WO2012020570A1 - プラスチック偏光レンズ、その製造方法および偏光フィルム - Google Patents
プラスチック偏光レンズ、その製造方法および偏光フィルム Download PDFInfo
- Publication number
- WO2012020570A1 WO2012020570A1 PCT/JP2011/004544 JP2011004544W WO2012020570A1 WO 2012020570 A1 WO2012020570 A1 WO 2012020570A1 JP 2011004544 W JP2011004544 W JP 2011004544W WO 2012020570 A1 WO2012020570 A1 WO 2012020570A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- polarizing film
- compound
- carbon atoms
- lens
- Prior art date
Links
- 0 PC(C(P)=C(*1C(C2)CC3C[*@@](C(C(P)=C4P)=*5)/C4=*4)/*=C6\*3=C5C(P)=C6P)=C1*=C1*2=C4C(P)=C1P Chemical compound PC(C(P)=C(*1C(C2)CC3C[*@@](C(C(P)=C4P)=*5)/C4=*4)/*=C6\*3=C5C(P)=C6P)=C1*=C1*2=C4C(P)=C1P 0.000 description 3
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/08—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B47/00—Porphines; Azaporphines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/10—Moulds or cores; Details thereof or accessories therefor with incorporated venting means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/02—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
- B29C39/10—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/02—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
- B29C39/12—Making multilayered or multicoloured articles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2075/00—Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0018—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
- B29K2995/0034—Polarising
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B2207/00—Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
- G02B2207/113—Fluorescence
Definitions
- the present invention relates to a plastic polarizing lens, a manufacturing method thereof, and a polarizing film.
- the polarizing lens can prevent transmission of reflected light. Therefore, it is used to protect eyes by blocking strong reflected light outdoors such as ski resorts and fishing, and to ensure safety by blocking reflected light from oncoming vehicles when driving a car.
- a polarizing lens in which a polarizing film is disposed on the surface of a plastic lens material Two types have been proposed: a polarizing lens in which a polarizing film is disposed on the surface of a plastic lens material, and a sandwich lens having a polarizing film disposed in the plastic lens material.
- a polarizing lens in which a polarizing film is disposed on the surface of a plastic lens material (for example, Japanese Patent Laid-Open No. 9-258209 (Patent Document 1)) can reduce the thickness of the lens, but the outer periphery polishing step (to a predetermined shape). There is a serious drawback that the polarizing film is easily peeled off from the lens material in the step of cutting the edge of the lens for alignment.
- the resin applied to the polarizing film constituting the polarizing lens has been substantially limited to polyvinyl alcohol.
- a polyvinyl alcohol film is uniaxially stretched by including iodine or a dichroic dye to form a film having molecular orientation in a uniaxial direction.
- the manufacturing method of the polarizing lens which consists of a polyvinyl-alcohol polarizing film is disclosed by the international publication 04/099859 pamphlet (patent document 2), for example.
- Patent Document 3 uses a lens material made of an impact-resistant polyurethane resin obtained from a diamine and an isocyanate prepolymer, and a polyethylene terephthalate polarizing film. Polarized lenses have been proposed.
- this polarizing lens clearly has a polarizing film, and has a drawback that many users feel uncomfortable when wearing it. Furthermore, a composition in which a diamine and an isocyanate prepolymer are mixed has a high viscosity and a short pot life, so that it is difficult to inject into a lens casting mold with a polarizing film fixed. It was difficult.
- neodymium compound can absorb visible light near 585 nm with high selectivity, and it is known that a spectacle lens including this neodymium compound has improved contrast.
- Rare earth metal compounds such as neodymium compounds can improve the contrast of objects because the peak shape of the absorption spectrum in the absorption wavelength band in the visible light region is extremely sharp, that is, the absorption wavelength region is narrow, and wavelength selection This is due to its high nature.
- neodymium compounds In addition to rare earth metal compounds represented by neodymium compounds, it is also known that specific organic dyes improve the contrast of eyeglass lenses. Examples of such organic dyes include tetraazaporphyrin compounds.
- the tetraazaporphyrin compound like the neodymium compound, can impart excellent antiglare performance and contrast improvement to a spectacle lens.
- the spectacle lens has a very good balance between anti-glare and visibility (contrast) because it has good light transmission outside 585 nm and a bright field can be secured due to the sharpness of the peak at the specific absorption wavelength. Can provide.
- Patent Document 4 a method in which an organic dye is previously dissolved in a monomer composition and then polymerized to obtain a lens is disclosed in an example of Japanese Patent Application Laid-Open No. 2008-134628 (Patent Document 4). It is described in. In addition, what is disclosed in the Examples of Patent Document 4 is a plastic lens obtained by polymerizing a monomer composition in which an organic dye is dissolved, and a base material layer made of the monomer composition is laminated on a polarizing film. The obtained plastic lens is not specifically disclosed.
- Patent Document 4 an organic dye compound that improves contrast is directly dissolved in a monomer composition and polymerized to form a lens material. Therefore, depending on the type of monomer, the function of the organic dye compound may be impaired due to the interaction or reaction with the monomer, particularly during the polymerization reaction.
- the lens for correcting vision has a large difference in thickness between the central portion and the edge portion, and when the lens material itself contains an organic dye compound, the color density in the central portion and the peripheral portion is caused by coloring derived from the organic dye compound. Sometimes changed. This tendency becomes more prominent because the difference in thickness between the central portion and the edge portion is further increased as it is used for correcting visual acuity.
- the color density is changed in the portions, and there is room for improvement in appearance.
- the organic dye is directly dissolved in the monomer composition, and all the lenses manufactured in the example are planar lenses (the difference in thickness between the center thickness and the edge portion is very large). Small lens). Therefore, it has been desired to develop a lens with improved contrast that can be applied to a vision correction lens.
- the present invention has been made in view of the above-described background art, and provides a plastic polarizing lens having improved contrast and excellent appearance, water resistance, processing characteristics, and the like, and a method for producing the same. Furthermore, the present invention provides a polarizing film that has a polarizing function and can provide high contrast.
- a plastic polarizing lens in which layers made of a thiourethane resin are laminated on both sides of a polarizing film,
- the polarizing film contains an organic dye compound represented by the following general formula (1);
- a 1 to A 8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a carboxyl group, a sulfone group, a linear or branched chain having 1 to 20 carbon atoms.
- a cyclic alkyl group an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, a monoalkylamino group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 20 carbon atoms, or 7 to 7 carbon atoms
- M may represent two hydrogen atoms, a divalent metal atom, a monosubstituted trivalent metal atom, a disubstituted tetravalent metal atom, or an oxy metal.
- tC 4 H 9 represents a tertiary butyl group.
- the four tertiary butyl groups represent A 1 or A 2 , A 3 or A 4 , A 5 or Corresponds to A 6 , A 7 or A 8 and represents a regioisomer structure, wherein A 1 to A 8 which are not tertiary butyl groups represent hydrogen atoms, M represents a divalent copper atom, Palladium atom or divalent vanadium oxide (represents —V ( ⁇ O) —)).
- the thiourethane resin is (A) one or two or more isocyanate compounds selected from the group consisting of a polyisocyanate compound, an isocyanate compound having an isothiocyanate group, and a polyisothiocyanate compound; (B) It is obtained by reacting one or more active hydrogen compounds selected from the group consisting of a thiol compound having a hydroxy group and a polythiol compound. Any one of the plastic polarizing lenses.
- thermoplastic polyester 20 ° C. ⁇ T1 ⁇ Glass transition temperature of thermoplastic polyester + 120 ° C.
- thermoplastic polyester is polyethylene terephthalate.
- the isocyanate compound (A) is 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2. 1] -heptane and one or more diisocyanate compounds selected from the group consisting of m-xylylene diisocyanate,
- the active hydrogen compound (B) is pentaerythritol tetrakis (3-mercaptopropionate), 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 5,7-dimercaptomethyl-1,11- Dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-
- the plastic polarizing lens according to any one of (5) to (9),
- (13) a step of preparing a resin film containing an organic dye compound represented by the following general formula (1); Forming the resin film to obtain a polarizing film; In the lens casting mold, fixing the polarizing film in a state separated from the mold, Injecting a monomer mixture into the gap between both surfaces of the polarizing film and the mold; Polymerizing and curing the monomer mixture, and laminating layers made of a thiourethane resin on both sides of the polarizing film; and a method for producing a plastic polarizing lens;
- a 1 to A 8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a carboxyl group, a sulfone group, a linear or branched chain having 1 to 20 carbon atoms.
- a cyclic alkyl group an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, a monoalkylamino group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 20 carbon atoms, or 7 to 7 carbon atoms
- M may represent two hydrogen atoms, a divalent metal atom, a monosubstituted trivalent metal atom, a disubstituted tetravalent metal atom, or an oxy metal.
- tC 4 H 9 represents a tertiary butyl group.
- the four tertiary butyl groups represent A 1 or A 2 , A 3 or A 4 , A 5 or Corresponds to A 6 , A 7 or A 8 and represents a regioisomer structure, wherein A 1 to A 8 which are not tertiary butyl groups represent hydrogen atoms, M represents a divalent copper atom, Palladium atom or divalent vanadium oxide (represents —V ( ⁇ O) —)).
- the step of obtaining the polarizing film includes: (15) characterized in that it includes a step of forming the thermoplastic polyester film, which is the resin film, under a temperature condition of glass transition temperature + 20 ° C. or higher and glass transition temperature + 120 ° C. or lower of the thermoplastic polyester. ) For producing a plastic polarizing lens.
- the monomer mixture is (A) one or two or more isocyanate compounds selected from the group consisting of a polyisocyanate compound, an isocyanate compound having an isothiocyanate group, and a polyisothiocyanate compound; (B) A thiol compound having a hydroxy group and one or more active hydrogen compounds selected from the group consisting of polythiol compounds, and any one of (13) to (16) above, The manufacturing method of the plastic polarizing lens of description.
- thermoplastic polyester is polyethylene terephthalate.
- the isocyanate compound (A) is 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2. 1] -heptane, and one or more diisocyanate compounds selected from the group consisting of m-xylylene diisocyanate,
- the active hydrogen compound (B) is pentaerythritol tetrakis (3-mercaptopropionate), 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 5,7-dimercaptomethyl-1,11- Dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-
- the method for producing a plastic polarizing lens according to any one
- a polarizing film comprising a resin containing an organic dye compound represented by the following general formula (1);
- a 1 to A 8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a carboxyl group, a sulfone group, a linear or branched chain having 1 to 20 carbon atoms.
- a cyclic alkyl group an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, a monoalkylamino group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 20 carbon atoms, or 7 to 7 carbon atoms
- M may represent two hydrogen atoms, a divalent metal atom, a monosubstituted trivalent metal atom, a disubstituted tetravalent metal atom, or an oxy metal.
- tC 4 H 9 represents a tertiary butyl group.
- the four tertiary butyl groups represent A 1 or A 2 , A 3 or A 4 , A 5 or Corresponds to A 6 , A 7 or A 8 and represents a regioisomer structure, wherein A 1 to A 8 which are not tertiary butyl groups represent hydrogen atoms, M represents a divalent copper atom, Palladium atom or divalent vanadium oxide (represents —V ( ⁇ O) —)).
- thermoplastic polyester is polyethylene terephthalate.
- the step of forming the resin film comprises the steps of: The step of forming the thermoplastic polyester film, which is the resin film, under a temperature condition of glass transition temperature + 20 ° C. or higher and glass transition temperature + 120 ° C. or lower of the thermoplastic polyester (32) The manufacturing method of the polarizing film as described in).
- “high contrast” means that when an object is observed with the naked eye through a plastic polarizing lens, the color, brightness, and outline of the object can be clearly recognized, and the object and the object or the object and the background are clearly defined. Visual characteristics that can be distinguished from each other.
- the plastic polarizing lens of the present invention can clearly recognize the color contrast and the outline of the object and has improved contrast, it is excellent in visibility and visual fatigue is reduced. Furthermore, since the polarizing film itself contains a predetermined organic pigment compound, partial color differences due to differences in lens thickness are also suppressed, and partially different in thickness as in vision correction lenses. Appearance is improved even when applied to lenses. Furthermore, since it is excellent in water resistance, deterioration with time is suppressed. In addition, since it has a configuration excellent in processing characteristics and the like, it is easy to make the lens thin, and it is excellent in productivity and suitable for mass production. A plastic polarizing lens having such characteristics is particularly useful as a polarizing lens for glasses. In addition, the method for producing the plastic polarizing lens of the present invention includes: In addition, the polarizing film of the present invention can be imparted with a polarizing function and high contrast, and can be suitably used particularly for a polarizing lens.
- FIG. 1 is a chart showing spectral transmittance of the polarizing film manufactured in Example 1.
- resin layers (plastic lenses) 14a and 14b made of thiourethane resin are formed on both surfaces of a polarizing film 12.
- the polarizing film 12 contains an organic pigment compound.
- the resin constituting the polarizing film is not particularly limited as long as it is a thermoplastic resin, and examples thereof include thermoplastic polyolefin, thermoplastic polyimide, and thermoplastic polyester. From the viewpoint of water resistance, heat resistance and moldability, thermoplastic polyester is preferred. Specifically, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and the like can be used as the thermoplastic polyester, and polyethylene terephthalate is particularly preferable from the viewpoint of the above effects. Those modified by adding a copolymerization component are also included.
- organic dye compound in the present embodiment those which are insoluble in water and do not cause decomposition, discoloration or the like at the melting point of the resin constituting the polarizing film are used.
- those which do not cause decomposition or discoloration at the melting point of the thermoplastic polyester are preferable, and a compound having a porphyrin skeleton can be used.
- a tetraazaporphyrin compound represented by the following general formula (1) as the compound having a porphyrin skeleton.
- a 1 to A 8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a carboxyl group, a sulfone group, a straight chain having 1 to 20 carbon atoms, branched or Cyclic alkyl group, alkoxy group having 1 to 20 carbon atoms, aryloxy group having 6 to 20 carbon atoms, monoalkylamino group having 1 to 20 carbon atoms, dialkylamino group having 2 to 20 carbon atoms, 7 to 20 carbon atoms Represents an aralkyl group, an aryl group having 6 to 20 carbon atoms, a heteroaryl group, an alkylthio group having 1 to 20 carbon atoms, and an arylthio group having 1 to 20 carbon atoms, and forms a ring excluding an aromatic ring via a linking group May be.
- a 1 to A 8 is preferably a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, more preferably a linear or branched alkyl group having 1 to 20 carbon atoms, and a straight chain having 2 to 10 carbon atoms. Chain or branched alkyl groups are particularly preferred.
- M represents two hydrogen atoms, a divalent metal atom, a monosubstituted trivalent metal atom, a disubstituted tetravalent metal atom, or an oxy metal.
- divalent metal atom examples include Cu (II), Zn (II), Co (II), Ni (II), Ru (II), Rh (II), Pd (II), Pt (II), Mn ( II), Mg (II), Ti (II), Be (II), Ca (II), Ba (II), Cd (II), Hg (II), Pb (II), Sn (II) and the like. It is done.
- Examples of monosubstituted trivalent metal atoms include Al—Cl, Al—Br, Al—F, Al—I, Ga—Cl, Ga—F, Ga—I, Ga—Br, In—Cl, In—Br, In—I, In—F, Tl—Cl, Tl—Br, Tl—I, Tl—F, Al—C 6 H 5 , Al—C 6 H 4 (CH 3 ), In—C 6 H 5 , In -C 6 H 4 (CH 3 ), In-C 6 H 5 , Mn (OH), Mn (OC 6 H 5 ), Mn [OSi (CH 3 ) 3 ], Fe-Cl, Ru-Cl, etc. It is done.
- disubstituted tetravalent metal atom examples include CrCl 2 , SiCl 2 , SiBr 2 , SiF 2 , SiI 2 , ZrCl 2 , GeCl 2 , GeBr 2 , GeI 2 , GeF 2 , SnCl 2 , SnBr 2 , SnF 2 , TiCl.
- oxymetal examples include vanadium oxide (—V ( ⁇ O) —), manganese oxide (—Mn ( ⁇ O) —, titanium oxide (—Ti ( ⁇ O) —), and the like.
- M is preferably a divalent metal atom or an oxymetal, more preferably a copper atom (Cu (II)), a palladium atom (Pd (II)) or vanadium oxide (—V ( ⁇ O) —), and a copper atom. (Cu (II)) is particularly preferred.
- tetraazaporphyrin compound represented by the general formula (1) a tetraazaporphyrin compound represented by the following general formula (1a) is preferably used.
- tC 4 H 9 represents a tertiary butyl group.
- Four tertiary butyl groups correspond to A 1 or A 2 , A 3 or A 4 , A 5 or A 6 , A 7 or A 8 in the formula (1), and represent a regioisomer structure.
- a 1 to A 8 that are not tertiary butyl groups represent hydrogen atoms.
- M represents a divalent copper atom, a divalent palladium atom, or a divalent vanadium oxide (—V ( ⁇ O) —).
- compounds represented by the following formulas (2) to (4) can be used as the tetraazaporphyrin compound represented by the general formula (1) or (1a).
- tC 4 H 9 represents a tertiary butyl group.
- the four tertiary butyl groups correspond to A 1 or A 2 , A 3 or A 4 , A 5 or A 6 , A 7 or A 8 in the formula (1), and represent a regioisomer structure.
- a 1 to A 8 that are not tertiary butyl groups represent hydrogen atoms.
- Cu represents divalent copper
- Pd represents divalent palladium
- V O represents divalent vanadium oxide.
- tetraazaporphyrin compound a tetra-t-butyl-tetraazaporphyrin / copper complex represented by the formula (2) is preferably used from the viewpoint of the above effect.
- the preferred amount of the organic dye compound varies depending on the thickness of the polarizing film 12 and is appropriately determined depending on the thickness, but is 50 to 7000 ppm, preferably 50 to 2000 ppm, more preferably 50 to 500 ppm in the polarizing film 12. It is desirable to be included in an amount.
- the content of the organic dye compound in the polarizing film is less than 50 ppm, there is room for an improvement effect in contrast.
- the content exceeds 7000 ppm, the contrast becomes strong, and glasses comprising a polarizing lens including the polarizing film are used. You may feel sick if you are wearing it. That is, when the organic dye compound is contained in the polarizing film 12 in the above amount, the color contrast and the contour of the object can be recognized more clearly, and the contrast is particularly improved. Therefore, it is possible to provide a high-contrast plastic polarizing lens having excellent visibility and particularly reduced visual fatigue.
- the polarizing film 12 is obtained by forming a resin film containing an organic dye compound.
- the forming process can be performed by a usual method.
- a thermoplastic polyester film containing an organic dye compound is a film formed under conditions of temperature T1 represented by the following formula.
- T1 represented by the following formula.
- the polarizing film 12 of the present embodiment uses a thermoplastic polyester film as a resin film, and is excellent in adhesiveness with the resin layers 14a and 14b when formed into a desired curvature shape under this temperature condition. Therefore, the plastic polarizing lens of this embodiment is excellent in productivity and suitable for mass production.
- the plastic polarizing lens of this embodiment has the resin layers 14a and 14b made of thiourethane resin laminated on both surfaces of the polarizing film 12, it is excellent in water resistance and suppresses discomfort at the time of wearing, Thinning is possible, and further, peeling of the polarizing film is suppressed in the subsequent peripheral polishing step. That is, the balance of these characteristics is excellent. This effect is prominent when the polarizing film 12 made of thermoplastic polyester is used.
- At least one surface of the polarizing film 12 may be subjected to surface modification treatment, an adhesive layer may be separately provided, and surface modification treatment and formation of the adhesive layer are performed in order. May be.
- the adhesiveness of the polarizing film 12 and resin layer 14a, 14b which consists of thiourethane-type resin can be improved.
- the adhesive layer include a layer containing a urethane resin composed of a structural unit derived from a polyhydroxy compound and a structural unit derived from a polyisocyanate compound
- examples of the surface modification treatment include plasma treatment of the film surface.
- the manufacturing method of the plastic polarizing lens of embodiment comprises the following processes.
- a step of producing a resin film containing the above organic dye compound (b) A step of producing a polarizing film by shaping the obtained resin film (c) A lens casting mold is separated from the mold In this state, the step of fixing the polarizing film (d) the step of injecting the mixture into the gap between both sides of the polarizing film and the mold (e) the mixture is polymerized and cured, and the both sides of the polarizing film are formed.
- Step of laminating a layer made of a thiourethane resin hereinafter, each step will be described in order.
- (A) The process of manufacturing the resin film containing the above-mentioned organic pigment
- the polarizing film which provided the high contrast property of this embodiment adds the specific amount of the water-insoluble dye which contains at least 1 sort (s) of a dichroic dye to resin. Further, the organic dye compound is added in an amount calculated so as to be contained in the obtained polarizing film in the above amount, and mixed to obtain a resin composition.
- This resin composition is formed into a film by a predetermined method. Next, after the obtained film is stretched in a uniaxial direction, it is manufactured by heat treatment at a predetermined temperature. In the present embodiment, it is preferable to use a thermoplastic polyester as the resin.
- a direct dye that is soluble in water is not preferable, and a dispersible dye or an acid dye that is insoluble in water can be appropriately selected from known dyes. Specific examples include anthraquinone, quinophthalone, and azo dyes. Moreover, what does not raise
- the amount of the dichroic dye added is preferably 0.005 to 4 parts by weight with respect to 100 parts by weight of the resin.
- dye compound, and a dichroic dye are mixed, and it is set as a resin composition.
- a plurality of general-purpose dyes may be added.
- the method for producing the resin composition is not particularly limited, and examples thereof include a method of mixing both using a known ribbon blender, tumbler mixer, and the like.
- the mixing temperature can be around room temperature. If necessary, other additives such as an ultraviolet absorber can be added.
- the film is formed by a T-die type extrusion method or an inflation type extrusion method using a known single screw extruder or twin screw extruder.
- the film forming temperature is in the range of not lower than the melting temperature of the resin and lower than the decomposition temperature.
- the obtained film is stretched in a uniaxial direction.
- the stretching condition is that the resin is stretched 2 to 10 times in the uniaxial direction within the range of the glass transition temperature of the resin and below the melting temperature.
- the stretching direction may be a machine direction or a direction orthogonal to the machine direction.
- a polarizing film can be obtained by performing an annealing process in a state constrained in the stretching direction.
- the annealing treatment may be performed during curved surface processing or after curved surface processing.
- limiting in particular also in the annealing method It implements by a well-known method.
- annealing treatment is performed in a state of being constrained in the stretching direction for 5 seconds to 30 minutes in a temperature range not lower than the crystallization temperature of the resin and lower than the melting temperature.
- the resin film can be attached by a usual method.
- the forming method include vacuum forming, pressure forming, vacuum / pressure forming, press forming and the like.
- the temperature of the resin film is adjusted so as to be within a predetermined temperature range and shaped into a desired curvature.
- conditions such as molding pressure and molding time are appropriately adjusted according to the molding method, temperature at the time of molding, manufacturing equipment, and the like.
- the resin film may be heated so as to be in a predetermined temperature range before being molded with a mold or the like.
- the shape of the thermoplastic polyester film is such that the glass transition temperature of the thermoplastic polyester + 20 ° C. or higher and the glass transition temperature of the thermoplastic polyester + 120 ° C. or lower, preferably the glass transition temperature of the thermoplastic polyester + 20 ° C. or higher.
- a method for shaping the thermoplastic polyester film a usual method can be used as long as the film can be shaped into a desired curvature while heating the film to the above temperature.
- the polarizing film which consists of thermoplastic polyester If it is said shaping temperature, it will be excellent in the adhesiveness of the polarizing film which consists of thermoplastic polyester, and the layer which consists of a thiourethane type resin irrespective of the presence or absence of an adhesive layer.
- the glass transition temperature is 74 ° C.
- the reaction can be performed under temperature conditions, more preferably 114 ° C. or higher and 174 ° C. or lower.
- the glass transition temperature of the thermoplastic polyester can be generally measured using a DSC (differential scanning calorimeter) or the like.
- the above method can be cited as an attachment method.
- these molding methods by adjusting the temperature of the thermoplastic polyester film so as to be within the above temperature range and by forming the thermoplastic polyester film into a shape with a desired curvature, adhesion between the polarizing film made of the thermoplastic polyester film and the plastic lens is achieved. Can be improved.
- the manufacturing method of the present embodiment including such a shaping process, the adhesion between the polarizing film and the plastic lens is improved, and peeling is suppressed in the outer periphery polishing process, thereby improving the productivity of the plastic polarizing lens.
- a polarizing lens can be manufactured industrially with a high yield.
- the adhesion between the polarizing film and the plastic lens is imparted or improved by a simple method, there is no need to separately provide a process for improving these adhesions.
- a plastic polarizing lens having excellent adhesion can be obtained by a simple method.
- the process performed in order to improve adhesiveness is not excluded.
- At least one surface of the resin film or the polarizing film may be subjected to surface modification treatment, an adhesive layer may be separately provided, and surface modification treatment and formation of the adhesive layer are performed in order. May be.
- the adhesiveness of the polarizing film 12 and resin layer 14a, 14b which consists of thiourethane type-resins can further be improved.
- the adhesive layer include a layer containing a urethane resin composed of a structural unit derived from a polyhydroxy compound and a structural unit derived from a polyisocyanate, or a layer containing an acrylate polymer resin which may have a functional group.
- the surface modification treatment include plasma treatment on the film surface and corona discharge treatment.
- the polarizing film Prior to the treatment for providing the adhesive layer on the surface of the polarizing film, the polarizing film is previously selected from gas or chemical treatment, corona discharge treatment, plasma treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, roughening treatment, flame treatment, etc. One kind or two or more kinds of pretreatments may be performed.
- a coating agent is usually used to form the adhesive layer on the polarizing film.
- the coating agent may be a solventless system, but a solvent system or a dispersion system containing an appropriate solvent is preferable.
- Solvents include alcohol compounds such as methanol, ethanol and isopropanol, aromatic compounds such as toluene and xylene, ester compounds such as ethyl acetate, ketone compounds such as acetone, methyl ethyl ketone and methyl isobutyl ketone, and halogens such as dichloromethane. It can select from compounds etc., and can be used individually or in combination of 2 or more types. In the case of alcohol compounds, isopropanol is preferably used.
- the concentration of the above coating agent in terms of resin is 0.1 to 50 wt%, preferably 1 to 50 wt%, more preferably 3 to 30 wt%. If it exceeds 50 wt%, the stability of the coating solution will be poor, the applied urethane resin will increase, the coating layer will become too thick and the presence of the coating layer will be noticeable, and the adhesion will deteriorate due to peeling within the coating layer May occur. Conversely, if it is less than 0.1 wt%, the effect of improving the adhesion between the film and the base urethane resin may not be sufficiently obtained.
- the thickness of the coating layer is 30 to 0.001 ⁇ m, preferably 10 to 0.01 ⁇ m, and more preferably 5 to 0.05 ⁇ m.
- the coating liquid part having fluidity on the film is removed as necessary and dried.
- the drying temperature is not particularly limited, but is usually in the range of 5 to 100 ° C., preferably 20 to 100 ° C., more preferably 20 to 80 ° C., particularly preferably 20 to 60 ° C. You can also apply heat step by step in combination.
- the drying time is set according to the environment such as the solvent to be used, the drying temperature, or the air blowing condition, and is not particularly limited.
- the method for forming the adhesive layer on the polarizing film is not particularly limited, but the polarizing film is treated with a coating agent and then subjected to a bending process, the bending process is applied to the coating agent, and both Although it can be broadly divided into methods used in combination, any method can be adopted, and conventionally known as roll coating method, spin coating method, spray coating method, bar coating method, dipping method, etc. according to each situation Can be adopted. It is also possible to apply one or more times after drying, and in this case, the type of each coating solution may be the same or different. Usually, the object of the present embodiment can often be achieved by one-time application and drying without repeated application.
- the coating agent is applied to the polarizing film as necessary, and then dried and / or heat-treated as necessary.
- the application temperature at the time of drying and / or heat treatment is not particularly limited as long as the performance of the polarizing film does not substantially deteriorate.
- the active energy rays include ultraviolet rays and electron beams.
- Preferred as the urethane resin used as the coating agent is a polymer composed of a structural unit derived from a polyhydroxy compound and a structural unit derived from polyisocyanate.
- the polyhydroxy compound include polyester diol, polyether diol, polythioether diol, polylactone diol, and polyacetal diol. Among these, polyester diol and polyether diol are preferable, and polyester diol is particularly preferable.
- polyester diol examples include saturated polyhydric alcohols exemplified by ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, neopentyl glycol, hexamethylene glycol, trimethylolpropane, 3-methyl 1,5-pentanediol, or the like.
- Diols such as unsaturated polyhydric alcohols exemplified by butenediol or the like, or mixtures thereof, saturated fatty acids such as adipic acid and sebacic acid, unsaturated fatty acids such as maleic acid and fumaric acid, Polyesters having a hydroxyl group at the terminal obtained by reacting with aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, terephthalic acid or the like, or mixtures thereof, or caprolactam or methylcapro Examples thereof include polyesters obtained by ring-opening polymerization of lactones such as lactones with diols.
- polyether diol examples include polymers or copolymers having a hydroxyl group at the terminal obtained by ring-opening polymerization or ring-opening copolymerization such as ethylene oxide, propylene oxide, epichlorohydrin, oxacyclobutane, substituted oxacyclobutane or tetrahydrofuran. Or a mixture thereof.
- Examples of the polyisocyanate that is a monomer of the urethane resin include 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,8-octamethylene diisocyanate, 1,10-decamethylene diisocyanate, 1,4-cyclohexene.
- Examples include silene-diisocyanate, tolylene diisocyanate, 1,3-phenylene diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate), 4,4'-diphenylmethane diisocyanate, isophorone diisocyanate, triphenylmethane triisocyanate, and the like. Two or more types can be selected and used.
- 1,6-hexamethylene diisocyanate, 1,4-cyclohexylene-diisocyanate, tolylene diisocyanate, 1,3-phenylene diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate), 4,4'-diphenylmethane Diisocyanate and isophorone diisocyanate are particularly preferred.
- the polyhydroxy compound and polyisocyanate constituting the urethane resin can be appropriately selected from these examples and combined.
- a polyester diol is preferable as the polyhydroxy compound, and a polyester diol composed of adipic acid, butylene glycol, and 3-methyl 1,5-pentanediol is more preferable.
- isophorone diisocyanate is preferred as the isocyanate component. This combination is particularly preferable from the viewpoint of adhesion between the film and the base resin.
- the acrylic ester polymer resin that may have a functional group used as the coating agent may be either a reactive curable resin or a non-reactive one, but a non-reactive one is more preferable.
- Examples of the acrylic ester polymer resin that may have a functional group include linear or branched, acyclic or cyclic, or non-aromatic or aromatic alcohol or phenol and (meth) acrylic acid.
- (meth) acrylic acid represents acrylic acid or methacrylic acid.
- the (meth) acrylic acid ester monomer has substantially one or more (meth) acrylic acid ester groups in one molecule, but a mono (meth) acrylic acid ester monomer having substantially one (meth) acrylic acid ester group is more preferable.
- the mono (meth) acrylate monomer examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth) acrylate n.
- Examples of the functional group of the acrylate polymer having a functional group include a carboxylic acid group, a hydroxyl group, a glycidyl group, an amide group, and an anhydride group, and the polymer has one or more functional groups.
- Examples of the monomer having a functional group constituting the acrylic ester polymer having a functional group include (meth) acrylic acid, itaconic acid, fumaric acid, (meth) acrylic acid ester of 2-hydroxyethylphthalic acid, 2-hydroxyethylsuccin Ethylenically unsaturated carboxylic acids such as (meth) acrylic acid esters of acids, ethylenically unsaturated sulfonic acids such as 2-sulfoethyl (meth) acrylate, ethylenically unsaturated phosphonic acids such as vinylphosphonic acid, (meth) acrylic 2-hydroxyethyl acid, 3-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, glycidyl (meth) acrylate, metaglycidyl (meth) acrylate, (meth) acrylic acid amide, mono- or di- Alkyl-substituted (meth) acrylic acid amide, dimethyla
- the acrylic ester polymer having a functional group is composed of one or more monomers selected from the monomers having the functional group in addition to one or more of the (meth) acrylic ester monomers.
- a vinyl monomer may be contained within a range that does not impair the scope of the present invention.
- the vinyl monomer include vinyl acetate and vinyl propionate.
- the vinyl monomers are preferably used in an amount of 0 to 40 parts by weight, more preferably 0 to 20 parts by weight, still more preferably 0 to 10 parts by weight, based on 100 parts by weight of the monomer constituting the copolymer of the (meth) acrylate monomer. Particularly preferred is a range of 0 to 5 parts by weight.
- gas or chemical treatment examples include gas treatment using gas such as ozone, halogen gas, chlorine dioxide, or sodium hypochlorite, alkali metal hydroxide, alkaline earth metal hydroxide, metal sodium.
- gas treatment using gas such as ozone, halogen gas, chlorine dioxide, or sodium hypochlorite, alkali metal hydroxide, alkaline earth metal hydroxide, metal sodium.
- chemical treatment using an oxidizing agent or reducing agent such as sulfuric acid or nitric acid, or an acid / base.
- an oxidizing agent, a reducing agent, an acid / base, or the like is usually used as a solution in water, alcohol, liquid ammonia or the like.
- examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, and the like.
- examples of the hydroxide include magnesium hydroxide, calcium hydroxide, barium hydroxide, and the like, and one or more can be selected and used. Of these, sodium hydroxide and potassium hydroxide are preferable, and sodium hydroxide is particularly preferable.
- the alkali metal hydroxide and / or alkaline earth metal hydroxide is preferably used as a solution thereof.
- the solvent of the solution include water and / or an organic solvent.
- the organic solvent include methanol, ethanol, and isopropanol. Etc. can be illustrated.
- the concentration of the solution is suitably 5 to 55% by weight, preferably 10 to 45% by weight, and the temperature of the solution is 0 to 95 ° C., preferably 20 to 90 ° C., more preferably 30 to 80 ° C. A range is preferred.
- the solution in the solution concentration and the solution temperature range is in contact with one side or both sides of the polarizing film for a predetermined time.
- a predetermined time can be done.
- methods such as immersion to the polarizing film in a solution, or contact with this polarizing film by shower, surface flow, etc., can be illustrated.
- a method of immersing the polarizing film in a solution is preferable.
- a method such as stirring, convection, or jet can be employed.
- the contacting time is not particularly limited, but is preferably in the range of 1 minute to 24 hours, preferably 5 minutes to 10 hours, particularly preferably 5 minutes to 5 hours.
- the alkali metal hydroxide and / or alkaline earth metal hydroxide solution may contain an anionic or nonionic surfactant for the purpose of improving the wettability between the solution and the polarizing film. .
- the solution concentration, solution temperature, and contact time at the time of contact between the alkali metal hydroxide and / or alkaline earth metal hydroxide solution and the polarizing film are within a range that does not substantially impair the optical properties of the polarizing film. Can be selected as appropriate.
- the polarizing film After bringing the polarizing film into contact with the alkali metal hydroxide and / or alkaline earth metal hydroxide solution, the polarizing film is pulled out of the solution, and water and / or methanol, ethanol, isopropanol, if necessary, The polarizing film may be washed and dried with an organic solvent such as acetone or methyl ethyl ketone.
- an organic solvent such as acetone or methyl ethyl ketone.
- the corona discharge treatment is a kind of gas discharge, which utilizes a phenomenon in which gas molecules are ionized to show conductivity and the film surface is activated by the ion flow, and is widely used. It is.
- the gas used for the discharge treatment includes air, but may be a gas such as nitrogen, carbon dioxide, or ammonia gas.
- the corona discharge treatment can be achieved, for example, by a method of treating the surface of the polarizing film using a corona that is generated by applying a voltage to an electrode in a known high-frequency generator.
- the corona discharge treatment strength is preferably 1 to 500 W ⁇ min / m 2 , more preferably 5 to 400 W ⁇ min / m 2 .
- Examples of the plasma treatment include normal pressure plasma treatment and vacuum plasma treatment (low temperature plasma treatment).
- the atmospheric pressure plasma treatment discharge treatment is performed in a gas atmosphere in which gases such as air, water vapor, argon, nitrogen, helium, carbon dioxide, carbon monoxide, IPA and other alcohols, and carboxylic acids such as acrylic acid are used alone or mixed.
- gases such as air, water vapor, argon, nitrogen, helium, carbon dioxide, carbon monoxide, IPA and other alcohols, and carboxylic acids such as acrylic acid are used alone or mixed.
- the vacuum plasma treatment can be performed under reduced pressure.
- a polarizing film is placed in an internal electrode type discharge treatment apparatus having a counter electrode composed of a drum electrode and a plurality of rod electrodes, and 0.001 to 50 Torr, preferably In a processing gas atmosphere of 0.01 to 10 Torr, more preferably 0.02 to 1 Torr, a high voltage of direct current or alternating current is applied between the electrodes and discharged to generate plasma of the processing gas.
- Surface treatment can be performed by exposing the surface of
- the processing conditions for the vacuum plasma processing depend on the processing apparatus, the type of processing gas, the pressure, the frequency of the power source, etc., but preferable conditions may be selected as appropriate.
- the processing gas include argon, nitrogen, helium, carbon dioxide, carbon monoxide, air, alcohols such as water vapor IPA, carboxylic acids such as acrylic acid, and the like.
- the plastic polarizing lens of this embodiment is prepared by injecting a mixture of a specific isocyanate compound and a specific active hydrogen compound into a lens casting mold 20 to which the polarizing film 12 is fixed, and then polymerizing and curing. Can be obtained.
- the lens casting mold 20 is generally composed of two molds 22a and 22b held by a gasket 22c.
- the material of the gasket 22c is polyvinyl chloride, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, polyurethane elastomer, fluororubber, or a soft elastic blended with polypropylene. Resins are used. A material that does not swell or elute with respect to the mixture of the specific isocyanate compound and the specific active hydrogen compound used in the present embodiment is preferable. Examples of the material of the molds 22a and 22b include glass and metal, and glass is usually used. A mold release agent may be applied to the molds 22a and 22b in advance in order to improve the mold releasability of the obtained lens. Further, a coating solution for imparting hard coating performance to the lens material may be applied to the mold in advance.
- the polarizing film 12 is installed so as to be parallel to the inner surface of the front mold 22 a facing the film surface. Gaps 24a and 24b are formed between the polarizing film 12 and the molds 22a and 22b, respectively.
- the separation distance a having the narrowest gap between the gaps 24a and 24b is about 0.2 to 2.0 mm.
- the viscosity at the time of injection is low, and the gap is not as described above. However, it can be easily injected.
- a specific isocyanate compound and (B) are injected into the two gaps 24 a and 24 b between the molds 22 a and 22 b and the polarizing film 12 by a predetermined injection means. Inject a mixture of specific active hydrogen compounds.
- the isocyanate compound (A) used in the present embodiment includes a compound having an isothiocyanate group, and specifically, selected from a polyisocyanate compound, an isocyanate compound having an isothiocyanate group, and a polyisothiocyanate compound. One or more compounds.
- polyisocyanate compound for example, Hexamethylene diisocyanate, 2,2,4-trimethylhexane diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanatomethyl ester, lysine triisocyanate, m-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ', ⁇ '-Tetramethylxylylene diisocyanate, bis (isocyanatomethyl) naphthalene, mesitylylene triisocyanate, bis (isocyanatomethyl) sulfide, bis (isocyanatoethyl) sulfide, bis (isocyanatomethyl) disulfide, bis (isocyanato) Ethyl) disulfide, bis (isocyanatomethylthio) methane, bis (isocyanatoethylthio) methane, bis (isocyanatoe
- Aliphatic polyisocyanate compound Isophorone diisocyanate, bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, dicyclohexyldimethylmethane isocyanate, 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2 , 6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 3,8-bis (isocyanatomethyl) tricyclodecane, 3,9-bis (isocyanatomethyl) tricyclodecane, 4 , 8-bis (isocyanatomethyl) tricyclodecane, 4,9-bis (isocyanatomethyl) tricyclodecane, and other alicyclic polyisocyanate compounds; Aromatic polyisocyanate compounds such as
- Examples of the isocyanate compound having an isothiocyanate group include, but are not limited to, those obtained by changing a part of the isocyanate group of the polyisocyanate compound exemplified above to an isothiocyanate group. .
- polyisothiocyanate compound examples include: Hexamethylene diisothiocyanate, lysine diisothiocyanatomethyl ester, lysine triisothiocyanate, m-xylylene diisothiocyanate, bis (isothiocyanatomethyl) sulfide, bis (isothiocyanatoethyl) sulfide, bis (isothiocyanatoethyl) ) Aliphatic polyisothiocyanate compounds such as disulfides; Isophorone diisothiocyanate, bis (isothiocyanatomethyl) cyclohexane, dicyclohexylmethane diisothiocyanate, cyclohexane diisothiocyanate, methylcyclohexane diisothiocyanate, 2,5-bis (isothiocyanatomethyl) bicyclo- [2.2.1 ] -Heptane, 2,6-bis (is
- halogen-substituted products such as chlorine-substituted products and bromine-substituted products of these isocyanate compounds, alkyl-substituted products, alkoxy-substituted products, nitro-substituted products, prepolymer-modified products with polyhydric alcohols, carbodiimide-modified products, and urea-modified products.
- Biuret modified products, dimerization or trimerization reaction products, and the like can also be used.
- These isocyanate compounds can be used alone or in combination of two or more.
- diisocyanate compounds are preferably used from the viewpoint of availability, price, performance of the obtained resin, and the like.
- the active hydrogen compound used in the present embodiment is one or more active hydrogen compounds selected from a thiol compound having a hydroxy group and a polythiol compound.
- a thiol compound having a hydroxy group for example, 2-mercaptoethanol, 3-mercapto-1,2-propanediol, glycerol bis (mercaptoacetate), 4-mercaptophenol, 2,3-dimercapto-1-propanol, pentaerythritol tris (3-mercaptopropionate), penta Although erythritol tris (thioglycolate) etc. can be mentioned, it is not limited only to these exemplary compounds.
- polythiol compound for example, Methanedithiol, 1,2-ethanedithiol, 1,2,3-propanetrithiol, 1,2-cyclohexanedithiol, bis (2-mercaptoethyl) ether, tetrakis (mercaptomethyl) methane, diethylene glycol bis (2-mercaptoacetate) ), Diethylene glycol bis (3-mercaptopropionate), ethylene glycol bis (2-mercaptoacetate), ethylene glycol bis (3-mercaptopropionate), trimethylolpropane tris (2-mercaptoacetate), trimethylolpropane tris (3-mercaptopropionate), trimethylol ethane tris (2-mercaptoacetate), trimethylol ethane tris (3-mercaptopropionate), pentaerythritol tetrakis (2-mer Captoacetate), pentaerythritol tetrakis (3-mercaptoacetate
- oligomers of these active hydrogen compounds and halogen-substituted products such as chlorine-substituted products and bromine-substituted products may be used.
- These active hydrogen compounds can be used alone or in combination of two or more.
- polythiol compounds are preferably used from the standpoint of availability, price, and performance of the resulting resin.
- the (A) isocyanate compound used in the present embodiment may be obtained by preliminarily reacting a part of the (B) active hydrogen compound.
- the (B) active hydrogen compound used in the present embodiment may be obtained by preliminarily reacting a part of the (A) isocyanate compound.
- a hydroxy compound, an epoxy compound, an episulfide compound, an organic acid and its anhydride, a (meth) acrylate compound, and the like are included.
- a resin modifier such as an olefin compound may be added.
- the resin modifier is a compound that adjusts or improves the physical properties such as refractive index, Abbe number, heat resistance, specific gravity and mechanical strength such as impact resistance of the thiourethane resin.
- hydroxy compound used as a resin modifier examples include diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, 1,4-butanediol, thiodiethanol, dithiodiethanol, glycerin, trimethylolpropane, pentaerythritol, and oligomers thereof. It is not limited to only.
- Phenolic epoxy compounds obtained by condensation reaction of polyphenolic compounds such as bisphenol A glycidyl ether and epihalohydrin compounds; Alcoholic epoxy compounds obtained by condensation of polyhydric alcohol compounds such as hydrogenated bisphenol A glycidyl ether and epihalohydrin compounds; A glycidyl ester epoxy compound obtained by condensation of a polyvalent organic acid compound such as 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate and an epihalohydrin compound; Amine-based epoxy compounds obtained by condensation of primary and secondary diamine compounds with epihalohydrin compounds; Examples thereof include aliphatic polyvalent epoxy compounds such as vinylcyclohexene diepoxide, but are not limited to these exemplified compounds.
- an episulfide compound that can be added as a resin modifier for example, Bis (2,3-epithiopropylthio) sulfide, bis (2,3-epithiopropylthio) disulfide, bis (2,3-epithiopropylthio) methane, 1,2-bis (2,3-epi Chain aliphatic 2,3-epithiopropylthio compounds such as thiopropylthio) ethane and 1,5-bis (2,3-epithiopropylthio) -3-thiapentane; Cycloaliphatic such as 1,3-bis (2,3-epithiopropylthio) cyclohexane, 2,5-bis (2,3-epithiopropylthiomethyl) -1,4-dithiane, 2 having a heterocyclic ring , 3-epithiopropylthio compounds; List aromatic 2,3-epithioprop
- Thiodiglycolic acid thiodipropionic acid
- dithiodipropionic acid phthalic anhydride
- hexahydrophthalic anhydride methylhexahydrophthalic anhydride
- methyltetrahydrophthalic anhydride methyltetrahydrophthalic anhydride
- maleic anhydride trimellitic anhydride
- pyromellitic anhydride pyromellitic anhydride
- olefin compound that can be added as a resin modifier for example, Benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxymethyl methacrylate, glycidyl acrylate, glycidyl methacrylate, phenoxyethyl acrylate, phenoxyethyl methacrylate, phenyl methacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate , Diethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, ethylene glycol bisglycidyl acrylate, ethylene glycol Coal bisglycidyl methacrylate, bisphenol A diacrylate, bisphenol A di
- resin modifiers can be used alone or in combination of two or more.
- the use ratio of (A) isocyanate compound and (B) active hydrogen compound (including a hydroxy compound as a modifier) used in this embodiment is usually a functional group molar ratio of (NCO + NCS) / (SH + OH). Is usually in the range of 0.8 to 1.5, preferably in the range of 0.9 to 1.2.
- the (A) isocyanate compound and the (B) active hydrogen compound used in the present embodiment are selected in consideration of availability, price, ease of handling, performance of the resulting resin, and the like.
- a particularly important factor for ease of handling is the viscosity at the time of injection of the mixture.
- the viscosity at the time of injection includes a combination of (A) an isocyanate compound and (B) an active hydrogen compound (including the type and amount of the resin modifier when a resin modifier is used.
- an active hydrogen compound including the type and amount of the resin modifier when a resin modifier is used.
- a catalyst Including the type and amount of the catalyst.
- the viscosity at the time of injection is preferably 200 mPa ⁇ s or less as a measured value at 20 ° C.
- an even lower viscosity for example, 100 mPa ⁇ s or less is more preferred.
- the viscosity of the mixture is measured using a B-type viscometer at a liquid temperature of 20 ° C.
- the refractive index is important, and those having a high refractive index can be suitably used.
- the refractive index measured by e-line is usually in the range of 1.57 to 1.70, preferably in the range of 1.59 to 1.70, more preferably in the range of 1.65 to 1.68.
- a combination of (A) an isocyanate compound and (B) an active hydrogen compound (including the type and amount of the resin modifier when a resin modifier is used) is preferable. If the refractive index is too low, it can be clearly seen that there is a film in the polarizing lens, which makes the appearance worse.
- the mixture of (A) isocyanate compound and (B) active hydrogen compound used in the present embodiment is usually the same on both sides of the polarizing film surface, but different ones may be used.
- a catalyst such as dibutyltin dichloride, UV absorption such as benzotriazole, as in the known molding method.
- Agents, internal release agents such as acidic phosphate esters, light stabilizers, antioxidants, reaction initiators such as radical reaction initiators, chain extenders, crosslinking agents, anti-coloring agents, oil-soluble dyes, fillers, etc. Substances may be added.
- the order of addition is not limited to these exemplified methods, and is appropriately selected based on operability, safety, convenience, and the like.
- Mixing is usually performed at a temperature of 30 ° C. or lower. From the viewpoint of the pot life of the mixture, it may be preferable to lower the temperature further.
- the additive such as a catalyst or a release agent does not show good solubility in (A) an isocyanate compound or (B) an active hydrogen compound, it is heated in advance, and (A) an isocyanate compound, (B) It may be dissolved in an active hydrogen compound or a mixture thereof.
- a lens casting mold on which a polarizing film into which a mixture of (A) an isocyanate compound and (B) an active hydrogen compound is injected is fixed in an oven or in a heatable apparatus such as in water by a predetermined temperature program. It is heated and molded for several hours to several tens of hours.
- the polymerization curing temperature is not limited because the conditions vary depending on the composition of the mixture, the type of catalyst, the shape of the mold, and the like, but is approximately 1 to 100 hours at a temperature of ⁇ 50 to 200 ° C. In general, it is common to start at a temperature in the range of 5 ° C. to 40 ° C., then gradually raise the temperature to a range of 80 ° C. to 130 ° C. and heat at that temperature for 1 to 4 hours.
- the plastic polarizing lens of this embodiment as shown in FIG. 1 can be obtained by taking it out from the lens casting mold.
- a resin layer 14a, a polarizing film 12, and a resin layer 14b are sequentially laminated.
- the annealing temperature is usually in the range of 80 to 150 ° C., preferably in the range of 100 to 130 ° C., more preferably in the range of 110 to 130 ° C.
- the annealing time is usually in the range of 0.5 to 5 hours, preferably in the range of 1 to 4 hours.
- the plastic polarizing lens of this embodiment is used with a coating layer on one side or both sides as required.
- the coating layer include a primer layer, a hard coat layer, an antireflection film layer, an antifogging coat layer, a stainproof layer, and a water repellent layer. These coating layers may be used singly or in a multilayered form. When a coating layer is applied to both sides, a similar coating layer or a different coating layer may be applied to each surface.
- Each of these coating layers has an ultraviolet absorber for the purpose of protecting the lens and eyes from ultraviolet rays, an infrared absorber for the purpose of protecting the eyes from infrared rays, a light stabilizer and an antioxidant for the purpose of improving the weather resistance of the lens, Dyes and pigments for the purpose of enhancing the fashionability of the lens, photochromic dyes and photochromic pigments, antistatic agents, and other known additives may be used in combination for the purpose of enhancing the performance of the lens.
- Various leveling agents may be used for the purpose of improving coatability.
- the primer layer is generally formed between a polarizing lens substrate (thiourethane resin) and a hard coat layer for the purpose of improving the adhesion of the hard coat layer and the impact resistance of the polarizing lens.
- the film thickness is usually about 0.1 to 10 ⁇ m.
- the primer layer is formed by, for example, a coating method or a dry method.
- a primer layer is formed by applying the primer composition by a known application method such as spin coating or dip coating, followed by solidification.
- the dry method it is formed by a known dry method such as a CVD method or a vacuum deposition method.
- the surface of the lens may be subjected to pretreatment such as alkali treatment, plasma treatment, or ultraviolet treatment as necessary for the purpose of improving adhesion.
- a solidified primer layer is preferably a material having high adhesion to the lens substrate (thiourethane resin), and usually a urethane resin, an epoxy resin, a polyester resin, a melanin resin, or a polyvinyl acetal.
- a primer composition having a main component is used.
- the primer composition can be used in the absence of a solvent, but an appropriate solvent that does not affect the lens may be used for the purpose of adjusting the viscosity of the composition.
- the hard coat layer is a coating layer intended to give the lens surface functions such as scratch resistance, abrasion resistance, moisture resistance, warm water resistance, heat resistance, weather resistance, etc. It is about 0.3 to 30 ⁇ m.
- the hard coat layer is usually formed by applying a hard coat composition by a known coating method such as spin coating or dip coating and then curing.
- a known coating method such as spin coating or dip coating and then curing.
- the curing method include thermal curing, a curing method by irradiation with energy rays such as ultraviolet rays and visible rays, and the like.
- pretreatment such as alkali treatment, plasma treatment, and ultraviolet treatment may be performed on the coated surface (lens substrate or primer layer) as necessary for the purpose of improving adhesion. .
- hard coat compositions generally, there are curable organosilicon compounds and fine oxide particles such as Si, Al, Sn, Sb, Ta, Ce, La, Fe, Zn, W, Zr, In, and Ti. A mixture of (including complex oxide fine particles) is often used.
- amines, amino acids, metal acetylacetonate complexes, organic acid metal salts, perchloric acids, perchloric acid salts, acids, metal chlorides and polyfunctional epoxy compounds may also be used. Good.
- the hard coat composition can be used without a solvent, but an appropriate solvent that does not affect the lens may be used.
- the antireflection layer is usually formed on the hard coat layer as necessary.
- the antireflection layer includes an inorganic type and an organic type.
- an inorganic type generally, an inorganic oxide such as SiO 2 or TiO 2 is used to form a vacuum deposition method, a sputtering method, an ion plating method, an ion It is often formed by a dry method such as a beam assist method or a CVD method.
- an organic type in general, it is often formed by a wet process using a composition containing an organosilicon compound and silica-based fine particles having internal cavities.
- the antireflection layer may be a single layer or a multilayer, but when used as a single layer, the refractive index is preferably at least 0.1 lower than the refractive index of the hard coat layer. In order to effectively exhibit the antireflection function, it is preferable to use a multilayer antireflection film. In that case, a low refractive index film and a high refractive index film are usually laminated alternately. Also in this case, the refractive index difference between the low refractive index film and the high refractive index film is preferably 0.1 or more.
- Examples of the high refractive index film include ZnO, TiO 2 , CeO 2 , Sb 2 O 5 , SnO 2 , ZrO 2 , and Ta 2 O 5
- examples of the low refractive index film include an SiO 2 film. It is done. The film thickness is usually about 50 to 150 nm.
- plastic polarizing lens of the present embodiment may be subjected to back surface polishing, antistatic treatment, dyeing treatment, light control treatment, and the like, if necessary.
- the polarizing film of this embodiment is a resin film containing an organic dye compound. Specifically, the same composition as that of the polarizing film 12 used in the plastic polarizing lens 10 of the present embodiment can be used. According to such a polarizing film, the color contrast and the outline of the object can be clearly recognized and the contrast is improved. Therefore, when used for optical applications such as lenses and goggles, the polarizing film is excellent in visibility and visually. An effect of reducing fatigue can be obtained.
- the polarizing film of this embodiment can be obtained by the same method as in step (a) in the method for producing a plastic polarizing lens of this embodiment. That is, first, a water-insoluble dye containing at least one dichroic dye and an organic coloring compound are added to a predetermined resin in a predetermined amount and mixed to obtain a resin composition. Then, the resin composition is formed into a film shape by a predetermined method, and the obtained film is stretched in a uniaxial direction, and then heat-treated at a predetermined temperature. In the present embodiment, the film thus obtained can also be used as a polarizing film.
- a protective film may be laminated and processed on one side or both sides of the polarizing film for the purpose of preventing scratches on the polarizing film.
- the protective film is not particularly limited as long as it does not cause glue sticking when it is peeled off from the polarizing film after the curvature processing.
- the temperature at which the curvature processing is performed is preferably a temperature range of not less than the crystallization temperature of the resin and less than the melting temperature in the case of using a polarizing film on which annealing treatment has been performed in advance.
- a polarizing film that has not been annealed it is preferably at least the glass transition temperature of the resin and less than the melting temperature.
- a film processed with a polarizing film that has not been annealed be annealed after the curvature processing.
- the radius of curvature when performing the curvature processing is about 40 to 1000 mm.
- the temperature of the annealing treatment is preferably in the range of 120 ° C. to the melting temperature of the resin in consideration of the lens usage conditions, particularly when left in a vehicle.
- the thermoplastic polyester film is a glass transition of the thermoplastic polyester. Curvature processing is preferably performed under temperature conditions of temperature + 20 ° C. or higher and glass transition temperature + 120 ° C. or lower.
- the polarizing film according to this embodiment is used for a plastic polarizing lens
- at least one surface of the polarizing film may be subjected to surface modification treatment, or an adhesive layer may be separately provided.
- the surface modification treatment and the formation of the adhesive layer may be sequentially performed.
- the adhesiveness of a polarizing film and the resin layer which consists of a thiourethane type resin can be improved.
- the adhesive layer include a layer containing a urethane resin composed of a structural unit derived from a polyhydroxy compound and a structural unit derived from a polyisocyanate
- examples of the surface modification treatment include plasma treatment of the film surface.
- the polarizing film of the present embodiment for a polarizing lens, the color contrast and the contour of the object can be clearly recognized, and the contrast is improved, so that the visibility is excellent and the visual fatigue is reduced.
- the polarizing film of this embodiment can be used not only for lenses, but also for other contrast improvement applications such as helmet shields as well as goggles.
- A Contrast property
- the object was visually observed through the obtained polarizing lens outdoors, and the contrast property was evaluated according to the following criteria.
- (B) Hue of lens The difference in hue between the central portion and the peripheral portion of the obtained ⁇ 6D polarizing lens was visually evaluated according to the following criteria.
- Organic dye compound A Tetra-t-butyl-tetraazaporphyrin / copper complex represented by the above formula (2) was used.
- Dichroic dye A A dichroic dye represented by the above formula (5) was used.
- Dichroic dye B A dichroic dye represented by the above formula (6) was used.
- Dichroic dye C A dichroic dye represented by the above formula (7) was used.
- Dichroic dye D The dichroic dye represented by the above formula (8) was used.
- Dichroic dye E A dichroic dye represented by the following formula (9) was used.
- Dichroic dye F A dichroic dye represented by the following formula (10) was used.
- Dichroic dye G A dichroic dye represented by the following formula (11) was used.
- Dichroic dye H A dichroic dye represented by the following formula (12) was used.
- Example 1 Preparation of polarizing film>
- the organic dye compound A is adjusted to 0.0150 parts by weight and the dichroic dyes A to H are mixed in an appropriate amount so as to obtain a desired color tone and mixed with 100 parts by weight of a polyethylene terephthalate resin.
- the melted resin was cast from a T-die to form a film, and a uniaxial stretching operation 4 times was performed to obtain a polarizing film having a thickness of 140 ⁇ m.
- the polarizing film contained 134 ppm of the organic dye compound A.
- the absorbance of the obtained polarizing film was measured using an absorbance meter UV / VIS SPECTROMETER V-550 manufactured by JASCO.
- FIG. 3 shows the measurement results. As shown in FIG. 3, it had an absorption maximum peak at 588 nm. Furthermore, the polarizing film had polarization characteristics.
- the glass transition temperature of the polarizing film made of polyethylene terephthalate to which antiglare property obtained as described above was imparted was measured as follows. Further, 4.30 mg of the polarizing film was cut out and used as a measurement sample.
- the glass transition temperature was measured by raising the temperature at a heating rate of 10 ° C./min. From the inflection point of the chart, the glass transition temperature of this polarizing film was 70.7 ° C. (intersection method). Moreover, melting
- Example 2 ⁇ Preparation of polarizing lens containing organic dye compound in polarizing film>
- the polarizing film made of polyethylene terephthalate obtained in Example 1 [glass transition temperature: 70.7 ° C.] (thickness: 140 ⁇ m) was formed into a curved shape of 2C (curve) at a forming temperature of 120 ° C. by a hot press method.
- a polarizing film was prepared by cutting the polarizing film according to the size of the mold. This was sandwiched and installed in a mold for molding a polarizing lens (front surface 2C / rear surface 6C glass mold set -5D) shown in FIG.
- the mixture was degassed under reduced pressure, and provided as a monomer mixture for injection immediately after preparation.
- the viscosity at 20 ° C. after 1 hour of stirring and dissolution was 30 mPa ⁇ s.
- the viscosity of the monomer mixture for injection was measured using a B-type viscometer at a liquid temperature of 20 ° C.
- the monomer mixture was filtered through a 3 ⁇ m filter and injected through a tube into the two gaps 24a and 24b partitioned by the glass molds 22a and 22b and the polarizing film 12 in the lens casting mold.
- the separation distance a of the narrowest gap 24a was about 0.5 mm.
- the lens casting mold 20 closed after injection is placed in a hot air circulation oven, heated from 25 ° C. to 120 ° C. over 16 hours, then maintained at 120 ° C. for 4 hours, and after slow cooling, the lens is removed from the oven.
- the casting mold was removed.
- the lens was released from the lens casting mold and annealed at 130 ° C. for 2 hours to obtain a polarizing lens.
- the results of the performance test of the obtained polarizing lens are shown in Table 1.
- the obtained -5D lens had a center thickness of 1.2 mm and an edge thickness of 6.2 mm. When this lens was observed, the color tone of the lens hardly changed despite the great difference in thickness between the central portion and the edge portion, and the lens looked very good. Further, when observed through the obtained lens, for example, the lines of the twigs of trees under clear sky and the contrast of green, yellow and red were very high, and the object could be clearly seen.
- the mixture was degassed under reduced pressure, and provided as a monomer mixture for injection immediately after preparation.
- the viscosity at 20 ° C. after 1 hour of stirring and dissolution was 30 mPa ⁇ s.
- the monomer mixture was filtered through a 3 ⁇ m filter and injected through a tube into the two gaps 24a and 24b partitioned by the glass molds 22a and 22b and the polarizing film 12 in the lens casting mold.
- the separation distance a of the narrowest gap 24a was about 0.5 mm.
- the lens casting mold 20 closed after injection is placed in a hot air circulation oven, heated from 25 ° C. to 120 ° C. over 16 hours, then maintained at 120 ° C.
- the obtained -5D lens had a center thickness of 1.2 mm and an edge thickness of 6.2 mm.
- the lines of twigs of trees under clear sky, green, yellow, red The contrast was low and the object could not be seen clearly.
- the viscosity at 20 ° C. after 1 hour of stirring and dissolution was 30 mPa ⁇ s.
- the monomer mixture was filtered through a 3 ⁇ m filter and injected through a tube into the two gaps 24a and 24b partitioned by the glass molds 22a and 22b and the polarizing film 12 in the lens casting mold.
- the separation distance a of the narrowest gap 24a was about 0.5 mm.
- the lens casting mold 20 closed after injection is placed in a hot air circulation oven, heated from 25 ° C. to 120 ° C. over 16 hours, then maintained at 120 ° C. for 4 hours, and after slow cooling, the lens is removed from the oven. The casting mold was removed.
- the lens was released from the lens casting mold and annealed at 130 ° C. for 2 hours to obtain a polarizing lens.
- the results of the performance test of the obtained polarizing lens are shown in Table 1.
- the obtained -5D lens had a center thickness of 1.2 mm and an edge thickness of 6.2 mm.
- the lines of twigs under clear sky and the contrast of green, yellow, and red were very high, and the object could be clearly seen.
- the hue of the lens is different between the central part and the peripheral part due to the greatly different thickness of the central part and the edge part, and the central part is lighter and the peripheral part is darker. It was a very bad looking lens.
- Example 3 The polarizing film made of polyethylene terephthalate obtained in Example 1 [glass transition temperature 70.7 ° C.] (thickness 140 ⁇ m) was previously heat-treated in an oven at 140 ° C. for 15 minutes, and then heated at a forming temperature of 160 ° C. It was attached to a curved shape of 6C (curve). After the polarizing film is cut according to the size of the mold, the surface and the back surface of the polarizing film are irradiated with plasma for 20 seconds each using a plasma irradiation surface modification device (PS-601SW type: manufactured by Wedge Co., Ltd.). After washing, it was air-dried to prepare a polarizing film.
- PS-601SW type manufactured by Wedge Co., Ltd.
- a mold for forming a polarizing lens front surface 6C / rear surface 6C glass mold set center thickness 12 mm.
- the monomer mixture for injection was injected, the temperature was raised from 25 ° C. to 100 ° C. in an oven for 16 hours, and then maintained at 100 ° C. for 10 hours. After slow cooling, the lens was cast from the oven. The mold was removed. The lens was released from the lens casting mold and annealed at 115 ° C. for 2 hours to obtain a semifinished polarizing lens. Thereafter, the back surface was cut and polished to obtain a -6D-shaped lens.
- the obtained -6D lens had a center thickness of 1.2 mm and an edge thickness of 9.0 mm.
- Example 4 A polarizing film cut and formed in the same manner as in Example 3 except that the polarizing film was formed into a curved shape of 2C (curve) at 140 ° C. by hot pressing the corona discharge surface treatment device (CTW). -0212 type: manufactured by Wedge Co., Ltd.), a polarizing film was prepared by corona discharge treatment of the front and back surfaces of the polarizing film with a 400 W set. Thereafter, as in Example 3, it was placed in a mold for forming a polarizing lens (front surface 2C / rear surface 4C glass mold set center thickness 10 mm), and the monomer mixture was injected in the same manner as in Example 3.
- CCW corona discharge surface treatment device
- the lens was released from the lens casting mold and annealed to obtain a polarizing lens having a semi-finished lens shape. Thereafter, the back surface was cut and polished to obtain a -3D lens.
- the obtained -3D lens had a center thickness of 1.2 mm and an edge thickness of 3.6 mm.
- the results of the performance test of this polarizing lens are shown in Table 2.
- the adhesion between the lens and the polarizing film was good, and deformation such as distortion was not seen in the lens.
- the color tone of the lens hardly changed despite the great difference in thickness between the central portion and the edge portion, and the lens looked very good. Further, when observed through the obtained lens, for example, the lines of the twigs of trees under clear sky and the contrast of green, yellow and red were very high, and the object could be clearly seen.
- Example 5 The polarizing film shaped and cut in the same manner as in Example 3 except that the polarizing film was formed into a curved shape of 4C (curve) at 140 ° C. by hot pressing, and the polarizing film was washed with methanol and then washed at 40 ° C. And dried.
- the film was dipped in an acrylic adhesive solution (SYNEDOL2263XB coating solution CHEMISCHE INDUSTRIE SYNRES NV., (HOLLAND)), pulled up, dried at 40 ° C., and subjected to an acrylic coating treatment.
- SYNEDOL2263XB coating solution CHEMISCHE INDUSTRIE SYNRES NV., (HOLLAND
- Example 3 Thereafter, as in Example 3, it was placed in a mold for polarizing lens molding (front surface 4C / rear surface 6C glass mold set, center thickness 11 mm), and a monomer mixture was injected in the same manner as in Example 3, and this was placed in an oven. After heat-curing and annealing, the lens was released from the lens casting mold and annealed to obtain a polarizing lens having a semi-finished lens shape. Thereafter, the back surface was cut and polished to obtain a -5D-shaped lens. The obtained -5D lens had a center thickness of 1.2 mm and an edge thickness of 6.6 mm. The results of the performance test of this polarizing lens are shown in Table 2.
- the adhesion between the lens and the polarizing film was good, and deformation such as distortion was not seen in the lens.
- the color tone of the lens hardly changed despite the great difference in thickness between the central portion and the edge portion, and the lens looked very good.
- the lines of the twigs of trees under clear sky and the contrast of green, yellow and red were very high, and the object could be clearly seen.
- Example 6 As a urethane coating, 100 parts by weight of Samprene IB-422 (polyester polyurethane resin solution, Sanyo Kasei Kogyo Co., Ltd.) was dissolved in 330 parts by weight of a mixed solvent of methyl ethyl ketone and isopropanol in a 2: 1 weight ratio to prepare a urethane coating solution. did.
- the above urethane-based coating liquid prepared in advance was applied to the film surface with a # 4 bar coater while keeping the film almost horizontal, and then blown dry at 50 ° C. Dry in oven for 5 minutes.
- the obtained polarizing film coated with urethane coating was cut into a 6C (curve) curved shape at a forming temperature of 140 ° C. by hot pressing. After that, as in Example 3, it was placed in a mold for forming a polarizing lens (front surface 6C / rear surface 6C glass mold set with a center thickness of 12 mm), and a monomer mixture was injected in the same manner as in Example 3, and this was placed in an oven. After heat-curing and annealing, the lens was released from the lens casting mold and annealed to obtain a polarizing lens having a semi-finished lens shape.
- a polarizing lens front surface 6C / rear surface 6C glass mold set with a center thickness of 12 mm
- the obtained -6D lens had a center thickness of 1.2 mm and an edge thickness of 9.0 mm.
- the results of the performance test of this polarizing lens are shown in Table 2.
- the adhesion between the lens and the polarizing film was good, and deformation such as distortion was not seen in the lens.
- the color tone of the lens hardly changed despite the great difference in thickness between the central portion and the edge portion, and the lens looked very good. Further, when observed through the obtained lens, for example, the lines of the twigs of trees under clear sky and the contrast of green, yellow and red were very high, and the object could be clearly seen.
- Example 7 A plasma irradiation surface modification device for a polarizing film that was shaped and cut in the same manner as in Example 3 except that the shaping temperature of the polarizing film by hot pressing was 140 ° C. and was shaped into a curved shape of 6C (curve).
- the surface and the back surface of the polarizing film were irradiated with plasma for 20 seconds each using PS-601SW type (manufactured by Wedge Corporation), washed with methanol, and dried at 40 ° C. Further, this film was dipped in an acrylic adhesive solution (SYNEDOL2263XB coating solution CHEMISCHE INDUSTRIE SYNRES NV., (HOLLAND)), and then dried at 40 ° C.
- an acrylic adhesive solution SYNEDOL2263XB coating solution CHEMISCHE INDUSTRIE SYNRES NV., (HOLLAND
- Example 3 After that, as in Example 3, it was placed in a mold for forming a polarizing lens (front surface 6C / rear surface 6C glass mold set with a center thickness of 12 mm), and a monomer mixture was injected in the same manner as in Example 3, and this was placed in an oven. After heat-curing and annealing, the lens was released from the lens casting mold and annealed to obtain a polarizing lens having a semi-finished lens shape. Thereafter, the back surface was cut and polished to obtain a -6D-shaped lens. The obtained -6D lens had a center thickness of 1.2 mm and an edge thickness of 9.0 mm. The results of the performance test of this polarizing lens are shown in Table 2.
- the adhesion between the lens and the polarizing film was good, and deformation such as distortion was not seen in the lens.
- the color tone of the lens hardly changed despite the great difference in thickness between the central portion and the edge portion, and the lens looked very good.
- the lines of the twigs of trees under clear sky and the contrast of green, yellow and red were very high, and the object could be clearly seen.
- Example 8 The polarizing film cut and shaped in the same manner as in Example 3 except that the polarizing film was formed into a curved shape of 6C (curve) at 140 ° C. by hot pressing. -0212 type: manufactured by Wedge Co., Ltd.), a polarizing film was prepared by corona discharge treatment of the front and back surfaces of the polarizing film with a 400 W set. Further, this film was dipped in an acrylic adhesive solution (SYNEDOL2263XB coating solution CHEMISCHE INDUSTRIE SYNRES NV., (HOLLAND)), and then dried at 40 ° C. to carry out an acrylic coating treatment.
- an acrylic adhesive solution SYNEDOL2263XB coating solution CHEMISCHE INDUSTRIE SYNRES NV., (HOLLAND
- Example 3 After that, as in Example 3, it was placed in a mold for forming a polarizing lens (front surface 6C / rear surface 6C glass mold set with a center thickness of 12 mm). The temperature was raised from 25 ° C. to 115 ° C. over 16 hours and then maintained at 115 ° C. for 10 hours. After slow cooling, the lens casting mold was taken out from the oven. The lens was released from the lens casting mold and annealed at 115 ° C. for 2 hours to obtain a semifinished polarizing lens. After heat-curing and annealing, the lens was released from the lens casting mold and annealed to obtain a polarizing lens having a semi-finished lens shape.
- a mold for forming a polarizing lens front surface 6C / rear surface 6C glass mold set with a center thickness of 12 mm.
- the temperature was raised from 25 ° C. to 115 ° C. over 16 hours and then maintained at 115 ° C. for 10 hours. After slow cooling, the lens
- the obtained -6D lens had a center thickness of 1.2 mm and an edge thickness of 9.0 mm.
- the results of the performance test of this polarizing lens are shown in Table 2.
- the adhesion between the lens and the polarizing film was good, and deformation such as distortion was not seen in the lens.
- the color tone of the lens hardly changed despite the great difference in thickness between the central portion and the edge portion, and the lens looked very good. Further, when observed through the obtained lens, for example, the lines of the twigs of trees under clear sky and the contrast of green, yellow and red were very high, and the object could be clearly seen.
- the present invention can take the following aspects.
- a high-contrast plastic polarizing lens wherein layers of a thiourethane resin are laminated on both sides of a polarizing film made of thermoplastic polyester,
- the polarizing film includes an organic dye compound represented by the following general formula (1): a high-contrast plastic polarizing lens;
- a 1 to A 8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a carboxyl group, a sulfone group, a linear or branched chain having 1 to 20 carbon atoms.
- a cyclic alkyl group an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, a monoalkylamino group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 20 carbon atoms, or 7 to 7 carbon atoms
- M may represent two hydrogen atoms, a divalent metal atom, a monosubstituted trivalent metal atom, a disubstituted tetravalent metal atom, or an oxy metal.
- the organic dye compound is represented by the following general formula (1a): the high-contrast plastic polarizing lens according to (a1);
- tC 4 H 9 represents a tertiary butyl group.
- the four tertiary butyl groups represent A 1 or A 2 , A 3 or A 4 , A 5 or Corresponds to A 6 , A 7 or A 8 and represents a regioisomer structure, wherein A 1 to A 8 which are not tertiary butyl groups represent hydrogen atoms, M represents a divalent copper atom, Palladium atom or divalent vanadium oxide (represents —V ( ⁇ O) —)).
- the thiourethane resin is (A) one or two or more isocyanate compounds selected from the group consisting of a polyisocyanate compound, an isocyanate compound having an isothiocyanate group, and a polyisothiocyanate compound; (B) It is obtained by reacting one or more active hydrogen compounds selected from the group consisting of a thiol compound having a hydroxy group and a polythiol compound.
- the high contrast plastic polarizing lens according to any one of the above.
- thermoplastic polyester is polyethylene terephthalate.
- the isocyanate compound (A) is 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2. 1] -heptane and one or more diisocyanate compounds selected from the group consisting of m-xylylene diisocyanate,
- the active hydrogen compound (B) is pentaerythritol tetrakis (3-mercaptopropionate), 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 5,7-dimercaptomethyl-1,11- Dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-
- the high-contrast plastic polarizing lens according to any one of
- thermoplastic polyester film containing an organic dye compound represented by the following general formula (1); Forming the thermoplastic polyester film under a temperature condition of glass transition temperature + 20 ° C. or higher and glass transition temperature + 120 ° C. or lower of the thermoplastic polyester to obtain a polarizing film; In the lens casting mold, fixing the polarizing film in a state separated from the mold, Injecting a monomer mixture into the gap between both surfaces of the polarizing film and the mold; Polymerizing and curing the monomer mixture, and laminating layers made of a thiourethane resin on both surfaces of the polarizing film; and a method for producing a high contrast plastic polarizing lens;
- a 1 to A 8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a carboxyl group, a sulfone group, a linear or branched chain having 1 to 20 carbon atoms.
- a cyclic alkyl group an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, a monoalkylamino group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 20 carbon atoms, or 7 to 7 carbon atoms
- M may represent two hydrogen atoms, a divalent metal atom, a monosubstituted trivalent metal atom, a disubstituted tetravalent metal atom, or an oxy metal.
- tC 4 H 9 represents a tertiary butyl group.
- the four tertiary butyl groups represent A 1 or A 2 , A 3 or A 4 , A 5 or Corresponds to A 6 , A 7 or A 8 and represents a regioisomer structure, wherein A 1 to A 8 which are not tertiary butyl groups represent hydrogen atoms, M represents a divalent copper atom, Palladium atom or divalent vanadium oxide (represents —V ( ⁇ O) —)).
- the monomer mixture is (A) one or two or more isocyanate compounds selected from the group consisting of a polyisocyanate compound, an isocyanate compound having an isothiocyanate group, and a polyisothiocyanate compound; (B) one or two or more active hydrogen compounds selected from the group consisting of a thiol compound having a hydroxy group and a polythiol compound, and the high as described in the above (a12) or (a13) A method for producing a contrast plastic polarizing lens.
- thermoplastic polyester is polyethylene terephthalate.
- the isocyanate compound (A) is 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2. 1] -heptane, and one or more diisocyanate compounds selected from the group consisting of m-xylylene diisocyanate,
- the active hydrogen compound (B) is pentaerythritol tetrakis (3-mercaptopropionate), 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 5,7-dimercaptomethyl-1,11- Dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto- The method for producing a high-contrast plastic polarizing lens
- thermoplastic polyester containing an organic dye compound represented by the following general formula (1);
- a 1 to A 8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a carboxyl group, a sulfone group, a linear or branched chain having 1 to 20 carbon atoms.
- a cyclic alkyl group an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, a monoalkylamino group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 20 carbon atoms, or 7 to 7 carbon atoms
- M may represent two hydrogen atoms, a divalent metal atom, a monosubstituted trivalent metal atom, a disubstituted tetravalent metal atom, or an oxy metal.
- the organic coloring compound is represented by the following general formula (1a), The polarizing film as described in (a22) above;
- tC 4 H 9 represents a tertiary butyl group.
- the four tertiary butyl groups represent A 1 or A 2 , A 3 or A 4 , A 5 or Corresponds to A 6 , A 7 or A 8 and represents a regioisomer structure, wherein A 1 to A 8 which are not tertiary butyl groups represent hydrogen atoms, M represents a divalent copper atom, Palladium atom or divalent vanadium oxide (represents —V ( ⁇ O) —)).
- thermoplastic polyester is polyethylene terephthalate.
- thermoplastic polyester film containing the organic dye compound Preparing a thermoplastic polyester film containing the organic dye compound; Forming the thermoplastic polyester film under a glass transition temperature of the thermoplastic polyester of + 20 ° C. or higher and a glass transition temperature of + 120 ° C. or lower; The manufacturing method of the polarizing film containing this.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Polarising Elements (AREA)
- Polyurethanes Or Polyureas (AREA)
- Eyeglasses (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
Abstract
Description
しかしながら、ポリビニルアルコール偏光フィルムを用いて製造された偏光レンズは、レンズの端の部分から徐々に水分の浸入が生じ、レンズ外周部から中心部に向けて経時的に、あるいは環境によって劣化が進行する欠点がある。
前記偏光フィルムは、下記一般式(1)で表される有機色素化合物を含むことを特徴とするプラスチック偏光レンズ;
(A)ポリイソシアネート化合物、イソチオシアネート基を有するイソシアネート化合物、およびポリイソチオシアネート化合物よりなる群から選ばれる1種または2種以上のイソシアネート化合物と、
(B)ヒドロキシ基を有するチオール化合物、およびポリチオール化合物よりなる群から選ばれる1種または2種以上の活性水素化合物と
を反応させて得られることを特徴とする前記(1)乃至(4)のいずれかに記載のプラスチック偏光レンズ。
(式)熱可塑性ポリエステルのガラス転移温度+20℃≦T1≦熱可塑性ポリエステルのガラス転移温度+120℃
前記活性水素化合物(B)が、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンよりなる群から選ばれる1種以上のポリチオール化合物である前記(5)乃至(9)のいずれかに記載のプラスチック偏光レンズ。
前記樹脂フィルムを附形して偏光フィルムを得る工程と、
レンズ注型用鋳型内に、モールドから離隔した状態で前記偏光フィルムを固定する工程と、
前記偏光フィルムの両面と前記モールドとの間の空隙にモノマー混合物を注入する工程と、
前記モノマー混合物を重合硬化して、前記偏光フィルムの両面上にチオウレタン系樹脂からなる層を積層する工程と、を含むプラスチック偏光レンズの製造方法;
前記樹脂フィルムである前記熱可塑性ポリエステルフィルムを、該熱可塑性ポリエステルのガラス転移温度+20℃以上、ガラス転移温度+120℃以下の温度条件下で附形する工程を、含むことを特徴とする前記(15)に記載のプラスチック偏光レンズの製造方法。
(A)ポリイソシアネート化合物、イソチオシアネート基を有するイソシアネート化合物、およびポリイソチオシアネート化合物よりなる群から選ばれる1種または2種以上のイソシアネート化合物と、
(B)ヒドロキシ基を有するチオール化合物、およびポリチオール化合物よりなる群から選ばれる1種または2種以上の活性水素化合物と、を含むことを特徴とする前記(13)乃至(16)のいずれかに記載のプラスチック偏光レンズの製造方法。
前記偏光フィルムの少なくとも一方の表面に表面改質処理を施す工程を含むことを特徴とする前記(13)乃至(17)のいずれかに記載のプラスチック偏光レンズの製造方法。
前記偏光フィルムの少なくとも一方の表面に接着層を形成する工程を含むことを特徴とする前記(13)乃至(18)のいずれかに記載のプラスチック偏光レンズの製造方法。
前記偏光フィルムの少なくとも一方の表面に表面改質処理を施す工程と、
表面改質処理が施された前記表面に接着層を形成する工程と、
を含むことを特徴とする前記(13)乃至(18)のいずれかに記載のプラスチック偏光レンズの製造方法。
前記活性水素化合物(B)が、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンよりなる群から選ばれる1種または2種以上のポリチオール化合物である前記(17)乃至(22)のいずれかに記載のプラスチック偏光レンズの製造方法。
前記有機色素化合物を含む樹脂フィルムを調製する工程と、
前記樹脂フィルムを附形する工程と、
を含む偏光フィルムの製造方法。
前記樹脂フィルムである前記熱可塑性ポリエステルフィルムを、該熱可塑性ポリエステルのガラス転移温度+20℃以上、ガラス転移温度+120℃以下の温度条件下で附形する工程を、含むことを特徴とする前記(32)に記載の偏光フィルムの製造方法。
また、本発明のプラスチック偏光レンズの製造方法は、
また、本発明の偏光フィルムは、偏光機能が付与されるとともにハイコントラスト性を付与することができ、特に偏光レンズに好適に用いることができる。
熱可塑性ポリエステルとして具体的には、ポリエチレンテレフタレート、ポリエチレンナフタレート、及びポリブチレンテレフタレート等を用いることができ、上記効果の観点から特にポリエチレンテレフタレートが好ましい。共重合成分を添加する等の手法で変性されたものも含まれる。
Mは2個の水素原子、2価の金属原子、1置換の3価金属原子、2置換の4価金属原子、またはオキシ金属を表す。
Mとしては、2価の金属原子またはオキシ金属が好ましく、銅原子(Cu(II))、パラジウム原子(Pd(II))または酸化バナジウム(-V(=O)-)がより好ましく、銅原子(Cu(II))が特に好ましい。
一般式(1)または(1a)で表されるテトラアザポルフィリン化合物としては、以下の式(2)~(4)で表される化合物を用いることができる。
(式)熱可塑性ポリエステルのガラス転移温度+20℃≦T1≦熱可塑性ポリエステルのガラス転移温度+120℃
本実施形態の偏光フィルム12は、樹脂フィルムとして熱可塑性ポリエステルフィルムを用い、この温度条件下において所望の曲率の形状に附形された場合、樹脂層14a,14bとの密着性に優れる。そのため、本実施形態のプラスチック偏光レンズは、生産性に優れ、大量生産に適している。
実施形態のプラスチック偏光レンズの製造方法は、以下の工程を備える。
(a)上述の有機色素化合物を含む樹脂フィルムを製造する工程
(b)得られた樹脂フィルムを附形することにより偏光フィルムを製造する工程
(c)レンズ注型用鋳型内に、モールドから離隔した状態で、前記偏光フィルムを固定する工程
(d)前記偏光フィルムの両面と前記モールドとの間の空隙に混合物を注入する工程
(e)前記混合物を重合硬化して、前記偏光フィルムの両面にチオウレタン系樹脂からなる層を積層する工程
以下、各工程に沿って順に説明する。
本実施形態のハイコントラスト性を付与した偏光フィルムは、樹脂に二色性染料を少なくとも1種含む非水溶性染料の特定量を添加し、さらに、得られる偏光フィルム中に上記の量で含まれるように計算された量で上記有機色素化合物を添加し、そして混合して樹脂組成物を得る。この樹脂組成物を所定の方法によりフィルム状に成形する。次いで、得られたフィルムを一軸方向に延伸した後、所定の温度において加熱処理することにより製造される。なお、本実施形態においては、樹脂として熱可塑性ポリエステルを用いることが好ましい。
これらの誘導体として、式(5)、式(6)、式(7)、式(8)に例示される化合物が好ましく例示される。
本実施形態の偏光フィルムを製造する際は、上記樹脂と有機色素化合物と二色性染料とを混合して、樹脂組成物とする。好みの色にするためさらに複数の汎用色素を添加しても良い。
熱可塑性ポリエステルのガラス転移温度は、一般的にはDSC(示差走査型熱量計)などを用いて測定することができる。
また、本実施形態の製造方法によれば、簡便な方法で偏光フィルムとプラスチックレンズとの密着性が付与または改善されるため、これらの密着性を改善するための工程を別途設ける必要がなく、簡便な方法により密着性に優れたプラスチック偏光レンズを得ることができる。なお、密着性を改善するために行われる工程を排除するものではない。
官能基を有してもよいアクリル酸エステルポリマー系樹脂としては、例えば直鎖又は分枝の、あるいは非環状又は環状の、あるいは非芳香族又は芳香族のアルコール又はフェノールと(メタ)アクリル酸からなる(メタ)アクリル酸エステルモノマーのコポリマーが挙げられる。ここで(メタ)アクリル酸は、アクリル酸又はメタクリル酸を表す。前記(メタ)アクリル酸エステルモノマーは1分子内に(メタ)アクリル酸エステル基を実質上1個以上有するが、実質上1個有するモノ(メタ)アクリル酸エステルモノマーがより好ましい。
これらの中でも(メタ)アクリル酸メチル、(メタ)アクリル酸イソブチル等が好ましく用いられる。
官能基を有するアクリル酸エステルポリマーを構成する官能基を有するモノマーとしては、(メタ)アクリル酸、イタコン酸、フマル酸、2-ヒドロキシエチルフタル酸の(メタ)アクリル酸エステル、2-ヒドロキシエチルサクシン酸の(メタ)アクリル酸エステル等のエチレン性不飽和カルボン酸類、(メタ)アクリル酸2-スルホエチル等のエチレン性不飽和スルホン酸類、ビニルホスホン酸等のエチレン性不飽和ホスホン酸類、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸メタグリシジル、(メタ)アクリル酸アミド、モノー又はジ-アルキル置換(メタ)アクリル酸アミド、ジメチルアミノエチル(メタ)アクリル酸アミド、N-メチロール(メタ)アクリル酸アミド、N-ビニルピロリドン、N-ビニルカプロラクタム、アルキルビニルエーテル類等が挙げられる。
これらの中でも(メタ)アクリル酸2-ヒドロキシエチル等が好ましく用いられる。
前記(メタ)アクリル酸エステルモノマーのコポリマーを構成するモノマーとして、本発明の範囲を損なわない範囲でビニルモノマー類を含んでいてもよい、ビニルモノマー類としては例えば酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類、スチレン、α-メチルスチレンなどの置換又は非置換のスチレン類、ビニルハロゲン化物類などが挙げられる。(メタ)アクリル酸エステルモノマーのコポリマーを構成するモノマー100重量部に対して該ビニルモノマー類は好ましい量は0~40重量部、より好ましくは0~20重量部、さらに好ましくは0~10重量部、特に好ましくは0~5重量部の範囲である。
常圧プラズマ処理では空気、水蒸気、アルゴン、窒素、ヘリウム、二酸化炭素、一酸化炭素、IPAなどのアルコール類、アクリル酸などのカルボン酸類などのガスを単独又は混合させたガス雰囲気中で放電処理される。
真空プラズマ処理は、減圧下で行うことができ、例えばドラム状電極と複数の棒状電極からなる対極電極を有する内部電極型の放電処理装置内に偏光フィルムを置き、0.001~50Torr、好ましくは0.01~10Torr、より好ましくは0.02~1Torrの処理ガス雰囲気下で、電極間に直流又は交流の高電圧を印加して放電させて該処理ガスのプラズマを発生させこれに該偏光フィルムの表面を暴露させることで表面処理をすることができる。真空プラズマ処理の処理条件としては、処理装置、処理ガスの種類、圧力、電源の周波数などに依存するが、適宜好ましい条件を選定すればよい。上記処理ガスとしては例えば、アルゴン、窒素、ヘリウム、二酸化炭素、一酸化炭素、空気、水蒸気IPAなどのアルコール類、アクリル酸などのカルボン酸類などを単独又は混合して使用することができる。
レンズ注型用鋳型20は、ガスケット22cで保持された2個のモールド22a,22bから構成されるものが一般的である。
ガスケット22cの材質としては、ポリ塩化ビニル、エチレン-酢酸ビニルコポリマー、エチレン-エチルアクリレートコポリマー、エチレン-プロピレンコポリマー、エチレン-プロピレン-ジエンコポリマー、ポリウレタンエラストマー、フッ素ゴム、あるいはそれらにポリプロピレンをブレンドした軟質弾性樹脂類が用いられる。本実施形態において使用される特定のイソシアネート化合物と特定の活性水素化合物との混合物に対して膨潤も溶出もしない材料が好ましい。
モールド22a,22bの材質としては、ガラス、金属などが挙げられ、通常はガラスが用いられる。モールド22a,22bには、得られたレンズの離型性を向上させるために予め離型剤を塗付してもよい。また、レンズ材料にハードコート性能を付与するためのコート液を予めモールドに塗付してもよい。
本実施形態においては、(A)イソシアネート化合物と、(B)チオール基を有する活性水素化合物との混合物を使用しているため、注入時における粘度が低く、上記のような間隙の空隙部であっても、容易に注入することができる。
ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアナトメチルエステル、リジントリイソシアネート、m-キシリレンジイソシアネート、α,α,α′,α′-テトラメチルキシリレンジイソシアネート、ビス(イソシアナトメチル)ナフタリン、メシチリレントリイソシアネート、ビス(イソシアナトメチル)スルフィド、ビス(イソシアナトエチル)スルフィド、ビス(イソシアナトメチル)ジスルフィド、ビス(イソシアナトエチル)ジスルフィド、ビス(イソシアナトメチルチオ)メタン、ビス(イソシアナトエチルチオ)メタン、ビス(イソシアナトエチルチオ)エタン、ビス(イソシアナトメチルチオ)エタン等の脂肪族ポリイソシアネート化合物;
イソホロンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、3,8-ビス(イソシアナトメチル)トリシクロデカン、3,9-ビス(イソシアナトメチル)トリシクロデカン、4,8-ビス(イソシアナトメチル)トリシクロデカン、4,9-ビス(イソシアナトメチル)トリシクロデカン等の脂環族ポリイソシアネート化合物;
フェニレンジイソシアネート、ジフェニルスルフィド-4,4-ジイソシアネート等の芳香族ポリイソシアネート化合物;
2,5-ジイソシアナトチオフェン、2,5-ビス(イソシアナトメチル)チオフェン、2,5-ジイソシアナトテトラヒドロチオフェン、2,5-ビス(イソシアナトメチル)テトラヒドロチオフェン、3,4-ビス(イソシアナトメチル)テトラヒドロチオフェン、2,5-ジイソシアナト-1,4-ジチアン、2,5-ビス(イソシアナトメチル)-1,4-ジチアン、4,5-ジイソシアナト-1,3-ジチオラン、4,5-ビス(イソシアナトメチル)-1,3-ジチオラン等の複素環ポリイソシアネート化合物等
を挙げることができるが、これら例示化合物のみに限定されるものではない。
ヘキサメチレンジイソチオシアネート、リジンジイソチオシアナトメチルエステル、リジントリイソチオシアネート、m-キシリレンジイソチオシアネート、ビス(イソチオシアナトメチル)スルフィド、ビス(イソチオシアナトエチル)スルフィド、ビス(イソチオシアナトエチル)ジスルフィド等の脂肪族ポリイソチオシアネート化合物;
イソホロンジイソチオシアネート、ビス(イソチオシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソチオシアネート、シクロヘキサンジイソチオシアネート、メチルシクロヘキサンジイソチオシアネート、2,5-ビス(イソチオシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソチオシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、3,8-ビス(イソチオシアナトメチル)トリシクロデカン、3,9-ビス(イソチオシアナトメチル)トリシクロデカン、4,8-ビス(イソチオシアナトメチル)トリシクロデカン、4,9-ビス(イソチオシアナトメチル)トリシクロデカン等の脂環族ポリイソチオシアネート化合物;
ジフェニルジスルフィド-4,4-ジイソチオシアネート等の芳香族ポリイソチオシアネート化合物;
2,5-ジイソチオシアナトチオフェン、2,5-ビス(イソチオシアナトメチル)チオフェン、2,5-ジイソチオシアナトテトラヒドロチオフェン、2,5-ビス(イソチオシアナトメチル)テトラヒドロチオフェン、3,4-ビス(イソチオシアナトメチル)テトラヒドロチオフェン、2,5-ジイソチオシアナト-1,4-ジチアン、2,5-ビス(イソチオシアナトメチル)-1,4-ジチアン、4,5-ジイソチオシアナト-1,3-ジチオラン、4,5-ビス(イソチオシアナトメチル)-1,3-ジチオラン等の含硫複素環ポリイソチオシアネート化合物等
を挙げることができるが、これら例示化合物のみに限定されるものではない。
2-メルカプトエタノール、3-メルカプト-1,2-プロパンジオール、グルセリンビス(メルカプトアセテート)、4-メルカプトフェノール、2,3-ジメルカプト-1-プロパノール、ペンタエリスリトールトリス(3-メルカプトプロピオネート)、ペンタエリスリトールトリス(チオグリコレート)等
を挙げることができるが、これら例示化合物のみに限定されるものではない。
メタンジチオール、1,2-エタンジチオール、1,2,3-プロパントリチオール、1,2-シクロヘキサンジチオール、ビス(2-メルカプトエチル)エーテル、テトラキス(メルカプトメチル)メタン、ジエチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(2-メルカプトアセテート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトメチル)スルフィド、ビス(メルカプトメチル)ジスルフィド、ビス(メルカプトエチル)スルフィド、ビス(メルカプトエチル)ジスルフィド、ビス(メルカプトプロピル)スルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2-メルカプトエチルチオ)メタン、ビス(3-メルカプトプロピルチオ)メタン、1,2-ビス(メルカプトメチルチオ)エタン、1,2-ビス(2-メルカプトエチルチオ)エタン、1,2-ビス(3-メルカプトプロピルチオ)エタン、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、ビス(2,3-ジメルカプトプロピル)スルフィド、2,5-ジメルカプトメチル-1,4-ジチアン、2、5-ジメルカプト-1,4-ジチアン、2,5-ジメルカプトメチル-2,5-ジメチル-1,4-ジチアン、及びこれらのチオグリコール酸およびメルカプトプロピオン酸のエステル、ヒドロキシメチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシメチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルジスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルジスルフィドビス(3-メルカプトプロピネート)、2-メルカプトエチルエーテルビス(2-メルカプトアセテート)、2-メルカプトエチルエーテルビス(3-メルカプトプロピオネート)、チオジグリコール酸ビス(2-メルカプトエチルエステル)、チオジプロピオン酸ビス(2-メルカプトエチルエステル)、ジチオジグリコール酸ビス(2-メルカプトエチルエステル)、ジチオジプロピオン酸ビス(2-メルカプトエチルエステル)、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアシクロヘキサン、トリス(メルカプトメチルチオ)メタン、トリス(メルカプトエチルチオ)メタン等の脂肪族ポリチオール化合物;
1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,2-ビス(メルカプトエチル)ベンゼン、1,3-ビス(メルカプトエチル)ベンゼン、1,4-ビス(メルカプトエチル)ベンゼン、1,3,5-トリメルカプトベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチレンオキシ)ベンゼン、1,3,5-トリス(メルカプトエチレンオキシ)ベンゼン、2,5-トルエンジチオール、3,4-トルエンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール等の芳香族ポリチオール化合物;
2-メチルアミノ-4,6-ジチオール-sym-トリアジン、3,4-チオフェンジチオール、ビスムチオール、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン等の複素環ポリチオール化合物等
を挙げることができるが、これら例示化合物のみに限定されるものではない。
ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,4-ブタンジオール、チオジエタノール、ジチオジエタノール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、さらにこれらのオリゴマーを挙げることができるが、これら例示化合物のみに限定されるものではない。
ビスフェノールAグリシジルエーテル等の多価フェノール化合物とエピハロヒドリン化合物との縮合反応により得られるフェノール系エポキシ化合物;
水添ビスフェノールAグリシジルエーテル等の多価アルコール化合物とエピハロヒドリン化合物との縮合により得られるアルコール系エポキシ化合物;
3,4-エポキシシクロヘキシルメチル-3',4'-エポキシシクロヘキサンカルボキシレート等の多価有機酸化合物とエピハロヒドリン化合物との縮合により得られるグリシジルエステル系エポキシ化合物;
一級及び二級ジアミン化合物とエピハロヒドリン化合物との縮合により得られるアミン系エポキシ化合物;
ビニルシクロヘキセンジエポキシド等の脂肪族多価エポキシ化合物等
を挙げることができるが、これら例示化合物のみに限定されるものではない。
ビス(2,3-エピチオプロピルチオ)スルフィド、ビス(2,3-エピチオプロピルチオ)ジスルフィド、ビス(2,3-エピチオプロピルチオ)メタン、1,2-ビス(2,3-エピチオプロピルチオ)エタン、1,5-ビス(2,3-エピチオプロピルチオ)-3-チアペンタン等の鎖状脂肪族の2,3-エピチオプロピルチオ化合物;
1,3-ビス(2,3-エピチオプロピルチオ)シクロヘキサン、2,5-ビス(2,3-エピチオプロピルチオメチル)-1,4-ジチアン等の環状脂肪族、複素環を有する2,3-エピチオプロピルチオ化合物;
1,3-ビス(2,3-エピチオプロピルチオ)ベンゼン、1,4-ビス(2,3-エピチオプロピルチオ)ベンゼン等の芳香族2,3-エピチオプロピルチオ化合物等
を挙げることができるが、これら例示化合物のみに限定されるものではない。
チオジグリコール酸、チオジプロピオン酸、ジチオジプロピオン酸、無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができるが、これら例示化合物のみに限定されるものではない。
ベンジルアクリレート、ベンジルメタクリレート、シクロヘキシルアクリレート、シクロヘキシルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシメチルメタクリレート、グリシジルアクリレート、グリシジルメタクリレート、フェノキシエチルアクリレート、フェノキシエチルメタクリレート、フェニルメタクリレート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、エチレングリコールビスグリシジルアクリレート、エチレングリコールビスグリシジルメタクリレート、ビスフェノールAジアクリレート、ビスフェノールAジメタクリレート、ビスフェノールFジアクリレート、ビスフェノールFジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、グリセロールジアクリレート、グリセロールジメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラメタクリレート、キシリレンジチオールジアクリレート、キシリレンジチオールジメタクリレート、メルカプトエチルスルフィドジアクリレート、メルカプトエチルスルフィドジメタクリレート等の(メタ)アクリレート化合物;
アリルグリシジルエーテル、ジアリルフタレート、ジアリルテレフタレート、ジアリルイソフタレート、ジエチレングリコールビスアリルカーボネート等のアリル化合物;
スチレン、クロロスチレン、メチルスチレン、ブロモスチレン、ジブロモスチレン、ジビニルベンゼン、3,9-ジビニルスピロビ(m-ジオキサン)等のビニル化合物等
を挙げることができるが、これら例示化合物のみに限定されるものではない。
取扱いの容易さとして特に重要な因子は、混合物の注入時の粘度である。注入時の粘度は、(A)イソシアネート化合物と(B)活性水素化合物の組合せ(樹脂改質剤を使用する場合は樹脂改質剤の種別及び量を含む。また、触媒を使用する場合は、触媒の種別及び量を含む。)にて決定されるが、粘度が高過ぎると、レンズ注型用鋳型20の空間内のガラスモールド22a、22bと偏光フィルム12との間の狭い空隙部24a、24bに注入することが困難となり偏光レンズの製造が困難となる。通常、注入時の粘度が、20℃での測定値として、200mPa・s以下が好ましく、中心厚が非常に薄いレンズの製造のためには、更なる低粘度、例えば100mPa・s以下がより好ましい。混合物の粘度は、液温20℃においてB型粘度計を用いて測定される。
考慮する樹脂の性能としては、屈折率が重要であり、高屈折率であるものを好適に用いることができる。例えば、e線で測定した屈折率で、通常1.57~1.70の範囲、好ましくは1.59~1.70の範囲、更に好ましくは1.65~1.68の範囲の屈折率を有する樹脂が得られる(A)イソシアネート化合物と(B)活性水素化合物(樹脂改質剤を使用する場合は、樹脂改質剤種別及び量を含む)の組合せが好ましい。屈折率が低すぎると、偏光レンズの中にフィルムが入っているのがはっきりと判かり、見栄えが悪くなる。
混合は、通常、30℃以下の温度で行われる。混合物のポットライフの観点から、さらに低温にすると好ましい場合がある。また、触媒や離型剤などの添加剤が、(A)イソシアネート化合物や(B)活性水素化合物に対して良好な溶解性を示さない場合は、あらかじめ加温して、(A)イソシアネート化合物、(B)活性水素化合物やその混合物に溶解させる場合もある。
更に、得られるプラスチックレンズに要求される物性によっては、必要に応じて、減圧下での脱泡処理や加圧、減圧等での濾過処理等を行うことが好ましい場合が多い。
通常、5℃から40℃の範囲の温度で開始し、その後徐々に80℃から130℃の範囲にまで昇温させ、その温度で1時間から4時間加熱するのが一般的である。
本実施形態の偏光フィルムは、有機色素化合物を含む樹脂フィルムである。具体的には、本実施形態のプラスチック偏光レンズ10に用いられる偏光フィルム12と同様の組成のものを用いることができる。このような偏光フィルムによれば、色のコントラストや物の輪郭を明確に認識することができコントラスト性が改善されるため、レンズやゴーグル等の光学用途に用いることにより、視認性に優れるとともに視覚疲労を軽減する効果を得ることができる。
さらに、本実施形態のように、偏光フィルムの両面にプラスチックレンズ(樹脂層)が積層されている偏光レンズに用いる場合、偏光フィルムに以下の附形工程(曲率加工)を行うことが好ましい。
なお、樹脂として熱可塑性ポリエステルを用いた偏光フィルムを、本実施形態の偏光レンズに用いる場合、チオウレタン系樹脂との接着性の観点からは、熱可塑性ポリエステルフィルムを、該熱可塑性ポリエステルのガラス転移温度+20℃以上、ガラス転移温度+120℃以下の温度条件下で曲率加工を施すことが好ましい。
そして、ガスケット保持した2個のモールド間に曲率加工を施した偏光フィルムを差し込み、熱硬化性樹脂を注入した後、必要な温度をかけ数時間から数十時間かけて成型することで、偏光レンズを得ることができる。
以下に、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。なお、偏光レンズの性能試験は以下の方法で行った。
屋外にて、得られた偏光レンズを通して物体を目視し、以下の基準でコントラスト性を評価した。
A:物体の輪郭が明瞭であり、色のコントラストが高い。
B:物体の輪郭が不明瞭であり、色のコントラストが低い。
得られた-6Dの偏光レンズの中心部と周縁部との色相の差を、以下の基準で目視にて評価した。
A:中心部と周縁部との色相は同一である。
B:中心部と周縁部との色相は相違している。
成形後の偏光レンズにおいて、硬化レンズ材と偏光フィルムとの密着性が良好かどうかを判定する評価項目である。
試験は、得られたレンズをハンマーで叩いて破壊させる。この時、偏光フィルムと硬化レンズ材との密着性が不十分である場合は、偏光フィルムの剥離が生じる。すなわち、破壊したレンズの硬化レンズ材と偏光フィルムの積層部の剥離状態に着目して、破断部分の膜が剥離している部分の有無を観察して密着状態を以下の基準により評価した。
A:破断部分の中で、膜が剥離している箇所が認められない。
B:破断部分の中で、大部分は膜が剥離している箇所が認められないが、微細に膜が剥離している箇所が一部認められる。
C:破断部分の中で、膜が剥離している箇所が多数認められる。
通常の生活光環境下でも判定は可能であるが、できるだけ環境光因子を簡素化するために下記の方法に従って判定した。
他の光源が無視できる暗室にて上方に設置点灯された長さ約120cm、37ワットの蛍光灯の直下約150cmの場所に、試験対象となる偏光レンズについて、レンズの両面付近に光障害物がないように側面を手で支えながら凹面を蛍光灯側に向けて水平にして持ち、レンズの約30cm上で、できるだけ面に垂直近くなる方向からレンズの凹面を覗いて蛍光灯の像を観察する。またレンズを水平方向から若干角度を変動させながら像を観察する。共通して明瞭な大小2種類の像が観察されるが、偏光フィルムが目立つ場合にはその他にぼやけた像を確認することができる。レンズ内での偏光膜の見え難さを、以下の基準から判定した。
A:ぼやけた像がほとんど見えない
B:ぼやけた像がかすかに見えるが広がっていない
C:ぼやけた像が揺らついて広がっており目立つ
と判定した。
水温が60℃に設定された恒温水槽中に、試験対象となる偏光レンズを浸漬させ、所定時間毎に3種類のレンズを引き上げて変化を観察した。耐水性が不十分な場合は、レンズの端から中心に向けて白化ないしは脱色様の劣化が発生し、浸漬時間(4時間後、3日後および7日後のデータを取得)とともに中心部に進行するのが観察されたので、周辺部から中心部へ向けての劣化部の長さをノギスにてミリ単位で測定した。
別途、偏光フィルムを用いずに成形した樹脂片(レンズ材料)の20℃におけるe線の屈折率を、プルフリッヒ屈折計にて測定した。
(有機色素化合物)
有機色素化合物A:上記式(2)で表されるテトラ-t-ブチル-テトラアザポルフィリン・銅錯体を用いた。
二色性染料A:上記式(5)で表される二色性染料を用いた。
二色性染料B:上記式(6)で表される二色性染料を用いた。
二色性染料C:上記式(7)で表される二色性染料を用いた。
二色性染料D:上記式(8)で表される二色性染料を用いた。
二色性染料E:下記式(9)で表される二色性染料を用いた。
<偏光フィルムの調製>
有機色素化合物Aを0.0150重量部、二色性染料A~Hを所望の色調になるように適量の配合量を調整し、ポリエチレンテレフタレート樹脂100重量部と混合し、Tダイフィルム成型機を用いて溶融した樹脂をTダイよりキャストしてフィルム成型し、4倍の一軸延伸操作を行い140μm厚の偏光フィルムを得た。偏光フィルム中には、有機色素化合物Aが134ppm含まれていた。
得られた偏光フィルムの吸光度を、JASCO社製の吸光度計測器 UV/VIS SPECTROMETER V-550を用いて測定した。図3に、測定結果を示す。図3に示すように、588nmに吸収極大ピークを有していた。さらに、偏光フィルムは偏光特性を有していた。
上記により得られた防眩性が付与されたポリエチレンテレフタレート製偏光フィルムのガラス転移温度を以下のようにして測定した。
また、偏光フィルムを4.30mg切り取り測定試料とした。島津製作所製の示差走査型熱量計DSC-60を利用し、加熱速度10℃/minの昇温速度で昇温してガラス転移温度を測定した。チャートの変曲点からこの偏光フィルムのガラス転移温度は70.7℃(交点法)であった。また、融点は253.8℃(ピークトップ)であった。
<有機色素化合物を偏光フィルムに含む偏光レンズの調製>
実施例1で得られたポリエチレンテレフタレート製偏光フィルム[ガラス転移温度70.7℃](厚み140μm)を熱プレス法にて附形温度120℃で2C(カーブ)の湾曲形状に附形した。偏光フィルムをモールドの大きさに合わせて切断して偏光フィルムを作成した。これを、図2に示す偏光レンズ成形用の鋳型(前面2C/後面6Cガラスモールドセット -5D)内に挟み込んで設置した。
一方、m-キシリレンジイソシアネート50.6重量部、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物49.4重量部、硬化促進剤としてジブチル錫ジクロライド0.01重量部、離型剤としてZelec UN(登録商標、Stepan社製)0.1重量部、および紫外線吸収剤としてSeesorb 709(シプロ化成社製)0.05重量部を攪拌して溶解させた後、減圧下で脱泡処理して、調製直後に注入用モノマー混合物として供した。攪拌溶解1時間後の20℃における粘度は30mPa・sであった。注入用モノマー混合物の粘度は、液温20℃においてB型粘度計を用いて測定した。
次いで、レンズ注型用鋳型内のガラスモールド22a,22bと偏光フィルム12で仕切られた2つの空隙部24a,24bに、このモノマー混合物を、3μmのフィルターを通してろ過後チューブを通して注入した。なお、最も間隙の狭い空隙部24aの離間距離aは0.5mm程度であった。注入後閉栓したレンズ注型用鋳型20を熱風循環式オーブンの中に置き、16時間かけて25℃から120℃に昇温し、その後120℃で4時間維持、徐冷の後、オーブンからレンズ注型用鋳型を取り出した。レンズ注型用鋳型からレンズを離型し、130℃で2時間アニール処理して偏光レンズを得た。
得られた偏光レンズの性能試験の結果を表-1に示した。
得られた-5Dのレンズは中心厚1.2mm、コバ厚は6.2mmであった。このレンズを観察すると中心部とコバ部分の厚みが大きく異なるにもかかわらずレンズの色調はほとんど変化がなく非常に見栄えの良いレンズとなっていた。さらに得られたレンズを通して観察すると、例えば、晴天下の樹木の小枝の線や、緑、黄色、赤色のコントラストが非常に高く、物体を明瞭に視認することができた。
<有機色素化合物を含まない偏光レンズの調製>
ポリエチレンテレフタレート製偏光フィルム[三井化学株式会社製:"ポラソーラ(登録商標)"、ガラス転移温度70.7℃](厚み140μm)をモールドの大きさに合わせて切断して偏光フィルムを作成した。これを、図2に示す偏光レンズ成形用の鋳型(前面2C/後面6Cガラスモールドセット -5D)内に挟み込んで設置した。
一方、m-キシリレンジイソシアネート50.6重量部、4,8-ジメルカプトメチル-1,11-ジメルカプト-3、6、9-トリチアウンデカンと4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物49.4重量部、硬化促進剤としてジブチル錫ジクロライド0.01重量部、離型剤としてZelec UN(登録商標、Stepan社製)0.1重量部、および紫外線吸収剤としてSeesorb 709(シプロ化成社製)0.05重量部を攪拌して溶解させた後、減圧下で脱泡処理して、調製直後に注入用モノマー混合物として供した。攪拌溶解1時間後の20℃における粘度は30mPa・sであった。
次いで、レンズ注型用鋳型内のガラスモールド22a,22bと偏光フィルム12で仕切られた2つの空隙部24a,24bに、このモノマー混合物を、3μmのフィルターを通してろ過後チューブを通して注入した。なお、最も間隙の狭い空隙部24aの離間距離aは0.5mm程度であった。注入後閉栓したレンズ注型用鋳型20を熱風循環式オーブンの中に置き、16時間かけて25℃から120℃に昇温し、その後120℃で4時間維持、徐冷の後、オーブンからレンズ注型用鋳型を取り出した。レンズ注型用鋳型からレンズを離型し、130℃で2時間アニール処理して偏光レンズを得た。
得られた偏光レンズの性能試験の結果を表-1に示した。
得られた-5Dのレンズは中心厚1.2mm、コバ厚は6.2mmであった。このレンズを通して観察した場合には、実施例2の有機色素化合物を含む偏光フィルムを用いた本発明の偏光レンズと比較すると、例えば、晴天下の樹木の小枝の線や、緑、黄色、赤色のコントラストが低く、物体を明瞭に視認することができなかった。
<有機色素化合物をレンズ材料に含む偏光レンズの調製>
ポリエチレンテレフタレート製偏光フィルム[三井化学株式会社製:"ポラソーラ(登録商標)"、ガラス転移温度70.7℃](厚み140μm)をモールドの大きさに合わせて切断して偏光フィルムを作成した。これを、図2に示す偏光レンズ成形用の鋳型(前面2C/後面6Cガラスモールドセット -5D)内に挟み込んで設置した。
一方、有機色素化合物A0.001重量部をm-キシリレンジイソシアネート50.6重量部に加え攪拌下で均一溶液とした後、これに4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物49.4重量部、硬化促進剤としてジブチル錫ジクロライド0.01重量部、離型剤としてZelec UN(登録商標、Stepan社製)0.1重量部、および紫外線吸収剤としてSeesorb 709(シプロ化成社製)0.05重量部を攪拌して溶解させた後、減圧下で脱泡処理して、調製直後に注入用モノマー混合物として供した。攪拌溶解1時間後の20℃における粘度は30mPa・sであった。
次いで、レンズ注型用鋳型内のガラスモールド22a,22bと偏光フィルム12で仕切られた2つの空隙部24a,24bに、このモノマー混合物を、3μmのフィルターを通してろ過後チューブを通して注入した。なお、最も間隙の狭い空隙部24aの離間距離aは0.5mm程度であった。注入後閉栓したレンズ注型用鋳型20を熱風循環式オーブンの中に置き、16時間かけて25℃から120℃に昇温し、その後120℃で4時間維持、徐冷の後、オーブンからレンズ注型用鋳型を取り出した。レンズ注型用鋳型からレンズを離型し、130℃で2時間アニール処理して偏光レンズを得た。
得られた偏光レンズの性能試験の結果を表-1に示した。
得られた-5Dのレンズは中心厚1.2mm、コバ厚は6.2mmであった。このレンズを通して観察した場合には、例えば、晴天下の樹木の小枝の線や、緑、黄色、赤色のコントラスト非常に高く、物体を明瞭に視認することができた。しかしながら、このレンズ自体を観察すると中心部とコバ部分の厚みが大きく異なる影響で中心部分と周辺部分ではレンズの色相が異なっており、さらに中心部の色が薄く周辺部の色が濃くなっており、非常に見栄えの悪いレンズとなっていた。
実施例1で得られたポリエチレンテレフタレート製偏光フィルム[ガラス転移温度70.7℃](厚み140μm)をあらかじめオーブン中140℃で15分間熱処理し、ついで、熱プレス法にて附形温度160℃で6C(カーブ)の湾曲形状に附形した。偏光フィルムをモールドの大きさに合わせて切断した後、プラズマ照射表面改質装置(PS-601SW型:ウエッジ株式会社製)を用いて偏光膜の表面と裏面を各20秒間プラズマ照射し、メタノールで洗浄後風乾して偏光フィルムを作成した。これを、偏光レンズ成形用の鋳型(前面6C/後面6Cガラスモールドセット 中心厚12mm)内に挟み込んで設置した。さらに実施例2と同様に注入用モノマー混合物を注入し、オーブン中16時間かけて25℃から100℃まで昇温してその後100℃で10時間維持、徐冷の後、オーブンからレンズ注型用鋳型を取り出した。レンズ注型用鋳型からレンズを離型し、115℃で2時間アニールしてセミフィニッシュレンズ形状の偏光レンズを得た。その後、バック面を切削研磨して-6D形状のレンズとした。
得られた-6Dのレンズは中心厚1.2mm、コバ厚は9.0mmであった。この偏光レンズの性能試験の結果を表-2に示した。レンズと偏光フィルムの密着性は良好であり、レンズにも歪みなどの変形は見られなかった。
このレンズを観察すると中心部とコバ部分の厚みが大きく異なるにもかかわらずレンズの色調はほとんど変化がなく非常に見栄えの良いレンズとなっていた。さらに得られたレンズを通して観察すると、例えば、晴天下の樹木の小枝の線や、緑、黄色、赤色のコントラストが非常に高く、物体を明瞭に視認することができた。
偏光フィルムの熱プレスによる附形温度を140℃で2C(カーブ)の湾曲形状に附形させた以外は実施例3と同様にして附形し切断した偏光フィルムについて、コロナ放電表面処理装置(CTW-0212型:ウエッジ株式会社製)を用い、400Wセットにて偏光膜の表面と裏面をコロナ放電処理して偏光フィルムを作成した。
その後、実施例3と同様にして偏光レンズ成形用の鋳型(前面2C/後面4Cガラスモールドセット 中心厚10mm)内に挟み込んで設置し、実施例3と同様にモノマー混合物を注入し、これをオーブン中で熱処理硬化させ、徐冷の後レンズ注型用鋳型からレンズを離型しアニールしてセミフィニッシュレンズ形状の偏光レンズを得た。その後、バック面を切削研磨して-3D形状のレンズとした。得られた-3Dのレンズは中心厚1.2mm、コバ厚は3.6mmであった。この偏光レンズの性能試験の結果を表-2に示した。レンズと偏光フィルムの密着性は良好であり、レンズにも歪みなどの変形は見られなかった。
このレンズを観察すると中心部とコバ部分の厚みが大きく異なるにもかかわらずレンズの色調はほとんど変化がなく非常に見栄えの良いレンズとなっていた。さらに得られたレンズを通して観察すると、例えば、晴天下の樹木の小枝の線や、緑、黄色、赤色のコントラストが非常に高く、物体を明瞭に視認することができた。
偏光フィルムの熱プレスによる附形温度を140℃で4C(カーブ)の湾曲形状に附形させた以外は実施例3と同様にして附形し切断した偏光フィルムについて、メタノールで洗浄した後に40℃で乾燥させた。このフィルムをアクリル系の接着剤溶液(SYNEDOL2263XBコート液 CHEMISCHE INDUSTRIE SYNRES NV.,(HOLLAND)製)にディッピングさせて引き上げた後40℃で乾燥させアクリル系のコート処理を施した。
その後、実施例3と同様にして偏光レンズ成形用の鋳型(前面4C/後面6Cガラスモールドセット 中心厚11mm)内に挟み込んで設置し、実施例3と同様にモノマー混合物を注入し、これをオーブン中で熱処理硬化させ、徐冷の後レンズ注型用鋳型からレンズを離型しアニールしてセミフィニッシュレンズ形状の偏光レンズを得た。その後、バック面を切削研磨して-5D形状のレンズとした。得られた-5Dのレンズは中心厚1.2mm、コバ厚は6.6mmであった。この偏光レンズの性能試験の結果を表-2に示した。レンズと偏光フィルムの密着性は良好であり、レンズにも歪みなどの変形は見られなかった。
このレンズを観察すると中心部とコバ部分の厚みが大きく異なるにもかかわらずレンズの色調はほとんど変化がなく非常に見栄えの良いレンズとなっていた。さらに得られたレンズを通して観察すると、例えば、晴天下の樹木の小枝の線や、緑、黄色、赤色のコントラストが非常に高く、物体を明瞭に視認することができた。
ウレタン系コートとして、サンプレンIB-422(ポリエステル系ポリウレタン樹脂溶液、三洋化成工業株式会社)100重量部をメチルエチルケトンとイソプロパノールの2:1重量比の混合溶媒330重量部に溶解させウレタン系コート液を調製した。
熱プレスして附形する前の偏光フィルムについて、このフィルムをほぼ水平に保持しながら、あらかじめ調製した上述のウレタン系コート液を#4のバーコーターでフィルム表面に塗布した後に50℃の送風乾燥オーブン中で5分間乾燥させた。続いて得られたフィルムのもう片面についても前述と同様の方法で該片面に前記コート液を塗布、乾燥させた。
得られたウレタンコートを施した偏光フィルムについて熱プレスによる附形温度を140℃で6C(カーブ)の湾曲形状に附形させ切断した。
その後、実施例3と同様にして偏光レンズ成形用の鋳型(前面6C/後面6Cガラスモールドセット 中心厚12mm)内に挟み込んで設置し、実施例3と同様にモノマー混合物を注入し、これをオーブン中で熱処理硬化させ、徐冷の後レンズ注型用鋳型からレンズを離型しアニールしてセミフィニッシュレンズ形状の偏光レンズを得た。その後、バック面を切削研磨して-6D形状のレンズとした。得られた-6Dのレンズは中心厚1.2mm、コバ厚は9.0mmであった。この偏光レンズの性能試験の結果を表-2に示した。レンズと偏光フィルムの密着性は良好であり、レンズにも歪みなどの変形は見られなかった。
このレンズを観察すると中心部とコバ部分の厚みが大きく異なるにもかかわらずレンズの色調はほとんど変化がなく非常に見栄えの良いレンズとなっていた。さらに得られたレンズを通して観察すると、例えば、晴天下の樹木の小枝の線や、緑、黄色、赤色のコントラストが非常に高く、物体を明瞭に視認することができた。
偏光フィルムの熱プレスによる附形温度を140℃で6C(カーブ)の湾曲形状に附形させた以外は実施例3と同様にして附形し切断した偏光フィルムについて、プラズマ照射表面改質装置(PS-601SW型:ウエッジ株式会社製)を用いて偏光膜の表面と裏面を各20秒間プラズマ照射し、メタノールで洗浄した後に40℃で乾燥させた。さらにこのフィルムをアクリル系の接着剤溶液(SYNEDOL2263XBコート液 CHEMISCHE INDUSTRIE SYNRES NV.,(HOLLAND)製)にディッピングさせ引き上げた後40℃で乾燥させアクリル系のコート処理を施した。
その後、実施例3と同様にして偏光レンズ成形用の鋳型(前面6C/後面6Cガラスモールドセット 中心厚12mm)内に挟み込んで設置し、実施例3と同様にモノマー混合物を注入し、これをオーブン中で熱処理硬化させ、徐冷の後レンズ注型用鋳型からレンズを離型しアニールしてセミフィニッシュレンズ形状の偏光レンズを得た。その後、バック面を切削研磨して-6D形状のレンズとした。得られた-6Dのレンズは中心厚1.2mm、コバ厚は9.0mmであった。この偏光レンズの性能試験の結果を表-2に示した。レンズと偏光フィルムの密着性は良好であり、レンズにも歪みなどの変形は見られなかった。
このレンズを観察すると中心部とコバ部分の厚みが大きく異なるにもかかわらずレンズの色調はほとんど変化がなく非常に見栄えの良いレンズとなっていた。さらに得られたレンズを通して観察すると、例えば、晴天下の樹木の小枝の線や、緑、黄色、赤色のコントラストが非常に高く、物体を明瞭に視認することができた。
偏光フィルムの熱プレスによる附形温度を140℃で6C(カーブ)の湾曲形状に附形させた以外は実施例3と同様にして附形し切断した偏光フィルムについて、コロナ放電表面処理装置(CTW-0212型:ウエッジ株式会社製)を用い、400Wセットにて偏光膜の表面と裏面をコロナ放電処理して偏光フィルムを作成した。さらにこのフィルムをアクリル系の接着剤溶液(SYNEDOL2263XBコート液 CHEMISCHE INDUSTRIE SYNRES NV.,(HOLLAND)製)にディッピングさせ引き上げた後40℃で乾燥させアクリル系のコート処理を施した。
その後、実施例3と同様にして偏光レンズ成形用の鋳型(前面6C/後面6Cガラスモールドセット 中心厚12mm)内に挟み込んで設置し、実施例3と同様にモノマー混合物を注入し、これをオーブン中で16時間かけて25℃から115℃まで昇温してその後115℃で10時間維持、徐冷の後、オーブンからレンズ注型用鋳型を取り出した。レンズ注型用鋳型からレンズを離型し、115℃で2時間アニールしてセミフィニッシュレンズ形状の偏光レンズを得た。
熱処理硬化させ、徐冷の後レンズ注型用鋳型からレンズを離型しアニールしてセミフィニッシュレンズ形状の偏光レンズを得た。その後、バック面を切削研磨して-6D形状のレンズとした。得られた-6Dのレンズは中心厚1.2mm、コバ厚は9.0mmであった。この偏光レンズの性能試験の結果を表-2に示した。レンズと偏光フィルムの密着性は良好であり、レンズにも歪みなどの変形は見られなかった。
このレンズを観察すると中心部とコバ部分の厚みが大きく異なるにもかかわらずレンズの色調はほとんど変化がなく非常に見栄えの良いレンズとなっていた。さらに得られたレンズを通して観察すると、例えば、晴天下の樹木の小枝の線や、緑、黄色、赤色のコントラストが非常に高く、物体を明瞭に視認することができた。
前記偏光フィルムは、下記一般式(1)で表される有機色素化合物を含むことを特徴とするハイコントラスト性プラスチック偏光レンズ;
(A)ポリイソシアネート化合物、イソチオシアネート基を有するイソシアネート化合物、およびポリイソチオシアネート化合物よりなる群から選ばれる1種または2種以上のイソシアネート化合物と、
(B)ヒドロキシ基を有するチオール化合物、およびポリチオール化合物よりなる群から選ばれる1種または2種以上の活性水素化合物と
を反応させて得られることを特徴とする前記(a1)乃至(a3)のいずれかに記載のハイコントラスト性プラスチック偏光レンズ。
(式)熱可塑性ポリエステルのガラス転移温度+20℃≦T1≦熱可塑性ポリエステルのガラス転移温度+120℃
前記活性水素化合物(B)が、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンよりなる群から選ばれる1種以上のポリチオール化合物である前記(a4)乃至(a8)のいずれかに記載のハイコントラスト性プラスチック偏光レンズ。
前記熱可塑性ポリエステルフィルムを、該熱可塑性ポリエステルのガラス転移温度+20℃以上、ガラス転移温度+120℃以下の温度条件下で附形して、偏光フィルムを得る工程と、
レンズ注型用鋳型内に、モールドから離隔した状態で前記偏光フィルムを固定する工程と、
前記偏光フィルムの両面と前記モールドとの間の空隙にモノマー混合物を注入する工程と、
前記モノマー混合物を重合硬化して、前記偏光フィルムの両面にチオウレタン系樹脂からなる層を積層する工程と、を含むハイコントラスト性プラスチック偏光レンズの製造方法;
(A)ポリイソシアネート化合物、イソチオシアネート基を有するイソシアネート化合物、およびポリイソチオシアネート化合物よりなる群から選ばれる1種または2種以上のイソシアネート化合物と、
(B)ヒドロキシ基を有するチオール化合物、およびポリチオール化合物よりなる群から選ばれる1種または2種以上の活性水素化合物と、を含むことを特徴とする前記(a12)または(a13)に記載のハイコントラスト性プラスチック偏光レンズの製造方法。
前記偏光フィルムの少なくとも一方の表面に表面改質処理を施す工程を含むことを特徴とする前記(a12)乃至(a14)のいずれかに記載のハイコントラスト性プラスチック偏光レンズの製造方法。
前記偏光フィルムの少なくとも一方の表面に接着層を形成する工程を含むことを特徴とする前記(a12)乃至(a15)のいずれかに記載のハイコントラスト性プラスチック偏光レンズの製造方法。
前記偏光フィルムの少なくとも一方の表面に表面改質処理を施す工程と、
表面改質処理が施された前記表面に接着層を形成する工程と、
を含むことを特徴とする前記(a12)乃至(a14)のいずれかに記載のハイコントラスト性プラスチック偏光レンズの製造方法。
前記活性水素化合物(B)が、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンよりなる群から選ばれる1種または2種以上のポリチオール化合物である前記(a14)乃至(a19)のいずれかに記載のハイコントラスト性プラスチック偏光レンズの製造方法。
前記有機色素化合物を含む熱可塑性ポリエステルフィルムを調製する工程と、
前記熱可塑性ポリエステルフィルムを、該熱可塑性ポリエステルのガラス転移温度+20℃以上、ガラス転移温度+120℃以下の温度条件下で附形する工程と、
を含む偏光フィルムの製造方法。
Claims (33)
- 偏光フィルムの両面に、チオウレタン系樹脂からなる層が積層しているプラスチック偏光レンズであって、
前記偏光フィルムは、下記一般式(1)で表される有機色素化合物を含むことを特徴とするプラスチック偏光レンズ;
- 前記偏光フィルムは熱可塑性ポリエステルからなることを特徴とする請求項1または2に記載のプラスチック偏光レンズ。
- 前記有機色素化合物は、偏光フィルム中に50~7000ppm含まれることを特徴とする請求項1乃至3のいずれかに記載のプラスチック偏光レンズ。
- 前記チオウレタン系樹脂は、
(A)ポリイソシアネート化合物、イソチオシアネート基を有するイソシアネート化合物、およびポリイソチオシアネート化合物よりなる群から選ばれる1種または2種以上のイソシアネート化合物と、
(B)ヒドロキシ基を有するチオール化合物、およびポリチオール化合物よりなる群から選ばれる1種または2種以上の活性水素化合物と
を反応させて得られることを特徴とする請求項1乃至4のいずれかに記載のプラスチック偏光レンズ。 - 前記偏光フィルムが下記式で表される温度T1の条件下で附形されていることを特徴とする請求項3乃至5のいずれかに記載のプラスチック偏光レンズ。
(式)熱可塑性ポリエステルのガラス転移温度+20℃≦T1≦熱可塑性ポリエステルのガラス転移温度+120℃ - 前記偏光フィルムの少なくとも一方の表面に、接着層の形成または表面改質処理が施されていることを特徴とする請求項1乃至6のいずれかに記載のプラスチック偏光レンズ。
- 前記熱可塑性ポリエステルが、ポリエチレンテレフタレートである請求項3乃至7のいずれかに記載のプラスチック偏光レンズ。
- 前記イソシアネート化合物(A)がジイソシアネート化合物であり、前記活性水素化合物(B)がポリチオール化合物である請求項5乃至8のいずれかに記載のプラスチック偏光レンズ。
- 前記イソシアネート化合物(A)が、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、およびm-キシリレンジイソシアネートよりなる群から選ばれる1種以上のジイソシアネート化合物であり、
前記活性水素化合物(B)が、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンよりなる群から選ばれる1種以上のポリチオール化合物である請求項5乃至9のいずれかに記載のプラスチック偏光レンズ。 - 前記チオウレタン系樹脂のe線の屈折率が1.57~1.70の範囲である請求項1乃至10のいずれかに記載のプラスチック偏光レンズ。
- 前記チオウレタン系樹脂のe線の屈折率が1.59~1.70の範囲である請求項1乃至10のいずれかに記載のプラスチック偏光レンズ。
- 下記一般式(1)で表される有機色素化合物を含む樹脂フィルムを調製する工程と、
前記樹脂フィルムを附形して、偏光フィルムを得る工程と、
レンズ注型用鋳型内に、モールドから離隔した状態で前記偏光フィルムを固定する工程と、
前記偏光フィルムの両面と前記モールドとの間の空隙にモノマー混合物を注入する工程と、
前記モノマー混合物を重合硬化して、前記偏光フィルムの両面上にチオウレタン系樹脂からなる層を積層する工程と、を含むプラスチック偏光レンズの製造方法;
- 前記樹脂フィルムは熱可塑性ポリエステルフィルムであることを特徴とする請求項13または14に記載のプラスチック偏光レンズの製造方法。
- 前記偏光フィルムを得る前記工程は、
前記熱可塑性ポリエステルフィルムを、該熱可塑性ポリエステルのガラス転移温度+20℃以上、ガラス転移温度+120℃以下の温度条件下で附形する工程を、含むことを特徴とする請求項15に記載のプラスチック偏光レンズの製造方法。 - 前記モノマー混合物が、
(A)ポリイソシアネート化合物、イソチオシアネート基を有するイソシアネート化合物、およびポリイソチオシアネート化合物よりなる群から選ばれる1種または2種以上のイソシアネート化合物と、
(B)ヒドロキシ基を有するチオール化合物、およびポリチオール化合物よりなる群から選ばれる1種または2種以上の活性水素化合物と、を含むことを特徴とする請求項13乃至16のいずれかに記載のプラスチック偏光レンズの製造方法。 - 前記偏光フィルムを固定する前記工程の前に、
前記偏光フィルムの少なくとも一方の表面に表面改質処理を施す工程を含むことを特徴とする請求項13乃至17のいずれかに記載のプラスチック偏光レンズの製造方法。 - 前記偏光フィルムを固定する前記工程の前に、
前記偏光フィルムの少なくとも一方の表面に接着層を形成する工程を含むことを特徴とする請求項13乃至18のいずれかに記載のプラスチック偏光レンズの製造方法。 - 前記偏光フィルムを固定する前記工程の前に、
前記偏光フィルムの少なくとも一方の表面に表面改質処理を施す工程と、
表面改質処理が施された前記表面に接着層を形成する工程と、
を含むことを特徴とする請求項13乃至18のいずれかに記載のプラスチック偏光レンズの製造方法。 - 前記熱可塑性ポリエステルが、ポリエチレンテレフタレートである請求項15乃至20のいずれかに記載のプラスチック偏光レンズの製造方法。
- 前記イソシアネート化合物(A)がジイソシアネート化合物であり、前記活性水素化合物(B)がポリチオール化合物である請求項17乃至21のいずれかに記載のプラスチック偏光レンズの製造方法。
- 前記イソシアネート化合物(A)が、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、およびm-キシリレンジイソシアネートよりなる群から選ばれる1種または2種以上のジイソシアネート化合物であり、
前記活性水素化合物(B)が、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンよりなる群から選ばれる1種または2種以上のポリチオール化合物である請求項17乃至22のいずれかに記載のプラスチック偏光レンズの製造方法。 - 前記注入工程における、前記モノマー混合物の20℃における粘度が、200mPa・s以下である請求項13乃至23のいずれかに記載のプラスチック偏光レンズの製造方法。
- 下記一般式(1)で表される有機色素化合物を含む樹脂からなることを特徴とする偏光フィルム;
- 前記樹脂は熱可塑性ポリエステルであることを特徴とする請求項25または26に記載の偏光フィルム。
- 前記有機色素化合物が50~7000ppm含まれることを特徴とする請求項25乃至27のいずれかに記載の偏光フィルム。
- 前記熱可塑性ポリエステルが、ポリエチレンテレフタレートである請求項27または28に記載の偏光フィルム。
- 偏光フィルムの両面に、チオウレタン系樹脂からなる層が積層しているプラスチック偏光レンズに用いられる、請求項25乃至29のいずれかに記載の偏光フィルム。
- 請求項30に記載の偏光フィルムの製造方法であって、
前記有機色素化合物を含む樹脂フィルムを調製する工程と、
前記樹脂フィルムを附形する工程と、
を含む偏光フィルムの製造方法。 - 前記樹脂フィルムは熱可塑性ポリエステルフィルムであることを特徴とする請求項31に記載の偏光フィルムの製造方法。
- 前記樹脂フィルムを附形する前記工程は、
前記熱可塑性ポリエステルフィルムを、該熱可塑性ポリエステルのガラス転移温度+20℃以上、ガラス転移温度+120℃以下の温度条件下で附形する工程を、含むことを特徴とする請求項32に記載の偏光フィルムの製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11816239.5A EP2605059B1 (en) | 2010-08-12 | 2011-08-10 | Plastic polarizing lens, method for producing the same |
US13/813,312 US9086531B2 (en) | 2010-08-12 | 2011-08-10 | Plastic polarized lens, method for producing the same, and polarized film |
KR20157008951A KR20150043556A (ko) | 2010-08-12 | 2011-08-10 | 플라스틱 편광렌즈, 그 제조 방법 및 편광필름 |
JP2012528596A JPWO2012020570A1 (ja) | 2010-08-12 | 2011-08-10 | プラスチック偏光レンズ、その製造方法および偏光フィルム |
BR112013003397A BR112013003397B8 (pt) | 2010-08-12 | 2011-08-10 | Lente e película polarizadas de plástico, e métodos para a produção das mesmas |
CN201180039469.0A CN103052904B (zh) | 2010-08-12 | 2011-08-10 | 塑料偏光透镜、其制造方法及偏光膜 |
KR1020137002703A KR101729368B1 (ko) | 2010-08-12 | 2011-08-10 | 플라스틱 편광렌즈, 그 제조 방법 및 편광필름 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-180732 | 2010-08-12 | ||
JP2010180732 | 2010-08-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012020570A1 true WO2012020570A1 (ja) | 2012-02-16 |
Family
ID=45567545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/004544 WO2012020570A1 (ja) | 2010-08-12 | 2011-08-10 | プラスチック偏光レンズ、その製造方法および偏光フィルム |
Country Status (7)
Country | Link |
---|---|
US (1) | US9086531B2 (ja) |
EP (1) | EP2605059B1 (ja) |
JP (2) | JPWO2012020570A1 (ja) |
KR (2) | KR101729368B1 (ja) |
CN (1) | CN103052904B (ja) |
BR (1) | BR112013003397B8 (ja) |
WO (1) | WO2012020570A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013132805A1 (ja) * | 2012-03-06 | 2013-09-12 | 三井化学株式会社 | プラスチック偏光レンズ及びその製造方法 |
WO2013168565A1 (ja) * | 2012-05-07 | 2013-11-14 | 山本化成株式会社 | 樹脂組成物および成形体 |
JP2014142440A (ja) * | 2013-01-23 | 2014-08-07 | Hoya Lense Manufacturing Philippine Inc | 偏光レンズの製造方法 |
JP2014219491A (ja) * | 2013-05-07 | 2014-11-20 | 三井化学株式会社 | プラスチック偏光レンズ及びその製造方法 |
JP2015069045A (ja) * | 2013-09-30 | 2015-04-13 | タレックス光学工業株式会社 | 複合機能性偏光レンズ |
WO2016125736A1 (ja) * | 2015-02-02 | 2016-08-11 | 三井化学株式会社 | 光学材料用重合性組成物、光学材料およびその用途 |
WO2018025508A1 (ja) | 2016-08-02 | 2018-02-08 | 株式会社トクヤマ | 接着性組成物、積層体、及び該積層体を用いた光学物品 |
JP6307209B1 (ja) * | 2016-09-30 | 2018-04-04 | 三井化学株式会社 | フォトクロミックレンズおよび重合性組成物 |
JP2018072851A (ja) * | 2017-12-04 | 2018-05-10 | タレックス光学工業株式会社 | 複合機能性偏光レンズの製造方法 |
US10267966B2 (en) | 2016-04-13 | 2019-04-23 | Talex Optical Co., Ltd. | Composite functional polarized lens |
WO2019163728A1 (ja) | 2018-02-23 | 2019-08-29 | 株式会社トクヤマ | 機能性積層体、及び機能性積層体を用いた機能性レンズ |
WO2019194132A1 (ja) * | 2018-04-02 | 2019-10-10 | 株式会社ホプニック研究所 | プラスチック偏光レンズおよびその製造方法 |
WO2019198664A1 (ja) | 2018-04-12 | 2019-10-17 | 株式会社トクヤマ | フォトクロミック光学物品及びその製造方法 |
WO2020204176A1 (ja) | 2019-04-03 | 2020-10-08 | 株式会社トクヤマ | フォトクロミック光学物品およびその製造方法 |
JPWO2020262399A1 (ja) * | 2019-06-28 | 2020-12-30 | ||
WO2021172513A1 (ja) | 2020-02-28 | 2021-09-02 | 株式会社トクヤマ | 湿気硬化型ポリウレタン組成物及び積層体 |
WO2021241596A1 (ja) | 2020-05-28 | 2021-12-02 | 株式会社トクヤマ | 光学材料用化合物、硬化性組成物、硬化体、及び光学物品 |
WO2022224771A1 (ja) | 2021-04-21 | 2022-10-27 | 株式会社トクヤマ | 光学物品、眼鏡レンズ、および眼鏡 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5996836B2 (ja) * | 2010-02-25 | 2016-09-21 | タレックス光学工業株式会社 | 眼鏡用合わせガラスレンズ |
KR20150082942A (ko) * | 2014-01-08 | 2015-07-16 | 삼성전자주식회사 | 편광 필름용 조성물, 편광 필름 및 표시 장치 |
CH709485B1 (de) * | 2014-04-11 | 2018-07-13 | Interglass Tech Ag | Verfahren zum Herstellen einer Linse durch Giessen. |
JP5873584B1 (ja) * | 2015-03-12 | 2016-03-01 | 株式会社ホプニック研究所 | プラスチックレンズの製造方法、フィルムの位置決め方法 |
US11628038B2 (en) | 2020-02-21 | 2023-04-18 | Raytrx, Llc | Multi-option all-digital 3D surgery visualization system and control |
US11956414B2 (en) * | 2015-03-17 | 2024-04-09 | Raytrx, Llc | Wearable image manipulation and control system with correction for vision defects and augmentation of vision and sensing |
US11461936B2 (en) | 2015-03-17 | 2022-10-04 | Raytrx, Llc | Wearable image manipulation and control system with micro-displays and augmentation of vision and sensing in augmented reality glasses |
US11016302B2 (en) | 2015-03-17 | 2021-05-25 | Raytrx, Llc | Wearable image manipulation and control system with high resolution micro-displays and dynamic opacity augmentation in augmented reality glasses |
CN107533181B (zh) * | 2015-04-29 | 2020-06-30 | 特里亚佩克斯有限公司 | 偏光膜、制备它的方法及包含它的偏光镜片 |
US10954341B2 (en) | 2015-09-16 | 2021-03-23 | Mitsui Chemicals, Inc. | Polymerizable composition for optical material, optical material, process for preparing polymerizable composition for optical material, and method of manufacturing optical material |
JP6570452B2 (ja) * | 2016-01-22 | 2019-09-04 | タレックス光学工業株式会社 | 眼鏡用偏光レンズ |
CN105676315A (zh) * | 2016-04-25 | 2016-06-15 | 苏州普京真空技术有限公司 | 一种凸边防眩光耐用真空镀膜 |
JPWO2018003998A1 (ja) * | 2016-06-30 | 2018-08-16 | ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd | 眼鏡レンズ及び眼鏡 |
JP6544758B2 (ja) * | 2016-06-30 | 2019-07-17 | ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd | 眼鏡レンズの製造方法 |
US11009724B2 (en) * | 2016-07-15 | 2021-05-18 | Essilor International | Polarized films with specific light filters |
JPWO2018105593A1 (ja) * | 2016-12-06 | 2019-06-24 | 三井化学株式会社 | 積層シートおよびレンズ |
JP6664347B2 (ja) * | 2017-03-31 | 2020-03-13 | 富士フイルム株式会社 | レンズの製造方法 |
JP7187780B2 (ja) * | 2018-02-16 | 2022-12-13 | 住友ベークライト株式会社 | 光学シートおよび光学部品 |
WO2019221409A1 (ko) * | 2018-05-14 | 2019-11-21 | 주식회사 케이오씨솔루션 | 티오우레탄계 광학재료용 모노머의 몰드 자동 주입방법 |
EP3974880A1 (en) * | 2020-09-25 | 2022-03-30 | Essilor International | High efficiency polarizing lens with color enhancement |
CN112226099A (zh) * | 2020-10-10 | 2021-01-15 | Tcl华星光电技术有限公司 | 一种有机染料、背光模组、偏光片及显示面板 |
KR102297460B1 (ko) | 2021-02-16 | 2021-09-01 | 주식회사 씨엔와이 | 2차곡 편광렌즈 제조장치 |
CN112946919A (zh) * | 2021-04-22 | 2021-06-11 | 上海康耐特光学有限公司 | 一种贴合式功能性树脂镜片及其制备方法和应用 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6187757A (ja) | 1984-10-05 | 1986-05-06 | Mitsui Toatsu Chem Inc | 色素およびこれを用いた偏光フイルム |
JPS61285259A (ja) | 1985-06-13 | 1986-12-16 | Mitsui Toatsu Chem Inc | 二色性色素およびこれを用いた偏光フイルム |
JPS62270664A (ja) | 1985-06-12 | 1987-11-25 | Mitsui Toatsu Chem Inc | キノフタロン系色素およびこれを用いた偏光フイルム |
JPH01103667A (ja) | 1987-07-22 | 1989-04-20 | Mitsui Toatsu Chem Inc | アントラキノン系色素および該色素を用いた偏光フィルム |
JPH0430986A (ja) | 1990-05-25 | 1992-02-03 | Sanyo Electric Co Ltd | ハンド制御装置 |
JPH055860A (ja) | 1991-06-27 | 1993-01-14 | Tokyo Keikaku:Kk | 金属により防眩性が付与されたプラスチツク眼鏡レンズ |
JPH0545610A (ja) | 1991-05-20 | 1993-02-26 | Tokyo Keikaku:Kk | 防眩用眼鏡レンズ |
WO1996000247A1 (fr) | 1994-06-24 | 1996-01-04 | Seiko Epson Corporation | Substance plastique transparente, article d'optique realise en cette substance et procede de production |
JPH09258009A (ja) | 1996-03-27 | 1997-10-03 | Nasu Nikon:Kk | 偏光レンズ |
JPH11116574A (ja) | 1997-07-25 | 1999-04-27 | Ricoh Co Ltd | ハロゲン化テトラアザポルフィリン化合物及び(ハロゲン化)テトラアザポルフィリン化合物の製造方法 |
JPH11130971A (ja) | 1997-07-23 | 1999-05-18 | Ricoh Co Ltd | テトラアザポルフィリン化合物とその前駆体及びテトラアザポルフィリン化合物の製造方法 |
JP2001249227A (ja) * | 2000-12-28 | 2001-09-14 | Taretsukusu Kogaku Kogyo Kk | 偏光膜の製造方法 |
WO2002073291A1 (en) | 2001-03-13 | 2002-09-19 | Younger Mfg. Co. Dba Younger Optics | Polarized eyewear using high impact, high optical-quality polymeric material |
WO2004099859A1 (ja) | 2003-05-12 | 2004-11-18 | Hopnic Laboratory Co., Ltd. | 高屈折率偏光レンズの製造方法 |
JP2006321925A (ja) | 2005-05-19 | 2006-11-30 | Mitsui Chemicals Inc | テトラアザポルフィリン化合物の製造方法 |
JP2007099744A (ja) | 2005-10-07 | 2007-04-19 | Yamada Chem Co Ltd | テトラアザポルフィリン化合物の製造法 |
JP2008134628A (ja) | 2006-10-27 | 2008-06-12 | National Institute Of Advanced Industrial & Technology | 太陽光透過制御素子 |
JP2008134618A (ja) | 2006-10-26 | 2008-06-12 | Hopunikku Kenkyusho:Kk | プラスチック眼鏡レンズ |
WO2009098886A1 (ja) * | 2008-02-07 | 2009-08-13 | Mitsui Chemicals, Inc. | プラスチック偏光レンズ及びその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5486949A (en) * | 1989-06-20 | 1996-01-23 | The Dow Chemical Company | Birefringent interference polarizer |
JP2002267841A (ja) | 2001-03-09 | 2002-09-18 | Mitsui Chemicals Inc | 偏光レンズ用偏光フィルム |
US20050046321A1 (en) * | 2001-10-31 | 2005-03-03 | Yoshinori Suga | Display apparatus |
CN101490601B (zh) * | 2006-08-10 | 2011-11-23 | 三井化学株式会社 | 塑料偏光透镜及其制造方法 |
JP5085256B2 (ja) * | 2006-09-27 | 2012-11-28 | 富士フイルム株式会社 | 化合物及びその互変異性体、金属錯体化合物、感光性着色硬化性組成物、カラーフィルタ、及びその製造方法 |
JP2008268331A (ja) * | 2007-04-17 | 2008-11-06 | Yamada Chem Co Ltd | ディスプレイ用フィルタ及びその製造方法、プラズマディスプレイ用フィルタ、プラズマディスプレイ、液晶ディスプレイ用フィルタ及び液晶ディスプレイ。 |
AU2007224400B2 (en) * | 2007-10-12 | 2014-10-02 | The University Of Southern California | Organic photosenstive optoelectronic devices containing tetra-azaporphyrins |
JP2009294445A (ja) * | 2008-06-05 | 2009-12-17 | Yamamoto Kogaku Co Ltd | 偏光性積層体とその製造方法 |
JP5075080B2 (ja) * | 2008-10-02 | 2012-11-14 | タレックス光学工業株式会社 | 赤外線吸収性眼鏡用レンズ基材 |
-
2011
- 2011-08-10 EP EP11816239.5A patent/EP2605059B1/en active Active
- 2011-08-10 KR KR1020137002703A patent/KR101729368B1/ko active IP Right Grant
- 2011-08-10 KR KR20157008951A patent/KR20150043556A/ko not_active Application Discontinuation
- 2011-08-10 BR BR112013003397A patent/BR112013003397B8/pt active IP Right Grant
- 2011-08-10 WO PCT/JP2011/004544 patent/WO2012020570A1/ja active Application Filing
- 2011-08-10 US US13/813,312 patent/US9086531B2/en active Active
- 2011-08-10 JP JP2012528596A patent/JPWO2012020570A1/ja active Pending
- 2011-08-10 CN CN201180039469.0A patent/CN103052904B/zh active Active
-
2015
- 2015-04-30 JP JP2015092640A patent/JP6042938B2/ja active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6187757A (ja) | 1984-10-05 | 1986-05-06 | Mitsui Toatsu Chem Inc | 色素およびこれを用いた偏光フイルム |
JPS62270664A (ja) | 1985-06-12 | 1987-11-25 | Mitsui Toatsu Chem Inc | キノフタロン系色素およびこれを用いた偏光フイルム |
JPS62275163A (ja) | 1985-06-12 | 1987-11-30 | Mitsui Toatsu Chem Inc | アントラキノン系色素およびこれを用いた偏光フイルム |
JPS61285259A (ja) | 1985-06-13 | 1986-12-16 | Mitsui Toatsu Chem Inc | 二色性色素およびこれを用いた偏光フイルム |
JPH01103667A (ja) | 1987-07-22 | 1989-04-20 | Mitsui Toatsu Chem Inc | アントラキノン系色素および該色素を用いた偏光フィルム |
JPH0430986A (ja) | 1990-05-25 | 1992-02-03 | Sanyo Electric Co Ltd | ハンド制御装置 |
JPH0545610A (ja) | 1991-05-20 | 1993-02-26 | Tokyo Keikaku:Kk | 防眩用眼鏡レンズ |
JPH055860A (ja) | 1991-06-27 | 1993-01-14 | Tokyo Keikaku:Kk | 金属により防眩性が付与されたプラスチツク眼鏡レンズ |
WO1996000247A1 (fr) | 1994-06-24 | 1996-01-04 | Seiko Epson Corporation | Substance plastique transparente, article d'optique realise en cette substance et procede de production |
JPH09258009A (ja) | 1996-03-27 | 1997-10-03 | Nasu Nikon:Kk | 偏光レンズ |
JPH11130971A (ja) | 1997-07-23 | 1999-05-18 | Ricoh Co Ltd | テトラアザポルフィリン化合物とその前駆体及びテトラアザポルフィリン化合物の製造方法 |
JPH11116574A (ja) | 1997-07-25 | 1999-04-27 | Ricoh Co Ltd | ハロゲン化テトラアザポルフィリン化合物及び(ハロゲン化)テトラアザポルフィリン化合物の製造方法 |
JP2001249227A (ja) * | 2000-12-28 | 2001-09-14 | Taretsukusu Kogaku Kogyo Kk | 偏光膜の製造方法 |
WO2002073291A1 (en) | 2001-03-13 | 2002-09-19 | Younger Mfg. Co. Dba Younger Optics | Polarized eyewear using high impact, high optical-quality polymeric material |
WO2004099859A1 (ja) | 2003-05-12 | 2004-11-18 | Hopnic Laboratory Co., Ltd. | 高屈折率偏光レンズの製造方法 |
JP2006321925A (ja) | 2005-05-19 | 2006-11-30 | Mitsui Chemicals Inc | テトラアザポルフィリン化合物の製造方法 |
JP2007099744A (ja) | 2005-10-07 | 2007-04-19 | Yamada Chem Co Ltd | テトラアザポルフィリン化合物の製造法 |
JP2008134618A (ja) | 2006-10-26 | 2008-06-12 | Hopunikku Kenkyusho:Kk | プラスチック眼鏡レンズ |
JP2008134628A (ja) | 2006-10-27 | 2008-06-12 | National Institute Of Advanced Industrial & Technology | 太陽光透過制御素子 |
WO2009098886A1 (ja) * | 2008-02-07 | 2009-08-13 | Mitsui Chemicals, Inc. | プラスチック偏光レンズ及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2605059A4 |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2013228905B2 (en) * | 2012-03-06 | 2015-09-03 | Mitsui Chemicals, Inc. | Plastic polarized lens and method of producing same |
JP2016189009A (ja) * | 2012-03-06 | 2016-11-04 | 三井化学株式会社 | プラスチック偏光レンズ及びその製造方法 |
US10663622B2 (en) | 2012-03-06 | 2020-05-26 | Mitsui Chemicals, Inc. | Plastic polarized lens and method of producing the same |
KR20140123599A (ko) * | 2012-03-06 | 2014-10-22 | 미쓰이 가가쿠 가부시키가이샤 | 플라스틱 편광 렌즈 및 그 제조 방법 |
CN104160324A (zh) * | 2012-03-06 | 2014-11-19 | 三井化学株式会社 | 塑料偏光透镜及其制备方法 |
WO2013132805A1 (ja) * | 2012-03-06 | 2013-09-12 | 三井化学株式会社 | プラスチック偏光レンズ及びその製造方法 |
KR101671601B1 (ko) * | 2012-03-06 | 2016-11-01 | 미쓰이 가가쿠 가부시키가이샤 | 플라스틱 편광 렌즈 및 그 제조 방법 |
JPWO2013132805A1 (ja) * | 2012-03-06 | 2015-07-30 | 三井化学株式会社 | プラスチック偏光レンズ及びその製造方法 |
CN104160324B (zh) * | 2012-03-06 | 2016-05-11 | 三井化学株式会社 | 塑料偏光透镜及其制备方法 |
US10274643B2 (en) | 2012-03-06 | 2019-04-30 | Mitsui Chemicals, Inc. | Plastic polarized lens and method of producing the same |
WO2013168565A1 (ja) * | 2012-05-07 | 2013-11-14 | 山本化成株式会社 | 樹脂組成物および成形体 |
JPWO2013168565A1 (ja) * | 2012-05-07 | 2016-01-07 | 山本化成株式会社 | 樹脂組成物および成形体 |
JP2014142440A (ja) * | 2013-01-23 | 2014-08-07 | Hoya Lense Manufacturing Philippine Inc | 偏光レンズの製造方法 |
JP2014219491A (ja) * | 2013-05-07 | 2014-11-20 | 三井化学株式会社 | プラスチック偏光レンズ及びその製造方法 |
JP2015069045A (ja) * | 2013-09-30 | 2015-04-13 | タレックス光学工業株式会社 | 複合機能性偏光レンズ |
WO2016125736A1 (ja) * | 2015-02-02 | 2016-08-11 | 三井化学株式会社 | 光学材料用重合性組成物、光学材料およびその用途 |
JPWO2016125736A1 (ja) * | 2015-02-02 | 2017-08-31 | 三井化学株式会社 | 光学材料用重合性組成物、光学材料およびその用途 |
CN107209283A (zh) * | 2015-02-02 | 2017-09-26 | 三井化学株式会社 | 光学材料用聚合性组合物、光学材料及其用途 |
US10267966B2 (en) | 2016-04-13 | 2019-04-23 | Talex Optical Co., Ltd. | Composite functional polarized lens |
WO2018025508A1 (ja) | 2016-08-02 | 2018-02-08 | 株式会社トクヤマ | 接着性組成物、積層体、及び該積層体を用いた光学物品 |
JP6307209B1 (ja) * | 2016-09-30 | 2018-04-04 | 三井化学株式会社 | フォトクロミックレンズおよび重合性組成物 |
WO2018062385A1 (ja) | 2016-09-30 | 2018-04-05 | 三井化学株式会社 | フォトクロミックレンズおよび重合性組成物 |
KR20190035902A (ko) | 2016-09-30 | 2019-04-03 | 미쯔이가가꾸가부시끼가이샤 | 포토크로믹 렌즈 및 중합성 조성물 |
JP2018072851A (ja) * | 2017-12-04 | 2018-05-10 | タレックス光学工業株式会社 | 複合機能性偏光レンズの製造方法 |
WO2019163728A1 (ja) | 2018-02-23 | 2019-08-29 | 株式会社トクヤマ | 機能性積層体、及び機能性積層体を用いた機能性レンズ |
WO2019194132A1 (ja) * | 2018-04-02 | 2019-10-10 | 株式会社ホプニック研究所 | プラスチック偏光レンズおよびその製造方法 |
JPWO2019194132A1 (ja) * | 2018-04-02 | 2021-02-12 | 株式会社ホプニック研究所 | プラスチック偏光レンズおよびその製造方法 |
US12117589B2 (en) | 2018-04-02 | 2024-10-15 | Hopnic Laboratory Co., Ltd. | Plastic polarizing lens and method for manufacturing same |
WO2019198664A1 (ja) | 2018-04-12 | 2019-10-17 | 株式会社トクヤマ | フォトクロミック光学物品及びその製造方法 |
WO2020204176A1 (ja) | 2019-04-03 | 2020-10-08 | 株式会社トクヤマ | フォトクロミック光学物品およびその製造方法 |
JPWO2020262399A1 (ja) * | 2019-06-28 | 2020-12-30 | ||
US12023882B2 (en) | 2019-06-28 | 2024-07-02 | Hoya Lens Thailand Ltd. | Method for producing polarizing lens, polarizing film and polarizing lens |
WO2021172513A1 (ja) | 2020-02-28 | 2021-09-02 | 株式会社トクヤマ | 湿気硬化型ポリウレタン組成物及び積層体 |
WO2021241596A1 (ja) | 2020-05-28 | 2021-12-02 | 株式会社トクヤマ | 光学材料用化合物、硬化性組成物、硬化体、及び光学物品 |
WO2022224771A1 (ja) | 2021-04-21 | 2022-10-27 | 株式会社トクヤマ | 光学物品、眼鏡レンズ、および眼鏡 |
Also Published As
Publication number | Publication date |
---|---|
JP6042938B2 (ja) | 2016-12-14 |
BR112013003397B1 (pt) | 2021-02-23 |
US9086531B2 (en) | 2015-07-21 |
EP2605059A4 (en) | 2016-03-09 |
EP2605059A1 (en) | 2013-06-19 |
BR112013003397A2 (pt) | 2016-08-02 |
CN103052904A (zh) | 2013-04-17 |
JP2015180942A (ja) | 2015-10-15 |
EP2605059B1 (en) | 2021-02-17 |
KR20130057453A (ko) | 2013-05-31 |
KR101729368B1 (ko) | 2017-04-21 |
KR20150043556A (ko) | 2015-04-22 |
BR112013003397B8 (pt) | 2023-05-09 |
JPWO2012020570A1 (ja) | 2013-10-28 |
US20130155507A1 (en) | 2013-06-20 |
CN103052904B (zh) | 2016-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6042938B2 (ja) | プラスチック偏光レンズ、その製造方法および偏光フィルム | |
JP6244398B2 (ja) | プラスチック偏光レンズ及びその製造方法 | |
JP4843677B2 (ja) | プラスチック偏光レンズ及びその製造方法 | |
WO2009098886A1 (ja) | プラスチック偏光レンズ及びその製造方法 | |
EP2463321B1 (en) | Polymerizable composition for optical materials, optical material, and method for producing optical materials | |
JP6475848B2 (ja) | 光学材料用重合性組成物の製造方法および光学材料の製造方法 | |
JP6126900B2 (ja) | プラスチック偏光レンズ及びその製造方法 | |
JP6095468B2 (ja) | プラスチック偏光レンズ及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180039469.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11816239 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012528596 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13813312 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20137002703 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011816239 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013003397 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013003397 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130213 |