JP2018072851A - 複合機能性偏光レンズの製造方法 - Google Patents

複合機能性偏光レンズの製造方法 Download PDF

Info

Publication number
JP2018072851A
JP2018072851A JP2017232721A JP2017232721A JP2018072851A JP 2018072851 A JP2018072851 A JP 2018072851A JP 2017232721 A JP2017232721 A JP 2017232721A JP 2017232721 A JP2017232721 A JP 2017232721A JP 2018072851 A JP2018072851 A JP 2018072851A
Authority
JP
Japan
Prior art keywords
lens
lens base
resin
polarizing
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017232721A
Other languages
English (en)
Other versions
JP6553157B2 (ja
Inventor
皖一 田村
Kanichi Tamura
皖一 田村
祥一 光内
Shoichi Mitsuuchi
祥一 光内
憲三 和田
Kenzo Wada
憲三 和田
竜午 新田
Ryugo Nitta
竜午 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Talex Optical Co Ltd
Original Assignee
Talex Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Talex Optical Co Ltd filed Critical Talex Optical Co Ltd
Priority to JP2017232721A priority Critical patent/JP6553157B2/ja
Publication of JP2018072851A publication Critical patent/JP2018072851A/ja
Application granted granted Critical
Publication of JP6553157B2 publication Critical patent/JP6553157B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Optical Filters (AREA)

Abstract

【課題】偏光レンズに積層されるレンズ基材の境界に光学的な斑が現れず界面の接着性が良好であり、しかもサーモクロミック、フォトクロミック、紫外線や赤外線の吸収などの機能性付与剤の添加効率がよく、これらの付加的機能を充分に確保できる複合機能性がある偏光レンズの製造方法とする。【解決手段】偏光フィルム1の表裏両面のうち、表面側に設ける第1レンズ基材層2に添加成分として紫外線吸収剤、赤外線吸収剤、フォトクロミック光吸収剤またはサーモクロミック光吸収剤である光吸収剤を含有させ、裏面側には光吸収剤を含まない第2レンズ基材層3を設けた複合機能性偏光レンズAを製造する製造方法であって、縦長のキャビティーの下側に位置する樹脂注入孔から第1レンズ基材層及び第2レンズ基材層のそれぞれの樹脂成形材料を同時に注入し、オーバーフロー孔からガス抜きしながら注型成形する。【選択図】図1

Description

この発明は、偏光機能に加えて、他の特定機能を併有する複合機能性偏光レンズの製造方法に関する。
一般に、偏光眼鏡用のレンズ基材は、偏光膜(フィルム)を有する偏光素子を眼鏡用レンズ基材と一体化したものであり、偏光膜は、ポリビニルアルコール等の樹脂フィルムを一軸延伸し、ヨウ素等を含浸して調製されたものである。
視力矯正用の眼鏡用レンズ基材は、注型重合により片側の表面に凸レンズ面が形成されていると共に、裏面は凹面状や平面状などに形成されており、眼鏡レンズとして需要者に適切なレンズ度数に調整する際に、裏面を研削し、表面は研削せずに何らかの機能性成分を含有するコーティングが施される場合がある。
偏光眼鏡用のレンズ基材を注型(キャスト)法によって製造するには、レンズ基材と同径のリング状のガスケットの内周側に、予め半球面状に加圧成形された偏光フィルムの周縁を保持し、この偏光フィルムの表裏面から所定間隔を開けて一対の凹・凸形のレンズ面形成用のモールドをガスケットと一体に固定し、前記一対のモールド間のレンズ厚みを設定する空隙(キャビティー)にモノマーを注入し、所用温度に所要時間保持して重合反応させ、さらに硬化した樹脂と偏光素子とを一体化して成形する製造法が周知である(特許文献1等)。
また、眼鏡用レンズ基材に機能性成分を保持するには、例えば赤外線吸収剤をバインダー樹脂に分散させたコーティング液をレンズ表面に層状に塗布し、これを乾燥させて赤外線吸収層を形成する方法が知られている(特許文献2)
しかし、上記した従来の眼鏡用レンズの技術では、赤外線吸収剤をレンズの表面にコーティングするときに、レンズ基材の光学的特性を低下させないようにしなければならず、そのためにコーティングの層の厚さをできるだけ薄く形成すると、所望の赤外線吸収性能などの所要機能を充分に発揮できなかった。
また、近眼などに対応する視力矯正用のレンズ基材に、紫外線や赤外線の吸収剤などの高価な機能性付与剤を分散保持させるとき、所要のレンズ度数を得るための研削作業によってレンズ基材の大部分が廃棄されてしまうので、これでは添加した機能性付与剤の大部分が機能を果たすことなく廃棄されてしまい、機能性付与剤の添加効率が悪く、製造コストの高騰要因になるという問題点がある。
このような問題に対し、本願の発明者らは、先の特許出願において赤外線吸収剤を含有するポリウレタン樹脂で偏光フィルムの両面を被覆して形成される偏光素子と、赤外線吸収剤の含まれていないポリウレタン樹脂で形成されてレンズ度数調整の研削に用いる眼鏡用レンズ基材とを、ポリウレタン樹脂材料のインサート成形により形成し、前記眼鏡用レンズ基材の片面に前記偏光素子を重ねたように一体化して赤外線吸収性偏光眼鏡用レンズ基材を構成した(特許文献3)。
特開2001−311804号公報 特開2005− 43921号公報 特許第5075080号公報
しかし、前記したように偏光フィルムの両面を赤外線吸収剤を含有する樹脂で被覆して形成される偏光素子と、レンズ度数調整の研削に用いる眼鏡用レンズ基材とを、インサート成形して偏光眼鏡用レンズ基材を製造すると、偏光素子の表裏面を形成する樹脂は予め硬化されており、その上に重ねて未硬化の樹脂層を形成するので、樹脂の種類によっては積層一体化が充分に良好でない場合があり、特にジエチレングリコールビスアリルカーボネート(CR−39)は積層による一体化が不確実になりやすいという問題点がある。
また、予め作成した偏光素子の表面の樹脂層と、インサート成形時に前記樹脂層上に重ねて形成された樹脂層との境には、成形時の樹脂の流動方向の相異や、1回以上受ける成形熱による熱履歴の相異などに起因して光学的に識別可能な界面が形成されてしまう。そして、このような眼鏡レンズを、いわゆる「度付き加工」のために前記界面に交差する研磨面を形成すると、研磨面に前記界面に沿った薄い影(レンズ全周にリング状の薄い影)が視認されてしまい、眼鏡用レンズの均一な透明感などの品質が損なわれるという問題点がある。
そこで、この発明の課題は、上記した問題点を解決して、偏光レンズに積層されるレンズ基材の境界に光学的な斑が現れず界面の接着性が良好であり、しかもサーモクロミック、フォトクロミック、紫外線や赤外線の吸収などの機能性付与剤の添加効率がよく、これらの付加的機能を充分に確保できる複合機能性がある偏光レンズとすることである。
また、偏光フィルムをインサート成形(注型成形)する場合において、特に樹脂の種類を限らず、積層による接着一体化が良好な複合機能性偏光レンズとすることである。
上記の課題を解決するために、この発明では、偏光フィルムの表裏両面に同時に同じ所定樹脂を主要成分とするレンズ基材層をインサート成形により一体に設け、前記偏光フィルムの表裏両面のうち一面側に設ける第1レンズ基材層に添加成分として光吸収剤を含有させ、他面側には前記光吸収剤を含まない第2レンズ基材層を設ける偏光レンズの製造方法であり、前記偏光フィルムの縁部を保持する円筒状のガスケットに前記偏光フィルムから間隔を空けて一対のモールドを液密に嵌め合わせ、前記偏光フィルムの両側に各側1つずつの樹脂注入孔を前記ガスケットの壁面を貫通させて設け、前記ガスケットの前記樹脂注入孔に対向する位置には前記ガスケットの壁面を貫通してオーバーフロー孔を開口させ、前記一対のモールドの対向面の間に形成される縦長のキャビティーの下側に位置する前記樹脂注入孔から第1レンズ基材層及び第2レンズ基材層のそれぞれの樹脂成形材料を同時に注入し、前記オーバーフロー孔からガス抜きしながら注型成形する複合機能性偏光レンズの製造方法としたのである。
上記したように構成されるこの発明の複合機能性偏光レンズは、インサート成形に用いる偏光フィルムの両面に予め樹脂を被覆して硬化させておらず、一対のモールドの対向面の間に形成される縦長のキャビティーの下側に位置する前記樹脂注入孔から第1レンズ基材層及び第2レンズ基材層のそれぞれの樹脂成形材料を同時に注入し、前記オーバーフロー孔からガス抜きしながら注型成形することにより、偏光フィルムの両面を同時に同じ所定樹脂で成形するので、このインサート成形以前に偏光フィルムとレンズ基材層を形成する所定樹脂との熱履歴や予備成形時とインサート成形時の樹脂の流動性などの差による光学的に識別可能な界面は形成されない。
そのため、この界面に交差する研磨面を形成しても研磨面に前記界面に沿った薄い影は形成されず、また界面の接着性は良好である。
特に所定樹脂としてジエチレングリコールビスアリルカーボネート(CR−39)を用いた場合でも偏光フィルムと基材層の一体化は確実に行える。
そして、前記偏光フィルムの表裏両面のうち一面側に設ける第1レンズ基材層に添加成分として光吸収剤を含有させ、他面側には前記光吸収剤を含まない第2レンズ基材層を設けることにより、視力矯正のための度付きレンズを形成する際に、光吸収剤を含まない第2レンズ基材層を研削加工して、光吸収剤を含む第1レンズ基材層の研削滓の量を可及的に少なくすることができ、低コストになるように効率よく光吸収剤を利用することができる。
このようにして、上記光吸収剤が、紫外線吸収剤、赤外線吸収剤、フォトクロミック光吸収剤またはサーモクロミック光吸収剤である複合機能性偏光レンズとすることにより、サーモクロミック、フォトクロミック、紫外線や赤外線の吸収などの機能性付与剤の添加効率がよく、これらの付加的機能を充分に確保できる複合機能性がある偏光レンズとすることができる。
また、光吸収剤を含む第1レンズ基材層の研削滓の量をより少なくするためには、偏光フィルムの他方側の第2レンズ基材層が、光吸収剤を全く含まない前記所定樹脂からなるレンズ基材層とすることであるが、第2レンズ基材層には、第1レンズ基材層の添加成分である光吸収剤とは異なる種類の光吸収剤を含ませることもできる。
例えば、第1レンズ基材層にフォトクロミック光吸収剤を含有させ、第2レンズ基材層にサーモクロミック光吸収剤を含有させた複合機能性偏光レンズにすれば、フォトクロミック光吸収剤の機能が低下する温度域でサーモクロミック光吸収剤を作用させることができ、互いの光吸収剤の欠点を補い合うようにすることもできる。
また、偏光フィルムの両面を同時に同じ所定樹脂で成形するので、この所定樹脂が、同じ樹脂同士で積層性があまり良くなく、層間の剥離しやすいアリルジグリコールカーボネート樹脂であっても上記の複合機能性偏光レンズは、積層による接着一体化が確実に行える。
この発明は、インサート成形により偏光フィルムの表裏両面に所定樹脂からなるレンズ基材層を一体に設け、偏光フィルムの一面側に光吸収剤を含有させ、他面側には前記光吸収剤を含まない複合機能性偏光レンズの製造方法としたので、偏光レンズに積層されるレンズ基材の境界に光学的な斑が現れず界面の接着性が良好であり、しかもサーモクロミック、フォトクロミック、紫外線や赤外線の吸収などの機能性付与剤の添加効率がよく、これらの付加的機能を充分に確保できる複合機能性がある偏光レンズを製造できる利点がある。
また、偏光フィルムをインサート成形(注型成形)する場合において、特に樹脂の種類を限らず、積層による接着一体化が良好な複合機能性偏光レンズになる利点もある。
実施形態を示す複合機能性偏光レンズの断面図 実施形態の複合機能性偏光レンズのインサート成形に用いるガスケットの平面図 図2のIII−III線方向のガスケットおよびモールドの断面図 他の実施形態の複合機能性偏光レンズのインサート成形に用いるガスケットおよびモールドの断面図
この発明の実施形態を以下に、添付図面を参照して説明する。
図1〜3に示すように、実施形態は、偏光フィルム1の表裏両面に、アリルジグリコールカーボネート樹脂(PPG社製:CR−39)、ウレタン樹脂その他の所定樹脂からなるレンズ基材層をインサート成形により一体に設け、偏光フィルム1の表裏両面のうち、表面側に設ける第1レンズ基材層2に添加成分として紫外線吸収剤、赤外線吸収剤、フォトクロミック光吸収剤またはサーモクロミック光吸収剤である光吸収剤を含有させ、裏面側には前記光吸収剤を含まない第2レンズ基材層3を設けた複合機能性偏光レンズAである。
この複合機能性偏光レンズは、後述するインサート成形によって、偏光フィルム1の両面を同時に同じ所定樹脂を主要成分とする樹脂成形材料を注型成形している。
偏光フィルム1は、周知製法に従って得られるが、例えばポリビニルアルコール(PVA)製フィルムにヨウ素もしくはヨウ素化合物または染料を含浸等によって含ませ、一軸延伸したものを採用することが好ましい。
偏光フィルム1は、その材質がPVAに限定されるものではなく、ポリエチレンテレフタレート(PET)またはPVA製フィルムにトリアセチルセルロースやポリカーボネートなどからなるフィルムを張り合わせた複合フィルムを用いることもできる。
一軸延伸されたPVA製などの偏光フィルム1は、メニスカス型のレンズの大きさに合わせて方形状にカットされた後、周知の加圧成形(プレス成形)によって、レンズのカーブ(曲率半径)に沿うように球面形の湾曲面を成形したものにして、インサート成形に用いる。
所定の樹脂としては、前記した樹脂例も含めて、眼鏡レンズの注型(キャスト)成形可能な樹脂を広く使用可能である。例えば、熱可塑性樹脂として透明性に優れるMMA(メチルメタアクリレート樹脂)やPC(ポリカーボネート樹脂)、注型タイプの熱硬化性樹脂の代表的な樹脂であるCR−39や中屈折率樹脂(例えば、日本油脂製:コーポレックス、屈折率1.56)は、その成分としてアリルジグリコールカーボネートが含まれ、またイソシアネートとポリチオールを化合させた周知の高屈折率樹脂(例えば、三井化学社製:チオウレタン系樹脂MR−7、屈折率1.67)であるチオウレタン樹脂も代表例として挙げられる。
このようなレンズ基材を構成する所定の樹脂に添加される光吸収剤の例としては、紫外線吸収剤、赤外線吸収剤、フォトクロミック光吸収剤またはサーモクロミック光吸収剤が挙げられる。
このうち、紫外線吸収剤は、紫外線波長(100nm〜380nm)についての吸収性を有する周知の紫外線吸収剤を使用可能であり、具体例として、以下の化合物を挙げることができる。
(1) 2−ヒドロキシ−4−n−オクトキシベンゾフェノン
(2) 4−ドデシロキシ−2−ヒドロキシベンゾフェノン
(3) 2−2´−ヒドロキシ−4−メトキシベンゾフェノン
これらの紫外線吸収剤を用いる際には、波長の長いUV−A(315〜400nm)と波長の短いUV−B(280〜315nm)とそれ以下のUV−C(100〜280nm)の全ての紫外線を吸収させることが好ましい。
紫外線吸収剤の添加量は、レンズ基材を構成する樹脂材料100重量部に対して、0.01〜4重量部、好ましくは0.1〜4.0重量部、より好ましくは0.2〜0.5重量部の範囲が、添加効率よく紫外線吸収性を発揮するので適している。
また、赤外線吸収剤は、赤外線波長(780nm〜2500nm)について、吸収性を有する周知の赤外線吸収剤を使用可能であり、例えば以下の化合物が挙げられる。
(1) N,N,N´,N´−テトラキス(p-置換フェニル)-p−フェニレンジアミン類、
ベンジジン類及びそれらのアルミニウム塩、ジイモニウム塩からなる赤外線吸収剤。
(2) N,N,N´,N´−テトラアリールキノンジイモニウム塩類。
(3) ビス−(p-ジアルキルアミノフェニル)〔N,N-ビス(p-ジアルキルアミノフェニル)p
-アミノフェニル〕アミニウム塩。
赤外線吸収剤の添加量は、レンズを構成する樹脂材料100重量部に対して、通常0.05〜10重量部、遮光保護具以外の用途に使用する場合には0.1〜1.0重量部の範囲が適している。
また、フォトクロミック光吸収剤は、フォトクロミック化合物とも称されるものであり、例えば周知のスピロオキサジン系化合物やテトラ(またはヘキサ)ベンゾペロピレン系の化合物が挙げられる。
スピロオキサジン系化合物は、短波長の紫外線により耐候性が弱まる傾向が認められ、微粒子状のスピロオキサジン系化合物を遮光性無機質皮膜で包んで樹脂マトリックス中に分散させることによって耐候性のある態様で用いることができる(特開昭63−175071号公報)。
特に、フォトクロミック性によるレンズの消色に要する応答時間を可及的に短くすると共に、紫外線による性能劣化を抑制して耐候性のあるフォトクロミックレンズとするためには、樹脂製レンズ100質量部に対し、スピロオキサジン系フォトクロミック化合物、好ましくは化1の式で示されるスピロオキサジン系フォトクロミック化合物0.03〜0.2質量部をテトラヒドロフランに溶解した状態で混合し、均一分散させることが好ましい。
Figure 2018072851
上記のフォトクロミック化合物は、テトラヒドロフランに溶解することにより、樹脂中に均一に分散するから、そのように分散したレンズでは、その表面から通常約0.5mmの深度まで浸入した紫外線によって劣化する場合があるが、樹脂の深部までは劣化し難い。そのため、レンズ全体としては耐候性のある特性を備えたフォトクロミックレンズになる。
また、サーモクロミック光吸収剤は、温度に依存して光吸収性が変化する化合物であり、そのような特性を有するサーモクロミック化合物としては、ロイコ染料及び液晶粒子が挙げられる。
サーモクロミック液晶の具体例としては、ノナン酸コレステリル及びシアノビフェニルが挙げられる。ロイコ染料の例としては、スピロラクトン、フルオラン、スピロピラン、フルギド、及びこれらの組み合わせが挙げられる。重合可能な混合物に液晶及びロイコ染料をマイクロカプセル化して混合してもよい。
使用されるサーモクロミック化合物の量は、レンズ基材の材量やレンズの厚みに応じて特定の波長での透過率(%)の低減を達成するように効果的な量に調整できる。
この発明で実施されるインサート成形について、以下に説明する。
図2、3に示すように、レンズ基材中に埋め込むように偏光フィルム1をインサート成形するには、シリコーン樹脂などの柔軟性のある軟質樹脂で形成された円筒状のガスケット4の内周面から内側に突出して設けられている環状凸部5の側面に、レンズのカーブ(曲率半径)に沿うように球面形に湾曲した円盤状の偏光フィルム1の周縁部を係止し、さらにその周縁部にガスケット4の内周面に押入れられた係止用リング6を重ね、ガスケット4に弾性力で保持された係止用リング6と環状凸部5の間に偏光フィルム1の縁部を挟んで保持する。
円筒状のガスケット4の軸方向における偏光フィルム1の両側には、樹脂注入孔7、8が各側1つずつガスケット4の壁面を貫通しており、さらに樹脂注入孔7、8の対向する位置には、前記壁面を貫通してオーバーフロー孔9、10が開口している。
レンズ形状に合わせた凹型面と凸型面が対向配置できる一対のモールド11、12は、このようなガスケット4に偏光フィルム1と適当な間隔を空けるように配置して液密に嵌め合わされ、軸方向からばねクリップ13などで挟んで弾性的に固定される。
モールド11の凹型面と偏光フィルム1の凸型面との隙間は、例えば約1mm程度に、または必要があれば約2〜5mm程度に設定でき、モールド12の凸型面と偏光フィルム1の凹型面との隙間は、例えばセミ品では8〜18mm程度、またはプラノ品では1〜10mm程度に設定できる。
そして、図3に示すように樹脂注入孔7、8が下側に位置するようにし、2つのモールドの対向面の間に形成される縦長のキャビティーに、2つの樹脂注入孔7、8のうち、レンズ表面側の樹脂注入孔7には添加成分として光吸収剤を配合して脱気処理した樹脂材料を注入し、この注入と同時にレンズ裏面側の樹脂注入孔8には前記光吸収剤を含まないで脱気処理した樹脂材料を注入し、これらはオーバーフロー孔9、10からそれぞれガス抜きをしながらキャビティ内に完全に充填し、次いで加熱養生を行なって、それぞれの樹脂材料を重合および硬化させることにより、特定の光吸収機能と偏光機能を併有する複合機能性偏光レンズのインサート成形ができる。
このように構成されたインサート成形用の型を用いると、偏光フィルムの表裏両面のうち一面側に設ける第1レンズ基材層に添加成分として光吸収剤を含有させ、他面側には前記光吸収剤を含まない第2レンズ基材層を設けることができ、偏光フィルム1をレンズ基材2、3と一体化させて、様々な機能を有する複合機能性偏光レンズを製造することができる。
また、図4に示すように、上記とは形態の異なる2つ一組で用いるガスケット14、15を用いてインサート成形することもできる。
すなわち、レンズの凸型面形成用のモールド16とこれを保持するリング状のガスケット14とを一組として用い、またレンズの凹型面形成用のモールド17とこれを保持するリング状のガスケット15とを他の一組として、これらのガスケット14、15には、それぞれ樹脂注入孔18、19とオーバーフロー孔20、21を形成し、前記ガスケット14、15のモールド保持側と反対側の面を対向させて、対向面間に偏光フィルム1の縁部を挟んで保持し、ばねクリップ13などで固定しておく。
そして、このようなガスケット14、15とモールド16、17を用いることの他は、上記同様にして、偏光フィルム1を第1レンズ基材層2、第2レンズ基材層3と一体化させて、様々な機能を有する複合機能性偏光レンズを製造することができる。
[実施例1]
上述したインサート成形工程により、偏光フィルムの両面に対し所定樹脂を主要成分とし、第1レンズ基材層に添加成分として光吸収剤を含有させ、他面側には前記光吸収剤を含まない第2レンズ基材層を設けるように、2つのゲートから各樹脂成形材料を同時に注型成形して複合機能性偏光レンズを製造した。
すなわち、フォトクロミック光吸収剤(染料)を凸面側の第1レンズ基材層に添加し、このフォトクロミック光吸収剤に代えてサーモクロミック染料を凹面側の第2レンズ基材層に含ませた複合機能性眼鏡レンズ(視力矯正用眼鏡レンズ(セミ品)またはプラノ(平面)用眼鏡レンズを作製した。
第1レンズ基材層については、ポリイソシアネートとポリヒドロキシ化合物を反応させたプレポリマー(紫外線吸収剤無添加)100質量部に対し、化1の式で示されるスピロオキサジン系フォトクロミック化合物(山田化学工業社製:PSP−33、赤紫色)を0.05質量部、青緑色のスピロオキサジン系フォトクロミック化合物(山田化学工業社製:PSP−54)を0.02質量部、橙色のフォトクロミック化合物(山田化学工業社製:PSP−92)を0.06質量部の割合でTHF(テトラヒドロフラン)に溶解させてからプレポリマーに添加し、混合・撹拌して真空脱気した。次いで、前記プレポリマーには、当量分の硬化剤として芳香族ポリアミン(MOCA)を添加して樹脂材料とした。
また、第2レンズ基材層については、第1レンズ基材層に用いたポリウレタンプレポリマーを用い、フォトクロミック光吸収剤に代えて、サーモクロミック化合物(ノナン酸コレステリル等)を配合したこと以外は同様にして樹脂材料とした。
注型成形では、実施形態で説明した構造のガラス製モールドのキャビティ内に第1レンズ基材層用または第2レンズ基材層用のそれぞれの樹脂成形材料を注入して、40℃で3時間維持した後、徐々に加熱して昇温し、100℃で24時間キュアした後、冷却して前記モールドから取り出し、複合機能性眼鏡用偏光レンズを得た。
このように製造されたサーモクロミック層を併用する複合機能性眼鏡用偏光レンズは、従来のフォトクロミック光レンズでは、高温(30℃以上)になると、フォトクロ性能が大幅にダウンする欠点があったが、30℃以上の高温で使用した場合も明暗差が保持され、耐候性試験後においてもその性能は維持されていた。
[実施例2]
実施例1において、凸面層の第1レンズ基材層を成形するポリウレタンプレポリマーにフォトクロミック化合物に代えて赤外線吸収剤のジイモニウム系化合物(日本化薬社製:IRG−022)を1質量%添加したこと、および凹面層の第2レンズ基材層は光吸収剤は何も添加せず透明なポリウレタンプレポリマーを用いたことの他は、実施例1と全く同様にして複合機能性眼鏡用偏光レンズを注型成形した。
得られた複合機能性眼鏡レンズは、従来の2段重合による注型成形(特許文献3の実施形態)で得られたものより約半分の肉厚にまで薄くなっており、しかも視力矯正のための度付き研磨を施してもリング状の斑は生じなかった。
[実施例3]
実施例2において、ポリウレタンプレポリマーに代えて、アリルジグリコールカーボネート樹脂(CR39)を用いて注型成形し、30℃で7時間維持した後、徐々に加熱して昇温し、80〜100℃で8時間キュアしたことの他は、実施例2と全く同様にして複合機能性眼鏡用偏光レンズを注型成形した。
得られた複合機能性眼鏡用偏光レンズは、アリルジグリコールカーボネート樹脂(CR39)を用いているにもかかわらず、凸面層、凹面層および偏光フィルムの積層一体化が良好で層間に全く剥がれのないものであり、また全層に交差する研磨面を形成しても研磨面に界面に沿う薄い影は全く認められず、品質良好なものであった。
[比較例1]
実施例1においては、フォトクロミック光吸収剤(染料)を凸面側の第1レンズ基材層に添加し、このフォトクロミック光吸収剤に代えてサーモクロミック染料を凹面側の第2レンズ基材層に含ませたが、この構成に代えてフォトクロミック染料とサーモクロミック染料を混合して凸面側の第1レンズ基材層に添加し、それ以外は全く同様にして複合機能性眼鏡用偏光レンズを作製した。
得られた比較例1の偏光レンズは、初期には30℃以上の高温でも所期した光吸収性を示したが、戸外で紫外線に1カ月近く曝されると、その性能はフォトクロミック染料単体を添加したものと同程度まで劣化してしまった。
[比較例2]
実施例1に用いたウレタン樹脂と同じ耐衝撃性ウレタンで、肉厚10mmの透明レンズを予め製造した。肉厚は8mm〜20mmの範囲で、種々のカーブ(1カーブ、2カーブ、4カーブ、6カーブ、8カーブなど)の透明レンズを作製した。
そして、ガラスモールド(雄型と雌型)にガスケットをセットする際に、予め製造した前記透明レンズを凹面側にセットし、約2mm厚の偏光レンズ部分の両側約1mmづつの耐衝撃性ウレタンに赤外線吸収剤を1質量%添加して注型成形した。
このように2回の注型2段成形(2段重合とも呼ばれる)で作製したレンズは、所要の視力矯正のために、機能性層と透明層の界面を交差する研磨面を形成すると、いずれのカーブのレンズでも前記界面に沿う薄い影(透明状のリング)が視認された。
[比較例3]
アリルジグリコールカーボネート樹脂(CR39)を用いて肉厚10mmの透明レンズを、肉厚8mm〜20mmの範囲で種々のカーブ(1カーブ、2カーブ、4カーブ、6カーブ、8カーブなど)の透明レンズを作製した。
次いで、インサート成形用のガラスモールド(雄型と雌型)にガスケットをセットする際に、前記透明レンズをモールドの代用にして凹面側にセットし、約2mm厚の偏光レンズ部分の両側約1mmづつのCR39モノマーに、実施例2同様に光吸収剤を添加して注型成形した。
このように2回の注型2段成形(2段重合とも呼ばれる)で作製したレンズは、一時的にはきれいに積層一体化されたように見えたが、常温でしばらく放置しておくと凸面層、凹面層および偏光フィルムの層間が簡単に剥離してしまい、使用不可能な状態であった。
以上のようにして、例えば赤外線吸収剤などを添加した機能性を有する眼鏡レンズを製造する場合、度付部分を透明で先だって作っておいて、それを凹面側にセットして2層注型成形する事により、高価な赤外線吸収剤の使用量を節約出来、視力矯正用眼鏡レンズ(セミ品)を度付加工した後で、偏肉化されてもほぼ均一な性能を保持することができる。
また、従来、耐候性が悪い光吸収剤を眼鏡用レンズに添加できなかったが、この発明の複合機能性偏光レンズでは、UVカット性能を保有する凸面層と偏光素子でもって、凹面層には紫外線が届かないようにすることができるので、耐候性の良くない染料などの光吸収剤を添加することができる。
1 偏光フィルム
2 第1レンズ基材層
3 第2レンズ基材層
4、14、15 ガスケット
5 環状凸部
6 係止用リング
7、8、18、19 樹脂注入孔
9、10、20、21 オーバーフロー孔
11、12、16、17 モールド
13 ばねクリップ
A 複合機能性偏光レンズ

Claims (5)

  1. 偏光フィルムの表裏両面に同時に同じ所定樹脂を主要成分とするレンズ基材層をインサート成形により一体に設け、前記偏光フィルムの表裏両面のうち一面側に設ける第1レンズ基材層に添加成分として光吸収剤を含有させ、他面側には前記光吸収剤を含まない第2レンズ基材層を設ける偏光レンズの製造方法であり、前記偏光フィルムの縁部を保持する円筒状のガスケットに前記偏光フィルムから間隔を空けて一対のモールドを液密に嵌め合わせ、前記偏光フィルムの両側に各側1つずつの樹脂注入孔を前記ガスケットの壁面を貫通させて設け、前記ガスケットの前記樹脂注入孔に対向する位置には前記ガスケットの壁面を貫通してオーバーフロー孔を開口させ、前記一対のモールドの対向面の間に形成される縦長のキャビティーの下側に位置する前記樹脂注入孔から第1レンズ基材層及び第2レンズ基材層のそれぞれの樹脂成形材料を同時に注入し、前記オーバーフロー孔からガス抜きしながら注型成形する複合機能性偏光レンズの製造方法。
  2. 上記光吸収剤が、紫外線吸収剤、赤外線吸収剤、フォトクロミック光吸収剤またはサーモクロミック光吸収剤である請求項1に記載の複合機能性偏光レンズの製造方法。
  3. 上記偏光フィルムの他方側の第2レンズ基材層が、光吸収剤を全く含まない前記所定樹脂を主要成分とするレンズ基材層である請求項1または2に記載の複合機能性偏光レンズの製造方法。
  4. 第1レンズ基材層にフォトクロミック光吸収剤を含有させ、第2レンズ基材層にサーモクロミック光吸収剤を含有させる請求項1に記載の複合機能性偏光レンズの製造方法。
  5. 上記所定樹脂が、アリルジグリコールカーボネート樹脂である請求項1〜4のいずれかに記載の複合機能性偏光レンズの製造方法。
JP2017232721A 2017-12-04 2017-12-04 複合機能性偏光レンズの製造方法 Active JP6553157B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017232721A JP6553157B2 (ja) 2017-12-04 2017-12-04 複合機能性偏光レンズの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017232721A JP6553157B2 (ja) 2017-12-04 2017-12-04 複合機能性偏光レンズの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013203964A Division JP2015069045A (ja) 2013-09-30 2013-09-30 複合機能性偏光レンズ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019037362A Division JP2019117390A (ja) 2019-03-01 2019-03-01 複合機能性偏光レンズ

Publications (2)

Publication Number Publication Date
JP2018072851A true JP2018072851A (ja) 2018-05-10
JP6553157B2 JP6553157B2 (ja) 2019-07-31

Family

ID=62115373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017232721A Active JP6553157B2 (ja) 2017-12-04 2017-12-04 複合機能性偏光レンズの製造方法

Country Status (1)

Country Link
JP (1) JP6553157B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230889A1 (ja) 2019-05-16 2020-11-19 三井化学株式会社 注入成形装置、当該装置を用いた注入成形方法および成形体の製造方法、積層レンズ

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235113A (ja) * 1985-04-12 1986-10-20 Asahi Glass Co Ltd 複合プラスチツクの製造方法
JPS6218225A (ja) * 1985-07-16 1987-01-27 Mikasa Kogyo Kk 合成樹脂製複合レンズの製造方法及びその製造用ガスケツト
JP3073556B2 (ja) * 1991-07-31 2000-08-07 ホーヤ株式会社 フォトクロミックプラスチックレンズの製造方法
JP2001311804A (ja) * 2000-05-02 2001-11-09 Taretsukusu Kogaku Kogyo Kk プラスチック偏光レンズ及びその製造方法
JP2002187931A (ja) * 2000-10-13 2002-07-05 Taretsukusu Kogaku Kogyo Kk 注型用ポリウレタン樹脂材料組成物及び耐衝撃性光学レンズ
JP2006082421A (ja) * 2004-09-16 2006-03-30 Olympus Corp 光学素子の製造方法および製造装置
JP2006205710A (ja) * 2004-06-08 2006-08-10 Hoya Corp プラスチックレンズの製造方法、プラスチックレンズ成形用ガスケット、プラスチックレンズ成形用成形型、プラスチックレンズ原料液注入治具、プラスチックレンズ成形型保持具、およびプラスチックレンズ製造装置
JP2010085911A (ja) * 2008-10-02 2010-04-15 Talex Optical Co Ltd 赤外線吸収性眼鏡用レンズ基材
US20100141890A1 (en) * 2007-05-04 2010-06-10 Federico Menta Method for manufacturing an optical element made of thermosetting plastic material for use in eye-protecting devices and optical element thus obtained
JP2011145341A (ja) * 2010-01-12 2011-07-28 Talex Optical Co Ltd 眼鏡用アリルジグリコールカーボネート樹脂製レンズ
WO2012020570A1 (ja) * 2010-08-12 2012-02-16 三井化学株式会社 プラスチック偏光レンズ、その製造方法および偏光フィルム
JP2013109257A (ja) * 2011-11-24 2013-06-06 Talex Optical Co Ltd 防眩・高コントラスト性樹脂製レンズ
US20130141693A1 (en) * 2011-10-20 2013-06-06 Oakley, Inc. Eyewear with chroma enhancement
JP2013524296A (ja) * 2010-04-13 2013-06-17 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド サーモクロミックコンタクトレンズ材料の製造プロセス

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235113A (ja) * 1985-04-12 1986-10-20 Asahi Glass Co Ltd 複合プラスチツクの製造方法
JPS6218225A (ja) * 1985-07-16 1987-01-27 Mikasa Kogyo Kk 合成樹脂製複合レンズの製造方法及びその製造用ガスケツト
JP3073556B2 (ja) * 1991-07-31 2000-08-07 ホーヤ株式会社 フォトクロミックプラスチックレンズの製造方法
JP2001311804A (ja) * 2000-05-02 2001-11-09 Taretsukusu Kogaku Kogyo Kk プラスチック偏光レンズ及びその製造方法
JP2002187931A (ja) * 2000-10-13 2002-07-05 Taretsukusu Kogaku Kogyo Kk 注型用ポリウレタン樹脂材料組成物及び耐衝撃性光学レンズ
JP2006205710A (ja) * 2004-06-08 2006-08-10 Hoya Corp プラスチックレンズの製造方法、プラスチックレンズ成形用ガスケット、プラスチックレンズ成形用成形型、プラスチックレンズ原料液注入治具、プラスチックレンズ成形型保持具、およびプラスチックレンズ製造装置
JP2006082421A (ja) * 2004-09-16 2006-03-30 Olympus Corp 光学素子の製造方法および製造装置
US20100141890A1 (en) * 2007-05-04 2010-06-10 Federico Menta Method for manufacturing an optical element made of thermosetting plastic material for use in eye-protecting devices and optical element thus obtained
JP2010085911A (ja) * 2008-10-02 2010-04-15 Talex Optical Co Ltd 赤外線吸収性眼鏡用レンズ基材
JP2011145341A (ja) * 2010-01-12 2011-07-28 Talex Optical Co Ltd 眼鏡用アリルジグリコールカーボネート樹脂製レンズ
JP2013524296A (ja) * 2010-04-13 2013-06-17 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド サーモクロミックコンタクトレンズ材料の製造プロセス
WO2012020570A1 (ja) * 2010-08-12 2012-02-16 三井化学株式会社 プラスチック偏光レンズ、その製造方法および偏光フィルム
US20130141693A1 (en) * 2011-10-20 2013-06-06 Oakley, Inc. Eyewear with chroma enhancement
JP2013109257A (ja) * 2011-11-24 2013-06-06 Talex Optical Co Ltd 防眩・高コントラスト性樹脂製レンズ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230889A1 (ja) 2019-05-16 2020-11-19 三井化学株式会社 注入成形装置、当該装置を用いた注入成形方法および成形体の製造方法、積層レンズ
KR20210151176A (ko) 2019-05-16 2021-12-13 미쯔이가가꾸가부시끼가이샤 주입 성형 장치, 당해 장치를 사용한 주입 성형 방법 및 성형체의 제조 방법, 적층 렌즈

Also Published As

Publication number Publication date
JP6553157B2 (ja) 2019-07-31

Similar Documents

Publication Publication Date Title
JP2015069045A (ja) 複合機能性偏光レンズ
EP2049938B1 (en) Molded laminate for optical use and method for its manufacture
US10267966B2 (en) Composite functional polarized lens
US7036932B2 (en) Laminated functional wafer for plastic optical elements
US7002744B2 (en) Polarized optical part using high impact polyurethane-based material
WO2012035885A1 (ja) 保護眼鏡用遮光レンズ
JP5075080B2 (ja) 赤外線吸収性眼鏡用レンズ基材
US7035010B2 (en) Polarized lenses with variable transmission
WO2015056801A1 (ja) 偏光レンズ、アイウエア、および偏光レンズの製造方法
US8474973B2 (en) Infrared absorbing polarized eyeglass lens
US11754860B2 (en) Photochromic lens with laminated film, method for producing a photochromic lens, and a spectacle frame
JP2007293030A (ja) 偏光レンズの製造方法、およびそれに用いる偏光板
JP2009139964A5 (ja)
EP3593981B1 (en) Improved molding device for casting an optical article with wafer on top, corresponding method and opticle article
JP2009139964A (ja) 偏光複合シートとその応用方法
JP6553157B2 (ja) 複合機能性偏光レンズの製造方法
US20230168420A1 (en) Functional polarizing element for insert molding and functional polarizing lens
TWI826419B (zh) 鏡片及鏡片的製造方法
JP2019117390A (ja) 複合機能性偏光レンズ
CN112219157A (zh) 颜色增强镜片
CN114174055A (zh) 用于制造光致变色光学制品的方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190703

R150 Certificate of patent or registration of utility model

Ref document number: 6553157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250