spinning.
  • the disk 80 surfactant is emulsified and stirred to obtain a first emulsified solvent, wherein the stirring speed is 3200 rpm, and the emulsification time is 60 min;
  • the first emulsion solvent and 46 parts by mass of the second white oil were placed in the swelling kettle, and the mixture was heated to 120 ° C with stirring for 65 minutes to obtain an ultrahigh molecular weight polyethylene swelling liquid having a swelling degree of 1.53.
  • the weight ratio of the ultrahigh molecular weight polyethylene in the swelling liquid was 26.6%.
  • the first white oil in the swelling liquid the second white oil: the third white oil is 55:46:7 by weight.
  • the white oil was mixed, and then heated to 130 ° C for stirring.
  • the stirring speed was 20 rpm.
  • the mixture was stirred at a speed of 42 rpm, and then the heat retention was started. After the heat retention time was 40 min, the ultrahigh molecular weight polyethylene was dissolved. material;
  • the fourth white oil in the solution Fifth white oil: Sixth white oil: Seventh white oil: The weight ratio is 65: 22: 7: 3.5.
  • the swelling liquid prepared in the step 1 is stirred at room temperature in a swelling tank, and then the swelling liquid is heated to 92 ° C, and then the solution prepared in step 2 is added to the swelling liquid and stirred for 70 minutes to obtain ultrahigh molecular weight polyethylene fiber spinning.
  • the disk 80 surfactant is emulsified and stirred to obtain a first emulsified solvent, wherein the stirring speed is 3200 rpm, and the milking time is 60 min;
  • the first emulsion solvent and 55 parts by mass of the second white oil were placed in the swelling kettle, and the mixture was heated to 130 ° C with stirring for 65 minutes to obtain an ultrahigh molecular weight polyethylene swelling liquid having a swelling degree of 1.58.
  • the weight ratio of the ultrahigh molecular weight polyethylene in the swelling liquid was 27.5%.
  • the first white oil in the swelling liquid the second white oil:
  • the third white oil is 45:55:15 by weight.
  • the fourth white oil in the solution Fifth white oil: Sixth white oil: The seventh white oil has a weight ratio of 68: 22: 7: 4.5.
  • the swelling liquid prepared in step 1 is stirred at room temperature in a swelling tank, and then the swelling liquid is heated to 90 ° C, and then the solution prepared in step 2 is added to the swelling liquid and stirred for 70 minutes to obtain ultrahigh molecular weight polyethylene fiber spinning.
  • a swelling liquid having an ultrahigh molecular weight polyethylene content of 8% was prepared as a spinning dope according to the preparation process of the swelling liquid in Example 1.
  • the spinning dope prepared in Example 1 - Example 9 and Comparative Example 1-3 was spun according to the same process to prepare ultrahigh molecular weight polyethylene fiber.
  • the specific spinning process was as follows: The spinning solution is fed into a twin-screw extruder for unwinding of macromolecules. Among them, the twin-screw extruder has a feed inlet temperature of 100 °C, an intermediate temperature of 260 °C, an outlet temperature of 290 °C, a residence time of 5 minutes in the screw extruder, and a twin-screw extruder rotation speed of 190/. Min. The suspension is unwrapped and extruded through a twin-screw extruder to form a transparent jelly solution.
  • the jelly solution was passed through a metering pump, a 400-hole spinneret (spindle hole diameter 1 mm, length to diameter ratio L/D of 10/1) was extruded at a spinning speed of lm/min into a temperature of 25 ° C.
  • the solidified water tank allows the strand to be shaped to obtain a jelly gel.
  • the obtained jelly gel was extracted with kerosene and then dried by two stages of 55 ° C and 60 ° C, respectively.
  • the dried jelly yarn is subjected to three-stage heat drawing, and the specific process is as follows: the first stage stretching temperature is 100 ° C, the draw ratio is 2.5 times; the second stage stretching temperature is 120 ° C, and the draw ratio is 3.8.
  • the third stage has a stretching temperature of 130 ° C and a draw ratio of 4.4 times.
  • the jelly filaments are subjected to tertiary stretching to obtain ultrahigh molecular weight polyethylene fibers.
  • Example 1 31.2 2.8 1277
  • Example 2 32.1 2.7 1282
  • Example 3 31.6 3.1 1282
  • Example 4 34.3 2.4 1335
  • Example 5 32.5 2.5 1305
  • Example 6 32.1 2.8 1295
  • Example 7 32.7 3.1 1312
  • Example 8 33.6 2.8 1320
  • Example 9 33.2 3.1 1332 Comparative Example 1 28.6 5.2 810 Comparative Example 2 28.3 4.9 795 Comparative Example 3 28.4 4.8 786 From the above comparison of Table 1, it is known that the ultrahigh molecular weight polyethylene fiber prepared by using the spinning dope prepared by the present invention under the same spinning conditions has a low CV value and is stable in fiber. Good sex. Spinning experiment 2
  • Example 1 Example 9
  • Example 1 Example 1 - Example 9. Comparative Examples
  • the spinning stock solutions prepared in 1-3 were spun according to the same process to prepare ultrahigh molecular weight polyethylene fibers.
  • the specific spinning process was as follows:
  • the spinning solution is fed into a twin-screw extruder for unwinding of macromolecules.
  • the inlet temperature of the twin-screw extruder is 95 °C
  • the intermediate temperature is 270 °C
  • the outlet temperature is 295 °C
  • the residence time in the twin-screw extruder is 6 min
  • the rotation speed of the twin-screw extruder It is 175r/min.
  • the suspension is unwrapped and extruded through a twin-screw extruder to form a transparent jelly solution.
  • the jelly solution was passed through a metering pump, a 400-hole spinneret (spindle hole diameter 1 mm, length to diameter ratio L/D of 10/1), and extruded at a spinning speed of 1.lm/min into a temperature of 25°.
  • the solidified water tank of C shapes the strands to obtain a jelly gel.
  • the obtained jelly gel was extracted with kerosene and dried at 54 ° C and 61 ° C, respectively.
  • the dried jelly yarn is subjected to three-stage hot drawing, and the specific process is as follows: the first stage stretching temperature is 100 ° C, the draw ratio is 2.9 times; the second stage stretching temperature is 120 ° C, and the draw ratio is 4.4 The third stage has a stretching temperature of 128 ° C and a draw ratio of 3.1 times.
  • the jelly filaments are subjected to tertiary stretching to obtain ultrahigh molecular weight polyethylene fibers.
  • Example 1 31.5 2.9 1268 Example 2 32.5 2.9 1279 Example 3 30.9 2.9 1295 Example 4 33.9 2.8 1328 Example 5 33.1 2.6 1310 Example 6 31.8 2.7 1289 Example 7 31.7 3.2 1323 Example 8 32.6 3.6 1315 Example 9 32.2 2.9 1318 Comparative Example 1 28.4 5.3 795 Comparative Example 2 28.4 4.5 816 Comparative Example 3 28.1 4.5 775 From Table The comparison results of 2 show that the ultrahigh molecular weight polyethylene fibers prepared by using the spinning dope prepared by the present invention under the same spinning conditions have low CV values and good fiber stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Artificial Filaments (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

一种超高分子量聚乙烯纤维纺丝溶液的制备方法
本申请要求于 2010 年 8 月 24 日提交中国专利局、 申请号为 201010262244.9、 发明名称为"一种超高分子量聚乙烯纤维纺丝溶液的制 备方法 "的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及超高分子量聚乙烯纤维的制备方法, 具体涉及一种超高 分子量聚乙烯纤维纺丝溶液的制备方法。 背景技术
超高分子量聚乙烯纤维(UHMWPE ), 也称高强高模聚乙烯纤维, 是 指由相对分子量在 100 万以上的聚乙烯依次经过纺丝一萃取一干燥一超 倍拉伸制成的高性能纤维。 釆用超高分子量聚乙烯纤维制成的纤维增强 复合材料具有质量轻、 耐冲击、 介电性能高等优点, 被广泛用于航空航 天领域、 海域防御领域、 武器装备领域和日常工业领域。
在现有技术中, 制备超高分子量聚乙烯纤维通常使用冻胶纺丝技术, 该项技术首先由荷兰的 DSM公司发明。 在冻胶纺丝技术中, 通常使用相 对分子量在 100 万以上的聚乙烯作为原料, 将该原料与合适的溶剂混合 溶胀得到的悬浮液作为纺丝原液, 然后将该纺丝原液经螺杆挤出机的剪 切、 勾混、 解缠, 再经喷丝组件挤出成型获得初生冻胶丝, 然后将初生 冻胶丝进行后续的萃取、 干燥和超倍拉伸得到超高分子量聚乙烯纤维。
为了保证初生冻胶丝具有较好的可牵伸性能以获得优良的力学性 能, 需要使冻胶丝中存在一定数量的缠结点, 即提高初生冻胶丝中的链 缠结点的密度。 由于超高分子量聚乙烯纤维的大分子缠结密度与纺丝原 液浓度(含固量)和原料分子量密切相关。 因此, 制备纺丝原液时, 可 以通过提高原料分子量或者纺丝原液密度来提高冻胶丝中的链缠结点的 密度。 但实际上, 如果仅提高分子量或者纺丝原液的含固量还会带来副 作用。 例如, 当分子量过高时, 聚合物颗粒在溶解过程中不易溶透, 出 现结块现象, 造成纺丝原液溶解不均勾, 影响丝条性能。 而且, 纺丝原 液溶解不均时, 也会影响纺丝原液密度的提高。
在现有技术中, 为了制备均勾的纺丝溶液, 有人釆用将超高分子量 聚乙烯进行分布溶胀的步骤, 即先将超高分子量聚乙烯通过多个溶胀釜 进行分阶段的混合依次进行预溶胀和溶胀, 最后再放入温度接近超高分 子量聚乙烯 溶解温度的溶解釜内使超高分子量聚乙烯溶解得到纺丝原 液。 然而, 超高分子量聚乙烯溶解时, 容易造成纺丝原液粘度急剧增加, 物料会发生 weissenberg效应(俗称爬杆效应 ),从而影响后续纺丝的顺利 进行。
除了上述的分布溶胀工艺外, Pole. Smith, Pieta Yang Lemstra等人 在专利 US4422993、 US4430383中釆用分子量为 1.5 χ 105和 4 χ 106的两 种聚乙烯来制备纺丝原液, 但含固量只能达到 5%, 虽然解决了溶液不均 匀的问题, 但是造成纺丝效率低下。 辛志荣等在专利 CN101525778A中 釆用分子量为 2~5 χ 106的聚乙烯通过螺杆实现一步法溶胀和溶解, 含固 量可以达到 10~15%, 该方法虽然在解决纺丝原液均勾性的问题上取得一 定效果, 但对工艺和设备要求较高, 操作过程复杂。 发明内容
本发明要解决的问题在于提供一种超高分子量聚乙烯纤维纺丝原液 的制备方法, 本发明制备的超高分子量聚乙烯纤维纺丝原液具有高的含 固量, 使用该纺丝原液制备的超高分子量聚乙烯纤维性能稳定, 具有高 的强度。
为了解决以上技术问题, 本发明提供一种超高分子量聚乙烯纤维纺 丝原液的制备方法, 包括:
取超高分子量聚乙烯溶解液与超高分子量聚乙烯溶胀液按照重量比 为 0.42 2.85 的比例混合得到超高分子量聚乙烯重量含量为 10%~15%的 纺丝原液;
所述超高分子量聚乙烯溶胀液中的超高分子量聚乙烯的重量含量为 10-50%; 所述超高分子量聚乙烯溶胀液中的超高分子量聚乙烯与所述超高分 子量聚乙烯溶解液中的超高分子量聚乙烯的重量比为 2.5~70。
优选的, 所述超高分子量聚乙烯溶解液与所述超高分子量聚乙烯溶 胀液的重量比为 1.0~2.5。
优选的, 所述超高分子量聚乙烯溶胀液中的超高分子量聚乙烯的重 量含量为 20%~30%。
优选的, 所述超高分子量聚乙烯溶胀液与所述超高分子量聚乙烯溶 解液中的超高分子量聚乙烯的重量比为 10~30。
优选的, 所述超高分子量聚乙烯纤维纺丝原液中的超高分子量聚乙 烯的重量含量为 11%~14%。
优选的, 所述超高分子量聚乙烯纤维纺丝原液中的超高分子量聚乙 烯的重量含量为 12%~13%。
优选的, 所述超高分子量聚乙烯纤维纺丝原液中的超高分子量聚乙 烯的重均分子量为 3 106~5 106
优选的, 所述超高分子量聚乙烯纺丝原液中的溶剂为环烷烃和链烷 烃按照 85~90: 10~15的比例混合得到的混合溶剂, 所述环烷烃的碳原子 个数为 25个〜 50个, 所述链烷烃的碳原子个数为 25个〜 50个。
优选的, 所述超高分子量聚乙烯溶胀液按照如下方法制备: 在第一份溶剂内加入超高分子量聚乙烯粉末进行搅拌;
向所述第一份溶剂内加入第二份溶剂和第一乳化溶剂得到第一混合 物;
将所述第一混合物升温至 90 °C ~130 °C保温溶胀得到超高分子量聚乙 烯溶胀液;
所述第一乳化溶剂由第三份溶剂、 抗氧剂和表面活性剂经过乳化形 成;
第一份溶剂: 第二份溶剂: 第三份溶剂: 抗氧剂: 表面活性剂按照 重量比为 45~55: 45-55: 1-20: 0.5-5 : 0.05-0.1„
优选的, 所述超高分子量聚乙烯溶解液按照如下方法制备: 向第四份溶剂中加入第二乳化溶剂、 第三乳化溶剂、 第四乳化溶剂、 第五份溶剂搅拌均勾得到第二混合物, 将所述第二混合物升温至 100°C~190°C搅拌得到超高分子量聚乙烯溶解液;
所述第二乳化溶剂由第六份溶剂和超高分子量聚乙烯按照 1~5: 0.4-0.6的比例乳化形成;
所述第四乳化溶剂由第七份溶剂、 抗氧剂经过乳化形成;
所述第四份溶剂:第五份溶剂: 第六份溶剂: 第七份溶剂的重量比为 67-75: 15-25: 2-10: 2~4。
本发明通过在溶胀液中添加溶解液混合搅拌得到超高分子量聚乙烯 重量含量为 10-15%的高含固量的纺丝原液。 由于溶解液可以对溶胀液起 到增塑作用, 因此可以降低纺丝原液体系的粘度,保证纺丝原液具有较好 的流动性和出丝连续性,避免在后续的纺丝过程中出现毛丝、断丝。此外, 通过在溶胀液中加入溶解液,还可以使冻胶纺丝时产生的超高分子量聚乙 烯凝胶丝条含有适量的链缠结点,这样可以保证丝条在后续的牵伸过程中 使张力在丝条中的传递能够顺利传递, 以达到超倍拉伸的目的, 防止产生 断丝, 保证超高分子量聚乙烯纤维的性能的稳定。 具体实施方式
为了进一步了解本发明, 下面结合实施例对本发明优选实施方案进 行描述, 但是应当理解, 这些描述只是为进一步说明本发明的特征和优 点, 而不是对本发明权利要求的限制。
本发明提供一种超高分子量聚乙烯纤维纺丝原液的制备方法, 包括 步骤:
将取超高分子量聚乙烯溶解液与超高分子量聚乙烯溶胀液按照重量 比为 0.42 2.85 的比例混合得到超高分子量聚乙烯重量含量为 10%~15% 的纺丝原液;
所述超高分子量聚乙烯溶胀液中的超高分子量聚乙烯的重量含量为 10-50%;
所述超高分子量聚乙烯溶胀液中的超高分子量聚乙烯与所述超高分 子量聚乙烯溶解液中的超高分子量聚乙烯的重量比为 2.5~70。 按照本发明, 所述超高分子量聚乙烯溶胀液是指本领域技术人员熟 知的将超高分子量聚乙烯与溶剂混合后, 溶剂小分子渗透、 扩散到超高 分子量聚乙烯的大分子之间, 使超高分子量聚乙烯大分子膨胀后得到的 悬浮液; 所述超高分子量聚乙烯溶解液是指本领域技术人员熟知的将超 高分子量聚乙烯溶解到溶剂中得到的溶液。
按照本发明, 所述超高分子量聚乙烯纺丝原液中的超高分子量聚乙 烯的重量含量优选为 11%~14%, 更优选为 12%~13%。 所述超高分子量聚 乙烯溶胀液中的超高分子量聚乙烯的重量含量优选为 11%~49%, 更优选 为 15%~40%, 最优选为 20%~30%。 所述超高分子量聚乙烯溶解液中的超 高分子量聚乙烯的重量含量优选为 0.2%~2%, 更优选为 0.3%~1.5%, 更 优选为 0.8%~1.2%。
按照本发明, 将所述超高分子量聚乙烯溶胀液和所述超高分子量聚 乙烯溶解液混合搅拌制备纺丝原液时, 所述超高分子量聚乙烯溶解液与 所述超高分子量聚乙烯溶胀液的重量比优选为 0.42-2.85 , 更优选为 1.0-2.5 , 更优选 1.4~1.8。 所述溶胀液和所述溶解液中的超高分子量聚乙 烯的重量比优选为 2.5 70, 更优选为 5~50, 更优选为 10~30。 对于搅拌 时间, 优选为 20 min ~120min, 更优选为 45 min -lOOmin, 最仂 ύ选为 60mii!〜 80min。
将所述超高分子量聚乙烯溶胀液和所述超高分子量聚乙烯溶解液混 合搅拌制备纺丝原液时, 优选釆用如下步骤:
先将超高分子量聚乙烯溶胀液在混料釜中常温常压下搅拌, 然后将 所述超高分子量聚乙烯溶胀液升温至高于溶胀液相分离温度的温度, 优 选为高于相分离温度 8°C~15°C , 更优选为高于相分离温度 10°C。 超高分 子量聚乙烯的相转变温度属于本领域技术人员公知的常识, 依分子量不 同而不同, 大约在 70 °C~90°C之间。 本发明将溶胀液升温到 65~85 °C后, 再向所述溶胀液中加入超高分子量聚乙烯溶解液进行搅拌混合得到纺丝 原液。
在上述制备混合溶胀液和溶解液的过程中, 将溶胀液升温至高于相 分离的温度的目的是降低溶胀液的粘度, 增加溶胀液的流动性。 然后在 上述搅拌过程中, 溶解液的作用是对溶胀液起到增塑作用, 可以较好的 改善纺丝原液体系的粘度较大的情况, 保证纺丝原液具有较好的流动性 和出丝连续性, 避免在后续的纺丝过程中出现毛丝、 断丝。 此外, 通过 在溶胀液中加入溶解液, 还可以使冻胶纺丝时产生的超高分子量聚乙烯 凝胶丝条含有适量缠结, 其目的是可以使在后续的牵伸过程中使张力在 丝条中的传递能够顺利进行, 以达到后续的超倍拉伸的目的, 防止产生 断丝。
按照本发明, 制备所述超高分子量聚乙烯溶胀液时, 优选使用如下 步骤:
在第一份溶剂内加入超高分子量聚乙烯粉末进行搅拌;
向所述第一份溶剂内加入第二份溶剂和第一乳化溶剂得到第一混合 物;
将所述第一混合物升温至 90°C~130°C保温溶胀得到超高分子量聚乙 烯溶胀液;
所述第一乳化溶剂由第三份溶剂、 抗氧剂和表面活性剂经过乳化形 成;
所述第一份溶剂: 第二份溶剂: 第三份溶剂: 抗氧剂: 表面活性剂 按照重量比为 45-55: 45-55: 1-20: 0.5-5: 0.05-0.1 , 优选为 45-55: 45-55: 2-10: 1-3 : 0.05-0.1 , 更优选为 50: 50: 4-8: 1.5-2.5: 0.05 0.1。
按照本发明, 所述第一份乳化溶剂优选按照如下方法制备, 将抗氧 剂、 表面活性剂加入到所述第三份溶剂中进行搅拌乳化, 搅拌速度优选 为 2500rpm (转每分) ~3500rpm, 优选为 2750rpm~3250rpm, 搅拌时间 优选为 20min -lOOmin , 更优选为 30min ~80min , 更优选为 40min ~100min。
按照本发明, 将所述第一混合物进行保温溶胀时, 保温时间根据溶 胀度进行调整, 优选使所述超高分子量的溶胀度达到 1~2 , 更优选为 1.1-1.8 , 更优选为 1.2~1.6 , 然后停止保温。 对于保温时间, 优选为 30~100min, 更优选为 40~90min, 更优选为 50~80min。 本发明所述溶月长 度 η按照公式 ( I )进行计算:
Figure imgf000008_0001
公式( I ) 公式( I ) 中, 的含义是: 取一份超高分子量聚乙烯溶胀液, 经 20min抽滤后称重所得; W2的含义是: 将所述经过抽滤得到的重量份数 为 的溶胀料用十氢萘进行三次萃取 90°C烘干至恒重称量所得。
按照本发明, 制备所述超高分子量聚乙烯溶解液时, 优选使用如下 步骤:
向第四份溶剂中加入第二乳化溶剂、 第三乳化溶剂、 第五份溶剂搅 拌均勾得到第二混合物, 搅拌转速优选为 2500rpm~3500rpm, 更优选为 3000rpm, 然后将所述第二混合物升温到 100 °C~190°C搅拌得到超高分子 量聚乙烯溶解液。
所述第二乳化溶剂由第六份溶剂和超高分子量聚乙烯按照 1~5: 0.4-0.6的比例乳化形成;
所述第四乳化溶剂由第七份溶剂和抗氧剂经过乳化形成, 所述第七 份溶剂优选占所述超高分子量聚乙烯溶解液中的溶剂总量的 2%~4%; 所 述抗氧剂优选占所述超高分子量聚乙烯溶解液中的超高分子量聚乙烯总 量的 1%~8%, 更优选为 2%~7%, 更优选为 4%~6%。
按照本发明, 在制备超高分子量聚乙烯溶解液的过程中, 所述第四 份溶剂:所述第五份溶剂: 第六份溶剂: 第七份溶剂按照重量比为 67~75: 15-25: 2-10: 2-4 , 更优选为 67-75: 15-25: 3-8: 2-4, 更优选为 67-75: 20: 4-6: 3。
按照本发明, 配制所述第二乳化溶剂时, 可以将所述第六份溶剂和 超高分子量聚乙烯均勾的分成两份分别进行乳化, 乳化时间优选为 10min~60min, 优选为 20min~50min, 更优选为 30min~40min„
将所述第二混合物升温到 100 °C~190 °C搅拌得到超高分子量聚乙烯 溶解液优选使用如下步骤: 先将所述第二混合物升温至 100°C~150°C , 优 选至 120°C~140°C进行低速搅拌, 低速搅拌速度优选为 17rpm~25rpm, 更 优选为 18rpm~20rpm; 搅拌至第二混合物的温度优选达到 140°C~190°C , 更优选达到 150°C~180°C , 然后将转速提高到 35rpm~45rpm、 更优选提高 到 38rpm~42rpm进行高速搅拌, 再进行保温得到超高分子量聚乙烯溶解 液, 保温时间优选为 30 min -lOOmin, 更优选为 40 min ~80min。
在制备超高分子量聚乙烯溶解液的过程中, 将第二混合物先加热进 行低速搅拌, 其目的是在加热和低速搅拌的过程中, 超高分子量聚乙烯 原料颗粒完全溶胀并有大部分开始溶解, 此时超高分子量聚乙烯中的高 聚物大分子链间的缠结已基本消除。 低速搅拌至第二混合物的温度达到 140°C~190°C , 优选达到 150°C~180°C后进行高速搅拌, 其目的是促进超 高分子量聚乙烯的溶解。
按照本发明, 本文中所用的溶剂优选为环烷烃: 链烃异构体按照 85-90: 10-15 的比例进行混合得到的混合物, 所述环烷烃和链烷烃的碳 原子个数优选为 25~50 , 更优选为 30~40。 所述溶剂可以使用本领域技术 人员熟知的用于超高分子量聚乙烯纺丝溶液的溶剂, 例如可以使用优选 400°C以下无气体挥发、 初馏点优选高于 450 °C , 密度优选为 0.84~0.87g/cm3 , 闪点优选高于 260 °C的白油。 本发明使用的白油可以为 本领域技术人员熟知的 5#白油、 7#白油、 10#白油、 15#白油、 22#白油、 26#白油、 32#白油、 46#白油、 68#白油、 100#白油、 150#白油。 本发明 所述抗氧剂可以为本领域技术人员熟知的受阻酚类抗氧剂、 芳胺类抗氧 剂, 具体例子可以为 2, 6-三级丁基 -4-曱基苯酚, 双(3 , 5-三级丁基 -4- 羟基苯基)硫醚、 四 (β ( 3 , 5-三级丁基 -4-羟基苯基) 丙酸)季戊四醇 的阴离子表面活性剂、 阳离子表面活性剂、 非离子表面活性剂, 具体例 子可以为硬脂酸、 十二烷基苯磺酸钠、 季铵化物、 脂肪酸甘油酯、 脂肪 酸山梨坦(司盘)、 聚山梨酯(吐温)等, 但不限于此。
本发明所使用的超高分子量聚乙烯的重均分子量 Mw优选为 3~5χ 106, 更优选为 3.5~4.5χ 106, 超高分子量聚乙烯非线性率 < 5%; 本发 明优选使用粒径呈高斯分布的超高分子量聚乙烯粉末, 所述粉末的粒径 优选为 60目 ~200目。
按照本发明, 制备的超高分子量聚乙烯纤维纺丝溶液可以按照本领 域技术人员熟知的冻胶纺丝技术制备超高分子量聚乙烯纤维, 具体例子 可以为: 将纺丝溶液送入双螺杆挤出机进行解缠, 双螺杆挤出机的入口 温度优选为 85°C ~ 120°C, 中间挤压温度为 240°C ~280°C, 出口温度为 280 °C ~ 320 °C。 悬浮液在双螺杆挤出机内的停留时间不超过 1 Omin , 优选 的, 停留时间为 3min~8min, 更优选的, 停留时间为 4 ~ 6min。 双螺杆 挤出机的旋转速度为 70r/min~260r/min, 优选的, 双螺杆挤出机的旋转 速度为 150r/min~230r/min。 冻胶纺丝的工艺优选为: 喷丝孔的孔径为 0.6mm ~ 5mm, 喷丝孔的长径比 L/D为 6/1 ~ 30/1, 纺丝溶液挤出速率为 0.5m/min~ lOm/min; 挤出后, 纺丝液经过 0°C ~ 36°C的冷却定型得到冻 胶丝条。
得到冻胶丝条后, 将冻胶丝条进行萃取, 萃取剂优选为已烷、 庚烷、 曱苯、 氯曱烷、 溶剂油、 煤油, 更优选为煤油。 然后将萃取后的丝条进行 干燥,干燥温度优选为 40 °C ~ 80 °C, 然后将干燥丝条在 70°C ~ 160°C的温 度范围内施加 30倍 ~ 130倍, 优选 40-60倍的热拉伸制成超高分子量聚 乙烯纤维。 本发明中纤维力学性能是按照如下方法测试的: 釆用 DXLL-20000 电子拉力机测定纤维的强度和模量, 测试条件为夹距 250mm, 下降速度 50mm/min (毫米 /min) 每个式样的性能值: 取 Xl 2... 11共11个式样的性能值; 式样性能取算术平均值即:
Χ = ^ ~ 公式 II
η 公式 II中: ——每个试样的性能值, n——试样数; 标准差 (S)釆用如下的方法: s
Figure imgf000011_0001
公式 m中, s为标准差, 其它符号同公式 π; 离散系数(cv )釆用如下的方法:
CV =— xl00% 公式 IV
X 公式 IV中, C V为离散系数, 其它符号同公式 2。 为了进一步了解本发明,下面结合实施例对本发明优选实施方案进行 描述, 但是应当理解, 这些描述只是为进一步说明本发明的特征和优点, 而不是对本发明权利要求范围的限制。 为了更好的比较效果, 在以下的实施例和比较例中使用了相同的原 料,所用超高分子聚乙烯的重均分子量 Mw为 4.2χ106,粉末粒度为 80μπι ~ 120μπι, 所用溶剂 120#白油。
实施例 1
①配制超高分子量聚乙烯溶胀液
取 50质量份第一份白油在放置在溶胀釜内搅拌,搅拌速度为 20rpm, 搅拌时均勾喷入 30质量份的超高分子量聚乙烯粉末;
取 4质量份的第三份白油, 然后添加 1.5质量份的 2, 6-三级丁基 -4- 曱基苯酚抗氧剂、 0.06 质量份的十二烷基苯横酸钠表面活性剂进行乳化 搅拌乳化得到第一乳化溶剂, 其中搅拌速度为 3000rpm, 乳化时间为 40min;
向所述溶胀釜内放入第一乳化溶剂和 50质量份的第二份白油, 搅拌 升温至 105°C , 保温时间为 50min, 得到溶胀度为 1.23的超高分子量聚乙 烯溶胀液, 该溶胀液中超高分子量聚乙烯的重量比为 22%。
溶胀液中的第一份白油: 第二份白油: 第三份白油按重量比为 52: 48: 4。 ②配制超高分子量聚乙烯溶解液
取 4质量份第六份白油和 1.1质量份的超高分子聚乙烯粉末,将所述 第六份白油和聚乙烯粉末均勾的分成两份进行乳化得到第二乳化剂, 乳 化时间为 30min, 乳化时的搅拌速度为 3000rpm;
取 3质量份第七份白油, 添加 0.04质量份的 2 , 6-三级丁基 -4-曱基 苯酚抗氧剂进行乳化得到第四乳化剂, 乳化时的搅拌速度为 3000rpm, 乳 时间为 40min;
取 67质量份的第四份白油放置在溶解釜内搅拌,搅拌速度为 40rpm, 然后向溶解釜内放入第二乳化剂、 第三乳化剂、 第四乳化剂、 20质量份 的第五份白油混合, 然后升温至 130°C进行搅拌, 搅拌速度为 19rpm, 料 温达到 160°C后, 以 40rpm的速度进行搅拌, 然后开始保温, 保温时间为 50min后得到超高分子量聚乙烯溶解液;
溶解液中第四份白油: 第五份白油: 第六份白油: 第七份白油按重 量比为 67: 20: 4: 3。
③配制超高分子量聚乙烯纺丝溶液
取步骤①制备的溶胀液在溶胀釜中常温搅拌, 然后再将溶胀液升温 到 90 °C , 再向溶胀液中投入步骤 2制备的溶解液混合搅拌得到 70min得 到超高分子量聚乙烯纤维纺丝原液,其中溶胀液和溶解液重量比为 1 : 1.1 , 其中溶胀液和溶解液中的超高分子量聚乙烯的质量比为 17.2 , 最后得到 的纺丝原液中含有超高分子量聚乙烯为 ll .lwt%。
实施例 2
①配制超高分子量聚乙烯溶胀液
取 52质量份第一份白油在放置在溶胀釜内搅拌,搅拌速度为 25rpm, 搅拌时均勾喷入 30质量份的超高分子量聚乙烯粉末;
取 4质量份的第三份白油, 然后添加 1.4质量份的双(3 , 5-三级丁 基 -4-羟基苯基 )硫醚抗氧剂、 0.07质量份的司盘 80表面活性剂进行乳化 搅拌乳化得到第一乳化溶剂, 其中搅拌速度为 3000rpm , 乳化时间为 35min;
向所述溶胀釜内放入第一乳化溶剂和 48质量份的第二份白油, 搅拌 升温至 110°C , 保温时间为 50min, 得到溶胀度为 1.31的超高分子量聚乙 烯溶胀液, 该溶胀液中超高分子量聚乙烯的重量比为 22%。
溶胀液中的第一份白油: 第二份白油: 第三份白油按重量比为 50: 50: 4。
②配制超高分子量聚乙烯溶解液
取 4质量份第六份白油,和 1.1质量份的超高分子聚乙烯粉末均匀的 分成两份分别进行乳化得到第二乳化剂, 乳化时间为 35min, 乳化时的搅 拌速度为 3000rpm;
取 3.2质量份第七份白油, 添加 0.04质量份的 2, 6-三级丁基 -4-曱基 苯酚抗氧剂进行乳化得到第四乳化剂, 乳化时的搅拌速度为 3000rpm, 乳 时间为 30min;
取 67质量份的第四份白油放置在溶解釜内搅拌,搅拌速度为 40rpm, 然后向溶解釜内放入第二乳化剂、 第三乳化剂、 第四乳化剂、 20质量份 的第五份白油混合, 然后升温至 120°C进行搅拌, 搅拌速度为 19rpm, 料 温达到 150 °C后, 以 40rpm的速度进行搅拌, 然后开始保温, 保温时间为 50min后得到超高分子量聚乙烯溶解料;
溶解液中第四份白油: 第五份白油: 第六份白油: 第七份白油按重 量比为 67: 20: 4: 3.2。
③配制超高分子量聚乙烯纺丝溶液
取步骤①制备的溶胀液在溶胀釜中常温搅拌, 然后再将溶胀液升温 到 90 °C , 再向溶胀液中投入步骤 2制备的溶解液混合搅拌得到 70min得 到超高分子量聚乙烯纤维纺丝原液,其中溶胀液和溶解液重量比为 1 : 1.2, 得到的纺丝原液中含有超高分子量聚乙烯为 10.7wt%。
实施例 3
①配制超高分子量聚乙烯溶胀液
取 51质量份第一份白油在放置在溶胀釜内搅拌,搅拌速度为 26rpm, 搅拌时均勾喷入 22质量份的超高分子量聚乙烯粉末;
取 8质量份的第三份白油, 然后添加 2.5质量份的四 (β ( 3 , 5-三级 丁基 -4-羟基苯基) 丙酸)季戊四醇酯抗氧剂、 0.1质量份的司盘 80表面 活性剂进行乳化搅拌乳化得到第一乳化溶剂, 其中搅拌速度为 2800rpm, 乳 时间为 40min;
向所述溶胀釜内放入第一乳化溶剂和 49质量份的第二份白油, 搅拌 升温至 115°C , 保温时间为 80min, 得到溶胀度为 1.62的超高分子量聚乙 烯溶胀液, 该溶胀液中超高分子量聚乙烯的重量比为 16.5%。
溶胀液中的第一份白油: 第二份白油: 第三份白油按重量比为 51 : 49: 8。
②配制超高分子量聚乙烯溶解液
取 6质量份第六份白油和 1.2质量份的超高分子聚乙烯粉末均勾的分 成两份分别混合乳化制备第二乳化剂, 乳化时间为 35min, 乳化时的搅拌 速度为 3000rpm;
取 3.2质量份第七份白油, 添加 0.04质量份的 2, 6-三级丁基 -4-曱基 苯酚抗氧剂进行乳化得到第四乳化剂, 乳化时的搅拌速度为 3000rpm, 乳 时间为 30min;
取 67质量份的第四份白油放置在溶解釜内搅拌,搅拌速度为 40rpm, 然后向溶解釜内放入第二乳化剂、 第三乳化剂、 第四乳化剂、 20质量份 的第五份白油混合, 然后升温至 130°C进行搅拌, 搅拌速度为 19rpm, 料 温达到 180°C后, 以 40rpm的速度进行搅拌, 然后开始保温, 保温时间为 40min后得到超高分子量聚乙烯溶解料;
溶解液中第四份白油: 第五份白油: 第六份白油: 第七份白油按重 量比为 68: 20: 6: 3.2。
③配制超高分子量聚乙烯纺丝溶液
取步骤①制备的溶胀液在溶胀釜中常温搅拌, 然后再将溶胀液升温 到 89 °C , 再向溶胀液中投入步骤 2制备的溶解液混合搅拌得到 70min得 到超高分子量聚乙烯纤维纺丝原液, 其中溶胀液和溶解液重量比为 1 : 0.56, 得到的纺丝原液中含有超高分子量聚乙烯为 11.2wt%。
实施例 4
①配制超高分子量聚乙烯溶胀液
取 49质量份第一份白油在放置在溶胀釜内搅拌,搅拌速度为 26rpm, 搅拌时均勾喷入 36质量份的超高分子量聚乙烯粉末;
取 4质量份的第三份白油, 然后添加 1.5质量份的四 (β ( 3 , 5-三级 丁基 -4-羟基苯基)丙酸)季戊四醇酯抗氧剂、 0.06质量份的司盘 80表面 活性剂进行乳化搅拌乳化得到第一乳化溶剂, 其中搅拌速度为 3200rpm, 乳化时间为 60min;
向所述溶胀釜内放入第一乳化溶剂和 51质量份的第二份白油, 搅拌 升温至 120°C , 保温时间为 75min, 得到溶胀度为 1.51的超高分子量聚乙 烯溶胀液, 该溶胀液中超高分子量聚乙烯的重量比为 25.4%。
溶胀液中的第一份白油: 第二份白油: 第三份白油按重量比为 49: 51 : 4。
②配制超高分子量聚乙烯溶解液
取 6质量份第六份白油和 1.2质量份的超高分子聚乙烯粉末均勾的分 成两份分别进行乳化制备第二乳化剂, 乳化时间为 35min, 乳化时的搅拌 速度为 3000rpm;
取 3质量份第七份白油, 添加 0.04质量份的四(β ( 3 , 5-三级丁基 -4- 羟基苯基) 丙酸)季戊四醇酯抗氧剂进行乳化得到第四乳化剂, 乳化时 的搅拌速度为 3000rpm, 乳化时间为 40min;
取 67质量份的第四份白油放置在溶解釜内搅拌,搅拌速度为 40rpm, 然后向溶解釜内放入第二乳化剂、 第三乳化剂、 第四乳化剂、 20质量份 的第五份白油混合, 然后升温至 140°C进行搅拌, 搅拌速度为 20rpm, 料 温达到 170°C后, 以 42rpm的速度进行搅拌, 然后开始保温, 保温时间为 40min后得到超高分子量聚乙烯溶解料;
溶解液中第四份白油: 第五份白油: 第六份白油: 第七份白油重量 比为 67: 20: 4: 3。
③配制超高分子量聚乙烯纺丝溶液
取步骤①制备的溶胀液在溶胀釜中常温搅拌, 然后再将溶胀液升温 到 90 °C , 再向溶胀液中投入步骤 2制备的溶解液混合搅拌得到 60min得 到超高分子量聚乙烯纤维纺丝原液, 其中溶胀液和溶解液重量比为 1 : 1.62, 得到的纺丝原液中含有超高分子量聚乙烯为 10.5wt%。 实施例 5
①配制超高分子量聚乙烯溶胀液
取 55质量份第一份白油在放置在溶胀釜内搅拌,搅拌速度为 26rpm, 搅拌时均勾喷入 45质量份的超高分子量聚乙烯粉末;
取 5质量份的第三份白油, 然后添加 2.5质量份的四 (β ( 3 , 5-三级 丁基 -4-羟基苯基)丙酸)季戊四醇酯抗氧剂、 0.06质量份的司盘 80表面 活性剂进行乳化搅拌乳化得到第一乳化溶剂, 其中搅拌速度为 3200rpm, 乳化时间 40min;
向所述溶胀釜内放入第一乳化溶剂和 45质量份的第二份白油, 搅拌 升温至 105°C , 保温时间为 65min, 得到溶胀度为 1.26的超高分子量聚乙 烯溶胀液, 该溶胀液中超高分子量聚乙烯的重量比为 22.9%。
溶胀液中的第一份白油: 第二份白油: 第三份白油按重量比为 55: 45: 5。
②配制超高分子量聚乙烯溶解液
取 4质量份第六份白油,添加 1.2质量份的超高分子聚乙烯粉末均匀 的分成两份分别进行乳化, 乳化时间为 35min , 乳化时的搅拌速度为 3000rpm;
取 3质量份第八份白油, 添加 0.04质量份的四(β ( 3 , 5-三级丁基 -4- 羟基苯基) 丙酸)季戊四醇酯抗氧剂进行乳化得到第四乳化剂, 乳化时 的搅拌速度为 3000rpm, 乳化时间为 50min;
取 70质量份的第四份白油放置在溶解釜内搅拌,搅拌速度为 40rpm, 然后向溶解釜内放入第二乳化剂、 第三乳化剂、 第四乳化剂、 20质量份 的第五份白油混合, 然后升温至 120°C进行搅拌, 搅拌速度为 20rpm, 料 温达到 150°C后, 以 42rpm的速度进行搅拌, 然后开始保温, 保温时间为 40min后得到超高分子量聚乙烯溶解料;
溶解液中第四份白油: 第五份白油: 第六份白油: 第七份白油: 白 油的重量比为 70: 20: 5: 3。
③配制超高分子量聚乙烯纺丝溶液
取步骤①制备的溶胀液在溶胀釜中常温搅拌, 然后再将溶胀液升温 到 91 °C , 再向溶胀液中投入步骤 2制备的溶解液混合搅拌得到 70min得 到超高分子量聚乙烯纤维纺丝原液,其中溶胀液和溶解液重量比为 1 : 1.9, 得到的纺丝原液中含有超高分子量聚乙烯为 llwt%。
实施例 6
①配制超高分子量聚乙烯溶胀液
取 45质量份第一份白油在放置在溶胀釜内搅拌,搅拌速度为 26rpm, 搅拌时均勾喷入 40质量份的超高分子量聚乙烯粉末;
取 10质量份的第三份白油, 然后添加 1.7质量份的四 (β ( 3 , 5-三 级丁基 -4-羟基苯基)丙酸)季戊四醇酯抗氧剂、 0.07质量份的司盘 80表 面活性剂进行乳化搅拌乳化得到第一乳化溶剂, 其中搅拌速度为 3200rpm, 乳 ^匕时间 35min;
向所述溶胀釜内放入第一乳化溶剂和 55质量份的第二份白油, 搅拌 升温至 105°C , 保温时间为 65min, 得到溶胀度为 1.38的超高分子量聚乙 烯溶胀液, 该溶胀液中超高分子量聚乙烯的重量比为 18.2%。
溶胀液中的第一份白油: 第二份白油: 第三份白油按重量比为 45:
55: 10。
②配制超高分子量聚乙烯溶解液
取 7质量份第六份白油, 添加 1.05质量份的超高分子聚乙烯粉末进 行乳化制备第二乳化剂, 乳化时间为 35min , 乳化时的搅拌速度为 3000rpm;
取 2.5质量份第八份白油, 添加 0.03质量份的四(β ( 3 , 5-三级丁基 -4-羟基苯基) 丙酸)季戊四醇酯抗氧剂进行乳化得到第四乳化剂, 乳化 时的搅拌速度为 3000rpm, 乳化时间为 50min;
取 69质量份的第四份白油放置在溶解釜内搅拌,搅拌速度为 40rpm, 然后向溶解釜内放入第二乳化剂、 第三乳化剂、 第四乳化剂、 18质量份 的第五份白油混合, 然后升温至 125°C进行搅拌, 搅拌速度为 20rpm, 料 温达到 165°C后, 以 42rpm的速度进行搅拌, 然后开始保温, 保温时间为 40min后得到超高分子量聚乙烯溶解料;
溶解液中第四份白油: 第五份白油: 第六份白油: 第七份白油的重 量比为 69: 18: 7: 2.5。
③配制超高分子量聚乙烯纺丝溶液
取步骤①制备的溶胀液在溶胀釜中常温搅拌, 然后再将溶胀液升温 到 90 °C , 再向溶胀液中投入步骤 2制备的溶解液混合搅拌得到 70min得 到超高分子量聚乙烯纤维纺丝原液,其中溶胀液和溶解液重量比为 1 : 1.2, 得到的纺丝原液中含有超高分子量聚乙烯为 12.6wt%。
实施例 7
①配制超高分子量聚乙烯溶胀液
取 48质量份第一份白油在放置在溶胀釜内搅拌,搅拌速度为 26rpm, 搅拌时均勾喷入 35质量份的超高分子量聚乙烯粉末;
取 6质量份的第三份白油, 然后添加 1.8质量份的四 (β ( 3 , 5-三级 丁基 -4-羟基苯基)丙酸)季戊四醇酯抗氧剂、 0.07质量份的司盘 80表面 活性剂进行乳化搅拌乳化得到第一乳化溶剂, 其中搅拌速度为 3200rpm, 乳 时间 37min;
向所述溶胀釜内放入第一乳化溶剂和 52质量份的第二份白油, 搅拌 升温至 100°C , 保温时间为 65min, 得到溶胀度为 1.43的超高分子量聚乙 烯溶胀液, 该溶胀液中超高分子量聚乙烯的重量比为 24.5%。
溶胀液中的第一份白油: 第二份白油: 第三份白油按重量比为 45: 55: 6。
②配制超高分子量聚乙烯溶解液
取 7质量份第六份白油和 1.13质量份的超高分子聚乙烯粉末均匀的 分成两份分别进行乳化得到第二乳化溶剂, 乳化时间为 35min, 乳化时的 搅拌速度为 3000rpm;
取 3.3质量份第七份白油, 添加 0.05质量份的四(β ( 3 , 5-三级丁基 -4-羟基苯基) 丙酸)季戊四醇酯抗氧剂进行乳化得到第四乳化剂, 乳化 时的搅拌速度为 3000rpm, 乳化时间为 45min;
取 70质量份的第四份白油放置在溶解釜内搅拌,搅拌速度为 40rpm, 然后向溶解釜内放入第二乳化剂、 第三乳化剂、 第四乳化剂、 21 质量份 的第五份白油混合, 然后升温至 135°C进行搅拌, 搅拌速度为 20rpm, 料 温达到 171 °C后, 以 42rpm的速度进行搅拌, 然后开始保温, 保温时间为 40min后得到超高分子量聚乙烯溶解料;
溶解液中第四份白油: 第五份白油: 第六份白油: 第七份白油的重 量比为 71 : 21 : 7: 3.3。
③配制超高分子量聚乙烯纺丝溶液
取步骤①制备的溶胀液在溶胀釜中常温搅拌, 然后再将溶胀液升温 到 88 °C , 再向溶胀液中投入步骤 2制备的溶解液混合搅拌得到 60min得 到超高分子量聚乙烯纤维纺丝原液,其中溶胀液和溶解液重量比为 1 : 1.4, 得到的纺丝原液中含有超高分子量聚乙烯为 10.9wt%。
实施例 8
①配制超高分子量聚乙烯溶胀液
取 55质量份第一份白油在放置在溶胀釜内搅拌,搅拌速度为 26rpm, 搅拌时均勾喷入 40质量份的超高分子量聚乙烯粉末;
取 7质量份的第三份白油, 然后添加 1.9质量份的四 (β ( 3 , 5-三级 丁基 -4-羟基苯基 )丙酸 )季戊四醇酯抗氧剂、 0.05质量份的司盘 80表面 活性剂进行乳化搅拌乳化得到第一乳化溶剂, 其中搅拌速度为 3200rpm, 乳化时间 60min;
向所述溶胀釜内放入第一乳化溶剂和 46质量份的第二份白油, 搅拌 升温至 120°C , 保温时间为 65min, 得到溶胀度为 1.53的超高分子量聚乙 烯溶胀液, 该溶胀液中超高分子量聚乙烯的重量比为 26.6%。
溶胀液中的第一份白油: 第二份白油: 第三份白油按重量比为 55: 46: 7。
②配制超高分子量聚乙烯溶解液
取 7质量份第六份白油, 添加 1.13质量份的超高分子聚乙烯粉末均 勾的分成两份进行乳化得到第二乳化溶剂, 乳化时间为 35min, 乳化时的 搅拌速度为 3000rpm;
取 3.5质量份第八份白油, 添加 0.05质量份的四(β ( 3 , 5-三级丁基 -4-羟基苯基) 丙酸)季戊四醇酯抗氧剂进行乳化得到第四乳化剂, 乳化 时的搅拌速度为 3000rpm, 乳化时间为 38min; 取 65质量份的第四份白油放置在溶解釜内搅拌,搅拌速度为 40rpm, 然后向溶解釜内放入第二乳化剂、 第三乳化剂、 第四乳化剂、 22质量份 的第五份白油混合, 然后升温至 130°C进行搅拌, 搅拌速度为 20rpm, 料 温达到 176°C后, 以 42rpm的速度进行搅拌, 然后开始保温, 保温时间为 40min后得到超高分子量聚乙烯溶解料;
溶解液中第四份白油: 第五份白油: 第六份白油: 第七份白油: 的 重量比为 65: 22: 7: 3.5。
③配制超高分子量聚乙烯纺丝溶液
取步骤①制备的溶胀液在溶胀釜中常温搅拌, 然后再将溶胀液升温 到 92 °C , 再向溶胀液中投入步骤 2制备的溶解液混合搅拌得到 70min得 到超高分子量聚乙烯纤维纺丝原液,其中溶胀液和溶解液重量比为 1 : 1.6, 得到的纺丝原液中含有超高分子量聚乙烯为 10.9wt%。
实施例 9
①配制超高分子量聚乙烯溶胀液
取 45质量份第一份白油在放置在溶胀釜内搅拌,搅拌速度为 26rpm, 搅拌时均勾喷入 45质量份的超高分子量聚乙烯粉末;
取 15质量份的第三份白油, 然后添加 3.5质量份的四 (β ( 3 , 5-三 级丁基 -4-羟基苯基)丙酸)季戊四醇酯抗氧剂、 0.05质量份的司盘 80表 面活性剂进行乳化搅拌乳化得到第一乳化溶剂, 其中搅拌速度为 3200rpm, 乳 ^匕时间 60min;
向所述溶胀釜内放入第一乳化溶剂和 55质量份的第二份白油, 搅拌 升温至 130°C , 保温时间为 65min, 得到溶胀度为 1.58的超高分子量聚乙 烯溶胀液, 该溶胀液中超高分子量聚乙烯的重量比为 27.5%。
溶胀液中的第一份白油: 第二份白油: 第三份白油按重量比为 45: 55: 15。
②配制超高分子量聚乙烯溶解液
取 7质量份第六份白油和 1.14质量份的超高分子聚乙烯粉末均匀的 分成两份进行乳化得到第二乳化溶剂, 乳化时间为 35min, 乳化时的搅拌 速度为 3000rpm; 取 4.5质量份第八份白油, 添加 0.07质量份的四(β ( 3 , 5-三级丁基 -4-羟基苯基) 丙酸)季戊四醇酯抗氧剂进行乳化得到第四乳化剂, 乳化 时的搅拌速度为 3000rpm, 乳化时间为 40min;
取 68质量份的第四份白油放置在溶解釜内搅拌,搅拌速度为 40rpm, 然后向溶解釜内放入第二乳化剂、 第三乳化剂、 第四乳化剂、 22质量份 的第五份白油混合, 然后升温至 132°C进行搅拌, 搅拌速度为 20rpm, 料 温达到 155°C后, 以 42rpm的速度进行搅拌, 然后开始保温, 保温时间为 40min后得到超高分子量聚乙烯溶解料;
溶解液中第四份白油: 第五份白油: 第六份白油: 第七份白油的重 量比为 68: 22: 7: 4.5。
③配制超高分子量聚乙烯纺丝溶液
取步骤①制备的溶胀液在溶胀釜中常温搅拌, 然后再将溶胀液升温 到 90 °C , 再向溶胀液中投入步骤 2制备的溶解液混合搅拌得到 70min得 到超高分子量聚乙烯纤维纺丝原液,其中溶胀液和溶解液重量比为 1 : 1.8, 得到的纺丝原液中含有超高分子量聚乙烯为 10.5wt%。
比较例 1
取 7质量份的超高分子量聚乙烯与 93质量份白油在第一个溶胀釜内 65 °C搅拌 24小时, 然后放入第二个溶胀釜 75 °C搅拌 12小时, 然后放入 第三个溶胀釜 110°C搅拌 12小时, 上述三个溶胀釜的搅拌速度为 5rpm, 最后强制冷却到 70°C , 得到固含量为 7%的纺丝原液。
比较例 2
按照实施例 1 中的溶胀液的制备工艺制备超高分子量聚乙烯含量为 8%的溶胀液作为纺丝原液。
比较例 3
按照实施例 2 中的溶胀液的制备工艺制备超高分子量聚乙烯含量为
10%的溶胀液作为纺丝原液。
纺丝实验 1
取实施例 1-实施例 9、 比较例 1-3制备的纺丝原液按照相同的工艺进 行纺丝, 制备超高分子量聚乙烯纤维, 具体纺丝工艺如下: 将纺丝液送入双螺杆挤出机中进行大分子的解缠。 其中, 双螺杆挤 出机的送入口温度为 100 °C、 中间温度为 260 °C、 出口温度为 290 °C螺杆 挤出机内停留的时间为 5min , 双螺杆挤出机旋转速度为 190/min。 悬浮液 经过双螺杆挤出机的解缠、 挤出制成透明的冻胶溶液。 将冻胶溶液经过 计量泵、 具有 400孔的喷丝板 (喷丝孔直径 1mm, 长径比 L/D为 10/1 ) 以 lm/min 的喷丝速度挤出进入温度为 25°C的凝固水槽使丝条定型得到 冻胶丝。 将得到的冻胶丝釆用煤油萃取, 然后分别经过 55°C和 60°C两级 干燥。 将干燥后的冻胶丝进行三级热拉伸, 具体工艺为: 第一级拉伸温 度为 100°C、 牵倍为 2.5倍; 第二级拉伸温度为 120°C、 牵倍为 3.8倍; 第三级拉伸温度为 130°C、 牵倍为 4.4倍。 冻胶丝经过三级拉伸得到超高 分子量聚乙烯纤维。
对纤维取样进行力学性能测试, 每次取十个样, 结果取平均值, 将 结果列于表 1。
表 1 纺丝实验 1制备的超高分子量聚乙烯纤维性能测试结果
强度 强度 CV 模量
( cN/dtex) 值 (%) ( cN/dtex)
实施例 1 31.2 2.8 1277 实施例 2 32.1 2.7 1282 实施例 3 31.6 3.1 1282 实施例 4 34.3 2.4 1335 实施例 5 32.5 2.5 1305 实施例 6 32.1 2.8 1295 实施例 7 32.7 3.1 1312 实施例 8 33.6 2.8 1320 实施例 9 33.2 3.1 1332 比较例 1 28.6 5.2 810 比较例 2 28.3 4.9 795 比较例 3 28.4 4.8 786 从表 1 的以上对比可知, 使用本发明制备的纺丝原液在相同的纺丝 条件下制备的超高分子量聚乙烯纤维的 CV值低, 纤维稳定性好。 纺丝实验 2
取实施例 1-实施例 9、 比较例 1-3制备的纺丝原液按照相同的工艺进 行纺丝, 制备超高分子量聚乙烯纤维, 具体纺丝工艺如下:
将纺丝液送入双螺杆挤出机中进行大分子的解缠。 其中, 双螺杆挤 出机的送入口温度为 95 °C、 中间温度为 270 °C、 出口温度为 295 °C , 在双 螺杆挤出机内停留的时间为 6min, 双螺杆挤出机旋转速度为 175r/min。 悬浮液经过双螺杆挤出机的解缠、 挤出制成透明的冻胶溶液。 将冻胶溶 液经过计量泵、 具有 400孔的喷丝板 (喷丝孔直径 1mm, 长径比 L/D为 10/1 ) 以 l.lm/min的喷丝速度挤出进入温度为 25°C的凝固水槽使丝条定 型得到冻胶丝。 将得到的冻胶丝釆用煤油萃取后分别经过 54°C和 61 °C两 级干燥。 将干燥后的冻胶丝进行三级热拉伸, 具体工艺为: 第一级拉伸 温度为 100°C、 牵倍为 2.9倍; 第二级拉伸温度为 120 °C、 牵倍为 4.4倍; 第三级拉伸温度为 128°C、 牵倍为 3.1倍。 冻胶丝经过三级拉伸得到超高 分子量聚乙烯纤维。
对纤维取样进行力学性能测试, 每次取十个样, 结果取平均值, 将 结果列于表 2。
表 2 纺丝实验 2制备的超高分子量聚乙烯纤维性能测试结果
强度 强度 CV
模(cN/dtex)
( cN/dtex) 值 (%)
实施例 1 31.5 2.9 1268 实施例 2 32.5 2.9 1279 实施例 3 30.9 2.9 1295 实施例 4 33.9 2.8 1328 实施例 5 33.1 2.6 1310 实施例 6 31.8 2.7 1289 实施例 7 31.7 3.2 1323 实施例 8 32.6 3.6 1315 实施例 9 32.2 2.9 1318 比较例 1 28.4 5.3 795 比较例 2 28.4 4.5 816 比较例 3 28.1 4.5 775 从表 2 的对比结果可知, 使用本发明制备的纺丝原液在相同的纺丝 条件下制备的超高分子量聚乙烯纤维 CV值低, 纤维稳定性好。
以上对本发明所提供的超高分子量聚乙烯纤维纺丝原液进行了详细 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。 应当 指出, 对于本技术领域的普通技术人员来说, 在不脱离本发明原理的前 提下, 还可以对本发明进行若干改进和修饰, 这些改进和修饰也落入本 发明权利要求的保护范围内。

Claims

权 利 要 求
1、 一种超高分子量聚乙烯纤维纺丝原液的制备方法, 其特征在于, 包括:
取超高分子量聚乙烯溶解液与超高分子量聚乙烯溶胀液按照重量比 为 0.42 2.85 的比例混合得到超高分子量聚乙烯重量含量为 10%~15%的 纺丝原液;
所述超高分子量聚乙烯溶胀液中的超高分子量聚乙烯的重量含量为 10-50%;
所述超高分子量聚乙烯溶胀液中的超高分子量聚乙烯与所述超高分 子量聚乙烯溶解液中的超高分子量聚乙烯的重量比为 2.5~70。
2、 根据权利要求 1所述的制备方法, 其特征在于, 所述超高分子量 聚乙烯溶解液与所述超高分子量聚乙烯溶胀液的重量比为 1.0~2.5。
3、 根据权利要求 2所述的制备方法, 其特征在于, 所述超高分子量 聚乙烯溶胀液中的超高分子量聚乙烯的重量含量为 20%~30%。
4、 根据权利要求 3所述的制备方法, 其特征在于, 所述超高分子量 聚乙烯溶胀液与所述超高分子量聚乙烯溶解液中的超高分子量聚乙烯的 重量比为 10~30。
5、 根据权利要求 4所述的制备方法, 其特征在于, 所述超高分子量 聚乙烯纤维纺丝原液中的超高分子量聚乙烯的重量含量为 11%~14%。
6、 根据权利要求 5所述的制备方法, 其特征在于, 所述超高分子量 聚乙烯纤维纺丝原液中的超高分子量聚乙烯的重量含量为 12%~13%。
7、 根据权利要求 1所述的制备方法, 其特征在于, 所述超高分子量 聚乙烯纤维纺丝原液中的超高分子量聚乙烯的重均分子量为 3 X 106~5 X 106
8、 根据权利要求 7所述的制备方法, 其特征在于, 所述超高分子量 聚乙烯纺丝原液中的溶剂为环烷烃和链烷烃按照 85~90: 10-15的比例混 合得到的混合溶剂, 所述环烷烃的碳原子个数为 25个〜 50个, 所述链烷 烃的碳原子个数为 25个〜 50个。
9、 根据权利要求 1至 8任一项所述的制备方法, 其特征在于, 所述 超高分子量聚乙烯溶胀液按照如下方法制备:
在第一份溶剂内加入超高分子量聚乙烯粉末进行搅拌;
向所述第一份溶剂内加入第二份溶剂和第一乳化溶剂得到第一混合
物;
将所述第一混合物升温至 90°C~130 °C保温溶胀得到超高分子量聚乙
烯溶胀液;
所述第一乳化溶剂由第三份溶剂、 抗氧剂和表面活性剂经过乳化形
成;
第一份溶剂: 第二份溶剂: 第三份溶剂: 抗氧剂: 表面活性剂的重
量比为 45~55: 45-55: 1-20: 0.5-5: 0.05-0.1„
10、 根据权利要求 9 所述的制备方法, 其特征在于, 所述超高分子
量聚乙烯溶解液按照如下方法制备:
向第四份溶剂中加入第二乳化溶剂、 第三乳化溶剂、 第四乳化溶剂、 第五份溶剂搅拌均勾得到第二混合物, 将所述第二混合物升温至
100°C~190°C搅拌得到超高分子量聚乙烯溶解液;
所述第二乳化溶剂由第六份溶剂和超高分子量聚乙烯按照 1~5:
0.4-0.6的比例乳化形成;
所述第四乳化溶剂由第七份溶剂、 抗氧剂经过乳化形成;
所述第四份溶剂:第五份溶剂: 第六份溶剂: 第七份溶剂的重量比为
67-75: 15-25: 2-10: 2~4。
-I-
PCT/CN2011/078685 2010-08-24 2011-08-22 一种超高分子量聚乙烯纤维纺丝溶液的制备方法 WO2012025034A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137006516A KR101462362B1 (ko) 2010-08-24 2011-08-22 초고분자량 폴리에틸렌 섬유의 방사액의 제조 방법
EP11819409.1A EP2610374B1 (en) 2010-08-24 2011-08-22 Method for preparing spinning solution of ultra-high molecular weight polyethylene fiber
RU2013111847/05A RU2533130C1 (ru) 2010-08-24 2011-08-22 Способ получения прядильного раствора для сверхвысокомолекулярного полиэтиленового волокна
US13/817,483 US9296875B2 (en) 2010-08-24 2011-08-22 Method for preparing spinning solution of ultra-high molecular weight polyethylene fiber
BR112013003987-6A BR112013003987B1 (pt) 2010-08-24 2011-08-22 método para preparar uma solução de fiação da fibra de polietileno de peso molecular ultra-elevado
IL224680A IL224680A (en) 2010-08-24 2013-02-12 METHOD FOR PREPARING A SOLUTION FOR EXTENSION OF VERY HIGH MOLECULAR MOLECULAR WEIGHT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010262244.9 2010-08-24
CN2010102622449A CN101956238B (zh) 2010-08-24 2010-08-24 一种超高分子量聚乙烯纤维纺丝溶液的制备方法

Publications (1)

Publication Number Publication Date
WO2012025034A1 true WO2012025034A1 (zh) 2012-03-01

Family

ID=43483818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078685 WO2012025034A1 (zh) 2010-08-24 2011-08-22 一种超高分子量聚乙烯纤维纺丝溶液的制备方法

Country Status (8)

Country Link
US (1) US9296875B2 (zh)
EP (1) EP2610374B1 (zh)
KR (1) KR101462362B1 (zh)
CN (1) CN101956238B (zh)
BR (1) BR112013003987B1 (zh)
IL (1) IL224680A (zh)
RU (1) RU2533130C1 (zh)
WO (1) WO2012025034A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391690A (zh) * 2020-09-21 2021-02-23 江苏六甲科技有限公司 一种超高分子量聚乙烯与剪切增稠流体复合纤维及其制备方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101956238B (zh) * 2010-08-24 2012-05-30 北京同益中特种纤维技术开发有限公司 一种超高分子量聚乙烯纤维纺丝溶液的制备方法
CN102433597B (zh) * 2011-10-11 2014-09-17 北京同益中特种纤维技术开发有限公司 凝胶化预取向丝及其制备方法和超高分子量聚乙烯纤维及其制备方法
CN103590130A (zh) * 2013-10-11 2014-02-19 杭州翔盛高强纤维材料股份有限公司 一种改善超高分子量聚乙烯纤维纺丝液流动性的方法
CN103572396B (zh) * 2013-10-11 2015-04-29 杭州翔盛高强纤维材料股份有限公司 共混改性超高分子量聚乙烯纤维的制备方法
CN103572397B (zh) * 2013-10-11 2015-07-08 杭州翔盛高强纤维材料股份有限公司 一种超高分子量聚乙烯纤维有机颜料分散锚固原液着色方法
EP3564416A1 (en) * 2013-10-29 2019-11-06 Braskem S.A. System and method of mechanical pre-recovery of at least one liquid in at least one polymeric yarn
CN103884238B (zh) 2014-02-28 2015-11-25 北京同益中特种纤维技术开发有限公司 一种复合防弹单元材料及其制备方法
CN104313709A (zh) * 2014-10-21 2015-01-28 北京同益中特种纤维技术开发有限公司 超高分子量聚乙烯纤维及其制备方法
KR101726320B1 (ko) * 2015-04-28 2017-04-13 한국생산기술연구원 초고분자량 폴리에틸렌 섬유용 겔의 제조방법
CN106948022B (zh) * 2017-03-23 2019-05-21 上海化工研究院有限公司 高浓度超高分子量聚乙烯纤维纺丝溶液的制备方法
CN107326462B (zh) * 2017-06-20 2018-05-11 浙江金昊特种纤维有限公司 一种耐磨防切割超高分子量聚乙烯纤维的制备方法
JP6998751B2 (ja) * 2017-12-14 2022-01-18 旭化成株式会社 超高分子量ポリエチレンパウダー及び超高分子量ポリエチレン繊維
CN109306061A (zh) * 2018-06-06 2019-02-05 深圳大学 超高分子量聚乙烯纺丝溶液的制备方法和超高分子量聚乙烯纤维
CN108950714A (zh) * 2018-08-24 2018-12-07 宁波大成新材料股份有限公司 一种超高强、高模、细旦纤维的制备方法
CN111005079B (zh) * 2019-12-18 2021-09-03 黑龙江金源仑特种纤维有限公司 一种超高分子量聚乙烯单丝纤维的制作方法
CN112301450A (zh) * 2020-11-04 2021-02-02 湖南中泰特种装备有限责任公司 一种耐高温超高分子量聚乙烯纤维及其制备方法
CN112626633A (zh) * 2020-12-14 2021-04-09 九江中科鑫星新材料有限公司 一种超高分子量聚乙烯纺丝料及其制备方法
CN112725916A (zh) * 2020-12-30 2021-04-30 长青藤高性能纤维材料有限公司 一种适用于uhmwpe纤维生产过程中使用的白油溶剂及其制备方法
CN114775070B (zh) * 2022-04-23 2023-07-07 浙江毅聚新材料有限公司 超高分子量聚乙烯纤维制备方法及其使用的喷丝板组件、得到的多丝纱

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422993A (en) 1979-06-27 1983-12-27 Stamicarbon B.V. Process for the preparation of filaments of high tensile strength and modulus
EP0205960A2 (en) * 1985-06-17 1986-12-30 AlliedSignal Inc. Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber
EP0255618A2 (en) * 1986-07-08 1988-02-10 Nippon Petrochemicals Co., Ltd. Ultra-high-molecular-weight polyethylene solution
CN1190137A (zh) * 1997-12-10 1998-08-12 中国纺织大学 超高分子量聚乙烯均匀溶液的连续制备
CN1405367A (zh) * 2001-08-13 2003-03-26 中纺投资发展股份有限公司 纺丝用超高分子量聚乙烯高浓度溶液的制备方法
CN1631943A (zh) * 2004-11-29 2005-06-29 北京特斯顿新材料技术发展有限公司 超高分子量聚乙烯溶液的连续配制混合方法
CN101235551A (zh) * 2006-11-08 2008-08-06 胡盼盼 一种高剪切超高分子量聚乙烯连续溶解纺丝新方法
CN101525778A (zh) 2008-03-04 2009-09-09 上海斯瑞聚合体科技有限公司 高强高模聚乙烯纤维及其制造方法
CN101956238A (zh) * 2010-08-24 2011-01-26 北京同益中特种纤维技术开发有限公司 一种超高分子量聚乙烯纤维纺丝溶液的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743272A (en) * 1971-04-12 1973-07-03 Crown Zellerbach Corp Process of forming polyolefin fibers
EP0135253B2 (en) * 1983-06-16 1993-04-21 Agency Of Industrial Science And Technology Process for producing an ultrahigh-molecular-weight polyethylene composition
RU2121483C1 (ru) * 1997-04-01 1998-11-10 Санкт-Петербургский государственный университет технологии и дизайна Способ получения раствора сверхвысокомолекулярного полиэтилена
CN1221690C (zh) * 2001-07-30 2005-10-05 中国石油化工股份有限公司 高强聚乙烯纤维的制造方法及纤维
US7234032B2 (en) * 2003-11-20 2007-06-19 International Business Machines Corporation Computerized system, method and program product for managing an enterprise storage system
WO2005066397A1 (en) * 2003-12-19 2005-07-21 Sinotex Investment & Development Co., Ltd. A process for preparing ultra high molecular weight polyethylene fibres
CN101421444B (zh) * 2006-04-07 2011-09-07 帝斯曼知识产权资产管理有限公司 高强度聚乙烯纤维及其制造方法
ATE478178T1 (de) 2006-11-08 2010-09-15 Panpan Hu Verfahren zur herstellung von fasern aus polyethylen mit ultrahohem molekulargewicht
BRPI0702310A2 (pt) * 2007-05-24 2009-01-13 Braskem Sa processo para a preparaÇço de fios polimÉricos a partir de homopolÍmeros ou copolÍmeros de ultra alto peso molecular, fios polimÉricos, artigos polimÉricos moldados, e, uso de fios polimÉricos
CN101230499B (zh) * 2008-02-26 2010-10-06 山东爱地高分子材料有限公司 一种有颜色的高强聚乙烯纤维及其制造方法
CN101575743B (zh) * 2008-05-05 2011-04-13 宁波荣溢化纤科技有限公司 一种超高分子量聚乙烯纤维纺丝原液的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422993A (en) 1979-06-27 1983-12-27 Stamicarbon B.V. Process for the preparation of filaments of high tensile strength and modulus
US4430383A (en) 1979-06-27 1984-02-07 Stamicarbon B.V. Filaments of high tensile strength and modulus
EP0205960A2 (en) * 1985-06-17 1986-12-30 AlliedSignal Inc. Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber
EP0255618A2 (en) * 1986-07-08 1988-02-10 Nippon Petrochemicals Co., Ltd. Ultra-high-molecular-weight polyethylene solution
CN1190137A (zh) * 1997-12-10 1998-08-12 中国纺织大学 超高分子量聚乙烯均匀溶液的连续制备
CN1405367A (zh) * 2001-08-13 2003-03-26 中纺投资发展股份有限公司 纺丝用超高分子量聚乙烯高浓度溶液的制备方法
CN1631943A (zh) * 2004-11-29 2005-06-29 北京特斯顿新材料技术发展有限公司 超高分子量聚乙烯溶液的连续配制混合方法
CN101235551A (zh) * 2006-11-08 2008-08-06 胡盼盼 一种高剪切超高分子量聚乙烯连续溶解纺丝新方法
CN101525778A (zh) 2008-03-04 2009-09-09 上海斯瑞聚合体科技有限公司 高强高模聚乙烯纤维及其制造方法
CN101956238A (zh) * 2010-08-24 2011-01-26 北京同益中特种纤维技术开发有限公司 一种超高分子量聚乙烯纤维纺丝溶液的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391690A (zh) * 2020-09-21 2021-02-23 江苏六甲科技有限公司 一种超高分子量聚乙烯与剪切增稠流体复合纤维及其制备方法
CN112391690B (zh) * 2020-09-21 2024-05-14 江苏六甲科技有限公司 一种超高分子量聚乙烯与剪切增稠流体复合纤维的制备方法

Also Published As

Publication number Publication date
KR101462362B1 (ko) 2014-11-14
IL224680A (en) 2017-04-30
EP2610374A4 (en) 2014-03-05
EP2610374A1 (en) 2013-07-03
RU2533130C1 (ru) 2014-11-20
RU2013111847A (ru) 2014-09-27
BR112013003987A2 (pt) 2020-08-04
KR20130041333A (ko) 2013-04-24
CN101956238A (zh) 2011-01-26
US20130143987A1 (en) 2013-06-06
US9296875B2 (en) 2016-03-29
CN101956238B (zh) 2012-05-30
EP2610374B1 (en) 2020-12-23
BR112013003987B1 (pt) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2012025034A1 (zh) 一种超高分子量聚乙烯纤维纺丝溶液的制备方法
CN102776596B (zh) 一种用于制备超高分子量聚乙烯有色纤维的纺丝溶胀液及纺丝原液
RU2625306C2 (ru) Способ производства лигнинсодержащего предшественника волокон, а также углеродных волокон
CN102304784B (zh) 高强度聚乙烯纤维及其制造方法
CN102433597B (zh) 凝胶化预取向丝及其制备方法和超高分子量聚乙烯纤维及其制备方法
US20100233480A1 (en) Process for producing fiber of ultra high molecular weight polyethylene
JP6590824B2 (ja) 高強度・高弾性率超高分子量ポリエチレン繊維
CN109440215A (zh) 一种高性能聚乙烯纤维的制备方法
CN102534838B (zh) 一种超高分子量聚乙烯纤维纺丝原液及其制备方法
WO2011063661A1 (zh) 超高分子量聚乙烯高剪切溶液均匀制备纺丝方法
CN110158160B (zh) 一种高浓度冻胶纺丝制备超高分子量聚乙烯纤维的方法
CN110318116A (zh) 一种特高强超高分子量聚乙烯纤维的制备方法
CN105263975B (zh) 密实的聚合物凝胶和由其制备的纤维
CN107435171B (zh) 一种交联结构取向填充增强化纤的制备方法
CN105586655B (zh) 一种均质化制备聚丙烯腈基碳纤维原丝的方法
CN109750383B (zh) 一种纳米微晶纤维素复合粘胶纤维及其制备方法
JP5497255B2 (ja) 高強度ポリエチレン繊維およびその製造方法
CN111270330B (zh) 一种粗单丝超高分子量聚乙烯纤维及其制备方法和应用
CN108950714A (zh) 一种超高强、高模、细旦纤维的制备方法
CN101046005A (zh) 一种冻胶纺超高分子量聚丙烯纤维及其制备方法
CN118272945A (zh) 一种可降解超高分子量聚乙烯纤维及其制备方法
CN118127667A (zh) 高浓度聚乙烯纤维纺丝原液及其制备方法和应用
CN114457448A (zh) 提高干法生产高分子量聚丙烯腈溶解性能的方法
Liu et al. Study of diffusion performance and preparation technology of the coloured PMIA fibre
JPS5920762B2 (ja) 芳香族ポリアミド紡糸原液調製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13817483

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011819409

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137006516

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013111847

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013003987

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013003987

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130220