WO2012020678A1 - Li2O-Al2O3-SiO2系結晶化ガラス - Google Patents

Li2O-Al2O3-SiO2系結晶化ガラス Download PDF

Info

Publication number
WO2012020678A1
WO2012020678A1 PCT/JP2011/067753 JP2011067753W WO2012020678A1 WO 2012020678 A1 WO2012020678 A1 WO 2012020678A1 JP 2011067753 W JP2011067753 W JP 2011067753W WO 2012020678 A1 WO2012020678 A1 WO 2012020678A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
crystallized glass
glass
less
based crystallized
Prior art date
Application number
PCT/JP2011/067753
Other languages
English (en)
French (fr)
Inventor
慎護 中根
浩佑 川本
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US13/816,005 priority Critical patent/US9126859B2/en
Priority to EP11816344.3A priority patent/EP2604583B1/en
Priority to CN201180024017.5A priority patent/CN102892725B/zh
Publication of WO2012020678A1 publication Critical patent/WO2012020678A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles

Definitions

  • the present invention relates to a Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass. Specifically, the present invention relates to a Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass suitable for heat-resistant applications such as front windows such as petroleum stoves and wood stoves.
  • front windows for petroleum stoves, wood stoves, etc. substrates for high-tech products such as color filters and image sensor substrates, setters for firing electronic components, shelf plates for microwave ovens, top plates for electromagnetic cooking, window glass for fire doors
  • substrates for high-tech products such as color filters and image sensor substrates
  • setters for firing electronic components such as setters for firing electronic components
  • shelf plates for microwave ovens top plates for electromagnetic cooking
  • window glass for fire doors As a material such as Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass is used.
  • Patent Documents 1-3 as the predominant crystalline ⁇ - quartz solid solution (Li 2 O ⁇ Al 2 O 3 ⁇ nSiO 2 [ provided that 4> n ⁇ 2]) and ⁇ - spodumene solid solution (Li 2 O ⁇ Al 2 O Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass obtained by precipitating Li 2 O—Al 2 O 3 —SiO 2 based crystals such as 3 ⁇ nSiO 2 (where n ⁇ 4]) is disclosed. Yes.
  • Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass has excellent thermal characteristics because it has a low coefficient of thermal expansion and high mechanical strength.
  • it is possible to control the kind of the precipitated crystal and it is possible to easily produce a transparent crystallized glass ( ⁇ -quartz solid solution is precipitated).
  • SnO 2 and Cl have been proposed as alternative fining agents for As 2 O 3 and Sb 2 O 3 (see, for example, Patent Documents 4 and 5).
  • Cl tends to corrode molds and metal rolls during glass forming, and as a result, the surface quality of the glass may be deteriorated. From such a viewpoint, it is preferable to use SnO 2 that does not cause the above problem as a clarifier.
  • SnO 2 has a function of enhancing the coloration caused by Fe 2 O 3 , TiO 2, etc., so that the yellowishness of the transparent crystallized glass becomes strong, which is preferable in terms of appearance. There is no problem. Therefore, when using a SnO 2, as well reduce the Fe 2 O 3 to be mixed as an impurity component, it is preferred that TiO 2 is also reduced in the glass batch. However, since TiO 2 is a crystal nucleus component, if the amount of TiO 2 is reduced, the optimum firing temperature range is narrowed, and the amount of crystal nuclei generated tends to be reduced. When crystallization proceeds with a small number of crystal nuclei, coarse crystals increase, and there is a problem that the crystallized glass becomes cloudy and easily loses transparency.
  • white opaque crystallized glass on which ⁇ -spodumene solid solution is precipitated can be obtained by crystallization under appropriate heat treatment conditions. it can.
  • the white crystallized glass on which the ⁇ -spodumene solid solution is precipitated has a problem that the thermal expansion coefficient and the dielectric loss tend to be high.
  • the temperature is locally increased in the case of using an electromagnetic wave such as a shelf board of a microwave oven, causing damage.
  • an object of the present invention is to provide Fe 2 O 3 and TiO in Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass using SnO 2 as an alternative fining agent for As 2 O 3 and Sb 2 O 3. It is to obtain a crystallized glass with little yellow coloring caused by 2 etc. and having excellent transparency.
  • Another object of the present invention is to obtain a white Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass that can easily achieve low thermal expansion characteristics and low dielectric loss characteristics.
  • the composition is mass%, SiO 2 55 to 75%, Al 2 O 3 20.5 to 27%, Li 2 O 2% or more, TiO 2 1.5 to 3%, TiO 2 + ZrO 2. 3.8 to 5%, SnO 2 0.1 to 0.5%, 3.7 ⁇ Li 2 O + 0.741MgO + 0.367ZnO ⁇ 4.5 and SrO + 1.847CaO ⁇ 0.5
  • the present invention relates to a characteristic Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass.
  • the present inventors have found that coloring can be reduced as the amount of Al 2 O 3 in the remaining glass phase in the crystallized glass increases. For that purpose, it is effective to increase the amount of Al 2 O 3 in the glass composition before crystallization. Specifically, if the amount of Al 2 O 3 was increased to 20.5% or more, it was strengthened by SnO 2 . It has been found that coloring due to components such as TiO 2 and Fe 2 O 3 can be reduced. However, if the glass composition before crystallization exceeds a certain amount of Al 2 O 3 that exceeds a certain level, most of the excess Al 2 O 3 is distributed to the crystal phase during crystallization, so Al 2 in the remaining glass phase. It becomes difficult to increase the amount of O 3 . Therefore, simply increasing the amount of Al 2 O 3 in the glass composition before crystallization is not sufficient for reducing coloring.
  • SrO and CaO are also related as other influential factors regarding coloring.
  • SrO + 1.847CaO to 0.5 or less, a crystallized glass with less coloring can be obtained.
  • the coefficient of CaO is for conversion to SrO mole.
  • TiO 2 and ZrO 2 which are crystal nucleating agents.
  • the larger the amount of TiO 2 the larger the number of crystal nuclei and the less likely to become cloudy, but there is a problem that the coloring becomes stronger.
  • the more ZrO 2 is the more crystal nuclei are liable to be generated and the white turbidity is less likely to occur. Therefore, considering the Al 2 O 3 amount and the Li 2 O + 0.741MgO + 0.367ZnO amount, etc., the appropriate ranges of the TiO 2 amount and the TiO 2 + ZrO 2 amount were examined. It has been found that it is possible to obtain a crystallized glass having a color tone and high transparency with reduced white turbidity.
  • the Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention is characterized in that the appearance is transparent.
  • Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass having a transparent appearance is also referred to as “Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass”.
  • the Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass of the present invention is characterized by containing ⁇ -quartz solid solution as a main crystal.
  • the Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention is characterized by containing MgO in an amount of 0.1% or more.
  • thermal expansion coefficient is preferably as close to 0 as possible to reduce the risk of breakage.
  • the Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention is characterized by substantially not containing Nd 2 O 3 and CoO.
  • substantially not containing Nd 2 O 3 and CoO which are colorants it becomes possible to obtain a crystallized glass excellent in transparency.
  • “Substantially free of Nd 2 O 3 and CoO” means that these components are not intentionally added. Specifically, Nd 2 O 3 is 100 ppm or less, and CoO is 20 ppm or less. It means that.
  • the Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass of the present invention is characterized by containing 30 to 300 ppm of Fe 2 O 3 .
  • Fe 2 O 3 is a coloring component that is likely to be mixed as an impurity, but by limiting to the above range, it is possible to reduce the coloring caused by Fe 2 O 3 .
  • the Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention has a color tone of transmitted light at a thickness of 3 mm, which is 4 according to CIE standard L * a * b * display b * value. .5 or less.
  • the Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass of the present invention is characterized by having a transmittance of 82.5% or more at a thickness of 1.1 mm and a wavelength of 400 nm.
  • the Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention has a coefficient of thermal expansion at ⁇ 30 to 380 ° C. of ⁇ 2.5 ⁇ 10 ⁇ 7 / ° C. to 2.5 ⁇ 10 It is characterized by -7 / ° C.
  • the Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention is characterized in that ⁇ -spodumene solid solution is precipitated as a main crystal.
  • the Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention is characterized in that the appearance is white.
  • Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass having a white appearance is also referred to as “Li 2 O—Al 2 O 3 —SiO 2 -based white crystallized glass”.
  • the Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention is characterized by satisfying a relationship of 0.6 ⁇ BaO + 2.474Na 2 O + 1.628K 2 O ⁇ 3.3. To do.
  • the Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention is characterized by containing at least 0.1% of BaO, Na 2 O and K 2 O by mass%.
  • the Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass of the present invention is characterized in that the thermal expansion coefficient at 30 to 750 ° C. is 15 ⁇ 10 ⁇ 7 / ° C. or less. To do.
  • the Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention is characterized in that the dielectric loss at a frequency of 2.45 GHz is 48 ⁇ 10 ⁇ 3 or less.
  • the present invention provides a method for producing any one of the above Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass, wherein the maximum temperature is less than 1780 ° C. and the melting efficiency is 1 to 6 m 2 / (t / Day), a step of melting the glass, a step of forming the molten glass into a predetermined shape to obtain crystalline glass, and a step of crystallizing the crystalline glass by heat treatment.
  • the present invention relates to a method for producing a Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass.
  • the degree of coloring of crystallized glass is affected by melting conditions in addition to the glass composition.
  • SnO 2 when SnO 2 is added, coloring tends to increase as the molten glass moves in the reduction direction. This is because of Sn 2+ than Sn 4+ is considered to be due to the large degree of influence on the coloring.
  • the melting efficiency (melting area / flow rate) can be adopted as an index. Therefore, by limiting the melting temperature and the melting efficiency to the above ranges, it is possible to suppress the molten glass from moving in the reduction direction and obtain a crystallized glass with reduced coloring.
  • the Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention has a composition by mass%, SiO 2 55 to 75%, Al 2 O 3 20.5 to 27%, Li 2 O 2% or more TiO 2 1.5 to 3%, TiO 2 + ZrO 2 3.8 to 5%, SnO 2 0.1 to 0.5%, 3.7 ⁇ Li 2 O + 0.741 MgO + 0.367 ZnO ⁇ 4.5 And it satisfies the relationship of SrO + 1.847CaO ⁇ 0.5.
  • SiO 2 forms a glass skeleton and is a component constituting a Li 2 O—Al 2 O 3 —SiO 2 based crystal.
  • the SiO 2 content is preferably 55 to 75%, 58 to 70%, particularly preferably 60 to 68%.
  • the content of SiO 2 is less than 55%, the thermal expansion coefficient tends to be high, and it becomes difficult to obtain crystallized glass excellent in thermal shock resistance. In addition, chemical durability tends to decrease.
  • the content of SiO 2 exceeds 75%, the meltability of the glass tends to deteriorate, the viscosity of the glass melt increases, and it tends to be difficult to clarify or form the glass.
  • Al 2 O 3 forms a glass skeleton and is a component constituting a Li 2 O—Al 2 O 3 —SiO 2 based crystal. Further, as described above, the presence of the remaining glass phase in the crystallized glass can reduce the intensity of coloring of TiO 2 and Fe 2 O 3 by SnO 2 .
  • the content of Al 2 O 3 is preferably 20.5 to 27%, 21 to 25%, particularly 21.5 to 23%. When the content of Al 2 O 3 is less than 20.5%, the thermal expansion coefficient tends to be high, and it becomes difficult to obtain crystallized glass excellent in thermal shock resistance. In addition, chemical durability tends to decrease. Furthermore, it becomes difficult to obtain the effect of reducing the intensity of coloring of TiO 2 and Fe 2 O 3 by SnO 2 .
  • Li 2 O is a component constituting a Li 2 O—Al 2 O 3 —SiO 2 based crystal, greatly affects the crystallinity, and lowers the viscosity of the glass to improve the glass meltability and formability. It is an ingredient.
  • the content of Li 2 O is preferably 2% or more, particularly preferably 2.5% or more. If the Li 2 O content is less than 2%, mullite crystals tend to precipitate and the glass tends to devitrify. Further, when the glass is crystallized, Li 2 O—Al 2 O 3 —SiO 2 -based crystals are difficult to precipitate, and it is difficult to obtain crystallized glass excellent in thermal shock resistance.
  • the Li 2 O content is preferably 4.5% or less, particularly 4% or less.
  • TiO 2 is a component that serves as a nucleating agent for precipitating crystals in the crystallization step.
  • the content of TiO 2 is preferably 1.5 to 3%, 1.6 to 2.5%, particularly 1.7 to 2.3%.
  • coloring tends to increase. Further, the glass tends to be devitrified and easily breaks.
  • the content of TiO 2 is less than 1.5%, crystal nuclei are not sufficiently formed, and coarse crystals may be precipitated and become cloudy or damaged.
  • Li 2 O + 0.741MgO + 0.367ZnO is 3.7 to 4.5, 3.8 to 4.4, particularly 3.8 to 4 It is preferable to satisfy the range of.
  • Li 2 O + 0.741MgO + 0.367ZnO exceeds 4.5, Al 2 O 3 of the glass phase is reduced in the crystallized glass, the effect of suppressing coloration due to Al 2 O 3 it is difficult to obtain.
  • MgO is a component that has the effect of increasing the thermal expansion coefficient of the Li 2 O—Al 2 O 3 —SiO 2 based crystal by being dissolved in the Li 2 O—Al 2 O 3 —SiO 2 based crystal.
  • the MgO content is preferably 0 to 2%, 0.1 to 1.5%, 0.1 to 1.3%, particularly preferably 0.1 to 1.2%. If the content of MgO exceeds 2%, the crystallinity becomes too strong and tends to devitrify, and the glass tends to break.
  • ZnO like MgO, is a component that dissolves in Li 2 O—Al 2 O 3 —SiO 2 based crystals.
  • the content of ZnO is preferably 0 to 2%, 0 to 1.5%, particularly preferably 0.1 to 1.2%. If the ZnO content is more than 2%, the crystallinity becomes too strong, and thus the glass tends to devitrify when molded while being slowly cooled. As a result, the glass tends to be broken, so that it becomes difficult to form by, for example, the float process.
  • SrO + 1.847CaO preferably satisfies the range of 0.5 or less, 0.4 or less, particularly 0.2 or less.
  • SrO + 1.847CaO exceeds 0.5, the degree of coloring of the crystallized glass increases and white turbidity tends to occur.
  • the content of each component of SrO and CaO is not particularly limited as long as the above range is satisfied.
  • SrO is 0.5% or less, particularly 0.3% or less, and CaO is 0.2%.
  • SnO 2 is a component that acts as a fining agent.
  • the SnO 2 content is preferably 0.1 to 0.5%, 0.1 to 0.4%, particularly preferably 0.1 to 0.3%.
  • the content of SnO 2 is less than 0.1%, it becomes difficult to obtain the effect as a fining agent.
  • the content of SnO 2 exceeds 0.5%, the coloring of TiO 2 and Fe 2 O 3 becomes too strong, and the crystallized glass tends to be yellowish. Moreover, it becomes easy to devitrify.
  • Nd 2 O 3 and CoO as colorants are not substantially contained in order to reduce the transparency of the crystallized glass.
  • CoO has a very strong coloring ability and greatly changes the color tone of the crystallized glass even in a very small amount. Therefore, it is preferable that the Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention does not substantially contain Nd 2 O 3 and CoO as colorants. This makes it possible to obtain a Li 2 O—Al 2 O 3 —SiO 2 based transparent crystallized glass having a high transparency and a constant color tone.
  • Nd 2 O 3 is a rare earth, the raw material cost tends to be high.
  • Nd 2 O 3 is not substantially used, an inexpensive Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass can be obtained. It becomes easy to provide. However, when priority is given to less coloring over high transparency, for example, about 500 ppm of Nd 2 O 3 may be added.
  • the content of Fe 2 O 3 mixed as an impurity component should be limited.
  • the content of Fe 2 O 3 is preferably 300 ppm or less, 250 ppm or less, particularly preferably 200 ppm or less.
  • the smaller the amount the better the coloration.
  • the following various components can be added to the Li 2 O—Al 2 O 3 —SiO 2 transparent crystallized glass of the present invention.
  • ZrO 2 is a nucleation component for precipitating crystals in the crystallization step, like TiO 2 .
  • the content of ZrO 2 is preferably 0 to 3%, 0.1 to 2.5%, particularly preferably 0.5 to 2.3%.
  • the content of ZrO 2 is more than 3%, the glass tends to be devitrified when it is melted, making it difficult to mold the glass.
  • the content of TiO 2 + ZrO 2 is limited to 3.8 to 5%, and particularly preferably 4 to 4.5%.
  • the content is within the above range of TiO 2 + ZrO 2, it is possible desired having a color tone, and obtain a high crystallization glass with reduced clarity of cloudiness.
  • B 2 O 3 is a component that promotes dissolution of the SiO 2 raw material in the glass melting step.
  • the content of B 2 O 3 is preferably 0 to 2%. If the content of B 2 O 3 exceeds 2%, the heat resistance of the glass tends to be impaired.
  • P 2 O 5 is a component that promotes the phase separation of glass and assists the formation of crystal nuclei.
  • the content of P 2 O 5 is preferably 0 to 3%, 0.1 to 3%, particularly preferably 1 to 2%.
  • the glass tends to phase-separate in the melting step, and it becomes difficult to obtain a glass having a desired composition and tends to be opaque.
  • Na 2 O, K 2 O, and BaO can be added in a total amount of 0 to 2%, particularly 0.1 to 2% in order to reduce the viscosity of the glass and improve the meltability and moldability. It is. When the total amount of these components exceeds 2%, devitrification easily occurs.
  • the glass material of the component is lithium carbonate, silica sand, silica stone, aluminum oxide, aluminum hydroxide.
  • there is spodomen as an inexpensive Li 2 O raw material but generally it is necessary to limit the amount of use because it often contains a large amount of Fe 2 O 3 .
  • Fe 2 O 3 content is preferably used zirconium silicate or pure ZrO 2 is 0.5% or less.
  • the color tone of transmitted light at a thickness of 3 mm is 4.5 or less in the b * value of L * a * b * display of the CIE standard, In particular, it is preferably 4 or less. Further, it is preferable that the transmittance at 400 nm is 82.5% or more, particularly 83% or more when the thickness is 1.1 mm.
  • the thermal expansion coefficient is as close to zero as possible. Specifically, -2.5 ⁇ 10 -7 /°C ⁇ 2.5 ⁇ 10 -7 / °C in the temperature range of 30 ⁇ 380 ° C., in particular -1.5 ⁇ 10 -7 /°C ⁇ 1.5 ⁇ It is preferably 10 ⁇ 7 / ° C. If the thermal expansion coefficient is out of the range, the risk of breakage tends to increase.
  • the Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass of the present invention melts glass under conditions of a maximum temperature of less than 1780 ° C. and a melting efficiency of 1 to 6 m 2 / (t / day) with respect to a raw material batch.
  • Li 2 O—Al 2 O 3 characterized in that: a step of forming a molten glass into a predetermined shape to obtain a crystalline glass; and a step of crystallizing the crystalline glass by heat treatment It can be produced by a method for producing —SiO 2 -based transparent crystallized glass.
  • the maximum temperature during glass melting is preferably less than 1780 ° C., 1750 ° C. or less, particularly 1700 ° C. or less.
  • the maximum temperature at the time of glass melting is 1780 ° C. or higher, the Sn component tends to be reduced and coloring tends to increase.
  • the minimum of the maximum temperature at the time of glass melting is not specifically limited, Since glass reaction advances sufficiently and a uniform glass is obtained, it is preferable that it is 1600 degreeC or more, especially 1650 degreeC or more.
  • the melting efficiency of the glass is preferably 1 to 6 m 2 / (t / day), particularly 1.5 to 5 m 2 / (t / day).
  • the melting efficiency of the glass is less than 1 m 2 / (t / day)
  • the melting time is shortened and, as a result, the refining time is also shortened, so that it is difficult to obtain a glass with excellent foam quality.
  • the melting efficiency of the glass exceeds 6 m 2 / (t / day)
  • the Sn component tends to be reduced and coloring tends to increase.
  • Crystalline glass can be obtained by forming molten glass into a predetermined shape.
  • various forming methods such as a float method, a press method, and a roll-out method can be applied depending on the target shape.
  • crystallized glass is produced as follows.
  • the heat processing temperature especially heat processing temperature in a crystal growth stage
  • both transparent crystallized glass and white crystallized glass which have desired characteristics are obtained.
  • manufacturing costs can be reduced because each process such as raw material preparation, melting and molding up to the crystallization process can be unified.
  • the formed Li 2 O—Al 2 O 3 —SiO 2 crystalline glass is heat-treated at 600 to 800 ° C. for 1 to 5 hours to form crystal nuclei (crystal nucleation stage), and further 800 to 950 ° C. in performed for 0.5 to 3 hours heat treatment, the main crystals as Li 2 O-Al 2 O 3 by precipitating a -SiO 2 based crystal (crystal growth step), Li 2 O-Al 2 O 3 -SiO 2 system Transparent crystallized glass can be obtained.
  • the crystal growth stage white Li 2 O—Al 2 O 3 —SiO 2 formed by precipitating ⁇ -spodumene solid solution crystals as a main crystal by performing heat treatment at a high temperature of 1000 ° C. or higher, particularly 1100 ° C. or higher. System crystallized glass can be obtained.
  • the upper limit is preferably 1150 ° C. or lower, particularly 1145 ° C. or lower.
  • the heat treatment time in the crystal growth stage is appropriately selected, for example, between 0.1 and 3 hours so that the crystal grows sufficiently and does not become a coarse crystal.
  • the temperature rises locally and causes damage.
  • the nucleation time is not particularly limited as long as a sufficient amount of crystal nuclei is generated, and is appropriately selected, for example, between 1 and 5 hours.
  • the composition of the Li 2 O—Al 2 O 3 —SiO 2 -based white crystallized glass is the same as that of the previously described Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass. It is preferable to have.
  • the larger the alkali or alkaline earth component the higher the thermal expansion coefficient and dielectric loss. This is because alkali and alkaline earth components generally increase non-bridging oxygen in the glass. When these components are added, vibration of molecules due to thermal energy increases or ions move in the glass. This is thought to be easier to do. Therefore, the thermal expansion coefficient and dielectric loss can be reduced by reducing the content of alkali and alkaline earth components. However, although the details of the mechanism are unknown, the thermal expansion coefficient and the dielectric loss are likely to increase even if the content of alkali or alkaline earth component is too small.
  • alkali and alkaline earth components work as melting accelerating components, and by adding these components, there is also an effect that bubbles are less likely to remain in the glass.
  • As 2 O 3 or Sb 2 O 3 is not used as a fining agent, even if SnO 2 is added as an alternative fining agent, the number of bubbles in the glass tends to increase, so alkali or alkaline earth Great effect of adding ingredients.
  • the content of alkali or alkaline earth components particularly BaO, Na 2 O, K 2 O, which easily affects the above effects Is preferably adjusted.
  • BaO + 2.474Na 2 O + 1.628K 2 O is preferably 0.6 to 3.3, particularly preferably 1 to 3.2.
  • the coefficients of Na 2 O and K 2 O are for BaO mole conversion.
  • the thermal expansion coefficient of Li 2 O—Al 2 O 3 —SiO 2 based white crystallized glass is 15 ⁇ 10 ⁇ 7 / ° C. or less, particularly 14 ⁇ 10 ⁇ 7 / ° C. or less in the range of 30 to 750 ° C. Is preferred.
  • the lower limit of the coefficient of thermal expansion is not particularly limited, but in reality, it is 5 ⁇ 10 ⁇ 7 / ° C. or higher, particularly 10 ⁇ 10 ⁇ 7 / ° C. or higher.
  • the dielectric loss of the Li 2 O—Al 2 O 3 —SiO 2 based white crystallized glass is preferably 48 ⁇ 10 ⁇ 3 or less, particularly 47 ⁇ 10 ⁇ 3 or less at a frequency of 2.45 GHz. If the dielectric loss of Li 2 O—Al 2 O 3 —SiO 2 based white crystallized glass exceeds the above range, the temperature rises locally in applications that use electromagnetic waves such as shelf boards for microwave ovens, for example. Easily damaged.
  • the lower limit of the dielectric loss is not particularly limited, but in reality, it is 20 ⁇ 10 ⁇ 3 or more, particularly 30 ⁇ 10 ⁇ 3 or more at a frequency of 2.45 GHz.
  • the Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention may be subjected to post-processing such as cutting, polishing, bending, or painting on the surface.
  • each raw material was prepared in the form of an oxide, hydroxide, carbonate, nitrate, or the like so as to obtain a glass having the composition shown in Table 1, and mixed uniformly.
  • the obtained raw material batch was put into a refractory kiln by oxyfuel combustion, and melted under the conditions that the melting efficiency was 2.5 m 2 / (t / day) and the maximum temperature was 1680 ° C. After stirring the glass melt with a platinum stirrer, it was roll-formed to a thickness of 4 mm and further cooled to room temperature using a slow cooling furnace to obtain crystalline glass.
  • the crystalline glass was subjected to nucleation by heat treatment at 760 to 780 ° C. for 3 hours, and further subjected to heat treatment at 870 to 890 ° C. for 1 hour to cause crystallization.
  • the obtained crystallized glass was measured for color tone, transmittance, and thermal expansion coefficient.
  • the color tone of the transmitted light was determined by measuring the transmittance at a wavelength of 380 to 780 nm using a spectrophotometer system on a transparent crystallized glass plate that was optically polished on both sides to a thickness of 3 mm, and using the transmittance, CIE standard L * a * b * Evaluated by calculating values.
  • the transmittance was evaluated by the transmittance at a wavelength of 400 nm measured using a spectrophotometric system for a crystallized glass plate that was optically polished on both sides to 1.1 mm.
  • the thermal expansion coefficient was evaluated by an average linear thermal expansion coefficient measured in a temperature range of 30 to 380 ° C. using a glass sample processed into a solid bar of 50 mm ⁇ 5 mm ⁇ .
  • Example 8 Crystallized glass was produced in the same manner as in Example 1 except that melting was performed at a melting efficiency of 2 m 2 / (t / day) and a maximum temperature of 1820 ° C. When the b * value of the obtained crystallized glass was measured, it was found that it was about 1 larger than that of the crystallized glass of Example 1, and the coloration became stronger.
  • Tables 3 and 4 show Examples 9 to 14 and Comparative Examples 7 to 10.
  • each sample was produced as follows. First, each raw material was prepared in the form of oxide, hydroxide, carbonate, nitrate, etc. so as to obtain a glass having the composition shown in the table, and mixed uniformly to prepare a raw material batch. The raw material batch was put into a platinum crucible and melted at 1600 ° C. for 18 hours in an electric furnace, and then further melted at 1650 ° C. for 2 hours. Next, the molten glass poured out from the platinum crucible was roll-molded to a thickness of 5 mm, and then cooled to room temperature in a decooling furnace to obtain Li 2 O—Al 2 O 3 —SiO 2 based crystalline glass.
  • Li 2 O—Al 2 O 3 —SiO 2 white crystallized glass was evaluated for thermal expansion coefficient and dielectric loss.
  • the coefficient of thermal expansion is Li 2 O—Al 2 O 3 —SiO 2 based white crystallized glass processed into a solid rod of 50 mm ⁇ 5 mm ⁇ , and the average linear thermal expansion coefficient in the temperature range of 30 to 750 ° C. is measured as a dilatometer. It evaluated by measuring using.
  • Dielectric loss was determined by a cavity resonator (measurement frequency: 2.45 GHz, 25 ° C.).
  • the Li 2 O—Al 2 O 3 —SiO 2 white crystallized glass of Examples 9 to 14 has a low thermal expansion characteristic of 14 ⁇ 10 ⁇ 7 or less and 47 ⁇ 10 ⁇ It can be seen that the dielectric loss is as low as 3 or less.
  • the Li 2 O—Al 2 O 3 —SiO 2 white crystallized glass of Comparative Examples 7, 8, and 10 had a thermal expansion coefficient of 16 ⁇ 10 ⁇ 7 or more. Further, the Li 2 O—Al 2 O 3 —SiO 2 white crystallized glass of Comparative Examples 7 to 9 had a dielectric loss as large as 49 ⁇ 10 ⁇ 3 or more.
  • the Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass of the present invention is a front window for petroleum stoves, wood stoves, etc., high-tech product substrates such as color filters and image sensor substrates, electronic component firing setters, It is suitable for shelf boards for microwave ovens, top plates for electromagnetic cooking, window glass for fire doors, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

組成として質量%で、SiO 55~75%、Al 20.5~27%、LiO 2%以上、TiO 1.5~3%、TiO+ZrO 3.8~5%、SnO 0.1~0.5%を含有し、3.7≦LiO+0.741MgO+0.367ZnO≦4.5かつSrO+1.847CaO≦0.5の関係を満たすことを特徴とするLiO-Al-SiO系結晶化ガラス。

Description

Li2O-Al2O3-SiO2系結晶化ガラス
 本発明はLiO-Al-SiO系結晶化ガラスに関する。詳細には、例えば石油ストーブ、薪ストーブ等の前面窓等の耐熱用途に好適なLiO-Al-SiO系結晶化ガラスに関する。
従来より、石油ストーブ、薪ストーブ等の前面窓、カラーフィルターやイメージセンサー用基板等のハイテク製品用基板、電子部品焼成用セッター、電子レンジ用棚板、電磁調理用トッププレート、防火戸用窓ガラス等の材料として、LiO-Al-SiO系結晶化ガラスが用いられている。例えば特許文献1~3には、主結晶としてβ-石英固溶体(LiO・Al・nSiO[ただし4>n≧2])やβ-スポジュメン固溶体(LiO・Al・nSiO[ただしn≧4])等のLiO-Al-SiO系結晶を析出してなるLiO-Al-SiO系結晶化ガラスが開示されている。
LiO-Al-SiO系結晶化ガラスは、熱膨張係数が低く、機械的強度も高いため、優れた熱的特性を有している。また結晶化工程において熱処理条件を適宜調整することにより、析出結晶の種類を制御することが可能であり、透明な結晶化ガラス(β-石英固溶体が析出)を容易に作製することができる。
ところで、この種の結晶化ガラスを製造する場合、1400℃を超える高温で溶融する必要がある。このため、ガラスバッチに添加される清澄剤には、高温での溶融時に清澄ガスを多量に発生させることができるAsやSbが使用されている。しかしながら、AsやSbは毒性が強く、ガラスの製造工程や廃ガラスの処理時等に環境を汚染する可能性がある。
 そこで、AsやSbの代替清澄剤として、SnOやClが提案されている(例えば、特許文献4および5参照)。ただし、Clは、ガラス成形時に金型や金属ロールを腐食させやすく、結果として、ガラスの表面品位を劣化させるおそれがある。このような観点から、清澄剤としては、上記問題が生じないSnOを用いることが好ましい。
 特許文献4および5に記載されているように、SnOはFeやTiO等に起因する着色を強める作用を有するため、透明結晶化ガラスの黄色味が強くなり、外観上問題好ましくないという問題がある。そのため、SnOを用いる際は、不純物成分として混入するFeを低減させるとともに、ガラスバッチにおけるTiOも少なくすることが好ましい。しかしながら、TiOは結晶核成分であるため、TiOを少なくすると、最適焼成温度域が狭くなり、結晶核の生成量が少なくなりやすくなる。結晶核が少ない状態で結晶化が進むと、粗大結晶が多くなることから、結晶化ガラスが白濁して透明感を損ないやすいという問題がある。
 透明結晶化ガラスの着色を抑制するその他の方法として、FeやTiO等に起因する着色に対して補色の関係にある着色剤を添加して消色する方法がある。特に、LiO-Al-SiO系結晶化ガラスに対しては、Ndが消色に効果的であることが従来から知られている(例えば、特許文献6参照)。したがって、SnOを添加することにより黄色味が強くなった場合でも、Ndを添加することで消色することが可能である。
 なお、LiO-Al-SiO系結晶化ガラスの製造工程において、適切な熱処理条件で結晶化を行うことでβ-スポジュメン固溶体が析出した白色不透明の結晶化ガラスを得ることができる。
特公昭39-21049号公報 特公昭40-20182号公報 特開平1-308845号号公報 特開平11-228180号公報 特開平11-228181号公報 米国特許第4093468号公報
 透明結晶化ガラスにおいて、Ndによる消色は、言わば、黄色の着色に対して、Ndによる青色の着色を重ね合わせることにより無彩色にするという技術であるため、結果的に可視域の透過率は低下し、外観が黒ずんだように見え、透明感を損ないやすいという問題がある。
 また、β-スポジュメン固溶体が析出した白色結晶化ガラスにおいて、熱膨張係数や誘電損失が高くなりやすいという問題もあった。特に、結晶化ガラスの誘電損失が高くなると、例えば電子レンジの棚板等の電磁波を使用する用途の場合に、局部的に温度が高くなって破損の原因となる。
 したがって、本発明の目的は、As、Sbの代替清澄剤としてSnOを用いたLiO-Al-SiO系結晶化ガラスにおいて、FeやTiO等に起因する黄色の着色が少なく、かつ、優れた透明感を有する結晶化ガラスを得ることである。
 また、本発明の他の目的は、低熱膨張特性および低誘電損失特性を達成しやすい白色のLiO-Al-SiO系結晶化ガラスを得ることである。
 本発明者らは、TiOやFe等の成分による着色がSnOにより強められるメカニズムについて調査をした結果、結晶化ガラスにおける各成分の比率を特定の範囲に制限することにより、前記課題を解決することを見出し、本発明として提案するものである。
 すなわち、本発明は、組成として質量%で、SiO 55~75%、Al 20.5~27%、LiO 2%以上、TiO 1.5~3%、TiO+ZrO 3.8~5%、SnO 0.1~0.5%を含有し、3.7≦LiO+0.741MgO+0.367ZnO≦4.5かつSrO+1.847CaO≦0.5の関係を満たすことを特徴とするLiO-Al-SiO系結晶化ガラスに関する。
 本発明者らは、結晶化ガラスにおける残存ガラス相中のAl量が多くなるほど着色を低減できることを見出した。それには、結晶化前のガラス組成におけるAl量を多くすることが有効であり、具体的にはAl量を20.5%以上と多くすれば、SnOにより強められたTiOやFe等の成分による着色を低減できることを見出した。ただし、結晶化前のガラス組成についてある一定以上のAl量を超えると、超えた分のAlの多くは結晶化時に結晶相に分配されるため、残存ガラス相におけるAl量が増加しにくくなる。したがって、単純に結晶化前のガラス組成中のAl量を多くするだけでは、着色の低減には不十分である。
 そこで、その他成分についても種々調査したところ、LiO+0.741MgO+0.367ZnOを4.5以下と少なくすれば、結晶化ガラスにおける残存ガラス相中のAl量が多くなりやすく、着色を低減できることがわかった。これは、LiO、MgO、ZnOは、Alとともに結晶相に析出する傾向があるためで、これらの成分の量を少なくすることで、結晶相に分配されるAl量を低減し、ガラス相により多くのAlを分配させることが可能となるためと説明できる。なお、MgOとZnOの係数は、各成分の含有量をLiOモル換算にするためのものである。
 さらに、着色に関するその他の影響因子として、SrOとCaOも関係することがわかった。前記組成限定と併せて、SrO+1.847CaOを0.5以下と少なくすることにより、より着色の少ない結晶化ガラスを得ることができる。なお、CaOの係数はSrOモル換算にするためのものである。
 また、結晶の核形成剤であるTiOとZrOの含有量も厳密に制御する必要がある。既述の通り、TiO量が多いほど結晶核が多くなりやすく白濁が生じにくいが、一方で、着色が強くなるという問題がある。また、ZrOも多いほど結晶核が多くなりやすく白濁は生じにくいが、一方で、失透性が強くなり成形工程での製造に問題が生じるおそれがある。そこで、前記Al量やLiO+0.741MgO+0.367ZnO量等を考慮したうえで、適性なTiO量およびTiO+ZrO量の範囲を検討したところ、上記範囲であれば、所望の色調を有し、かつ白濁の低減した透明感の高い結晶化ガラスを得ることが可能となることがわかった。
 第二に、本発明のLiO-Al-SiO系結晶化ガラスは、外観が透明であることを特徴とする。
 本明細書において、外観が透明であるLiO-Al-SiO系結晶化ガラスを「LiO-Al-SiO系透明結晶化ガラス」ともいう。
 第三に、本発明のLiO-Al-SiO系結晶化ガラスは、主結晶としてβ-石英固溶体を含有することを特徴とする。
 第四に、本発明のLiO-Al-SiO系結晶化ガラスは、MgOを0.1%以上含有すること特徴とする。
 着色や白濁等の外観に関する特性以外の重要特性として熱膨張特性が挙げられる。耐熱用途で使用される場合には、破損のリスクを低減するため、熱膨張係数は極力0に近いことが好ましい。熱膨張係数と各成分の関係についても種々調査を行ったところ、前記組成範囲において、MgOを0.1%以上含むと、熱膨張係数が0に近づきやすくなることがわかった。
 第五に、本発明のLiO-Al-SiO系結晶化ガラスは、NdおよびCoOを実質的に含有しないことを特徴とする。
 着色剤であるNdおよびCoOを実質的に含有しないことにより、透明感に優れた結晶化ガラスを得ることが可能となる。なお、「NdおよびCoOを実質的に含有しない」とは、これらの成分を意図的に添加しないことを意味し、具体的には、Ndは100ppm以下、CoOは20ppm以下であることをいう。
 第六に、本発明のLiO-Al-SiO系結晶化ガラスは、Feを30~300ppm含有することを特徴とする。
 Feは不純物として混入しやすい着色成分であるが、上記範囲に制限することにより、Feに起因する着色を低減することが可能となる。
 第七に、本発明のLiO-Al-SiO系結晶化ガラスは、3mm厚での透過光の色調が、CIE規格のL表示のb値で4.5以下であることを特徴とする。
 第八に、本発明のLiO-Al-SiO系結晶化ガラスは、厚み1.1mm、波長400nmにおける透過率が82.5%以上であることを特徴とする。
 第九に、本発明のLiO-Al-SiO系結晶化ガラスは、30~380℃における熱膨張係数が、-2.5×10-7/℃~2.5×10-7/℃であることを特徴とする。
 第十に、本発明のLiO-Al-SiO系結晶化ガラスは、主結晶としてβ-スポジュメン固溶体を析出してなることを特徴とする。
 第十一に、本発明のLiO-Al-SiO系結晶化ガラスは、外観が白色であることを特徴とする。
 本明細書において、外観が白色であるLiO-Al-SiO系結晶化ガラスを「LiO-Al-SiO系白色結晶化ガラス」ともいう。
 第十二に、本発明のLiO-Al-SiO系結晶化ガラスは、0.6≦BaO+2.474NaO+1.628KO≦3.3の関係を満たすことを特徴とする。
 第十三に、本発明のLiO-Al-SiO系結晶化ガラスは、質量%で、BaO、NaOおよびKOをそれぞれ0.1%以上含有することを特徴とする。
 第十四に、本発明のLiO-Al-SiO系結晶化ガラスは、30~750℃での熱膨張係数が、15×10-7/℃以下であることを特徴とする。
 第十五に、本発明のLiO-Al-SiO系結晶化ガラスは、周波数2.45GHzでの誘電損失が48×10-3以下であることを特徴とする。
 第十六に、本発明は、前記いずれかのLiO-Al-SiO系結晶化ガラスの製造方法であって、最高温度1780℃未満かつ溶解効率1~6m/(t/day)の条件でガラス溶融を行う工程、溶融ガラスを所定の形状に成形して結晶性ガラスを得る工程、結晶性ガラスに熱処理を施すことにより結晶化させる工程、を含むことを特徴とするLiO-Al-SiO系結晶化ガラスの製造方法に関する。
 結晶化ガラスの着色の度合いは、ガラス組成以外にも溶融条件にも影響を受ける。特に、SnOを添加した場合、溶融ガラスが還元方向に向かうと着色が強まる傾向がある。これは、Sn4+よりもSn2+の方が着色に与える影響度が大きいためと考えられる。溶融ガラスを、なるべく還元方向に向かわないようにするためには、溶融温度を低くしたり、溶融時間を短くすることが好ましい。溶融時間は、溶融効率(溶融面積/流量)をその指標として採用することができる。そこで、溶融温度および溶融効率を上記範囲に制限することにより、溶融ガラスが還元方向に向かうことを抑制し、着色が低減された結晶化ガラスを得ることが可能となる。
 本発明のLiO-Al-SiO系結晶化ガラスは、組成として質量%で、SiO 55~75%、Al 20.5~27%、LiO 2%以上、TiO 1.5~3%、TiO+ZrO 3.8~5%、SnO 0.1~0.5%を含有し、3.7≦LiO+0.741MgO+0.367ZnO≦4.5かつSrO+1.847CaO≦0.5の関係を満たすことを特徴とする。
 以下、LiO-Al-SiO系透明結晶化ガラスの場合について、上記のように各成分の含有量を規定した理由を以下に説明する。なお、各成分の含有範囲の説明において、特に断りのない限り、「%」は「質量%」を示す。
 SiOはガラスの骨格を形成するとともに、LiO-Al-SiO系結晶を構成する成分である。SiOの含有量は55~75%、58~70%、特に60~68%であることが好ましい。SiOの含有量が55%より少なくなると、熱膨張係数が高くなる傾向にあり、耐熱衝撃性に優れた結晶化ガラスが得られにくくなる。また、化学的耐久性が低下する傾向にある。一方、SiOの含有量が75%より多くなると、ガラスの溶融性が悪化したり、ガラス融液の粘度が大きくなって、清澄しにくくなったりガラスの成形が困難となる傾向がある。
 Alはガラスの骨格を形成するとともに、LiO-Al-SiO系結晶を構成する成分である。また、既述の通り、結晶化ガラス中の残存ガラス相に存在することで、SnOによるTiOおよびFeの着色の強まりを低減することができる。Alの含有量は、20.5~27%、21~25%、特に21.5~23%であることが好ましい。Alの含有量が20.5%より少なくなると、熱膨張係数が高くなる傾向にあり、耐熱衝撃性に優れた結晶化ガラスが得られにくくなる。また、化学的耐久性が低下する傾向にある。さらに、SnOによるTiOおよびFeの着色の強まりを低減する効果が得られにくくなる。一方、Alの含有量が27%を超えると、ガラスの溶融性が悪化したり、ガラス融液の粘度が大きくなって、清澄しにくくなったりガラスの成形が難しくなる傾向がある。また、ムライトの結晶が析出してガラスが失透する傾向にあり、ガラスが破損しやすくなる。
 LiOはLiO-Al-SiO系結晶を構成する成分であり、結晶性に大きな影響を与えるとともに、ガラスの粘性を低下させて、ガラス溶融性および成形性を向上させる成分である。LiOの含有量は2%以上、特に2.5%以上であることが好ましい。LiOの含有量が2%より少なくなると、ムライトの結晶が析出してガラスが失透する傾向がある。また、ガラスを結晶化させる際に、LiO-Al-SiO系結晶が析出しにくくなり、耐熱衝撃性に優れた結晶化ガラスを得ることが困難になる。さらに、ガラスの溶融性が悪化したり、ガラス融液の粘度が大きくなって、清澄しにくくなったりガラスの成形が難しくなる傾向がある。一方、LiOの含有量が多すぎると、結晶性が強くなりすぎて、ガラスが失透する傾向にあり、ガラスが破損しやすくなる。よって、LiOの含有量は4.5%以下、特に4%以下であることが好ましい。
 TiOは結晶化工程で結晶を析出させるための核形成剤となる成分である。TiOの含有量は1.5~3%、1.6~2.5%、特に1.7~2.3%であることが好ましい。TiOの含有量が3%より多くなると、着色が強まる傾向がある。また、ガラスが失透する傾向にあり、破損しやすくなる。一方、TiOの含有量が1.5%より少なくなると、結晶核が十分に形成されず、粗大な結晶が析出して白濁したり、破損したりするおそれがある。
 本発明のLiO-Al-SiO系結晶化ガラスにおいて、LiO+0.741MgO+0.367ZnOは3.7~4.5、3.8~4.4、特に3.8~4.2の範囲を満たすことが好ましい。LiO+0.741MgO+0.367ZnOが4.5を超えると、結晶化ガラスにおけるガラス相中のAl量が低減し、Alによる着色抑制の効果が得られにくくなる。一方、LiO+0.741MgO+0.367ZnOが3.7未満になると、結晶化ガラスにおけるLiO-Al-SiO系結晶の粒子径が大きくなって、白濁が生じやすくなる。結果として、結晶化ガラスの透明感が損なわれてしまうおそれがある。
 なお、MgO、ZnOの各成分の含有量は、上記範囲を満たしていれば特に限定されないが、例えば下記の範囲に制限することが好ましい。
 MgOはLiO-Al-SiO系結晶に固溶し、LiO-Al-SiO系結晶の熱膨張係数を増加させる効果を有する成分である。MgOの含有量は0~2%、0.1~1.5%、0.1~1.3%、特に0.1~1.2%であることが好ましい。MgOの含有量が2%より多くなると、結晶性が強くなりすぎて失透する傾向にあり、ガラスが破損しやすくなる。
 ZnOはMgOと同様に、LiO-Al-SiO系結晶に固溶する成分である。ZnOの含有量は0~2%、0~1.5%、特に0.1~1.2%であることが好ましい。ZnOの含有量が2%より多くなると、結晶性が強くなりすぎるため、緩やかに冷却しながら成形するとガラスが失透する傾向にある。結果として、ガラスが破損しやすくなるため、例えばフロート法での成形が難しくなる。
 本発明のLiO-Al-SiO系結晶化ガラスにおいて、SrO+1.847CaOは0.5以下、0.4以下、特に0.2以下の範囲を満たすことが好ましい。SrO+1.847CaOが0.5を超えると、結晶化ガラスの着色の度合いが大きくなり、また白濁も生じやすくなる。
 なお、SrO、CaOの各成分の含有量は、上記範囲を満たしていれば特に限定されないが、例えば、SrOについては0.5%以下、特に0.3%以下、CaOについては0.2%以下、特に0.1%以下に制限することが好ましい。
 SnOは清澄剤として働く成分である。SnOの含有量は0.1~0.5%、0.1~0.4%、特に0.1~0.3%であることが好ましい。SnOの含有量が0.1%未満であると、清澄剤としての効果が得られにくくなる。一方、SnOの含有量が0.5%を超えると、TiOやFeの着色が強くなりすぎて、結晶化ガラスが黄色味を帯びやすくなる。また、失透しやすくなる。
 着色剤であるNdおよびCoOは、結晶化ガラスの透明度を低下させるため、実質的に含有しないことが好ましい。特に、CoOは着色能が非常に強く、微量であっても結晶化ガラスの色調を大きく変化させてしまう。したがって、本発明のLiO-Al-SiO系結晶化ガラスにおいて、着色剤であるNdおよびCoOは実質的に含有しないことが好ましい。これにより、透明感が高く、一定の色調を有するLiO-Al-SiO系透明結晶化ガラスを得ることが可能となる。また、Ndは希土類であるため原料コストが高くなりやすいが、Ndを実質的に使用しなければ、安価なLiO-Al-SiO系結晶化ガラスを提供しやすくなる。ただし、透明感の高さよりも着色の少なさを優先させる場合には、例えばNdを500ppm程度添加しても構わない。
 不純物成分として混入してくるFeについても含有量を制限すべきである。Feの含有量は300ppm以下、250ppm以下、特に200ppm以下であることが好ましい。Feについては少なければ少ないほど着色が少なくなるため好ましいが、例えば60ppmを下回るような範囲にするには高純度原料等を使用する必要があり、安価なLiO-Al-SiO系結晶化ガラスを提供することができなくなる。
 本発明のLiO-Al-SiO系透明結晶化ガラスにおいては、上記成分以外にも、下記の種々の成分を添加することが可能である。
 ZrOはTiOと同様に、結晶化工程で結晶を析出させるための核形成成分である。ZrOの含有量は0~3%、0.1~2.5%、特に0.5~2.3%であることが好ましい。ZrOの含有量が3%より多くなると、ガラスを溶融する際に失透する傾向にあり、ガラスの成形が難しくなる。
 なお本発明において、TiO+ZrOの含有量は3.8~5%に制限され、特に4~4.5%であることが好ましい。TiO+ZrOの含有量が上記範囲であれば、所望の色調を有し、かつ白濁の低減した透明感の高い結晶化ガラスを得ることが可能となる。
 Bはガラス溶融工程においてSiO原料の溶解を促進する成分である。Bの含有量は0~2%であることが好ましい。Bの含有量が2%を越えると、ガラスの耐熱性が損なわれる傾向がある。
 Pはガラスの分相を促進して結晶核の形成を助ける成分である。Pの含有量は0~3%、0.1~3%、特に1~2%であることが好ましい。Pの含有量が3%を超えると、溶融工程においてガラスが分相しやすくなり、所望の組成を有するガラスが得られにくくなるとともに、不透明となる傾向がある。
 また、ガラスの粘性を低下させて溶融性および成形性を向上させるために、NaO、KO、BaOを合量で0~2%、特に0.1~2%添加することが可能である。これらの成分の合量が2%を超えると、失透しやすくなる。
 なお上記成分のガラス原料としては、主要成分であるLiO、Al、SiOについては、炭酸リチウム、珪砂、珪石、酸化アルミニウム、水酸化アルミニウムが挙げられる。また、安価なLiO原料としてスポジュメンがあるが、一般的にFeが多く含まれていることが多いため使用量を制限して用いる必要がある。その他成分では、ZrO原料にはFeが混入しやすいものが多いため、Fe含有量が0.5%以下である珪酸ジルコニウムや高純度のZrOを用いることが好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、3mm厚での透過光の色調が、CIE規格のL表示のb値で4.5以下、特に4以下であることが好ましい。また、400nmの透過率が、1.1mm厚で82.5%以上、特に83%以上であることが好ましい。
 本発明のLiO-Al-SiO系結晶化ガラスは、耐熱用途で使用されるため、熱膨張係数は極力ゼロに近いことが好ましい。具体的には、30~380℃の温度範囲で-2.5×10-7/℃~2.5×10-7/℃、特に-1.5×10-7/℃~1.5×10-7/℃であることが好ましい。熱膨張係数が当該範囲を外れると、破損のリスクが高くなりやすい。
 本発明のLiO-Al-SiO系結晶化ガラスは、例えば、原料バッチに対し、最高温度1780℃未満かつ溶解効率1~6m/(t/day)の条件でガラス溶融を行う工程、溶融ガラスを所定の形状に成形して結晶性ガラスを得る工程、結晶性ガラスに熱処理を施すことにより結晶化させる工程、を含むことを特徴とするLiO-Al-SiO系透明結晶化ガラスの製造方法により作製することができる。
 ガラス溶融時の最高温度は1780℃未満、1750℃以下、特に1700℃以下であることが好ましい。ガラス溶融時の最高温度が1780℃以上であると、Sn成分が還元されやすくなり、着色が強まる傾向がある。ガラス溶融時の最高温度の下限は特に限定されないが、十分にガラス反応が進み、均一なガラスが得るため、1600℃以上、特に1650℃以上であることが好ましい。
 ガラスの溶解効率は1~6m/(t/day)、特に1.5~5m/(t/day)であることが好ましい。ガラスの溶解効率が1m/(t/day)未満であると、溶融時間が短くなり、結果として清澄の時間も短くなるため、泡品位に優れたガラスが得られにくくなる。一方、ガラスの溶解効率が6m/(t/day)を超えると、Sn成分が還元されやすくなり、着色が強まる傾向がある。
 溶融ガラスを所定の形状に成形することにより結晶性ガラスを得ることができる。ここで、成形方法は、目的とする形状に応じて、フロート法、プレス法、ロールアウト法等の種々の成形方法を適用することができる。
 このようにして作製した結晶性ガラスから、例えば以下のようにして結晶化ガラスを作製する。なお、本発明では、一種の結晶性ガラスに対して、熱処理温度(特に結晶成長段階における熱処理温度)を適宜変更することにより、所望の特性を有する透明結晶化ガラスと白色結晶化ガラスの両者を製造することも可能である。その場合、結晶化工程までの原料調製、溶融、成形等の各工程を一本化できるため、製造コストを抑えることができる。
 成形したLiO-Al-SiO系結晶性ガラスを、600~800℃で1~5時間熱処理して結晶核を形成させた後(結晶核生成段階)、さらに800~950℃で0.5~3時間熱処理を行い、主結晶としてLiO-Al-SiO系結晶を析出させることで(結晶成長段階)、LiO-Al-SiO系透明結晶化ガラスとすることができる。
 なお、結晶成長段階で、1000℃以上、特に1100℃以上の高温で熱処理を行うことにより、β-スポジュメン固溶体結晶を主結晶として析出してなる白色のLiO-Al-SiO系結晶化ガラスを得ることができる。ただし、結晶成長段階における熱処理温度が高すぎると、結晶の成長速度が速くなって粗大な結晶となりやすい。よって、上限は1150℃以下、特に1145℃以下であることが好ましい。なお、結晶成長段階における熱処理時間は、十分に結晶が成長し、かつ、粗大な結晶とならないように、例えば0.1~3時間の間で適宜選択される。
 また、析出する結晶が大きくなるほど、誘電損失が高くなって、例えば電子レンジの棚板等の電磁波を使用する用途の場合に、局部的に温度が高くなって破損の原因となる。結晶粒径を小さくするためには、結晶核生成段階において多くの核を形成させる熱処理条件を設定することが好ましい。具体的には、結晶核生成段階において700~820℃で熱処理することが好ましい。当該範囲より温度が低いと結晶核が生成しにくく、当該範囲より温度が高いと結晶の成長が始まってしまうおそれがある。核形成の時間は、十分な量の結晶核が生成されれば特に限定されず、例えば1~5時間の間で適宜選択される。
 LiO-Al-SiO系白色結晶化ガラスの組成は、特に断りがない限り、既述のLiO-Al-SiO系透明結晶化ガラスと同様の組成を有することが好ましい。
 LiO-Al-SiO系白色結晶化ガラスにおいて、アルカリやアルカリ土類成分が多いほど熱膨張係数や誘電損失が高くなりやすい。これは、一般的に、アルカリやアルカリ土類成分はガラス中の非架橋酸素を増加させるため、これらの成分を添加すると、ガラス中において、熱エネルギーによる分子の振動が大きくなったり、イオンが移動しやすくなったりするためであると考えられる。したがって、アルカリやアルカリ土類成分の含有量を少なくすることにより、熱膨張係数および誘電損失を低減することができる。ただし、メカニズムの詳細は不明であるが、アルカリやアルカリ土類成分の含有量が少なすぎても、熱膨張係数および誘電損失が高くなりやすい。
 加えて、アルカリやアルカリ土類成分は溶融促進成分として働き、これらの成分を添加することにより、ガラス中に気泡が残存しにくくなるという効果も奏する。特に、清澄剤としてAsやSbを使用しない場合は、たとえ代替清澄剤としてSnOを添加していたとしても、ガラス中の気泡が多くなりやすいため、アルカリやアルカリ土類成分を添加する効果が大きい。
 以上に鑑み、LiO-Al-SiO系白色結晶化ガラスにおいて、アルカリやアルカリ土類成分、特に、上記効果に影響を与えやすいBaO、NaO、KOの含有量を調整することが好ましい。具体的には、BaO+2.474NaO+1.628KOは0.6~3.3、特に1~3.2であることが好ましい。ここで、NaOおよびKOの係数はBaOモル換算するためのものである。
 なお、ガラス中におけるイオンの移動しやすさは、混合アルカリ効果によってさらに低減できることがわかった。そこで、BaO、NaOおよびKOの各成分を0.1%以上ずつ含有することにより、ガラス中におけるイオンの移動を抑制する効果がより一層得られやすくなり、低い熱膨張係数および誘電損失を達成しやすくなる。
 LiO-Al-SiO系白色結晶化ガラスの熱膨張係数は、30~750℃の範囲で15×10-7/℃以下、特に14×10-7/℃以下であることが好ましい。LiO-Al-SiO系白色結晶化ガラスの熱膨張係数が当該範囲を超えると、耐熱用途で使用した際に破損しやすくなる。なお、熱膨張係数の下限は特に限定されないが、現実的には5×10-7/℃以上、特に10×10-7/℃以上である。
 LiO-Al-SiO系白色結晶化ガラスの誘電損失は、周波数2.45GHzにおいて48×10-3以下、特に47×10-3以下であることが好ましい。LiO-Al-SiO系白色結晶化ガラスの誘電損失が当該範囲を超えると、例えば電子レンジの棚板等の電磁波を使用する用途の場合に、局所的に温度が高くなって破損しやすくなる。なお、誘電損失の下限は特に限定されないが、現実的には周波数2.45GHzにおいて20×10-3以上、特に30×10-3以上である。
 本発明のLiO-Al-SiO系結晶化ガラスは、切断、研磨、曲げ加工等の後加工を施したり、表面に絵付け等を施しても構わない。
 以下、実施例に基づいて本発明を説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例1~7および比較例1~6)
 まず表1に記載の組成を有するガラスとなるように、各原料を酸化物、水酸化物、炭酸塩、硝酸塩等の形態で調合し、均一に混合した。得られた原料バッチを酸素燃焼による耐火物窯に投入し、溶解効率2.5m/(t/day)、最高温度1680℃となる条件で溶融した。白金スターラーによりガラス融液を攪拌した後、4mmの厚さにロール成形し、さらに徐冷炉を用いて室温まで冷却することにより結晶性ガラスを得た。
 結晶性ガラスに対して、760~780℃で3時間熱処理して核形成を行った後、さらに870℃~890℃で1時間の熱処理を行い結晶化させた。得られた結晶化ガラスについて、色調、透過率、熱膨張係数を測定した。
 透過光の色調は、肉厚3mmに両面光学研磨した透明結晶化ガラス板について、分光光度系を用いて波長380~780nmの透過率を測定し、当該透過率からCIE規格のL値を算出することにより評価した。
 透過率は、1.1mmに両面光学研磨した結晶化ガラス板について、分光光度系を用いて測定した波長400nmでの透過率により評価した。
 熱膨張係数は、50mm×5mmΦの無垢棒に加工したガラス試料を用いて、30~380℃の温度域で測定した平均線熱膨張係数により評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、実施例の結晶化ガラスはいずれもb値が3.9以下と小さく、また透過率も83%以上と高いことがわかる。それに対して、比較例の結晶化ガラスは、b値が4.6以上と大きかった。また、比較例2、4、5の結晶化ガラスは、透過率も81%以下と低かった。
 (実施例8)
 溶解効率2m/(t/day)、最高温度1820℃で溶解を行った以外は、実施例1と同様にして結晶化ガラスを作製した。得られた結晶化ガラスのb値を測定したところ、実施例1の結晶化ガラスと比較して1程度大きくなり、着色が強くなることがわかった。
 (実施例9~14および比較例7~10)
 表3および4は実施例9~14および比較例7~10を示している。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 各試料は次のようにして作製した。まず表の組成を有するガラスとなるように、各原料を酸化物、水酸化物、炭酸塩、硝酸塩等の形態で調合して均一に混合し、原料バッチを調製した。原料バッチを白金坩堝に投入し、電気炉内にて1600℃で18時間溶融し、その後さらに1650℃で2時間溶融した。次いで、白金坩堝から流し出した溶融ガラスを5mmの厚さにロール成型した後、除冷炉内で室温まで冷却し、LiO-Al-SiO系結晶性ガラスを得た。
 得られたLiO-Al-SiO系結晶性ガラスを、790℃で100分間加熱して核生成した後、1130℃で30分間加熱して結晶成長させることにより、LiO-Al-SiO系白色結晶化ガラスを得た。
 得られたLiO-Al-SiO系白色結晶化ガラスについて、熱膨張係数、誘電損失を評価した。
 熱膨張係数は、LiO-Al-SiO系白色結晶化ガラスを50mm×5mmΦの無垢棒に加工し、30~750℃の温度域での平均線熱膨張係数をディラトメーターを用いて測定することにより評価した。
 誘電損失は空洞共振器(測定周波数2.45GHz、25℃)により求めた。
 表3および4から明らかなように、実施例9~14のLiO-Al-SiO系白色結晶化ガラスは、14×10-7以下と低い熱膨張特性および47×10-3以下という低い誘電損失を有していることがわかる。
 一方、比較例7、8、10のLiO-Al-SiO系白色結晶化ガラスは、熱膨張係数が16×10-7以上と大きくなった。また、比較例7~9のLiO-Al-SiO系白色結晶化ガラスは、誘電損失が49×10-3以上と大きくなった。
 本発明のLiO-Al-SiO系結晶化ガラスは、石油ストーブ、薪ストーブ等の前面窓、カラーフィルターやイメージセンサー用基板等のハイテク製品用基板、電子部品焼成用セッター、電子レンジ用棚板、電磁調理用トッププレート、防火戸用窓ガラス等に好適である。

Claims (16)

  1.  組成として質量%で、SiO 55~75%、Al 20.5~27%、LiO 2%以上、TiO 1.5~3%、TiO+ZrO 3.8~5%、SnO 0.1~0.5%を含有し、3.7≦LiO+0.741MgO+0.367ZnO≦4.5かつSrO+1.847CaO≦0.5の関係を満たすことを特徴とするLiO-Al-SiO系結晶化ガラス。
  2.  外観が透明であることを特徴とする請求項1に記載のLiO-Al-SiO系結晶化ガラス。
  3.  主結晶としてβ-石英固溶体を含有することを特徴とする請求項1または2に記載のLiO-Al-SiO系結晶化ガラス。
  4.  MgOを0.1%以上含有すること特徴とする請求項1~3のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  5.  NdおよびCoOを実質的に含有しないことを特徴とする請求項1~4のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  6.  Feを30~300ppm含有することを特徴とする請求項1~5のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  7.  3mm厚での透過光の色調が、CIE規格のL表示のb値で4.5以下であることを特徴とする請求項1~6のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  8.  厚み1.1mm、波長400nmにおける透過率が82.5%以上であることを特徴とする請求項1~7のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  9.  30~380℃における熱膨張係数が、-2.5×10-7/℃~2.5×10-7/℃であることを特徴とする請求項1~8のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  10.  主結晶としてβ-スポジュメン固溶体を含有することを特徴とする請求項1に記載のLiO-Al-SiO系結晶化ガラス。
  11.  外観が白色であることを特徴とする請求項1または10に記載のLiO-Al-SiO系結晶化ガラス。
  12.  0.6≦BaO+2.474NaO+1.628KO≦3.3の関係を満たすことを特徴とする請求項1、10および11のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  13.  質量%で、BaO、NaOおよびKOをそれぞれ0.1%以上含有することを特徴とする請求項1および10~12のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  14.  30~750℃での熱膨張係数が、15×10-7/℃以下であることを特徴とする請求項1および10~13のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  15.  周波数2.45GHzでの誘電損失が48×10-3以下であることを特徴とする請求項1および10~14のいずれかに記載のLiO-Al-SiO系結晶化ガラス。
  16.  請求項1~15のいずれかに記載のLiO-Al-SiO系結晶化ガラスの製造方法であって、最高温度1780℃未満かつ溶解効率1~6m/(t/day)の条件でガラス溶融を行う工程、溶融ガラスを所定の形状に成形して結晶性ガラスを得る工程、結晶性ガラスに熱処理を施すことにより結晶化させる工程、を含むことを特徴とするLiO-Al-SiO系結晶化ガラスの製造方法。
PCT/JP2011/067753 2010-08-11 2011-08-03 Li2O-Al2O3-SiO2系結晶化ガラス WO2012020678A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/816,005 US9126859B2 (en) 2010-08-11 2011-08-03 Li2O—Al2O3—SiO2—based crystallized glass
EP11816344.3A EP2604583B1 (en) 2010-08-11 2011-08-03 Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS
CN201180024017.5A CN102892725B (zh) 2010-08-11 2011-08-03 Li2O-Al2O3-SiO2系结晶化玻璃

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-180443 2010-08-11
JP2010180443 2010-08-11
JP2011-097770 2011-04-26
JP2011097770A JP6202775B2 (ja) 2010-08-11 2011-04-26 Li2O−Al2O3−SiO2系結晶化ガラス

Publications (1)

Publication Number Publication Date
WO2012020678A1 true WO2012020678A1 (ja) 2012-02-16

Family

ID=45567647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067753 WO2012020678A1 (ja) 2010-08-11 2011-08-03 Li2O-Al2O3-SiO2系結晶化ガラス

Country Status (5)

Country Link
US (1) US9126859B2 (ja)
EP (1) EP2604583B1 (ja)
JP (1) JP6202775B2 (ja)
CN (1) CN102892725B (ja)
WO (1) WO2012020678A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016193171A1 (en) 2015-05-29 2016-12-08 Eurokera Transparent, essentially colorless, tin-fined las glass-ceramics with improved microstructure and thermal expansion properties

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249221A (ja) * 2012-05-31 2013-12-12 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系結晶化ガラス及びその製造方法
WO2014055834A1 (en) * 2012-10-04 2014-04-10 Corning Incorporated Article with glass layer and glass-ceramic layer and method of making the article
CN110698059B (zh) 2012-10-04 2022-07-29 康宁股份有限公司 由光敏玻璃制成的压缩应力化层合玻璃制品及制备所述制品的方法
JP6451317B2 (ja) * 2013-02-21 2019-01-16 日本電気硝子株式会社 結晶化ガラス及びその製造方法
DE102013216736B9 (de) * 2013-08-22 2016-12-15 Schott Ag Verfahren zur Ermittlung eines Prozessfensters sowie Verfahren zur Herstellung einer Glaskeramik
US9701574B2 (en) * 2013-10-09 2017-07-11 Corning Incorporated Crack-resistant glass-ceramic articles and methods for making the same
JP6331322B2 (ja) * 2013-10-11 2018-05-30 日本電気硝子株式会社 Li2O−Al2O3−SiO2系結晶化ガラス
FR3025793B1 (fr) * 2014-09-12 2016-12-02 Eurokera Plaque en vitroceramique
CN105482366B (zh) * 2015-12-22 2018-01-05 广东生益科技股份有限公司 一种热固性树脂组合物以及含有它的预浸料、层压板和印制电路板
DE102016208300B3 (de) * 2016-05-13 2017-08-03 Schott Ag Kristallisierbares Lithiumaluminiumsilikat-Glas und daraus hergestellte transparente Glaskeramik sowie Verfahren zur Herstellung des Glases und der Glaskeramik und Verwendung der Glaskeramik
FR3069240B1 (fr) 2017-07-21 2021-04-23 Eurokera Vitroceramiques de spodumene-beta, blanches, opalescentes ou opaques, a faible teneur en titane, affinees a l'etain
JP7115479B2 (ja) * 2017-07-26 2022-08-09 Agc株式会社 結晶化ガラスおよび化学強化ガラス
JP7121348B2 (ja) * 2017-09-05 2022-08-18 日本電気硝子株式会社 Las系結晶性ガラス、las系結晶化ガラス及びそれらの製造方法
DE102018110855A1 (de) 2017-12-22 2018-06-28 Schott Ag Glaskeramik mit reduziertem Lithium-Gehalt
DE202018102534U1 (de) 2017-12-22 2018-05-15 Schott Ag Transparente, eingefärbte Lithiumaluminiumsilikat-Glaskeramik
KR102618611B1 (ko) 2018-07-16 2023-12-27 코닝 인코포레이티드 개선된 특성을 갖는 유리 세라믹 물품 및 이의 제조 방법
WO2020018285A1 (en) * 2018-07-16 2020-01-23 Corning Incorporated Methods of ceramming glass articles having improved warp
US11834363B2 (en) 2018-07-16 2023-12-05 Corning Incorporated Methods for ceramming glass with nucleation and growth density and viscosity changes
WO2020203308A1 (ja) * 2019-04-01 2020-10-08 日本電気硝子株式会社 Li2O-Al2O3-SiO2系結晶化ガラス
US20220081348A1 (en) * 2019-04-23 2022-03-17 Nippon Electric Glass Co., Ltd. Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS
CN110590165B (zh) * 2019-10-21 2022-07-29 成都光明光电有限责任公司 低膨胀微晶玻璃及其制造方法
WO2023244715A1 (en) * 2022-06-17 2023-12-21 Corning Incorporated Fusion formable glass composition and colored glass-based articles formed therefrom

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093468A (en) 1977-03-23 1978-06-06 Corning Glass Works Process to obtain transparent colorless and glass-ceramics so obtained
JPH01308845A (ja) 1988-06-07 1989-12-13 Nippon Electric Glass Co Ltd 燃焼装置窓用Li↓2O−A1↓2O↓3−SiO↓2系透明結晶化ガラス
JPH0420182B2 (ja) 1982-04-18 1992-03-31 Kiso Kasei Sangyo Kk
JPH11228180A (ja) 1998-02-19 1999-08-24 Nippon Electric Glass Co Ltd Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JPH11228181A (ja) 1998-02-19 1999-08-24 Nippon Electric Glass Co Ltd Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JP2001354446A (ja) * 2000-04-08 2001-12-25 Carl Zeiss:Fa 平板フロートガラス
JP2004523446A (ja) * 2000-08-24 2004-08-05 カール−ツアイス−スチフツング 酸化バナジウムを使用することにより暗色化された透明ガラスセラミック
JP2006001828A (ja) * 2004-05-18 2006-01-05 Nippon Electric Glass Co Ltd 結晶化ガラス
JP3921049B2 (ja) 1997-11-14 2007-05-30 森永乳業株式会社 寒天含有即席培地の製造法
JP2007197310A (ja) * 2005-12-28 2007-08-09 Nippon Electric Glass Co Ltd 結晶化ガラスおよびそれを用いた反射鏡基材並びに反射鏡
JP2008030978A (ja) * 2006-07-26 2008-02-14 Nippon Electric Glass Co Ltd ガラス基板熱処理用セッター
JP2010001206A (ja) * 2008-05-19 2010-01-07 Nippon Electric Glass Co Ltd 結晶性ガラス及びこれを結晶化させてなる結晶化ガラス
JP2010064900A (ja) * 2008-09-08 2010-03-25 Nippon Electric Glass Co Ltd Las系フロートガラス

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10017698B9 (de) 2000-04-08 2007-11-29 Schott Ag Reinigungsfreundlicher Glaskeramikkörper
JP2001316132A (ja) * 2000-05-02 2001-11-13 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系透明結晶化ガラス物品及びそれを用いた光通信用デバイス
JP2002154840A (ja) * 2000-11-16 2002-05-28 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系結晶化ガラス
JP2006199538A (ja) * 2005-01-20 2006-08-03 Huzhou Daikyo Hari Seihin Yugenkoshi Li2O−Al2O3−SiO2系結晶性ガラス及び結晶化ガラス並びにLi2O−Al2O3−SiO2系結晶化ガラスの製造方法。
KR100632001B1 (ko) * 2005-07-29 2006-10-09 삼성전기주식회사 저온 소결용 유리 조성물, 유리 프릿, 유전체 조성물 및이를 이용한 적층 세라믹 콘덴서
ATE396960T1 (de) 2006-03-20 2008-06-15 Schott Ag Optisch detektierbares floatbares arsen- und antimonfreies, keramisierbares lithium- aluminosilikat-glas
EP1837314B1 (de) * 2006-03-20 2009-08-12 Schott AG Transparente, farblose Lithium-Aluminosilikat-Glaskeramikplatte mit blickdichter, farbiger Unterseitenbeschichtung
FR2908130B1 (fr) 2006-11-07 2009-10-23 Snc Eurokera Soc En Nom Collec Flottage de vitroceramique
FR2909374B1 (fr) 2006-11-30 2016-11-25 Soc En Nom Collectif Dite : Eurokera Vitroceramiques de beta-quartz, transparentes et incolores, a faible teneur en tio2; articles en lesdites vitroceramiques ; verres precurseurs, procedes d'elaboration
FR2955574B1 (fr) * 2010-01-22 2014-08-08 Eurokera Vitroceramiques de beta-quartz ; articles en lesdites vitroceramiques ; procedes d'obtention ; verres precurseurs.
US8722554B2 (en) * 2010-08-03 2014-05-13 Eurokera Aluminosilicate glasses with improved fining behaviour

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093468A (en) 1977-03-23 1978-06-06 Corning Glass Works Process to obtain transparent colorless and glass-ceramics so obtained
JPH0420182B2 (ja) 1982-04-18 1992-03-31 Kiso Kasei Sangyo Kk
JPH01308845A (ja) 1988-06-07 1989-12-13 Nippon Electric Glass Co Ltd 燃焼装置窓用Li↓2O−A1↓2O↓3−SiO↓2系透明結晶化ガラス
JP3921049B2 (ja) 1997-11-14 2007-05-30 森永乳業株式会社 寒天含有即席培地の製造法
JPH11228180A (ja) 1998-02-19 1999-08-24 Nippon Electric Glass Co Ltd Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JPH11228181A (ja) 1998-02-19 1999-08-24 Nippon Electric Glass Co Ltd Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JP2001354446A (ja) * 2000-04-08 2001-12-25 Carl Zeiss:Fa 平板フロートガラス
JP2004523446A (ja) * 2000-08-24 2004-08-05 カール−ツアイス−スチフツング 酸化バナジウムを使用することにより暗色化された透明ガラスセラミック
JP2006001828A (ja) * 2004-05-18 2006-01-05 Nippon Electric Glass Co Ltd 結晶化ガラス
JP2007197310A (ja) * 2005-12-28 2007-08-09 Nippon Electric Glass Co Ltd 結晶化ガラスおよびそれを用いた反射鏡基材並びに反射鏡
JP2008030978A (ja) * 2006-07-26 2008-02-14 Nippon Electric Glass Co Ltd ガラス基板熱処理用セッター
JP2010001206A (ja) * 2008-05-19 2010-01-07 Nippon Electric Glass Co Ltd 結晶性ガラス及びこれを結晶化させてなる結晶化ガラス
JP2010064900A (ja) * 2008-09-08 2010-03-25 Nippon Electric Glass Co Ltd Las系フロートガラス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2604583A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016193171A1 (en) 2015-05-29 2016-12-08 Eurokera Transparent, essentially colorless, tin-fined las glass-ceramics with improved microstructure and thermal expansion properties
DE202016007247U1 (de) 2015-05-29 2016-12-21 Eurokera S.N.C. Transparente, im Wesentlichen farblose, Zinn-Geläuterte Las-Glaskeramik mit verbesserter Mikrostruktur und Wärmeausdehnungseigenschaften
US10961146B2 (en) 2015-05-29 2021-03-30 Eurokera Transparent, essentially colorless, tin-fined las glass-ceramics with improved microstructure and thermal expansion properties

Also Published As

Publication number Publication date
US9126859B2 (en) 2015-09-08
JP6202775B2 (ja) 2017-09-27
CN102892725A (zh) 2013-01-23
US20130130887A1 (en) 2013-05-23
EP2604583A4 (en) 2015-06-03
JP2012056829A (ja) 2012-03-22
CN102892725B (zh) 2015-11-25
EP2604583B1 (en) 2019-09-25
EP2604583A1 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP6202775B2 (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP6735704B2 (ja) 透明で無色の、チタニア含量の低いベータ・石英・ガラス・セラミック材料
JP6553129B2 (ja) 透明な色の薄いリチウムアルミニウムシリケートガラスセラミックおよびその使用
JP5848258B2 (ja) ベータ石英ガラスセラミックおよび関連する前駆体ガラス
EP2883846B1 (en) Li2o-al2o3-sio2-based crystallized glass and method for producing the same
JP5935304B2 (ja) 結晶化ガラス
JP2010510952A (ja) 透明、無色の、チタニアを含まない、ベータ・石英・ガラス・セラミック材料
JPH11228180A (ja) Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JP2018523624A (ja) 改良した微細構造および熱膨張性を有し透明で本質的に無色でスズで清澄化したlasガラスセラミック
WO2010090208A1 (ja) 結晶化ガラスおよびそれを用いた調理器用トッププレート
US20210403370A1 (en) Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS
WO2012066948A1 (ja) Li2O-Al2O3-SiO2系結晶性ガラスおよびそれを結晶化させてなるLi2O-Al2O3-SiO2系結晶化ガラス
JP6331322B2 (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP2013121890A (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP7121348B2 (ja) Las系結晶性ガラス、las系結晶化ガラス及びそれらの製造方法
JP6421795B2 (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP2016108201A (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP5645101B2 (ja) 調理器用トッププレート
JP2016108202A (ja) Li2O−Al2O3−SiO2系結晶化ガラス
Nakane et al. Li 2 O—Al 2 O 3—SiO 2—based crystallized glass
JP2015086110A (ja) Li2O−Al2O3−SiO2系結晶化ガラスの製造方法及びLi2O−Al2O3−SiO2系結晶化ガラス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024017.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011816344

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13816005

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE