WO2010090208A1 - 結晶化ガラスおよびそれを用いた調理器用トッププレート - Google Patents

結晶化ガラスおよびそれを用いた調理器用トッププレート Download PDF

Info

Publication number
WO2010090208A1
WO2010090208A1 PCT/JP2010/051490 JP2010051490W WO2010090208A1 WO 2010090208 A1 WO2010090208 A1 WO 2010090208A1 JP 2010051490 W JP2010051490 W JP 2010051490W WO 2010090208 A1 WO2010090208 A1 WO 2010090208A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
crystallized glass
less
transmittance
content
Prior art date
Application number
PCT/JP2010/051490
Other languages
English (en)
French (fr)
Inventor
泰 藤澤
慎護 中根
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010002757A external-priority patent/JP5645101B2/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to EP10738539.5A priority Critical patent/EP2394970A4/en
Priority to US13/147,400 priority patent/US20110283738A1/en
Priority to CN2010800056401A priority patent/CN102300824A/zh
Publication of WO2010090208A1 publication Critical patent/WO2010090208A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents

Definitions

  • This invention relates to the crystallized glass used for the top plate of the cooking appliance which uses IH (electromagnetic heating apparatus), a halogen heater, etc. as a heat source.
  • IH electromagnettic heating apparatus
  • a halogen heater etc.
  • the top plate used in cooking devices that use IH, halogen heaters, etc. as the heat source is not easily damaged (high mechanical strength and thermal shock resistance), beautiful in appearance, and hardly corroded (high chemical durability) ) And high transmittance of infrared rays, which are heat rays.
  • As a material satisfying such characteristics there is a low-expansion transparent crystallized glass whose main crystal is ⁇ -quartz solid solution (Li 2 O—Al 2 O 3 —nSiO 2 (n ⁇ 2)). It is used.
  • Low-expansion transparent crystallized glass is a compounding process in which various glass raw materials are mixed at a predetermined ratio, a melting process in which glass raw materials are melted at a high temperature of 1600 to 1900 ° C. to obtain a homogenized fluid, and various shapes are obtained by various methods It is manufactured through a molding process for molding, an annealing process for removing strain, and a crystallization process for precipitating fine crystals.
  • the crystallization step includes a nucleation step for precipitating microcrystals serving as crystal nuclei and a crystal growth step for growing crystals.
  • the low-expansion transparent crystallized glass produced in this way is generally transparent to visible light, when it is used as it is as a top plate, the internal structure of the cooker arranged below the top plate can be directly seen. It is inferior in appearance. Therefore, the crystallized glass itself is colored with a colorant such as V 2 O 5 (for example, see Patent Document 1), or a light shielding film is formed on the surface of the crystallized glass (for example, see Patent Document 2). Used in a state where the visible light is sufficiently shielded.
  • a colorant such as V 2 O 5
  • a light shielding film is formed on the surface of the crystallized glass
  • the crystallized glass described in Patent Document 3 has excellent infrared transmittance at the start of use, but has a problem that the infrared transmittance decreases as it is used for a long time.
  • the ability to maintain high infrared transmittance even after long-term use is important from the viewpoint of energy saving as well as cooking performance.
  • the present invention provides a crystallized glass having a sufficient visible light shielding performance, a high infrared transmittance, and whose properties are not impaired even after long-term use, and a top plate for a cooker using the same. It is a technical subject to do.
  • the present invention relates to a crystallized glass characterized by substantially not containing 2 O 3 and Sb 2 O 3 .
  • V 2 O 5 has a function as a colorant, and also has an effect of reducing infrared transmittance.
  • the content of V 2 O 5 is suppressed as low as 0.02 to 0.1% and the mixing ratio of SnO 2 and V 2 O 5 is V 2 O 5 / (SnO 2 + V 2 O 5 ). Is adjusted to be 0.2 to 0.4, and the content of TiO 2 is adjusted to be relatively high as 4 to 5.5%. It has become possible to increase the coloring efficiency of V 2 O 5 so that the internal structure of the cooking device can be shielded.
  • the crystallized glass of the present invention preferably has a Na 2 O content of 0.5% or less.
  • the crystallized glass of the present invention preferably further contains 0 to 2.3% of ZrO 2 .
  • the total amount of TiO 2 and ZrO 2 is preferably 4 to 6.5%.
  • the crystallized glass of the present invention preferably has a transmittance at a thickness of 3 mm of 35% or less at a wavelength of 700 nm and 85% or more at a wavelength of 1150 nm.
  • the transmittance of crystallized glass is measured using a sample whose surface is mirror-polished.
  • the inventors of the present invention have a decrease in visible light and infrared transmission performance due to long-term use, because crystallization has not progressed sufficiently, and crystallization further proceeds by further heating. It was determined that the cause was the change in the composition of the matrix glass phase. Then, it discovers that the said subject can be solved by performing heat processing so that crystallization fully advances, and proposes as 2nd this invention.
  • the method for producing crystallized glass of the present invention preferably further includes (4) a step of growing the crystal by heat-treating the precursor glass having crystal nuclei formed in a temperature range of 800 to 930 ° C. for at least 10 minutes. .
  • a step of growing the crystal by heat-treating the precursor glass having crystal nuclei formed in a temperature range of 800 to 930 ° C. for at least 10 minutes.
  • the crystallized glass produced by the method for producing crystallized glass of the present invention has an absorbance change rate of, for example, 20% or less at a wavelength of 700 nm after heat treatment at 900 ° C. for 50 hours.
  • the coloring mechanism of crystallized glass is as follows.
  • V ions are mainly present in a trivalent to pentavalent state, but it is estimated that coloring of the crystallized glass is caused by tetravalent V ions present in the matrix glass phase. Furthermore, it is known that when the tetravalent V ions are combined with TiO 2 present in the matrix glass phase, the degree of coloring is further increased (visible light transmittance is reduced). Thus, the coloring of crystallized glass is greatly influenced by the amount of tetravalent V ions and TiO 2 in the matrix glass phase.
  • V 2 O 5 and SnO 2 affects the degree of coloring.
  • crystallized glass of the present invention when used as a top plate for a cooker for a long period of time, crystallization further proceeds by heating during use.
  • the matrix glass composition changes, and in the matrix glass phase, the concentrations of tetravalent V ions and TiO 2 that do not contribute to the crystal composition are relatively increased.
  • the binding state of tetravalent V ions and TiO 2 changes, and the transmittance in the visible region and the infrared region changes.
  • the bond between tetravalent V ions and TiO 2 can be obtained even when the matrix glass composition changes due to long-term use.
  • the state hardly changes and the visible light transmittance hardly changes.
  • the crystallized glass of the present invention is a crystallized glass containing a ⁇ -quartz solid solution as a main crystal.
  • the ⁇ -quartz solid solution Li 2 O—Al 2 O 3
  • the ⁇ -quartz solid solution can be transformed from a ⁇ -quartz solid solution by heating due to long-term use. It has the property of causing crystal transition to -nSiO 2 (n ⁇ 4) and causing white turbidity.
  • nSiO 2 nSiO 2
  • white turbidity When white turbidity occurs in the crystallized glass, the appearance changes and the infrared transmittance decreases due to scattering.
  • 2 O 3 and Sb 2 O 3 are known to be components having a large effect of promoting crystal transition.
  • the crystallized glass of the present invention does not substantially contain As 2 O 3 and Sb 2 O 3 , the crystallized glass is characterized in that it hardly undergoes crystal transition and has a small change in transmittance in the visible region and infrared region due to long-term use.
  • V 2 O 5 is also known to have an effect of promoting crystal transition, and by limiting the content of V 2 O 5 to be small as in the first aspect of the present invention, The effect can be enhanced.
  • crystallized glass of the present invention does not substantially contain these components, it can reduce the environmental burden at the time of disposal.
  • “substantially does not contain” refers to a level in which these components are not intentionally added as raw materials but mixed as impurities contained in various glass raw materials. Specifically, the content is It means 0.1% or less.
  • SiO 2 forms a glass skeleton and is a component constituting a ⁇ -quartz solid solution.
  • the content of SiO 2 is 55 to 73%, preferably 60 to 71%, more preferably 63 to 70%.
  • the thermal expansion coefficient tends to increase, and it becomes difficult to obtain crystallized glass having excellent thermal shock resistance.
  • chemical durability tends to decrease.
  • the content of SiO 2 is increased, the meltability of the glass is lowered, or the viscosity of the glass melt is increased, so that it is difficult to form the glass.
  • Al 2 O 3 forms a glass skeleton and is a component constituting a ⁇ -quartz solid solution.
  • the content of Al 2 O 3 is 17 to 25%, preferably 17.5 to 24%, more preferably 18 to 22%.
  • the content of Al 2 O 3 decreases, the thermal expansion coefficient tends to increase, and it becomes difficult to obtain crystallized glass excellent in thermal shock resistance. In addition, chemical durability tends to decrease.
  • the content of Al 2 O 3 increases, the meltability of the glass decreases, the viscosity of the glass melt increases, and it tends to be difficult to form the glass. Further, the glass tends to be devitrified due to the precipitation of mullite crystals, and cracks are likely to occur in the glass from the devitrified portion, so that molding becomes difficult.
  • Li 2 O is a component that constitutes a ⁇ -quartz solid solution, has a great influence on crystallinity, and lowers the viscosity of the glass to improve the meltability and moldability.
  • the content of Li 2 O is 2 to 5%, preferably 2.3 to 4.7%, more preferably 2.5 to 4.5%.
  • the glass tends to be devitrified by mullite crystals, and cracks are likely to be generated in the glass from the devitrified portion, so that molding becomes difficult.
  • ⁇ -quartz solid solution crystals are difficult to precipitate, making it difficult to obtain crystallized glass having excellent thermal shock resistance.
  • the meltability of the glass tends to decrease or the viscosity of the glass melt tends to increase, making it difficult to mold the glass.
  • the content of Li 2 O increases, the crystallinity becomes too strong and coarse crystals are likely to precipitate in the crystallization process. As a result, it becomes cloudy and a transparent crystallized glass cannot be obtained or is easily damaged. It becomes difficult to form.
  • TiO 2 is a component constituting a crystal nucleus for precipitating a crystal in the crystallization step, and has an action of enhancing the coloration of tetravalent V ions.
  • the content of TiO 2 is 4 to 5.5%, preferably 4.1 to 5.3%, more preferably 4.2 to 5.1%.
  • the concentration of tetravalent V ions and TiO 2 in the glass matrix increases, and the bonding state of the two changes. (Especially, the color becomes darker).
  • SnO 2 is a component that enhances color development by increasing tetravalent V ions, which are coloring components.
  • the SnO 2 content is 0.05 to less than 0.2%, preferably 0.06 to 0.18%, more preferably 0.07 to 0.15%.
  • tetravalent V ions are not efficiently generated, so that the coloring effect is hardly increased.
  • the content of SnO 2 is increased, the glass tends to be devitrified when it is melted and molded, so that the molding becomes difficult.
  • the content of SnO 2 increases, the color tone tends to easily change due to slight differences in melting conditions and crystallization conditions even if the composition is the same.
  • V 2 O 5 is a coloring component.
  • the content of V 2 O 5 is 0.02 to 0.1%, preferably 0.02 to 0.05%.
  • the coloring becomes thin and the visible light cannot be sufficiently shielded.
  • the infrared transmittance tends to decrease.
  • the crystal transition from ⁇ -quartz solid solution to ⁇ -spodumene solid solution is likely to cause white turbidity.
  • the mixing ratio of V 2 O 5 and SnO 2 2 is such that V 2 O 5 / (SnO 2 + V 2 O 5 ) is 0.2 to 0.4, preferably 0.25 to 0.35, in terms of mass ratio. Even if the mixing ratio of V 2 O 5 and SnO 2 is larger or smaller than the above range, the amount of tetravalent V ions is reduced, so that it is difficult to obtain a high coloring effect.
  • MgO is a component that dissolves in ⁇ -quartz solid solution crystals instead of Li 2 O.
  • the content of MgO is 0 to 1.5%, preferably 0 to 1.4%, more preferably 0.1 to 1.2%.
  • the content of MgO is increased, the crystallinity becomes too strong and tends to devitrify, and as a result, the glass is easily broken and molding becomes difficult.
  • ZnO is a component that dissolves in ⁇ -quartz solid solution crystal in the same manner as MgO.
  • the content of ZnO is 0 to 1.5%, preferably 0 to 1.4%, more preferably 0.1 to 1.2%.
  • the crystallinity tends to be too strong. For this reason, if the glass is molded while being slowly cooled, the glass tends to devitrify and break, and thus, for example, it is not suitable for molding by the float process.
  • ZrO 2 is a component constituting a crystal nucleus for precipitating crystals in the crystallization step, like TiO 2 .
  • the content of ZrO 2 is 0 to 2.3%, preferably 0 to 2.1%, more preferably 0.1 to 1.8%.
  • the glass tends to be devitrified in the melting and forming process of the glass, making it difficult to form the glass.
  • P 2 O 5 is a component that promotes phase separation of glass. Since crystal nuclei are likely to be generated at the place where the glass is phase-separated, P 2 O 5 serves to assist the formation of crystal nuclei.
  • the content of P 2 O 5 is 0 to 2%, preferably 0.1 to 1%. When the content of P 2 O 5 increases, phase separation occurs in the melting step, so that it becomes difficult to obtain a glass having a desired composition and tends to be opaque.
  • the total amount of TiO 2 and ZrO 2 is 4 to 6.5%, preferably 4.5 to 6%.
  • the glass tends to be devitrified in the melting and forming process, and it becomes difficult to form the glass.
  • the total amount of these components is too small, crystal nuclei are not sufficiently formed, and the crystal is likely to be coarsened. As a result, it becomes difficult to obtain a crystallized glass that is cloudy and transparent.
  • Na 2 O is a component that lowers the viscosity of the glass and improves glass meltability and moldability.
  • the content of Na 2 O is 0.5% or less, preferably 0.3% or less, more preferably 0.2% or less.
  • the thermal expansion coefficient tends to be high, and it becomes difficult to obtain crystallized glass excellent in thermal shock resistance.
  • CaO, SrO, and BaO are components that cause devitrification when the glass is melted. Therefore, the total amount of these components is preferably 2% or less. Further, since CaO has an action of promoting crystal transition from ⁇ -quartz solid solution to ⁇ -spodumene solid solution, it is better to refrain from using it as much as possible.
  • SO 2 and Cl may be added alone or in combination as necessary.
  • the total amount of these components is desirably 0.5% or less.
  • 2 O 3 and Sb 2 O 3 are also clarifying components, but are components that are considered to have a large environmental load, and it is important that they are not substantially contained.
  • Colored transition metal elements not described above absorb infrared rays or lose the ability to reduce Sn ions. Since it may react with Sn ions and, as a result, the reaction between V ions and Sn ions may be hindered), it is preferably not contained as much as possible.
  • the crystallized glass of the present invention preferably has a transmittance at a wavelength of 700 nm of 35% or less, more preferably 30% or less at a thickness of 3 mm, thereby sufficiently shielding the internal structure of the cooker.
  • permeability in wavelength 700nm is 15% or more, 18% or more, and also 20% or more in 3 mm thickness.
  • the crystallized glass of the present invention preferably has a change rate of absorbance of 10% or less at a wavelength of 700 nm after heat treatment at 900 ° C. for 50 hours.
  • the rate of change in absorbance is calculated as follows.
  • Absorbance log 10 (transmittance (%) / 100)
  • Absorbance change rate (Absorbance after heat treatment ⁇ Absorbance before heat treatment) / Absorbance before heat treatment ⁇ 100 (%)
  • the crystallized glass of the present invention is preferably 3% thick and has a transmittance of 85% at a wavelength of 1150 nm, more preferably 86% or more, because it can efficiently transmit heat rays (infrared rays).
  • the amount of change in transmittance at a wavelength of 1150 nm after heat treatment at 900 ° C. for 50 hours as an accelerated test is 5% or less, 3% or less, 2% or less, 1.5%
  • the change in transmittance at a wavelength of 700 nm is preferably 5% or less, 3% or less, 2% or less, 1.5% or less, particularly preferably 1% or less.
  • the thermal expansion coefficient of the crystallized glass of the present invention in the temperature range of 30 to 750 ° C. is preferably ⁇ 10 to 30 ⁇ 10 ⁇ 7 / ° C., more preferably ⁇ 10 to 20 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient is a value measured with a dilatometer.
  • the crystallized glass of the present invention can be produced as follows.
  • various glass raw materials are prepared so as to have the above composition. If necessary, MgO and ZnO solid solution in the crystal by replacing a part of Li 2 O, components for improving the melting property and formability of the glass, may be added to fining agent.
  • the prepared glass raw material is melted at a temperature of 1600 to 1900 ° C. and then molded to obtain crystalline glass.
  • various molding methods such as a blow method, a press method, a roll-out method, and a float method can be applied.
  • heat treatment is performed at 700 to 800 ° C. for 10 minutes to 10 hours to form crystal nuclei, followed by heat treatment at 800 to 900 ° C. for 10 minutes to 10 hours to grow ⁇ -quartz solid solution crystals. To obtain crystallized glass.
  • the crystallized glass produced in this way may be subjected to post-processing such as cutting, polishing, bending, reheat pressing, etc., and the surface may be painted or filmed.
  • Tables 1 to 3 show Examples (Sample Nos. 1 to 7 and 12) and Comparative Examples (Sample Nos. 8 to 11, 13, and 14) of the first present invention.
  • Glass raw materials were prepared so as to have the compositions shown in Tables 1 to 3, and were melted at 1600 ° C. for 20 hours and further at 1700 ° C. for 4 hours using a platinum crucible. Two spacers having a thickness of 5 mm were placed on the carbon plate, and molten glass was poured out between the spacers, and leveled with a roller to form a plate shape.
  • the obtained plate-like sample was put into an electric furnace maintained at 700 ° C., held for 30 minutes, then turned off, and cooled to room temperature in the furnace over 10 hours.
  • the cooled sample was crystallized with an electric furnace to obtain crystallized glass.
  • the profile was such that nucleation was 770 ° C. for 3 hours and crystal growth was 880 ° C. for 1 hour.
  • Each crystallized glass was evaluated for transmittance and devitrification in the visible and infrared regions.
  • the transmittance was measured for 700 nm and 1150 nm using a spectrophotometer (V-760, manufactured by JASCO Corporation) by processing each crystallized glass into a 3 mm thick sample whose surfaces were mirror-polished.
  • the measurement conditions were a measurement range of 1500 to 380 nm and a scan speed of 200 nm / min.
  • permeability was similarly measured about the sample which performed the heat processing (acceleration test) for 50 hours at 900 degreeC.
  • Devitrification was evaluated by determining whether or not devitrification occurs in an electric furnace set at 1350 ° C. while holding each sample on a platinum foil for 24 hours. If no devitrification was confirmed, “ ⁇ ” was indicated. If devitrification was confirmed, “x” was indicated.
  • the sample No. Nos. 1 to 7 and 12 can sufficiently block light in the visible region and have high infrared transmittance, and it is understood that the transmittance change in the visible and infrared regions is small even in an acceleration test assuming long-term use. .
  • sample No. which is a comparative example. No. 8 had a large change width of transmittance in the visible and infrared regions after the acceleration test.
  • Sample No. which is a comparative example. 9 and 11 were not sufficiently low in transmittance in the visible region after crystallization.
  • sample No. In No. 9 devitrification was confirmed.
  • No. which is a comparative example. No. 10 was not sufficiently high in transmittance in the infrared region after crystallization, and devitrification was confirmed.
  • sample No. In 13 and 14 the change in transmittance (absorbance) before and after the heat treatment was large.
  • the raw material powder is prepared so as to have a composition containing 0.01 to 0.3%, V 2 O 5 0.02 to 0.2%, and substantially free of As 2 O 3 and Sb 2 O 3. .
  • the reason for limiting to the composition in this way will be described below.
  • TiO 2 is a component constituting a crystal nucleus for precipitating a crystal in the crystallization step, and has an action of enhancing the coloration of tetravalent V ions.
  • the content of TiO 2 is 2.6 to 5.5%, preferably 2.6 to 5%, more preferably 2.8 to 4.8%, and further preferably 3 to 4.5%. When the content of TiO 2 decreases, the amount remaining in the matrix glass phase without being used as crystal nuclei decreases, so that it is difficult to combine with tetravalent V ions, and the color development efficiency tends to be low.
  • SnO 2 is a component that enhances color development by increasing tetravalent V ions, which are coloring components.
  • the SnO 2 content is 0.01-0.3%, preferably 0.03-0.25%, more preferably 0.05-0.23%.
  • tetravalent V ions are not efficiently generated, so that the coloring effect is hardly increased.
  • the content of SnO 2 is increased, the glass tends to be devitrified when it is melted and molded, so that the molding becomes difficult. Further, even with the same composition, the color tone tends to change easily due to slight differences in melting conditions and crystallization conditions.
  • V 2 O 5 is a coloring component.
  • the content of V 2 O 5 is 0.02 to 0.2%, preferably 0.03 to 0.15%.
  • the coloring becomes thin and the visible light cannot be sufficiently shielded.
  • the infrared transmittance tends to decrease.
  • the crystal transition from ⁇ -quartz solid solution to ⁇ -spodumene solid solution is likely to cause white turbidity.
  • various components can be added as long as the required properties are not impaired.
  • MgO, ZnO, ZrO 2 , P 2 O 5 , Na 2 O, K 2 O, CaO, SrO, BaO, SO 2 , Cl are also the same for the same reason described in relation to the first invention described above. You may add in the range of content.
  • ZrO 2 is added, the total amount of TiO 2 and ZrO 2 is 3.8 to 6.5%, preferably 4.2 to 6%.
  • the glass tends to be devitrified in the melting and forming process, and it becomes difficult to form the glass.
  • the raw material powder prepared as described above is melted to obtain a crystalline precursor glass.
  • the melting temperature is not particularly limited, but is preferably 1600 to 1900 ° C., for example, in order to sufficiently promote vitrification.
  • molding methods such as a blow method, a press method, a rollout method, and a float method, are applicable.
  • the formed precursor glass is subjected to annealing as necessary.
  • the precursor glass is heat-treated at a temperature range of 765 to 785 ° C. for at least 10 minutes.
  • Crystal nuclei can be precipitated in the heat treatment step.
  • the temperature range of 765 to 785 ° C. is the range where nucleation is most likely to occur, and crystal nuclei can be sufficiently formed.
  • the heat treatment time is shorter than 10 minutes, the color immediately after crystallization is light and tends to cause white turbidity.
  • the upper limit of the heat treatment time is preferably 10 hours or less, 3 hours or less, particularly 2 hours or less.
  • the precursor glass on which crystal nuclei are formed is further subjected to heat treatment to cause crystal growth to obtain a desired crystallized glass.
  • the heat treatment is preferably performed at 800 to 930 ° C., preferably 850 to 920 ° C., more preferably 870 to 890 ° C. for at least 10 minutes in order to sufficiently promote crystallization.
  • the heat treatment time is shorter than 10 minutes, the color immediately after crystallization is light and tends to cause white turbidity.
  • the upper limit of the heat treatment time is preferably 10 hours or less, 3 hours or less, particularly 2 hours or less.
  • the crystallized glass obtained by the production method of the present invention has a thickness of 3 mm and a transmittance at a wavelength of 700 nm of 35% or less, more preferably 30% or less, thereby sufficiently shielding the internal structure of the cooker. It becomes possible.
  • the transmittance at a wavelength of 700 nm is 15% or more, and further 18% or more at a thickness of 3 mm. Thereby, when it uses for the top plate of a cooking appliance, it becomes possible to fully recognize the display by LED etc. through crystallized glass.
  • the crystallized glass of the present invention is preferably 3% thick and having a transmittance at a wavelength of 1150 nm of 85% or more, and more preferably 86% or more because it can efficiently transmit heat rays (infrared rays).
  • the crystallized glass of the present invention is 3 mm thick, and the change in transmittance at a wavelength of 1150 nm after heat treatment at 900 ° C. for 50 hours as an accelerated test is 5% or less, 3% or less, particularly 2% or less. Preferably there is.
  • the change in transmittance at a wavelength of 700 nm is preferably 5% or less, 3% or less, particularly 2% or less.
  • the crystallized glass of the present invention preferably has an absorbance change rate (calculated by the above-described calculation formula) at a wavelength of 700 nm after heat treatment at 900 ° C. for 50 hours of 20% or less, particularly preferably 10% or less.
  • the thermal expansion coefficient of the crystallized glass of the present invention in the temperature range of 30 to 750 ° C. is preferably ⁇ 10 to 30 ⁇ 10 ⁇ 7 / ° C., more preferably ⁇ 10 to 20 ⁇ 10 ⁇ 7 / ° C. When the thermal expansion coefficient is in this range, the glass has excellent thermal shock resistance.
  • the crystallized glass obtained by the production method of the present invention may be subjected to post-processing such as cutting, polishing, bending, reheat press or the like, and the surface may be painted or filmed.
  • the crystallized glass thus produced can be used as a top plate for IH cookers equipped with IH heaters, halogen heater cookers equipped with halogen heaters, gas cookers equipped with gas burners, and the like.
  • Tables 4 and 5 show Examples of the second invention (Sample Nos. 15 to 19) and Comparative Examples (Sample Nos. 20 to 23).
  • Glass raw materials were prepared so as to have the compositions shown in Tables 4 and 5, and melted at 1600 ° C. for 20 hours and further at 1700 ° C. for 4 hours using a platinum crucible. Two spacers having a thickness of 5 mm were placed on the carbon plate, molten glass was poured out between the spacers, and the plate was formed into a uniform thickness with a roller.
  • the obtained plate-like sample was put into an electric furnace maintained at 700 ° C., held for 30 minutes, then turned off, and cooled (annealed) to room temperature in the furnace over 10 hours.
  • Tables 4 and 5 show the heat treatment profile of each sample.
  • the rate of temperature increase from room temperature to the nucleation temperature is 15 ° C./min
  • the rate of temperature increase from the nucleation temperature to the crystal growth temperature is 10 ° C./min
  • the temperature decrease from the crystal growth temperature to room temperature is 80 ° C./min. did.
  • Each crystallized glass was evaluated for transmittance and devitrification in the visible and infrared regions.
  • the transmittance was measured for 700 nm and 1150 nm using a spectrophotometer (V-760, manufactured by JASCO Corporation) by processing each crystallized glass into a 3 mm thick sample whose surfaces were mirror-polished.
  • the measurement conditions were a measurement range of 1500 to 380 nm and a scan speed of 200 nm / min.
  • permeability was similarly measured about the sample which performed the heat processing (acceleration test) for 50 hours at 900 degreeC.
  • the rate of change in absorbance after the acceleration test was calculated according to the above formula.
  • Devitrification was evaluated by determining whether or not devitrification occurs in an electric furnace set at 1350 ° C. while holding each sample on a platinum foil for 24 hours. If no devitrification was confirmed, “ ⁇ ” was indicated. If devitrification was confirmed, “x” was indicated.
  • sample No. which is a comparative example The crystallized glass of 21 to 23 had a large absorbance change rate in the visible region after the acceleration test.
  • sample No. which is a comparative example The appearance of 20 crystallized glass was cloudy in appearance.
  • the crystallized glass of the present invention is suitable as a top plate for cooking appliances such as gas, IH and halogen heaters. It can also be used for observation windows and fireproof windows for observation in high-temperature furnaces where low-expansion crystallized glass with ⁇ -quartz solid solution as the main crystal has been used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

質量%で、SiO 55~73%、Al 17~25%、LiO 2~5%、TiO 4~5.5%、SnO 0.05~0.2%未満、V 0.02~0.1%、V/(SnO+V)が0.2~0.4である組成を含有し、AsおよびSbを実質的に含有しないことを特徴とする結晶化ガラス。

Description

結晶化ガラスおよびそれを用いた調理器用トッププレート
 本発明は、IH(電磁加熱装置)、ハロゲンヒータ等を熱源とする調理器のトッププレートに使用される結晶化ガラスに関する。
 IH、ハロゲンヒータ等を熱源とする調理器に用いられるトッププレートには、破損しにくい(機械的強度および耐熱衝撃性が高い)こと、外観が美しいこと、腐食しにくい(化学的耐久性が高い)こと、熱線である赤外線の透過率が高いことなどが要求される。このような特性を満たす材料として、β-石英固溶体(LiO-Al-nSiO(n≧2))を主結晶とする低膨張透明結晶化ガラスがあり、調理器用トッププレートとして用いられている。
 低膨張透明結晶化ガラスは、各種ガラス原料を所定割合で混合する調合工程、1600~1900℃の高温でガラス原料を溶融して均質化された流体とする溶融工程、各種方法により種々の形状に成形する成形工程、歪みを除去するアニール工程、微細な結晶を析出させる結晶化工程を経ることにより製造される。結晶化工程には、結晶の核となる微結晶を析出させる核形成の工程と、結晶を成長させる結晶成長工程を含む。
 このようにして製造された低膨張透明結晶化ガラスは、概して可視光に対して透明であるため、そのままトッププレートとして使用すると、当該トッププレート下方に配置されている調理器の内部構造が直接見えてしまい、外観性に劣る。そのため、Vなどの着色剤によって結晶化ガラス自体を着色したり(例えば、特許文献1参照)、結晶化ガラス表面に遮光膜を形成したり(例えば、特許文献2参照)して、可視光を充分遮蔽した状態で使用される。
 ところで、Vなどの着色剤によるガラスの着色は、清澄剤として使用されるAsやSbとの相互作用により生じる(強められる)と考えられている。ところが、AsやSbは環境負荷が大きいため、近年、その使用が制限されつつある。従来のガラス組成から単純にAsやSbを除外すると、着色剤による発色効率が低下する傾向がある。着色剤の量を増やすことで可視光遮蔽効果を向上させることも可能であるが、当該方法によると赤外線透過率が低下するという問題がある。
 一方、着色剤の発色効率を高める成分として、AsやSbに替えて、例えばSnO等を添加することが提案されている(例えば、特許文献3参照)。当該方法によれば、環境負荷が小さく、赤外線透過性および可視光遮蔽性に優れたトッププレートを得ることが可能となる。
特公平3-9056号公報 特開2003-68435号公報 特表2004-523446号公報
 特許文献3に記載の結晶化ガラスは、使用開始時には優れた赤外線透過性を有するが、長時間使用するにつれて、赤外線透過率が低下するという問題がある。長期間使用しても高赤外線透過率を維持可能であることは、調理性能の面からはもちろんのこと、省エネルギーの観点からも重要である。
 また、直接調理性能には影響しないが、長期の使用によって可視光線透過性も低下するため、加熱部分だけが変色しやすいという問題もある。
 したがって、本発明は、充分な可視光線の遮蔽性能を有するとともに、赤外線透過率が高く、しかも長時間使用してもその特性が損なわれにくい結晶化ガラスおよびそれを用いた調理器用トッププレートを提供することを技術課題とする。
 本発明者等は鋭意検討した結果、結晶化ガラス中のVとTiOの含有量、およびVとSnOとの混合割合などを特定の範囲に制限することにより、前記課題を解決できることを見出し、第1の本発明として提案するものである。
 すなわち、第1の本発明は、質量%で、SiO 55~73%、Al 17~25%、LiO 2~5%、TiO 4~5.5%、SnO 0.05~0.2%未満、V 0.02~0.1%、V/(SnO+V)が0.2~0.4である組成を含有し、AsおよびSbを実質的に含有しないことを特徴とする結晶化ガラスに関する。
 既述のように、Vは着色剤としての働きを有する一方で、赤外線透過率を低下させる作用も有する。本発明では、Vの含有量を0.02~0.1%と極力少なく抑えるとともに、SnOとVの混合割合をV/(SnO+V)が0.2~0.4となるように調整し、かつTiOの含有量を4~5.5%と比較的多くなるように調整した結果、高い赤外線透過率を有しながら、充分に調理器装置の内部構造を遮蔽できるようにVの発色効率を高めることが可能となった。
 本発明の結晶化ガラスは、NaOの含有量が0.5%以下であることが好ましい。
 本発明の結晶化ガラスは、さらに、ZrOを0~2.3%含有することが好ましい。
 本発明の結晶化ガラスは、TiOとZrOの合量が4~6.5%であることが好ましい。
 本発明の結晶化ガラスは、3mm厚での透過率が、波長700nmにおいて35%以下、かつ波長1150nmにおいて85%以上であることが好ましい。なお、本発明において,結晶化ガラスの透過率は、表面が鏡面研磨された試料を用いて測定したものをいう。
 また、本発明者等は鋭意検討した結果、長期間の使用によって可視光線や赤外線の透過性能が低下するのは、結晶化が充分に進行していないため、さらなる加熱によって結晶化がさらに進行し、マトリックスガラス相の組成が変化することが原因であると突き止めた。そこで、充分に結晶化が進行するように熱処理を行うことにより前記課題を解決できることを見出し、第2の本発明として提案するものである。
 すなわち、第2の本発明は、(1)質量%で、SiO 55~73%、Al 17~25%、LiO 2~5%、TiO 2.6~5.5%、SnO 0.01~0.3%、V 0.02~0.2%を含有し、AsおよびSbを実質的に含有しない組成となるように原料粉末を調合する工程、(2)原料粉末を溶融して前駆体ガラスを作製する工程、(3)前駆体ガラスを765~785℃の温度域で少なくとも10分間熱処理し結晶核を形成する工程、を含むことを特徴とする結晶化ガラスの製造方法に関する。
 上記組成を有する前駆体ガラスを結晶化させるにあたり、765~785℃の温度域で少なくとも10分間熱処理を行うことにより、結晶核を多数析出させることができる。その後、結晶成長させることにより、短時間で結晶化を充分に進行させることができる。そのため、本発明により作製された結晶化ガラスは、その後加熱に供されても結晶化がほとんど進行しない。結果として、加熱に伴うマトリックスガラス相の組成変化を抑制でき、可視領域および赤外領域における透過特性の経時変化を低減することができる。
 本発明の結晶化ガラスの製造方法は、さらに、(4)結晶核が形成された前駆体ガラスを800~930℃の温度域で少なくとも10分間熱処理して結晶を成長させる工程を含むことが好ましい。これにより、結晶化がさらに進行しやすくなり、可視領域および赤外領域における透過特性の経時変化をより一層低減することができる。
 本発明の結晶化ガラスの製造方法によって製造された結晶化ガラスは、例えば900℃で50時間熱処理した後の波長700nmにおける吸光度変化率が20%以下である。
 以上の本発明において、結晶化ガラスの着色メカニズムは以下の通りである。
 ガラス中において、Vイオンは主に3~5価の状態で存在するが、結晶化ガラスの着色は、マトリックスガラス相に存在する4価のVイオンに起因して生じると推定される。さらに、4価のVイオンがマトリックスガラス相に存在するTiOと結合すると、着色の程度がさらに強まる(可視光透過率が低下する)ことがわかっている。このように、結晶化ガラスの着色は、マトリックスガラス相における4価のVイオンとTiOの量に大きく影響される。
 一方で、Vイオンの価数は、Snの存在(特に、Snイオンの酸化還元作用)により変化することがわかっている。即ち、VとSnOの混合割合が着色の程度に影響を与えると考えられる。VとSnOの混合割合を適宜制限することにより、特に第1の本発明におけるVとSnOの混合割合の範囲に制限することにより、4価のVイオンの量が多くなり、Vの発色効果を最大限に引き出すことが可能となる。
 ところで、本発明の結晶化ガラスを、例えば調理器用トッププレートとして長期にわたって使用した場合、使用時の加熱により、結晶化がさらに進行する。結晶化が進行すると、マトリックスガラス組成が変化し、マトリックスガラス相において、結晶組成に寄与しない4価のVイオンおよびTiOの濃度が相対的に高まる。その結果、4価のVイオンとTiOの結合状態が変化し、可視領域および赤外領域における透過率が変化することになる。本発明の結晶化ガラスでは、4価のVイオンに対してTiOが過剰に存在しているため、長期使用によるマトリックスガラス組成の変化に対しても、4価のVイオンとTiOの結合状態が変化しにくく、可視光透過率が変化しにくい。
 なお、本発明の結晶化ガラスはβ-石英固溶体を主結晶として含有する結晶化ガラスであるが、長期使用による加熱により、β-石英固溶体からβ-スポジュメン固溶体(LiO-Al-nSiO(n≧4))へ結晶転移が起こり、白濁を生じる性質を有している。結晶化ガラスにおいて白濁が生じると、外観が変化するとともに、散乱により赤外線透過率が低下する。AsおよびSbは結晶転移を促進する作用が大きい成分であることが知られている。本発明の結晶化ガラスは、AsおよびSbを実質的に含有しないため、結晶転移しにくく、長期使用による可視領域および赤外領域の透過率変化が小さいという特徴を有する。また、Vも結晶転移を促進する作用を有することが知られており、第1の本発明のように、Vの含有量も少なくなるよう制限することにより、このような効果を高めることができる。
 また、AsやSbは環境負荷が大きいとされ、近年はその使用が制限されつつある。本発明の結晶化ガラスは、これらの成分を実質的に含有しないため、廃棄時における環境負荷を低減できる。なお、本発明における「実質的に含有しない」とは、意図してこれらの成分を原料として添加せず、各種ガラス原料に含まれる不純物として混入するレベルをいい、具体的には、含有量が0.1%以下であることを意味する。
 以下に、第1の本発明においてガラスの組成を上記のように限定した理由を述べる。
 SiOはガラスの骨格を形成するとともに、β-石英固溶体を構成する成分である。SiOの含有量は55~73%、好ましくは60~71%、より好ましくは63~70%である。SiOの含有量が少なくなると、熱膨張係数が高くなる傾向にあり、耐熱衝撃性に優れた結晶化ガラスが得られにくくなる。また、化学的耐久性が低下する傾向にある。一方、SiOの含有量が多くなると、ガラスの溶融性が低下したり、ガラス融液の粘度が大きくなったりして、ガラスの成形が困難になる傾向がある。
 Alはガラスの骨格を形成するとともに、β-石英固溶体を構成する成分である。Alの含有量は17~25%、好ましくは17.5~24%、より好ましくは18~22%である。Alの含有量が少なくなると、熱膨張係数が高くなる傾向にあり、耐熱衝撃性に優れた結晶化ガラスが得られにくくなる。また、化学的耐久性が低下する傾向にある。一方、Alの含有量が多くなると、ガラスの溶融性が低下したり、ガラス融液の粘度が大きくなったりして、ガラスの成形が困難になる傾向がある。また、ムライト結晶の析出によりガラスが失透する傾向があり、失透部位からガラスにクラックが発生しやすくなるため、成形が困難になる。
 LiOはβ-石英固溶体を構成する成分であり、結晶性に大きな影響を与えるとともに、ガラスの粘性を低下させて、溶融性および成形性を向上させる成分である。LiOの含有量は2~5%、好ましくは2.3~4.7%、より好ましくは2.5~4.5%である。LiOの含有量が少なくなると、ムライト結晶によってガラスが失透する傾向があり、失透部位からガラスにクラックが発生しやすくなるため、成形が困難になる。また、ガラスを結晶化させる際に、β-石英固溶体結晶が析出し難しくなり、耐熱衝撃性に優れた結晶化ガラスが得られにくくなる。さらに、ガラスの溶融性が低下したり、ガラス融液の粘度が高くなったりする傾向にあり、ガラスの成形が困難になる。一方、LiOの含有量が多くなると、結晶性が強くなりすぎて結晶化工程において粗大結晶が析出しやすく、その結果、白濁して透明な結晶化ガラスが得られなくなったり、破損しやすくなって成形が困難になる。
 TiOは結晶化工程で結晶を析出させるための結晶核を構成する成分であるとともに、4価のVイオンの発色を強める作用を有する。TiOの含有量は4~5.5%、好ましくは4.1~5.3%、より好ましくは4.2~5.1%である。TiOの含有量が少なくなると、結晶核として使用されずにマトリックスガラス相に残留する量が少なくなるため、4価のVイオンと結びつきにくく、発色効率が低くなる傾向がある。また、長期間の使用によって結晶化が進行すると、既述のように、ガラスマトリックス中における4価のVイオンとTiOの濃度が高まり、両者の結合状態が変化するため、着色の程度が不当に変化する(特に、色が濃くなる)傾向がある。さらに、充分な数の結晶核が形成されないため、個々の結晶核から成長する結晶の粒径が大きくなって(粗大結晶)、白濁して透明な結晶化ガラスが得られにくい。一方、TiOの含有量が多くなると、溶融工程から成形工程においてガラスが失透する傾向にあり、破損しやすくなるため成形が困難になる。
 SnOは着色成分である4価のVイオンを増加させて発色を強める成分である。SnOの含有量は0.05~0.2%未満、好ましくは0.06~0.18%、より好ましくは0.07~0.15%である。SnOの含有量が少なくなると、4価のVイオンが効率よく生成しないため発色効果が強まりにくい。SnOの含有量が多くなると、ガラスを溶融、成形する際に失透する傾向にあり、成形が困難になる。また、SnOの含有量が多くなると、同じ組成であっても溶融条件や結晶化条件のわずかな違いによって、色調が変化しやすくなる傾向がある。
 Vは着色成分である。Vの含有量は0.02~0.1%、好ましくは0.02~0.05%である。Vの含有量が少なくなると、着色が薄くなって可視光を充分に遮蔽できなくなる。一方、Vの含有量が多くなると、赤外線の透過率が低下する傾向がある。また、β-石英固溶体からβ-スポジュメン固溶体に結晶転移しやすくなり、白濁の原因となるおそれがある。
 VとSnO2の混合割合は質量比でV/(SnO+V)が0.2~0.4、好ましくは0.25~0.35である。VとSnOの混合割合が当該範囲より大きくなっても小さくなっても、4価のVイオンの量が少なくなるため高い発色効果が得られにくい。
 さらに、本発明の結晶化ガラスには、上記以外にも、要求される特性を損なわない範囲で種々の成分を添加することができる。
 MgOは、LiOの替わりにβ-石英固溶体結晶に固溶する成分である。MgOの含有量は0~1.5%、好ましくは0~1.4%、より好ましくは0.1~1.2%である。MgOの含有量が多くなると、結晶性が強くなりすぎて失透する傾向にあり、その結果、ガラスが破損しやすくなって成形が困難になる。
 ZnOは、MgOと同様にβ-石英固溶体結晶に固溶する成分である。ZnOの含有量は0~1.5%、好ましくは0~1.4%、より好ましくは0.1~1.2%である。ZnOの含有量が多くなると、結晶性が強くなりすぎる傾向がある。そのため、緩やかに冷却しながら成形すると、ガラスが失透して破損しやすくなるため、例えばフロート法での成形に不向きとなる。
 ZrOは、TiOと同様に結晶化工程で結晶を析出させるための結晶核を構成する成分である。ZrOの含有量は0~2.3%、好ましくは0~2.1%、より好ましくは0.1~1.8%である。ZrOの含有量が多くなると、ガラスの溶融および成形工程において失透する傾向にあり、ガラスの成形が困難になる。
 Pはガラスの分相を促進する成分である。結晶核はガラスが分相する場所に生じやすいことから、Pは結晶核の形成を助ける働きをする。Pの含有量は0~2%、好ましくは0.1~1%である。Pの含有量が多くなると、溶融工程において分相するため、所望の組成を有するガラスが得られにくくなるとともに、不透明となる傾向がある。
 TiOとZrOの合量は4~6.5%、好ましくは4.5~6%である。これらの成分の合量が多くなると、ガラスの溶融および成形工程において失透する傾向にあり、ガラスの成形が困難になる。一方、これらの成分の合量が少なすぎる場合、結晶核が充分に形成されないため、結晶が粗大化しやすく、結果として、白濁して透明な結晶化ガラスが得られにくくなる。
 NaOはガラスの粘性を低下させて、ガラス溶融性および成形性を向上させる成分である。NaOの含有量は0.5%以下、好ましくは0.3%以下、より好ましくは0.2%以下である。NaOの含有量が多すぎると、β-石英固溶体からβ-スポジュメン固溶体への結晶転移が促進されるため、結晶の粗大化による白濁が発生しやすい。また、熱膨張係数が高くなる傾向にあり、耐熱衝撃性に優れた結晶化ガラスが得られにくくなる。
 ガラスの粘性を低下させて、溶融性および成形性を向上させるために、KO、CaO、SrOおよびBaOを合量で5%まで添加することが可能である。なお、CaO、SrOおよびBaOは、ガラスを溶融する際に、失透を引き起こす成分でもあるため、これら成分は合量で2%以下とすることが望ましい。また、CaOはβ-石英固溶体からβ-スポジュメン固溶体への結晶転移を促進する作用を有するためなるべく使用を控えたほうがよい。
 清澄剤として、SOやClを必要に応じて単独でまたは組み合わせて添加してもよい。これらの成分の合量は0.5%以下とすることが望ましい。AsおよびSbも清澄剤成分であるが、環境負荷が大きいとされる成分であるため、実質的に含有しないことが重要である。
 上記しなかった有色遷移金属元素(例えばCr、Mn、Fe、Co、Ni、Cu、Mo、Cd等)は、赤外線を吸収したり、Snイオンの還元能が失われる(当該有色遷移金属元素がSnイオンと反応し、結果としてVイオンとSnイオンの反応が阻害される)おそれがあるため、できる限り含有しないことが好ましい。
 本発明の結晶化ガラスは、3mm厚において波長700nmにおける透過率が35%以下、さらには30%以下であることが好ましく、それにより調理器の内部構造を充分に遮蔽することが可能となる。一方で、LED等を用いて温度や火力などを表示する場合は、3mm厚において波長700nmにおける透過率が15%以上、18%以上、さらには20%以上であることが好ましい。それにより、IH等の調理器のトッププレートに用いた場合、LED等による表示を結晶化ガラスを介して充分に認識することが可能となる。
 また別の指標として、本発明の結晶化ガラスは、900℃、50時間の熱処理後に波長700nmにおける吸光度の変化率が10%以下であることが好ましい。吸光度の変化率は以下のようにして算出される。
  吸光度=log10(透過率(%)/100)
  吸光度変化率=(熱処理後の吸光度-熱処理前の吸光度)/熱処理前の吸光度×100(%)
 また、本発明の結晶化ガラスは、3mm厚において波長1150nmにおける透過率が85%、さらには86%以上であると熱線(赤外線)を効率的に透過できるため好ましい。
 なお、調理器用トッププレートのような用途に長期間使用しても、高い赤外線透過能が損なわれず、さらには、可視光透過率も変化しにくいことが好ましい。具体的には、本発明の結晶化ガラスは、加速試験として900℃で50時間熱処理した後の波長1150nmにおける透過率の変化量が5%以下、3%以下、2%以下、1.5%以下、特に1%以下であることが好ましい。また、上記加速試験において、波長700nmにおける透過率の変化量が5%以下、3%以下、2%以下、1.5%以下、特に1%以下であることが好ましい。
 本発明の結晶化ガラスの30~750℃の温度範囲での熱膨張係数は、好ましくは-10~30×10-7/℃、より好ましくは-10~20×10-7/℃である。熱膨張係数が当該範囲にあると、耐熱衝撃性に優れたガラスとなる。なお、本発明において、熱膨張係数はディラトメーターにより測定した値をいう。
 本発明の結晶化ガラスは、以下のようにして製造することができる。
 まず、上記組成となるように各種ガラス原料を調合する。必要に応じて、LiOの一部と置換して結晶に固溶するMgOやZnO、ガラスの溶融性および成形性を向上させるための成分、清澄剤等を添加してもよい。
 次に、調合したガラス原料を1600~1900℃の温度で溶融した後、成形し、結晶性ガラスを得る。なお、成形方法としては、ブロー法、プレス法、ロールアウト法、フロート法等の様々な成形方法を適用可能である。
 結晶性ガラスをアニールした後、700~800℃で10分~10時間熱処理を行い結晶核を形成させ、続いて800~900℃で10分~10時間熱処理を行いβ-石英固溶体結晶を成長させて結晶化ガラスを得る。
 このようにして製造された結晶化ガラスは、切断、研磨、曲げ加工、リヒートプレス等の後加工を施してもよく、表面に絵付けや膜付け等を施してもよい。
 表1~3は第1の本発明の実施例(試料No.1~7、12)および比較例(試料No.8~11、13、14)を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3に記載の組成となるようにガラス原料を調合し、白金坩堝を用いて1600℃で20時間、さらに1700℃で4時間溶融した。カーボン板の上に5mm厚の2本のスペーサーを載置し、スペーサーの間に溶融ガラスを流し出すとともにローラーで均して板状に成形した。
 得られた板状試料を700℃に保持した電気炉に投入し、30分保持してから電源を落として10時間以上かけて炉内で室温まで冷却した。
 次いで、冷却後の試料を電気炉で結晶化し、結晶化ガラスを得た。プロファイルは、核形成が770℃で3時間、結晶成長が880℃で1時間とした。
 各結晶化ガラスについて、可視および赤外領域における透過率、失透性について評価した。
 透過率は、各結晶化ガラスを、両面を鏡面研磨した3mm厚の試料に加工し、分光光度計(日本分光株式会社製 V-760)を用いて700nmおよび1150nmについて測定した。測定条件は、測定範囲1500~380nm、スキャンスピード200nm/分とした。また、900℃で50時間の熱処理(加速試験)を行なった試料についても同様に透過率を測定した。
 失透性は、1350℃に設定した電気炉内にて、白金箔の上に各試料を載置した状態で24時間保持し、失透が生じるか否かで評価した。失透が確認されなければ「○」、失透が確認された場合は「×」とした。
 表1~3から明らかなように、実施例である試料No.1~7、12は、可視領域の光を充分に遮蔽できるとともに高い赤外線透過率を有し、長期間にわたる使用を想定した加速試験においても可視および赤外領域における透過率変化が小さいことがわかる。
 一方、比較例である試料No.8は、加速試験後の可視および赤外領域における透過率の変化幅が大きかった。比較例である試料No.9および11は、結晶化後の可視領域における透過率が充分に低くなかった。また、比較例である試料No.9では失透が確認された。比較例であるNo.10は結晶化後の赤外領域における透過率が充分に高くないとともに、失透が確認された。また、比較例である試料No.13および14は、熱処理前後での透過率(吸光度)の変化が大きかった。
 つぎに、第2の本発明について説明する。
 本発明の製造方法では、まず、質量%で、SiO 55~73%、Al 17~25%、LiO 2~5%、TiO 2.6~5.5%、SnO 0.01~0.3%、V 0.02~0.2%を含有し、AsおよびSbを実質的に含有しない組成となるように原料粉末を調合する。このように組成に限定した理由を以下に説明する。
 SiO、Al、LiOについて、含有量の限定理由および好ましい含有量の範囲は、上述した第1の本発明と同じであるので、説明を省略する。
 TiOは結晶化工程で結晶を析出させるための結晶核を構成する成分であるとともに、4価のVイオンの発色を強める作用を有する。TiOの含有量は2.6~5.5%、好ましくは2.6~5%、より好ましくは2.8~4.8%、さらに好ましくは3~4.5%である。TiOの含有量が少なくなると、結晶核として使用されずにマトリックスガラス相に残留する量が少なくなるため、4価のVイオンと結びつきにくく、発色効率が低くなる傾向がある。また、長期間の使用によって結晶化が進行すると、既述のように、ガラスマトリックス中における4価のVイオンとTiOの濃度が高まり、両者の結合状態が変化するため、着色の程度が不当に変化する(特に、色が濃くなる)傾向がある。さらに、充分な数の結晶核が形成されないため、個々の結晶核から成長する結晶の粒径が大きくなって(粗大結晶)、白濁して透明な結晶化ガラスが得られにくい。一方、TiOの含有量が多くなると、溶融工程から成形工程においてガラスが失透する傾向にあり、破損しやすくなるため成形が困難になる。
 SnOは着色成分である4価のVイオンを増加させて発色を強める成分である。SnOの含有量は0.01~0.3%、好ましくは0.03~0.25%、より好ましくは0.05~0.23%である。SnOの含有量が少なくなると、4価のVイオンが効率よく生成しないため発色効果が強まりにくい。SnOの含有量が多くなると、ガラスを溶融、成形する際に失透する傾向にあり、成形が困難になる。また、同じ組成であっても溶融条件や結晶化条件のわずかな違いによって、色調が変化しやすくなる傾向がある。
 Vは着色成分である。Vの含有量は0.02~0.2%、好ましくは0.03~0.15%である。Vの含有量が少なくなると、着色が薄くなって可視光を充分に遮蔽できなくなる。一方、Vの含有量が多くなると、赤外線の透過率が低下する傾向がある。また、β-石英固溶体からβ-スポジュメン固溶体に結晶転移しやすくなり、白濁の原因となるおそれがある。
 As2O3とSb2O3は既述の理由から実質的に含有しない。
 さらに、上記以外にも、要求される特性を損なわない範囲で種々の成分を添加することができる。例えば、MgO、ZnO、ZrO、P、NaO、KO、CaO、SrO、BaO、SO、Clを、上述した第1の本発明に関して説明した同じ理由で、また同じ含有量の範囲で添加しても良い。尚、ZrOを添加する場合、TiOとZrOの合量は3.8~6.5%、好ましくは4.2~6%にするのが良い。これらの成分の合量が多くなると、ガラスの溶融および成形工程において失透する傾向にあり、ガラスの成形が困難になる。一方、これらの成分の合量が少なすぎる場合、結晶核が充分に形成されないため、結晶が粗大化しやすく、結果として、白濁して透明な結晶化ガラスが得られにくくなる。また、有色遷移金属元素(例えばCr、Mn、Fe、Co、Ni、Cu、Mo、Cd等)は、既述の理由からできる限り含有しないことが好ましい。
 以上のようにして調合した原料粉末を溶融して結晶性の前駆体ガラスを得る。溶融温度は特に限定されないが、充分にガラス化を進行させるため、例えば1600~1900℃であることが好ましい。なお、溶融ガラスの成形方法としては、ブロー法、プレス法、ロールアウト法、フロート法等の様々な成形方法を適用可能である。成形された前駆体ガラスは、必要に応じてアニールに供される。
 次に、前駆体ガラスに対し、765~785℃の温度域で少なくとも10分間熱処理を行う。当該熱処理工程で結晶核を析出させることができる。熱処理温度が当該範囲を外れると十分な数の結晶核が形成されにくくなる。765~785℃の温度域が最も核形成しやすい範囲であり、結晶核を充分に形成することができる。ただし、熱処理時間が10分より短いと結晶化直後の色が薄く、白濁が生じやすい傾向にある。一方、熱処理時間が長くすぎても、形成される結晶核の量は多くなりにくく、むしろ生産性やエネルギー面で不利である。そのため、熱処理時間の上限は10時間以下、3時間以下、特に2時間以下が好ましい。
 結晶核が形成された前駆体ガラスに対し、さらに熱処理を施すことにより結晶成長させ、所望の結晶化ガラスが得られる。ここで、熱処理は、充分に結晶化を促進させるため、800~930℃、好ましくは850~920℃、より好ましくは870~890℃で少なくとも10分間行うことが好ましい。熱処理時間が10分より短いと結晶化直後の色が薄く、白濁が生じやすい傾向にある。一方、熱処理時間が長すぎても、形成される結晶核の量は多くなりにくく、むしろ生産性やエネルギー面で不利である。そのため、熱処理時間の上限は10時間以下、3時間以下、特に2時間以下が好ましい。
 本発明の製造方法により得られた結晶化ガラスは、3mm厚において波長700nmにおける透過率が35%以下、さらには30%以下であることが好ましく、それにより調理器の内部構造を充分に遮蔽することが可能となる。一方で、LED等を用いて温度や火力などを表示する場合は、3mm厚において波長700nmにおける透過率が15%以上、さらには18%以上であることが望ましい。それにより、調理器のトッププレートに用いた場合、LED等による表示を結晶化ガラスを介して充分に認識することが可能となる。
 また、本発明の結晶化ガラスは、3mm厚において波長1150nmにおける透過率が85%以上、さらには86%以上であると熱線(赤外線)を効率的に透過できるため好ましい。
 なお、調理器用トッププレートのような用途に長期間使用しても、高い赤外線透過能が損なわれず、さらには、可視光透過率も変化しにくいことが好ましい。具体的には、本発明の結晶化ガラスは3mm厚で、加速試験として900℃で50時間熱処理した後の波長1150nmにおける透過率の変化量が5%以下、3%以下、特に2%以下であることが好ましい。また、上記加速試験において、波長700nmにおける透過率の変化量が5%以下、3%以下、特に2%以下であることが好ましい。
 また、本発明の結晶化ガラスは、900℃で50時間熱処理した後の波長700nmにおける吸光度変化率(既述した計算式で算出)が20%以下、特に10%以下であることが好ましい。
 本発明の結晶化ガラスの30~750℃の温度範囲での熱膨張係数は、好ましくは-10~30×10-7/℃、より好ましくは-10~20×10-7/℃である。熱膨張係数が当該範囲にあると、耐熱衝撃性に優れたガラスとなる。
 本発明の製造方法により得られた結晶化ガラスは、切断、研磨、曲げ加工、リヒートプレス等の後加工を施してもよく、表面に絵付けや膜付け等を施してもよい。
 このように作製された結晶化ガラスは、IHヒータを備えたIH調理器、ハロゲンヒータを備えたハロゲンヒータ調理器、ガスバーナーを備えたガス調理器等のトッププレートとして使用可能である。
 表4、5は第2の本発明の実施例(試料No.15~19)および比較例(試料No.20~23)を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4および5に記載の組成となるようにガラス原料を調合し、白金坩堝を用いて1600℃で20時間、さらに1700℃で4時間溶融した。カーボン板の上に5mm厚の2本のスペーサーを載置し、スペーサーの間に溶融ガラスを流し出すとともにローラーにて均一の厚みの板状に成形した。
 得られた板状試料を700℃に保持した電気炉に投入し、30分保持してから電源を落として10時間以上かけて炉内で室温まで冷却(アニール)した。
 次いで、冷却後の試料を電気炉で熱処理することにより結晶化し、結晶化ガラスを得た。各試料の熱処理のプロファイルを表4、5に示す。なお、室温から核形成温度までの昇温速度は15℃/分、核形成温度から結晶成長温度までの昇温速度は10℃/分、結晶成長温度から室温への降温は80℃/分とした。
 各結晶化ガラスについて、可視および赤外領域における透過率、失透性について評価した。
 透過率は、各結晶化ガラスを、両面を鏡面研磨した3mm厚の試料に加工し、分光光度計(日本分光株式会社製 V-760)を用いて700nmおよび1150nmについて測定した。測定条件は、測定範囲1500~380nm、スキャンスピード200nm/分とした。また、900℃で50時間の熱処理(加速試験)を行なった試料についても同様に透過率を測定した。さらに、加速試験後の吸光度変化率を前記計算式に従い算出した。
 失透性は、1350℃に設定した電気炉内にて、白金箔の上に各試料を載置した状態で24時間保持し、失透が生じるか否かで評価した。失透が確認されなければ「○」、失透が確認された場合は「×」とした。
 表4および5より明らかなように、実施例である試料No.15~19の結晶化ガラスは、可視領域の光を充分に遮蔽できるとともに高い赤外線透過率を有し、長期間にわたる使用を想定した加速試験においても可視域における吸光度変化率が小さいことがわかる。
 一方、比較例である試料No.21~23の結晶化ガラスは、加速試験後の可視域の吸光度変化率が大きかった。なお、比較例である試料No.20の結晶化ガラスは外観が白濁していた。
 本発明の結晶化ガラスは、ガス、IH、ハロゲンヒータ等の調理器用トッププレートとして好適である。また、従来よりβ-石英固溶体を主結晶とする低膨張結晶化ガラスが使用されている高温炉内観察用のぞき窓、防火窓等にも使用可能である。

Claims (11)

  1.  質量%で、SiO 55~73%、Al 17~25%、LiO 2~5%、TiO 4~5.5%、SnO 0.05~0.2%未満、V 0.02~0.1%、V/(SnO+V)が0.2~0.4である組成を含有し、AsおよびSbを実質的に含有しないことを特徴とする結晶化ガラス。
  2.  NaOの含有量が0.5%以下であることを特徴とする請求項1に記載の結晶化ガラス。
  3.  さらに、ZrOを0~2.3%含有することを特徴とする請求項1または2に記載の結晶化ガラス。
  4.  TiOとZrOの合量が4~6.5%であることを特徴とする請求項3に記載の結晶化ガラス。
  5.  3mm厚での透過率が、波長700nmにおいて35%以下、かつ波長1150nmにおいて85%以上であることを特徴とする請求項1~4のいずれかに記載の結晶化ガラス。
  6.  請求項1~5のいずれかに記載の結晶化ガラスを用いてなる調理器用トッププレート。
  7.  (1)質量%で、SiO 55~73%、Al 17~25%、LiO 2~5%、TiO 2.6~5.5%、SnO 0.01~0.3%、V 0.02~0.2%を含有し、AsおよびSbを実質的に含有しない組成となるように原料粉末を調合する工程、(2)原料粉末を溶融して前駆体ガラスを作製する工程、(3)前駆体ガラスを765~785℃の温度域で少なくとも10分間熱処理し結晶核を形成する工程、を含むことを特徴とする結晶化ガラスの製造方法。
  8.  さらに、(4)結晶核が形成された前駆体ガラスを800~930℃の温度域で少なくとも10分間熱処理して結晶を成長させる工程を含むことを特徴とする請求項7に記載の結晶化ガラスの製造方法。
  9.  請求項7または8に記載の製造方法により作製されたことを特徴とする結晶化ガラス。
  10.  900℃で50時間熱処理した後の波長700nmにおける吸光度変化率が20%以下であることを特徴とする請求項9に記載の結晶化ガラス。
  11.  請求項9または10に記載の結晶化ガラスを用いてなる調理器用トッププレート。
     
PCT/JP2010/051490 2009-02-05 2010-02-03 結晶化ガラスおよびそれを用いた調理器用トッププレート WO2010090208A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10738539.5A EP2394970A4 (en) 2009-02-05 2010-02-03 CRYSTALLIZED GLASS AND TOP PLATE FOR COOKING DEVICE COMPRISING SUCH A GLASS
US13/147,400 US20110283738A1 (en) 2009-02-05 2010-02-03 Crystallized glass and top plate for cooking device comprising same
CN2010800056401A CN102300824A (zh) 2009-02-05 2010-02-03 结晶化玻璃及使用该结晶化玻璃的烹调装置用顶板

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009025398 2009-02-05
JP2009-025398 2009-02-05
JP2010002761 2010-01-08
JP2010-002757 2010-01-08
JP2010002757A JP5645101B2 (ja) 2009-02-05 2010-01-08 調理器用トッププレート
JP2010-002761 2010-01-08

Publications (1)

Publication Number Publication Date
WO2010090208A1 true WO2010090208A1 (ja) 2010-08-12

Family

ID=44951547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051490 WO2010090208A1 (ja) 2009-02-05 2010-02-03 結晶化ガラスおよびそれを用いた調理器用トッププレート

Country Status (4)

Country Link
US (1) US20110283738A1 (ja)
EP (1) EP2394970A4 (ja)
CN (1) CN102300824A (ja)
WO (1) WO2010090208A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130085058A1 (en) * 2010-05-31 2013-04-04 Nippon Electric Glass Co., Ltd. Li2O-Al2O3-SiO2 BASED CRYSTALLIZED GLASS AND PRODUCTION METHOD FOR THE SAME
WO2014027270A3 (de) * 2012-08-14 2014-07-24 BSH Bosch und Siemens Hausgeräte GmbH Brennerdeckel und topfträger für eine gaskochstelle, gaskochstelle und gaskochfeld
WO2014027274A3 (de) * 2012-08-14 2014-07-24 BSH Bosch und Siemens Hausgeräte GmbH Deckplatte mit integriertem topfträger für eine gaskochstelle, gaskochstelle und gaskochfeld

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249221A (ja) * 2012-05-31 2013-12-12 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系結晶化ガラス及びその製造方法
US11261122B2 (en) 2013-04-15 2022-03-01 Vitro Flat Glass Llc Low iron, high redox ratio, and high iron, high redox ratio, soda-lime-silica glasses and methods of making same
US20140309099A1 (en) 2013-04-15 2014-10-16 Ppg Industries Ohio, Inc. Low iron, high redox ratio, and high iron, high redox ratio, soda-lime-silica glasses and methods of making same
WO2020217792A1 (ja) * 2019-04-23 2020-10-29 日本電気硝子株式会社 Li2O-Al2O3-SiO2系結晶化ガラス
DE102020202602A1 (de) * 2020-02-28 2021-09-02 Schott Ag Kristallisierbares Lithiumaluminiumsilikat-Glas und daraus hergestellte Glaskeramik sowie Verfahren zur Herstellung des Glases und der Glaskeramik und Verwendung der Glaskeramik
CN112876066B (zh) * 2020-06-30 2022-04-15 成都光明光电股份有限公司 环保玻璃材料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039056B2 (ja) 1986-02-05 1991-02-07 Nippon Electric Glass Co
JPH11100229A (ja) * 1997-09-25 1999-04-13 Nippon Electric Glass Co Ltd 赤外線透過ガラスセラミックス
JPH11100230A (ja) * 1997-09-25 1999-04-13 Nippon Electric Glass Co Ltd 赤外線透過ガラスセラミックス
JPH11100231A (ja) * 1997-09-25 1999-04-13 Nippon Electric Glass Co Ltd 赤外線透過ガラスセラミックス
JP2003068435A (ja) 2001-06-12 2003-03-07 Nippon Electric Glass Co Ltd 調理器用トッププレート
JP2004523446A (ja) 2000-08-24 2004-08-05 カール−ツアイス−スチフツング 酸化バナジウムを使用することにより暗色化された透明ガラスセラミック
US20070129231A1 (en) * 2005-12-07 2007-06-07 Comte Marie J M Glass, glass-ceramic, articles and fabrication process
JP2009500282A (ja) * 2005-06-30 2009-01-08 ユーロケラ β−石英および/またはβ−スポジュメンのガラスセラミックの調製、そのようなガラスセラミックから製造された物品の調製、ガラスセラミック、そのガラスセラミックおよび前駆体ガラス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461839A (en) * 1982-12-20 1984-07-24 Corning Glass Works Colored transparent, translucent and opaque glass-ceramics
FR2887871B1 (fr) * 2005-06-30 2007-10-12 Snc Eurokera Soc En Nom Collec Vitroceramiques de beta-quartz et/ou beta spodumene, verres precurseurs, articles en lesdites vitroceramiques, elaboration desdits vitroceramiques et articles
US7456121B2 (en) * 2006-06-23 2008-11-25 Eurokera Glass-ceramic materials, precursor glass thereof and process-for making the same
FR2946041B1 (fr) * 2009-05-29 2012-12-21 Eurokera Vitroceramiques et articles en vitroceramique, notamment plaques de cuisson, colores

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039056B2 (ja) 1986-02-05 1991-02-07 Nippon Electric Glass Co
JPH11100229A (ja) * 1997-09-25 1999-04-13 Nippon Electric Glass Co Ltd 赤外線透過ガラスセラミックス
JPH11100230A (ja) * 1997-09-25 1999-04-13 Nippon Electric Glass Co Ltd 赤外線透過ガラスセラミックス
JPH11100231A (ja) * 1997-09-25 1999-04-13 Nippon Electric Glass Co Ltd 赤外線透過ガラスセラミックス
JP2004523446A (ja) 2000-08-24 2004-08-05 カール−ツアイス−スチフツング 酸化バナジウムを使用することにより暗色化された透明ガラスセラミック
JP2003068435A (ja) 2001-06-12 2003-03-07 Nippon Electric Glass Co Ltd 調理器用トッププレート
JP2009500282A (ja) * 2005-06-30 2009-01-08 ユーロケラ β−石英および/またはβ−スポジュメンのガラスセラミックの調製、そのようなガラスセラミックから製造された物品の調製、ガラスセラミック、そのガラスセラミックおよび前駆体ガラス
US20070129231A1 (en) * 2005-12-07 2007-06-07 Comte Marie J M Glass, glass-ceramic, articles and fabrication process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2394970A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130085058A1 (en) * 2010-05-31 2013-04-04 Nippon Electric Glass Co., Ltd. Li2O-Al2O3-SiO2 BASED CRYSTALLIZED GLASS AND PRODUCTION METHOD FOR THE SAME
US9120699B2 (en) * 2010-05-31 2015-09-01 Nippon Electric Glass Co., Ltd. Li2O-Al2O3-SiO2 based crystallized glass and production method for the same
WO2014027270A3 (de) * 2012-08-14 2014-07-24 BSH Bosch und Siemens Hausgeräte GmbH Brennerdeckel und topfträger für eine gaskochstelle, gaskochstelle und gaskochfeld
WO2014027274A3 (de) * 2012-08-14 2014-07-24 BSH Bosch und Siemens Hausgeräte GmbH Deckplatte mit integriertem topfträger für eine gaskochstelle, gaskochstelle und gaskochfeld

Also Published As

Publication number Publication date
EP2394970A1 (en) 2011-12-14
CN102300824A (zh) 2011-12-28
EP2394970A4 (en) 2013-06-26
US20110283738A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5935304B2 (ja) 結晶化ガラス
JP5848258B2 (ja) ベータ石英ガラスセラミックおよび関連する前駆体ガラス
JP6202775B2 (ja) Li2O−Al2O3−SiO2系結晶化ガラス
CN108373267B (zh) 玻璃陶瓷板
WO2010090208A1 (ja) 結晶化ガラスおよびそれを用いた調理器用トッププレート
JP5484074B2 (ja) ビスマス含有ガラス、ガラス・セラミック、物品、および製造方法
JP5673909B2 (ja) 結晶性ガラス及びこれを結晶化させてなる結晶化ガラス
KR20200018578A (ko) 높은 아연 함량을 갖는 β-석영 유리-세라믹
JP2006199538A (ja) Li2O−Al2O3−SiO2系結晶性ガラス及び結晶化ガラス並びにLi2O−Al2O3−SiO2系結晶化ガラスの製造方法。
JP2010510952A (ja) 透明、無色の、チタニアを含まない、ベータ・石英・ガラス・セラミック材料
JP2013249221A (ja) Li2O−Al2O3−SiO2系結晶化ガラス及びその製造方法
JP2011173748A (ja) Las系結晶性ガラスの製造方法
JP2004075441A (ja) Li2O−Al2O3−SiO2系結晶性ガラス及び結晶化ガラス、ならびに該結晶性ガラス及び結晶化ガラスの製造方法
JP6331322B2 (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP2012106887A (ja) Li2O−Al2O3−SiO2系結晶性ガラスおよびそれを結晶化させてなるLi2O−Al2O3−SiO2系結晶化ガラス
JP2013087022A (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP2011157265A (ja) 結晶化ガラスの製造方法
JP5645101B2 (ja) 調理器用トッププレート
JP2022120047A (ja) Li2O-Al2O3-SiO2系結晶化ガラス
JP2013121890A (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP7121348B2 (ja) Las系結晶性ガラス、las系結晶化ガラス及びそれらの製造方法
JP2016108201A (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP2013103866A (ja) 結晶化ガラスの製造方法および結晶化ガラス、ならびに調理器用トッププレート
JP2012012290A (ja) Li2O−Al2O3−SiO2系結晶化ガラス及びその製造方法
JP6421795B2 (ja) Li2O−Al2O3−SiO2系結晶化ガラス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005640.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13147400

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010738539

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010738539

Country of ref document: EP