WO2012018211A2 - 사이클릭 박막 증착 방법 - Google Patents

사이클릭 박막 증착 방법 Download PDF

Info

Publication number
WO2012018211A2
WO2012018211A2 PCT/KR2011/005650 KR2011005650W WO2012018211A2 WO 2012018211 A2 WO2012018211 A2 WO 2012018211A2 KR 2011005650 W KR2011005650 W KR 2011005650W WO 2012018211 A2 WO2012018211 A2 WO 2012018211A2
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
chamber
insulating film
reaction
substrate
Prior art date
Application number
PCT/KR2011/005650
Other languages
English (en)
French (fr)
Other versions
WO2012018211A3 (ko
Inventor
김해원
우상호
Original Assignee
주식회사 유진테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유진테크 filed Critical 주식회사 유진테크
Priority to US13/808,111 priority Critical patent/US20130101752A1/en
Priority to CN201180036295.2A priority patent/CN103026471B/zh
Priority to JP2013521723A priority patent/JP2013542581A/ja
Publication of WO2012018211A2 publication Critical patent/WO2012018211A2/ko
Publication of WO2012018211A3 publication Critical patent/WO2012018211A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/145After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/4554Plasma being used non-continuously in between ALD reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Definitions

  • the present invention relates to a thin film deposition method, and more particularly to a cyclic thin film deposition method for forming an insulating film containing silicon.
  • semiconductor devices which are the core components of the electronic devices, are also required to be highly integrated and high performance.
  • a thinner insulating film is required.
  • the thickness of the insulating film is thin, a problem arises in that the film quality such as insulating characteristics is lowered.
  • the present invention has been made in an effort to solve the above-described problems and to provide a method of depositing an insulating film having excellent film quality and step coverage.
  • the present invention provides a cyclic thin film deposition method having excellent film quality and step coverage.
  • a deposition step of depositing silicon on the substrate by injecting a silicon precursor into the chamber in which the substrate is loaded, unreacted silicon precursor and reaction by-products in the chamber
  • the first reaction gas may be one or more gases selected from the group comprising O 2 , O 3 , N 2, and NH 3 .
  • the insulating film including silicon may be a silicon oxide film or a silicon nitride film.
  • at least one ignition gas selected from the group including Ar, He, Kr, and Xe may be injected to form a plasma atmosphere.
  • O 2- oxygen anion
  • O * oxygen radical
  • one or more second reaction gases selected from the group including H 2 , O 2 , O 3 , N 2, and NH 3 may be further injected together with the ignition gas.
  • the insulating film deposition step may be performed while maintaining the internal pressure of the chamber at 0.05 to 10 Torr.
  • the internal pressure of the chamber may be maintained at 0.05 to 10 Torr.
  • the deposition step, the first purge step, the reaction step and the second purge step may be performed by repeating 3 to 10 times.
  • the insulating film deposition step and the densification step may be repeated.
  • the cyclic thin film deposition method according to an embodiment of the present invention can form an insulating film, for example, a silicon oxide film or a silicon nitride film, which has a thin thickness and has excellent film quality and step coverage.
  • an insulating film for example, a silicon oxide film or a silicon nitride film, which has a thin thickness and has excellent film quality and step coverage.
  • an insulating film having a thin thickness can be formed, and since the step coverage is also excellent, a fine structure can be realized. In addition, since the film has excellent film quality, the performance required in highly integrated semiconductor devices can be satisfied.
  • FIG. 1 is a flowchart illustrating a cyclic thin film deposition method according to an exemplary embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating a semiconductor manufacturing apparatus for performing a cyclic thin film deposition method according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a cyclic thin film deposition method according to an embodiment of the present invention.
  • 4A to 4C are cross-sectional views illustrating a step of depositing silicon according to an embodiment of the present invention.
  • 5A to 5C are cross-sectional views illustrating a step of forming an insulating film including silicon according to an exemplary embodiment of the present invention.
  • FIG. 6 is a cross-sectional view illustrating an insulating film including a plurality of silicon according to an exemplary embodiment of the present invention.
  • FIG. 7A and 7B are cross-sectional views illustrating densification of an insulating film according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view illustrating an insulating film including silicon according to another exemplary embodiment of the present invention.
  • FIG. 1 is a flowchart illustrating a cyclic thin film deposition method according to an exemplary embodiment of the present invention.
  • a substrate is loaded into a chamber of a semiconductor manufacturing apparatus (S100).
  • An insulating film is deposited on the substrate loaded in the chamber (S200), depositing silicon to deposit the insulating film (S210), first purge step (S220), reaction step (S230), and second purge step (S240). ) Is performed together.
  • a silicon precursor may be injected into the chamber to deposit silicon on the substrate (S210).
  • a first purge step of removing unreacted silicon precursor and reaction by-products is performed (S220).
  • the silicon formed on the substrate is reacted with a reaction gas to perform a reaction step of forming an insulating film containing silicon (S230).
  • the insulating film containing silicon may be, for example, a silicon oxide film or a silicon nitride film.
  • a first reaction gas may be injected into the chamber.
  • the first reactant gas may be one or more gases selected from the group comprising, for example, O 2 , O 3 , N 2 and NH 3 .
  • the first reaction gas is a gas containing an oxygen atom such as O 2 or O 3 , or O 2- (oxygen anion) or O formed by using a plasma in an O 2 atmosphere. * (Oxygen radical).
  • the first reaction gas may be a gas containing a nitrogen atom such as N 2 or NH 3 .
  • a second purge step of removing the reaction by-product and the reaction gas or the ignition gas may be performed in the chamber (S240).
  • the deposition of silicon (S210), the first purge step (S220), the reaction step (S230) and the second purge step (S240) may be repeatedly performed (S250).
  • Deposition of the silicon (S210), the first purge step (S220), the reaction step (S230) and the second purge step (S240) may be performed, for example, repeated 3 to 10 times.
  • the temperature of the substrate and the pressure inside the chamber are constant during the insulating film deposition step S200 including the step of depositing silicon (S210), the first purge step (S220), the reaction step (S230), and the second purge step (S240). I can keep it.
  • each silicon In depositing each silicon (S210), at least one silicon atomic layer may be formed on the substrate.
  • the insulating film containing silicon may be formed to have a thickness of several to several tens of micrometers. After the insulating film containing silicon is formed, a densification step is performed (S300).
  • a plasma atmosphere may be formed in the chamber.
  • the second reaction gas may be injected together with the plasma atmosphere.
  • the second reactant gas may be one or more gases selected from the group comprising, for example, H 2 , O 2 , O 3 , N 2 and NH 3 .
  • the insulating film measuring step S200 and the densifying step S300 may be repeatedly performed as necessary (S400).
  • the substrate may be unloaded from the chamber (S900).
  • FIG. 2 is a schematic cross-sectional view illustrating a semiconductor manufacturing apparatus for performing a cyclic thin film deposition method according to an embodiment of the present invention.
  • an introduction part 12 for introducing a reaction gas into the chamber 11 of the semiconductor manufacturing apparatus 10 is formed.
  • the reaction gas introduced by the introduction part 12 may be injected into the chamber 11 through the shower head 13.
  • the substrate 100 to be deposited is placed on the chuck 14, which is supported by the chuck support 16. If necessary, the chuck 14 may apply heat to the substrate 100 so that the substrate 100 has a predetermined temperature. After the deposition is performed by this apparatus, it is discharged by the discharge unit 17.
  • the semiconductor manufacturing apparatus 10 may include a plasma generator 18 to form a plasma atmosphere.
  • FIG. 3 is a diagram illustrating a cyclic thin film deposition method according to an embodiment of the present invention.
  • injection and purge of silicon (Si) precursor and injection and purge of the first reaction gas are repeatedly performed. After the purge after the injection of the silicon precursor and the purge after the injection of the first reaction gas are repeatedly performed, a plasma atmosphere is formed. In the state where the plasma atmosphere is formed, the second reaction gas may be injected as necessary.
  • the injection and purge of the silicon precursor and the injection and purge of the first reactant gas are repeatedly performed, and the operation of forming the plasma atmosphere is performed in one cycle. That is, the injection and purge of the silicon precursor and the injection and purge of the reaction gas are repeatedly performed to form an insulating film containing silicon, and then a plasma atmosphere is formed to densify the insulating film containing silicon.
  • the injection and purge of the silicon precursor and the injection and purge of the first reaction gas may be repeatedly performed, as well as the formation and densification or repeatedly of the insulating film containing silicon.
  • FIGS. 4A to 8 illustrate in detail step by step a cyclic thin film deposition method according to an embodiment of the present invention.
  • reference numerals to FIGS. 1 to 3 may be used together if necessary.
  • 4A to 4C are cross-sectional views illustrating a step of depositing silicon according to an embodiment of the present invention.
  • 4A is a cross-sectional view illustrating a step of injecting a silicon precursor according to an embodiment of the present invention.
  • the silicon precursor 50 is injected into the chamber 11 loaded with the substrate 100.
  • Substrate 100 may include a semiconductor substrate, for example, a silicon or compound semiconductor wafer.
  • the substrate 100 may include a semiconductor such as glass, metal, ceramic, quartz, and other substrate materials.
  • the silicon precursor 50 is, for example, an amino-based silane such as bisethylmethylaminosilane (BEMAS), bisdimethylaminosilane (BDMAS), BEDAS, tetrakisethylmethylaminosilane (TEMAS), tetrakisidimethylaminosilane (TDMAS), or TEDAS, or a chlorinated silane such as hexachlorinedisilan (HCD).
  • BEMAS bisethylmethylaminosilane
  • BDMAS bisdimethylaminosilane
  • BEDAS tetrakisethylmethylaminosilane
  • TEMAS tetrakisethylmethylaminosilane
  • TDMAS tetrakisidimethylaminosilane
  • TEDAS a chlorinated silane
  • HCD hexachlorinedisilan
  • the substrate 100 may maintain a temperature of 50 to 600 ° C. so that the substrate 100 may react with the silicon precursor 50.
  • the pressure inside the chamber 11 loaded with the substrate 100 may maintain 0.05 to 10 Torr.
  • FIG. 4B is a cross-sectional view illustrating a state of depositing silicon on a substrate according to an embodiment of the present invention.
  • silicon precursor 50 by reacting the silicon precursor 50 with the substrate 100, silicon atoms may be deposited on the substrate 100 to form the silicon layer 112.
  • the silicon layer 112 may be made of at least one silicon atomic layer.
  • the silicon precursor 50 may react with the substrate 100 to form a reaction byproduct 52. In addition, some of the silicon precursor 50 may not react with the substrate 100 and may remain unreacted.
  • FIG. 4C is a cross-sectional view illustrating a state of performing a first purge step according to an embodiment of the present invention.
  • a purge for removing the remaining unreacted silicon precursor 50 and the reaction byproduct 52 from the inside of the chamber 11 may be performed. purge).
  • the purge step of removing the unreacted silicon precursor 50 and the reaction byproduct 52 inside the chamber 11 may be referred to as a first purge step.
  • the substrate 100 may maintain a temperature of 50 to 600 °C.
  • the pressure inside the chamber 11 loaded with the substrate 100 may maintain 0.05 to 10 Torr. That is, during the deposition of the silicon layer 112 and the first purge step, the temperature of the substrate 100 and the pressure inside the chamber 11 may be kept constant.
  • 5A to 5C are cross-sectional views illustrating a step of forming an insulating film including silicon according to an exemplary embodiment of the present invention.
  • 5A is a cross-sectional view illustrating a step of injecting a reaction gas according to an embodiment of the present invention.
  • a first reaction gas 60 is injected into the chamber 11 loaded with the substrate 100.
  • the first reaction gas 60 may be, for example, one or more gases selected from the group comprising O 2 , O 3 , N 2, and NH 3 .
  • the first reaction gas 60 may be, for example, O 2- (oxygen anion) or O * (oxygen radical) formed by using a plasma in an O 2 atmosphere.
  • the substrate 100 may maintain a temperature of 50 to 600 ° C. such that the substrate 100 may react with the first reaction gas 60.
  • the pressure inside the chamber 11 loaded with the substrate 100 may maintain 0.05 to 10 Torr.
  • FIG. 5B is a cross-sectional view illustrating a state of depositing an insulating film including silicon on a substrate according to an exemplary embodiment of the present invention.
  • an insulating film 122a including silicon may be formed on the substrate 100 by those reacting with the silicon layer 112 of the first reaction gas 60.
  • the first reaction gas 60 may react with the silicon layer 112 to form a reaction byproduct 62. In addition, some of the first reaction gas 60 may not react with the silicon layer 112 and may remain in an unreacted state.
  • the silicon layer 112 may be formed of a silicon oxide film by reacting with oxygen atoms included in the first reaction gas 60.
  • a gas containing nitrogen atoms such as, for example, N 2 and NH 3 as the first reaction gas 60
  • the silicon layer 112 reacts with the nitrogen atoms contained in the first reaction gas 60 to form silicon. It may be formed of a nitride film.
  • 5C is a cross-sectional view illustrating a state of performing a second purge step according to an embodiment of the present invention.
  • the insulating film 122a including silicon is formed on the substrate 100, the remaining unreacted first reaction gas 60 and the reaction by-product 62 are inside the chamber 11. Purge may be performed.
  • the purge step of removing the unreacted first reaction gas 60 and the reaction by-product 62 in the chamber 11 may be referred to as a second purge step.
  • the substrate 100 may maintain a temperature of 50 to 600 °C.
  • the pressure inside the chamber 11 loaded with the substrate 100 may maintain 0.05 to 10 Torr.
  • FIG. 6 is a cross-sectional view illustrating an insulating film including a plurality of silicon according to an exemplary embodiment of the present invention. Referring to FIG. 6, the steps shown in FIGS. 4A to 5C are repeated to form the insulating layer 122 formed of the insulating layers 122a, 122b and 122c including the plurality of silicon.
  • the insulation layer 122 may have a thickness of several to several tens of micrometers.
  • the process of depositing the insulating films 122a, 122b, or 122c containing each silicon is repeated 3 to 10 times so that the insulating film 122 includes the insulating films 122a, 122b, and 122c containing 3 to 10 silicon. Can be performed.
  • the insulating layer 122 when the insulating layer 122 is formed of insulating layers 122a, 122b, and 122c including a plurality of silicon, the insulating layer 122 may have excellent film quality and step coverage.
  • 7A and 7B are cross-sectional views illustrating densification of an insulating film according to an embodiment of the present invention.
  • 7A is a cross-sectional view illustrating a plasma atmosphere supplied to an insulating film layer according to an exemplary embodiment of the present invention.
  • plasma is applied to the substrate 100 on which the insulating layer 122 is formed. That is, the inside of the chamber 11 loaded with the substrate 100 is formed in a plasma atmosphere.
  • ICP Inductively Coupled Plasma
  • CCP Capacitively Coupled Plasma
  • MW Microwave
  • power of 100 W to 3 kW may be applied.
  • one or more ignition gases selected from the group comprising Ar, He, Kr and Xe may be injected. At this time, the ignition gas may be injected at a flow rate of 100 to 3000sccm.
  • the second reaction gas 64 may be further injected.
  • the second reaction gas 64 is, for example, one or more gases selected from the group comprising H 2 , O 2 , O 3 , N 2 and NH 3 or O 2- (oxygen anion) formed using plasma in an O 2 atmosphere ) Or O * (oxygen radical).
  • the second reaction gas 64 includes, for example, a gas containing oxygen atoms such as O 2 and O 3, and O 2+ (formed using plasma in an O 2 atmosphere). Oxygen cations) or O * (oxygen radicals), or H 2 .
  • the insulating film layer 122 is a silicon nitride film
  • a gas containing H 2 or a nitrogen atom such as N 2 and NH 3 may be used as the second reaction gas 64.
  • FIG. 7B is a cross-sectional view illustrating a form of the densified insulating layer 122D according to an embodiment of the present invention.
  • the insulating layer 122 may be densified in a plasma atmosphere to form a densified insulating layer 122D.
  • the pressure of the chamber 11 loaded with the substrate 100 may be maintained at 0.05 to 10 Torr.
  • the densified insulating layer 122D obtained by treating the insulating layer 122 in a plasma atmosphere may have excellent film quality due to insulation characteristics and the like.
  • the densified insulating layer 112D is formed to have a thin thickness, it can have excellent film quality.
  • FIG. 8 is a cross-sectional view illustrating an insulating film including silicon according to another exemplary embodiment of the present invention. Referring to FIG. 8, the steps described with reference to FIGS. 4A through 7B may be repeated to form the insulating layer 120 including the plurality of densified insulating layers 122D and 124D.
  • the influence of the plasma or the second reaction gas 64 may be relatively less than the lower portion of the insulating layer 122. Therefore, in order to further improve the film quality of the insulating film 120, the insulating film 120 including the plurality of relatively thin densified insulating film layers 122D and 124D may be formed.
  • the insulating film 120 is illustrated as including two densified insulating films 122D and 124D, it is also possible to include three or more densified insulating films. That is, the number of densified insulating film layers included in the insulating film 120 may be determined in consideration of the desired thickness of the insulating film 120. That is, the number of times to repeat the steps described with reference to FIGS. 4A to 7B may be determined in consideration of the desired thickness of the insulating layer 120.
  • the present invention can be applied to various types of semiconductor manufacturing processes such as deposition processes.

Abstract

우수한 막질과 스텝 커버리지를 제공할 수 있는 사이클릭 박막 증착 방법을 제공한다. 본 발명의 일 실시예에 따른 사이클릭 박막 증착 방법은 기판이 로딩된 챔버의 내부에 실리콘 전구체를 주입하여 기판 상에 실리콘을 증착하는 증착 단계, 챔버의 내부에서 미반응 실리콘 전구체 및 반응 부산물을 제거하는 제1 퍼지 단계, 챔버의 내부에 제1 반응 가스를 공급하여 증착된 실리콘을 실리콘이 포함되는 절연막으로 형성하는 반응 단계 및 챔버의 내부에서 미반응 반응 가스와 반응 부산물을 제거하는 제2 퍼지 단계를 반복하여 수행하는 절연막 증착 단계 및 챔버의 내부에 플라즈마 분위기를 공급하여 형성된 실리콘이 포함되는 절연막을 치밀하게 만드는 치밀화 단계를 포함한다.

Description

사이클릭 박막 증착 방법
본 발명은 박막 증착 방법에 관한 것으로, 보다 구체적으로는 실리콘이 포함되는 절연막을 형성하는 사이클릭 박막 증착 방법에 관한 것이다.
최근 반도체 산업의 발전과 사용자의 요구에 따라 전자기기는 더욱 더 고집적화 및 고성능화되고 있으며 이에 따라 전자기기의 핵심 부품인 반도체 소자 또한 고집적화 및 고성능화가 요구되고 있다. 그러나 반도체 소자의 고집적화를 위하여 미세 구조를 실현하기에는 어려움을 겪고 있다.
예를 들어, 미세 구조를 실현하기 위해서는 더 얇은 절연막이 요구되나, 절연막의 두께가 얇게 형성하면 절연 특성 등 막질이 저하되는 문제가 발생하고 있다. 또한 박막의 두께를 얇게 형성하면서, 우수한 스텝 커버리지를 얻기가 어려워지고 있다.
본 발명의 기술적 과제는 상기한 종래의 문제점을 해결하기 위한 것으로, 우수한 막질과 스텝 커버리지를 가지는 절연막을 증착하는 방법을 제공하는데 있다. 특히, 우수한 막질과 스텝 커버리지를 가지는 사이클릭 박막 증착 방법을 제공하는데 있다.
본 발명의 또 다른 목적들은 다음의 상세한 설명과 첨부한 도면으로부터 보다 명확해질 것이다.
본 발명의 일 실시예에 따른 사이클릭 박막 증착 방법은 기판이 로딩된 챔버의 내부에 실리콘 전구체를 주입하여 상기 기판 상에 실리콘을 증착하는 증착 단계, 상기 챔버의 내부에서 미반응 실리콘 전구체 및 반응 부산물을 제거하는 제1 퍼지 단계, 상기 챔버의 내부에 제1 반응 가스를 공급하여 증착된 상기 실리콘을 실리콘이 포함되는 절연막으로 형성하는 반응 단계 및 상기 챔버의 내부에서 미반응된 제1 반응 가스와 반응 부산물을 제거하는 제2 퍼지 단계를 반복하여 수행하는 절연막 증착 단계 및 상기 챔버의 내부에 플라즈마 분위기를 공급하여 형성된 상기 실리콘이 포함되는 절연막을 치밀하게 만드는 치밀화 단계를 포함한다.
상기 제1 반응 가스는 O2, O3, N2 및 NH3를 포함하는 군으로부터 선택된 하나 이상의 가스일 수 있다.
상기 실리콘이 포함되는 절연막은 실리콘 산화막 또는 실리콘 질화막일 수 있다. 상기 치밀화 단계는, Ar, He, Kr 및 Xe를 포함하는 군으로부터 선택된 하나 이상의 점화 가스(ignition gas)를 주입하여 플라즈마 분위기를 형성할 수 있다.
상기 반응 단계는, O2 분위기에서 플라즈마를 이용하여 형성된 O2-(산소 음이온) 또는 O*(산소 라디칼)을 제1 반응 가스로 사용할 수 있다.
상기 치밀화 단계는, 상기 점화 가스와 함께, H2, O2, O3, N2 및 NH3를 포함하는 군으로부터 선택된 하나 이상의 제2 반응 가스를 더 주입할 수 있다.
상기 절연막 증착 단계는, 상기 챔버의 내부 압력을 0.05 내지 10 Torr로 유지하며 수행될 수 있다.
상기 치밀화 단계는, 상기 챔버의 내부 압력을 0.05 내지 10 Torr로 유지할 수 있다.
상기 치밀화 단계 전에, 상기 증착 단계, 상기 제1 퍼지 단계, 상기 반응 단계 및 상기 제2 퍼지 단계를 3회 내지 10회 반복하여 수행할 수 있다.
상기 절연막 증착 단계 및 상기 치밀화 단계를 반복하여 수행할 수 있다.
본 발명의 일 실시예에 따른 사이클릭 박막 증착 방법은 얇은 두께를 가지면서도 우수한 막질과 스텝 커버리지를 가지는 절연막, 예를 들면 실리콘산화막 또는 실리콘질화막을 형성할 수 있다.
따라서, 고집적화된 반도체 소자를 실현하기 위하여, 얇은 두께를 가지는 절연막을 형성할 수 있으며, 스텝 커버리지도 우수하기 때문에 미세 구조를 실현할 수 있다. 또한 우수한 막질을 가지기 때문에, 고집적화된 반도체 소자에서 요구되는 성능을 만족할 수 있다.
도 1은 본 발명의 실시 예에 따른 사이클릭 박막 증착 방법을 나타내는 흐름도이다.
도 2는 본 발명의 실시 예에 따른 사이클릭 박막 증착 방법을 수행하기 위한 반도체 제조 장치를 나타내는 개략적인 단면도이다.
도 3은 본 발명의 실시 예에 따른 사이클릭 박막 증착 방법을 나타내는 다이어그램이다.
도 4a 내지 도 4c는 본 발명의 실시 예에 따른 실리콘을 증착하는 단계를 나타내는 단면도이다.
도 5a 내지 도 5c는 본 발명의 실시 예에 따른 실리콘이 포함되는 절연막을 형성하는 단계를 나타내는 단면도이다.
도 6는 본 발명의 실시 예에 따른 복수의 실리콘이 포함되는 절연막을 형성한 모습을 나타내는 단면도이다.
도 7a 및 도 7b는 본 발명의 실시 예에 따른 절연막을 치밀화하는 단계를 나타내는 단면도들이다.
도 8은 본 발명의 다른 실시 예에 따른 실리콘이 포함된 절연막을 형성한 모습을 나타내는 단면도이다.
다음에, 본 발명의 기술적 사상에 의한 실시 예들에 대하여 첨부 도면을 참조하여 상세히 설명한다. 그러나 본 발명의 기술적 사상에 의한 실시 예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시 예들로 인해 한정되어지는 것으로 해석되어져서는 안된다. 본 발명의 기술적 사상에 의한 실시 예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다. 첨부 도면들에서, 동일한 부호는 시종 동일한 요소를 의미한다. 나아가, 첨부 도면에서의 다양한 요소들과 영역들은 개략적으로 그려진 것이다. 따라서 본 발명은 첨부 도면들에 그려진 상대적인 크기나 간격에 의해 제한되지 않는다.
도 1은 본 발명의 실시 예에 따른 사이클릭 박막 증착 방법을 나타내는 흐름도이다.
도 1을 참조하면, 반도체 제조 장치의 챔버 내부에 기판을 로딩한다(S100). 상기 챔버 내부에 로딩된 기판에 절연막이 증착되며(S200), 절연막을 증착하기 위하여 실리콘을 증착하는 단계(S210), 제1 퍼지 단계(S220), 반응 단계(S230) 및 제2 퍼지 단계(S240)가 함께 수행된다.
실리콘을 증착하기 위하여 상기 챔버 내부에 실리콘 전구체를 주입하여, 상기 기판 상에 실리콘이 증착되도록 할 수 있다(S210). 상기 기판 상에 실리콘을 증착한 후, 미반응 실리콘 전구체 및 반응 부산물을 제거하는 제1 퍼지 단계를 수행한다(S220).
이후, 상기 기판 상에 형성된 실리콘을 반응 가스와 반응시켜, 실리콘이 포함되는 절연막으로 형성하는 반응 단계를 수행한다(S230). 실리콘이 포함되는 절연막은 예를 들면, 실리콘 산화막 또는 실리콘 질화막일 수 있다.
실리콘을 실리콘이 포함되는 절연막으로 형성하기 위하여, 상기 챔버 내부에 제1 반응 가스를 주입할 수 있다. 제1 반응 가스는 예를 들면 O2, O3, N2 및 NH3를 포함하는 군으로부터 선택된 하나 이상의 가스일 수 있다.
실리콘이 포함되는 절연막이 실리콘 산화막일 경우, 상기 제1 반응 가스는 O2 또는 O3와 같은 산소 원자를 포함하는 가스, 또는 O2 분위기에서 플라즈마를 이용하여 형성된 O2-(산소 음이온) 또는 O*(산소 라디칼)일 수 있다. 실리콘이 포함되는 절연막이 실리콘 질화막일 경우, 상기 제1 반응 가스는 N2 또는 NH3와 같은 질소 원자를 포함하는 가스일 수 있다.
이후, 챔버의 내부에서 반응 부산물과 반응 가스 또는 점화 가스를 제거하는 제2 퍼지 단계를 수행할 수 있다(S240).
실리콘을 증착하는 단계(S210), 제1 퍼지 단계(S220), 반응 단계(S230) 및 제2 퍼지 단계(S240)는 반복하여 수행될 수 있다(S250). 실리콘을 증착하는 단계(S210), 제1 퍼지 단계(S220), 반응 단계(S230) 및 제2 퍼지 단계(S240)는 예를 들면, 3 내지 10회 반복하여 수행될 수 있다.
실리콘을 증착하는 단계(S210), 제1 퍼지 단계(S220), 반응 단계(S230) 및 제2 퍼지 단계(S240)을 포함하는 절연막 증착 단계(S200) 동안에 기판의 온도 및 챔버 내부의 압력을 일정하게 유지할 수 있다.
각 실리콘을 증착하는 단계(S210)에서는 적어도 1개의 실리콘 원자층이 상기 기판 상에 형성될 수 있다. 실리콘이 포함되는 절연막은 수 내지 수십Å의 두께를 가지도록 형성될 수 있다. 실리콘이 포함되는 절연막이 형성 후, 치밀화 단계를 수행한다(S300)
실리콘이 포함되는 절연막을 치밀화하기 위하여, 상기 챔버 내부에 플라즈마 분위기를 형성할 수 있다. 또한 플라즈마 분위기와 함께 추가로 제2 반응 가스를 주입할 수 있다. 제2 반응 가스는 예를 들면 H2, O2, O3, N2 및 NH3를 포함하는 군으로부터 선택된 하나 이상의 가스일 수 있다.
원하는 두께의 실리콘이 포함되는 절연막을 얻기 위하여, 필요에 따라 절연막 측장 단계(S200) 및 치밀화 단계(S300)는 반복하여 수행될 수 있다(S400).
원하는 두께의 실리콘이 포함되는 절연막이 형성된 경우, 기판은 챔버로부터 언로딩될 수 있다(S900).
도 2는 본 발명의 실시 예에 따른 사이클릭 박막 증착 방법을 수행하기 위한 반도체 제조 장치를 나타내는 개략적인 단면도이다.
도 2를 참조하면, 반도체 제조 장치(10)의 챔버(11) 내에 반응 가스가 도입되기 위한 도입부(12)가 형성된다. 도입부(12)에 의해 도입된 반응 가스는 샤워헤드(13)를 통해 챔버(11) 내부로 분사될 수 있다.
증착의 대상이 되는 기판(100)가 척(14)상에 놓여지게 되는데, 이러한 척(14)은 척지지대(16)에 의해 지지되게 된다. 척(14)은 필요한 경우, 기판(100)에 열을 가하여, 기판(100)이 소정의 온도를 가지도록 할 수 있다. 이러한 장치에 의해 증착이 수행되고 나서는 배출부(17)에 의해 배출되게 된다.
또한 반도체 제조 장치(10)은 플라즈마 분위기를 형성하기 위하여 플라즈마 발생부(18)를 포함할 수 있다.
도 3은 본 발명의 실시 예에 따른 사이클릭 박막 증착 방법을 나타내는 다이어그램이다.
도 3을 참조하면, 실리콘(Si) 전구체의 주입 및 퍼지(purge)와 제1 반응 가스의 주입 및 퍼지가 반복적으로 수행된다. 실리콘(Si) 전구체의 주입 후 퍼지(purge)와 제1 반응 가스의 주입 후 퍼지가 반복적으로 수행된 후, 플라즈마 분위기가 형성된다. 플라즈마 분위기가 형성된 상태에서는 필요에 따라서 제2 반응 가스가 주입될 수 있다.
이와 같이, 실리콘 전구체의 주입 및 퍼지와 제1 반응 가스의 주입 및 퍼지가 반복 수행된 후 플라즈마 분위기가 형성되는 단계까지가 1 사이클로 동작한다. 즉, 실리콘 전구체의 주입 및 퍼지와 반응 가스의 주입 및 퍼지가 반복 수행되어 실리콘이 포함되는 절연막을 형성한 후, 플라즈마 분위기를 형성하여 실리콘이 포함되는 절연막을 치밀화한다.
또한 전술한 과정을 모두 반복하여, 원하는 두께의 실리콘이 포함되는 절연막을 얻을 수 있다.
따라서 사이클릭 박막 증착 방법은 실리콘 전구체의 주입 및 퍼지와 제1 반응 가스의 주입 및 퍼지가 반복적으로 수행될 수 있음은 물론, 실리콘이 포함되는 절연막의 형성과 치밀화 또는 반복적으로 수행될 수 있다.
도 4a 내지 도 8은 전술한 내용을 토대로, 본 발명의 실시 예에 따른 사이클릭 박막 증착 방법을 단계별로 자세히 설명한다. 도 4a 내지 도 8에 관한 설명에서, 필요한 경우 도 1 내지 도 3에 대한 참조 부호가 함께 사용될 수 있다.
도 4a 내지 도 4c는 본 발명의 실시 예에 따른 실리콘을 증착하는 단계를 나타내는 단면도이다. 도 4a는 본 발명의 실시 예에 따른 실리콘 전구체를 주입하는 단계를 나타내는 단면도이다.
도 4a를 참조하면, 기판(100)이 로딩된 챔버(11) 내로 실리콘 전구체(50)가 주입된다.
기판(100)은 예를 들면, 실리콘 또는 화합물 반도체 웨이퍼와 같은 반도체 기판을 포함할 수 있다. 또는 기판(100)은 글라스, 금속, 세라믹, 석영과 같은 반도체와 다른 기판 물질 등이 포함될 수 있다.
실리콘 전구체(50)는 예를 들면, BEMAS (bisethylmethylaminosilane), BDMAS (bisdimethylaminosilane), BEDAS, TEMAS (tetrakisethylmethylaminosilane), TDMAS (tetrakisidimethylaminosilane), TEDAS와 같은 아미노계 실란, 또는 HCD(hexachlorinedisilan)와 같은 염화계 실란일 수 있다.
기판(100)이 실리콘 전구체(50)와 반응할 수 있도록, 기판(100)은 50 내지 600℃의 온도를 유지할 수 있다. 또한 기판(100)이 로딩된 챔버(11) 내부의 압력은 0.05 내지 10 Torr를 유지할 수 있다.
도 4b는 본 발명의 실시 예에 따른 기판 상에 실리콘을 증착한 모습을 나타내는 단면도이다. 도 4b를 참조하면, 실리콘 전구체(50) 중 기판(100)과 반응한 것들에 의하여, 기판(100) 상에는 실리콘 원자가 증착되어 실리콘층(112)이 형성될 수 있다. 실리콘층(112)은 적어도 1개의 실리콘 원자층으로 이루어질 수 있다.
실리콘 전구체(50)는 기판(100)과 반응한 후 반응 부산물(52)을 형성할 수 있다. 또한 실리콘 전구체(50) 중 일부는 기판(100)과 반응하지 않고, 미반응 상태로 남아있을 수 있다.
도 4c는 본 발명의 실시 예에 따른 제1 퍼지 단계를 수행한 모습을 나타내는 단면도이다. 도 4c를 참조하면, 기판(100) 상에 실리콘층(112)을 형성한 후, 잔류한 미반응 상태의 실리콘 전구체(50) 및 반응 부산물(52)을 챔버(11) 내부에서 제거하는 퍼지(purge)를 수행할 수 있다. 미반응 실리콘 전구체(50) 및 반응 부산물(52)을 챔버(11) 내부에서 제거하는 퍼지(purge) 단계를 제1 퍼지 단계라 호칭할 수 있다.
상기 제1 퍼지 단계 동안, 기판(100)은 50 내지 600℃의 온도를 유지할 수 있다. 또한 기판(100)이 로딩된 챔버(11) 내부의 압력은 0.05 내지 10 Torr를 유지할 수 있다. 즉, 실리콘층(112)을 증착하는 단계와 상기 제1 퍼지 단계 동안에 기판(100)의 온도 및 챔버(11) 내부의 압력을 일정하게 유지할 수 있다.
도 5a 내지 도 5c는 본 발명의 실시 예에 따른 실리콘이 포함되는 절연막을 형성하는 단계를 나타내는 단면도이다. 도 5a는 본 발명의 실시 예에 따른 반응 가스를 주입하는 단계를 나타내는 단면도이다.
도 5a를 참조하면, 기판(100)이 로딩된 챔버(11) 내로 제1 반응 가스(60)가 주입된다. 제1 반응 가스(60)는 예를 들면, O2, O3, N2 및 NH3를 포함하는 군으로부터 선택된 하나 이상의 가스일 수 있다. 또는 제1 반응 가스(60)는 예를 들면, O2 분위기에서 플라즈마를 이용하여 형성된 O2-(산소 음이온) 또는 O*(산소 라디칼)일 수 있다.
기판(100)이 제1 반응 가스(60)와 반응할 수 있도록, 기판(100)은 50 내지 600℃의 온도를 유지할 수 있다. 또한 기판(100)이 로딩된 챔버(11) 내부의 압력은 0.05 내지 10 Torr를 유지할 수 있다.
도 5b는 본 발명의 실시 예에 따른 기판 상에 실리콘이 포함되는 절연막을 증착한 모습을 나타내는 단면도이다. 도 5b를 참조하면, 제1 반응 가스(60) 중 실리콘층(112)과 반응한 것들에 의하여, 기판(100) 상에는 실리콘이 포함되는 절연막(122a)이 형성될 수 있다.
제1 반응 가스(60)는 실리콘층(112)과 반응한 후 반응 부산물(62)을 형성할 수 있다. 또한 제1 반응 가스(60) 중 일부는 실리콘층(112)과 반응하지 않고, 미반응 상태로 남아있을 수 있다.
제1 반응 가스(60)로 예를 들면, O2, O3와 같은 산소 원자를 포함하는 가스 또는 O2 분위기에서 플라즈마를 이용하여 형성된 O2-(산소 음이온) 또는 O*(산소 라디칼)을 사용할 경우, 실리콘층(112)은 제1 반응 가스(60)에 포함된 산소 원자와 반응하여 실리콘산화막으로 형성될 수 있다. 또는 제1 반응 가스(60)로 예를 들면, N2 및 NH3와 같은 질소 원자를 포함하는 가스를 사용할 경우, 실리콘층(112)은 제1 반응 가스(60)에 포함된 질소 원자와 반응하여 실리콘질화막으로 형성될 수 있다.
도 5c는 본 발명의 실시 예에 따른 제2 퍼지 단계를 수행한 모습을 나타내는 단면도이다. 도 5c를 참조하면, 기판(100) 상에 실리콘이 포함되는 절연막(122a)을 형성한 후, 잔류한 미반응 상태의 제1 반응 가스(60) 및 반응 부산물(62)을 챔버(11) 내부에서 제거하는 퍼지(purge)를 수행할 수 있다. 미반응 상태의 제1 반응 가스(60) 및 반응 부산물(62)을 챔버(11) 내부에서 제거하는 퍼지(purge) 단계를 제2 퍼지 단계라 호칭할 수 있다.
상기 제2 퍼지 단계 동안, 기판(100)은 50 내지 600℃의 온도를 유지할 수 있다. 또한 기판(100)이 로딩된 챔버(11) 내부의 압력은 0.05 내지 10 Torr를 유지할 수 있다.
도 6는 본 발명의 실시 예에 따른 복수의 실리콘이 포함되는 절연막을 형성한 모습을 나타내는 단면도이다. 도 6를 참조하면, 도 4a 내지 도 5c에서 보인 단계를 반복하여, 복수의 실리콘이 포함되는 절연막(122a, 122b, 122c)이 이루는 절연막층(122)을 형성한다.
절연막층(122)은 수 내지 수십Å의 두께를 가질 수 있다. 절연막층(122)은 3 내지 10개의 실리콘이 포함되는 절연막(122a, 122b, 122c)을 포함하도록, 각 실리콘이 포함되는 절연막(122a, 122b 또는 122c)을 증착하는 과정은 3 내지 10회 반복하여 수행될 수 있다.
이와 같이 절연막층(122)을 복수의 실리콘이 포함되는 절연막들(122a, 122b, 122c)로 형성하면, 절연막층(122)은 우수한 막질과 스텝 커버리지(step coverage)를 가질 수 있다.
도 7a 및 도 7b는 본 발명의 실시 예에 따른 절연막을 치밀화하는 단계를 나타내는 단면도들이다. 도 7a는 본 발명의 실시 예에 따른 절연막층에 플라즈마 분위기를 공급하는 모습을 나타내는 단면도이다.
도 7a를 참조하면, 절연막층(122)이 형성된 기판(100) 상에 플라즈마를 가한다. 즉, 기판(100)이 로딩된 챔버(11) 내부를 플라즈마 분위기로 형성한다. 플라즈마 분위기를 형성하기 위하여, ICP(Inductively Coupled Plasma), CCP(Capacitively Coupled Plasma) 또는 MW(Microwave) Plasma 방식이 사용될 수 있다. 이때 플라즈마 분위기를 형성하기 위하여, 100W 내지 3kW의 전력이 인가될 수 있다.
플라즈마 분위기를 형성하기 위하여, 예를 들면, Ar, He, Kr 및 Xe를 포함하는 군으로부터 선택된 하나 이상의 점화 가스(ignition gas)가 주입될 수 있다. 이때, 점화 가스는 100 내지 3000sccm의 유량으로 주입될 수 있다.
플라즈마 분위기에서 절연막층(122)을 더욱 치밀하게 하기 위하여, 제2 반응 가스(64)가 추가로 주입될 수 있다. 제2 반응 가스(64)는 예를 들면, H2, O2, O3, N2 및 NH3를 포함하는 군으로부터 선택된 하나 이상의 가스 또는 O2 분위기에서 플라즈마를 이용하여 형성된 O2-(산소 음이온) 또는 O*(산소 라디칼)일 수 있다.
절연막층(122)이 실리콘산화막일 경우, 제2 반응 가스(64)로 예를 들면, O2, O3와 같은 산소 원자를 포함하는 가스, O2 분위기에서 플라즈마를 이용하여 형성된 O2+(산소 양이온) 또는 O*(산소 라디칼), 또는 H2를 사용할 수 있다.
절연막층(122)이 실리콘질화막일 경우, 제2 반응 가스(64)로 예를 들면, N2 및 NH3와 같은 질소 원자를 포함하는 가스 또는 H2를 사용할 수 있다.
도 7b는 본 발명의 실시 예에 따른 치밀화된 절연막층(122D)을 형성한 모습을 나타내는 단면도이다. 도 7a 및 도 7b를 함께 참조하면, 플라즈마 분위기에서 절연막층(122)은 치밀화(densification)가 이루어져 치밀화된 절연막층(122D)이 형성될 수 있다. 치밀화된 절연막층(122D)을 형성하기 위하여, 기판(100)이 로딩된 챔버(11)의 압력을 0.05 내지 10 Torr로 유지할 수 있다.
또한 절연막층(122)을 플라즈마 분위기에서 처리하여 얻어진 치밀화된 절연막층(122D)은 절연 특성 등이 막질이 우수할 수 있다. 특히, 치밀화된 절연막층(112D)이 얇은 두께를 가지도록 형성하여도, 우수한 막질을 가질 수 있다.
도 8은 본 발명의 다른 실시 예에 따른 실리콘이 포함된 절연막을 형성한 모습을 나타내는 단면도이다. 도 8을 참조하면, 도 4a 내지 도 7b에서 설명한 단계들을 반복하여, 복수의 치밀화된 절연막층(122D, 124D)이 포함되는 절연막(120)을 형성할 수 있다.
도 7a에서 보인 절연막층(122)이 상대적으로 두꺼울 경우, 절연막층(122)의 하부에는 플라즈마 또는 제2 반응 가스(64)에 의한 영향은 상대적으로 적게 미칠 수 있다. 따라서, 절연막(120)의 막질을 더욱 향상시키기 위하여, 상대적으로 얇은 복수의 치밀화된 절연막층(122D, 124D)이 포함되는 절연막(120)을 형성할 수 있다.
또한 절연막(120)은 2개의 치밀화된 절연막층(122D, 124D)이 포함되는 것으로 도시되었으나, 3개 이상의 치밀화된 절연막층을 포함하는 것도 가능하다. 즉, 절연막(120)이 포함하는 치밀화된 절연막층의 개수는, 절연막(120)의 원하는 두께를 고려하여 결정할 수 있다. 즉, 절연막(120)의 원하는 두께를 고려하여 도 4a 내지 도 7b에서 설명한 단계들을 반복할 회수를 결정할 수 있다.
본 발명을 바람직한 실시예들을 통하여 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 바람직한 실시예들에 한정되지 않는다.
본 발명은 증착공정과 같은 다양한 형태의 반도체 제조공정에 응용될 수 있다.

Claims (10)

  1. 기판이 로딩된 챔버의 내부에 실리콘 전구체를 주입하여 상기 기판 상에 실리콘을 증착하는 증착 단계, 상기 챔버의 내부에서 미반응 실리콘 전구체 및 반응 부산물을 제거하는 제1 퍼지 단계, 상기 챔버의 내부에 제1 반응 가스를 공급하여 증착된 상기 실리콘을 실리콘이 포함되는 절연막으로 형성하는 반응 단계 및 상기 챔버의 내부에서 미반응의 제1 반응 가스와 반응 부산물을 제거하는 제2 퍼지 단계를 반복하여 수행하는 절연막 증착 단계; 및
    상기 챔버의 내부에 플라즈마 분위기를 공급하여 형성된 상기 실리콘이 포함되는 절연막을 치밀하게 만드는 치밀화 단계;를 포함하는 사이클릭 박막 증착 방법.
  2. 제1 항에 있어서,
    상기 제1 반응 가스는 O2, O3, N2 및 NH를 포함하는 군으로부터 선택된 하나 이상의 가스인 것을 특징으로 하는 사이클릭 박막 증착 방법
  3. 제2 항에 있어서,
    상기 실리콘이 포함되는 절연막은 실리콘 산화막 또는 실리콘 질화막인 것을 특징으로 하는 사이클릭 박막 증착 방법.
  4. 제2 항에 있어서,
    상기 치밀화 단계는,
    Ar, He, Kr 및 Xe를 포함하는 군으로부터 선택된 하나 이상의 점화 가스(ignition gas)를 주입하여 플라즈마 분위기를 형성하는 것을 특징으로 하는 사이클릭 박막 증착 방법.
  5. 제1 항에 있어서,
    상기 반응 단계는,
    O2 분위기에서 플라즈마를 이용하여 형성된 O2-(산소 음이온) 또는 O*(산소 라디칼)을 제1 반응 가스로 사용하는 것을 특징으로 하는 사이클릭 박막 증착 방법.
  6. 제4 항에 있어서,
    상기 치밀화 단계는,
    상기 점화 가스와 함께, H2, O2, O3, N2 및 NH를 포함하는 군으로부터 선택된 하나 이상의 제2 반응 가스를 더 주입하는 것을 특징으로 하는 사이클릭 박막 증착 방법.
  7. 제1 항에 있어서,
    상기 절연막 증착 단계는
    상기 챔버의 내부 압력을 0.05 내지 10 Torr로 유지하며 수행되는 것을 특징으로 하는 사이클릭 박막 증착 방법.
  8. 제1 항에 있어서,
    상기 치밀화 단계는,
    상기 챔버의 내부 압력을 0.05 내지 10 Torr로 유지하는 것을 특징으로 하는 사이클릭 박막 증착 방법.
  9. 제1 항에 있어서,
    상기 치밀화 단계 전에,
    상기 증착 단계, 상기 제1 퍼지 단계, 상기 반응 단계 및 상기 제2 퍼지 단계를 3회 내지 10회 반복하여 수행하는 것을 특징으로 하는 사이클릭 박막 증착 방법.
  10. 제1 항에 있어서,
    상기 절연막 증착 단계 및 상기 치밀화 단계를 반복하여 수행하는 것을 특징으로 하는 사이클릭 박막 증착 방법.
PCT/KR2011/005650 2010-08-02 2011-08-01 사이클릭 박막 증착 방법 WO2012018211A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/808,111 US20130101752A1 (en) 2010-08-02 2011-08-01 Method for depositing cyclic thin film
CN201180036295.2A CN103026471B (zh) 2010-08-02 2011-08-01 环状薄膜的沉积方法
JP2013521723A JP2013542581A (ja) 2010-08-02 2011-08-01 サイクリック薄膜の蒸着方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100074608A KR101147727B1 (ko) 2010-08-02 2010-08-02 사이클릭 박막 증착 방법
KR10-2010-0074608 2010-08-02

Publications (2)

Publication Number Publication Date
WO2012018211A2 true WO2012018211A2 (ko) 2012-02-09
WO2012018211A3 WO2012018211A3 (ko) 2012-05-03

Family

ID=45559917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005650 WO2012018211A2 (ko) 2010-08-02 2011-08-01 사이클릭 박막 증착 방법

Country Status (6)

Country Link
US (1) US20130101752A1 (ko)
JP (1) JP2013542581A (ko)
KR (1) KR101147727B1 (ko)
CN (1) CN103026471B (ko)
TW (1) TWI474399B (ko)
WO (1) WO2012018211A2 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494274B1 (ko) * 2013-11-08 2015-02-17 주식회사 유진테크 사이클릭 박막 증착 방법 및 반도체 제조 방법, 그리고 비휘발성 메모리 셀
KR101551199B1 (ko) * 2013-12-27 2015-09-10 주식회사 유진테크 사이클릭 박막 증착 방법 및 반도체 제조 방법, 그리고 반도체 소자
KR101576637B1 (ko) * 2014-07-15 2015-12-10 주식회사 유진테크 고종횡비를 가지는 오목부 상에 절연막을 증착하는 방법
TW201606116A (zh) * 2014-08-08 2016-02-16 尤金科技有限公司 具低蝕刻率之氧化薄膜之沉積方法及半導體裝置
KR101576639B1 (ko) * 2014-09-18 2015-12-10 주식회사 유진테크 절연막 증착 방법
KR102362534B1 (ko) * 2014-12-08 2022-02-15 주성엔지니어링(주) 기판 처리방법
JP2017139297A (ja) * 2016-02-02 2017-08-10 東京エレクトロン株式会社 成膜方法及び成膜装置
KR102125474B1 (ko) * 2016-12-05 2020-06-24 주식회사 원익아이피에스 박막 증착 방법
WO2019245702A1 (en) 2018-06-19 2019-12-26 Applied Materials, Inc. Pulsed plasma deposition etch step coverage improvement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020081902A (ko) * 2001-04-20 2002-10-30 아남반도체 주식회사 산소 라디칼을 이용한 실리콘 산화막의 제조 방법
KR20070055898A (ko) * 2005-11-28 2007-05-31 주식회사 에이이티 실리콘 박막의 원자층 증착 방법
KR20080071515A (ko) * 2007-01-30 2008-08-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
KR20090016403A (ko) * 2007-08-10 2009-02-13 에이에스엠지니텍코리아 주식회사 실리콘 산화막 증착 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140246A (en) * 1997-12-18 2000-10-31 Advanced Micro Devices, Inc. In-situ P doped amorphous silicon by NH3 to form oxidation resistant and finer grain floating gates
US7297641B2 (en) * 2002-07-19 2007-11-20 Asm America, Inc. Method to form ultra high quality silicon-containing compound layers
JP4257576B2 (ja) * 2003-03-25 2009-04-22 ローム株式会社 成膜装置
DE10319540A1 (de) * 2003-04-30 2004-11-25 Infineon Technologies Ag Verfahren zur ALD-Beschichtung von Substraten sowie eine zur Durchführung des Verfahrens geeignete Vorrichtung
US7192849B2 (en) * 2003-05-07 2007-03-20 Sensor Electronic Technology, Inc. Methods of growing nitride-based film using varying pulses
US20070065578A1 (en) * 2005-09-21 2007-03-22 Applied Materials, Inc. Treatment processes for a batch ALD reactor
JP4550778B2 (ja) * 2006-07-07 2010-09-22 株式会社東芝 磁気抵抗効果素子の製造方法
US20080014759A1 (en) * 2006-07-12 2008-01-17 Applied Materials, Inc. Method for fabricating a gate dielectric layer utilized in a gate structure
US7723771B2 (en) * 2007-03-30 2010-05-25 Qimonda Ag Zirconium oxide based capacitor and process to manufacture the same
JP2009206312A (ja) * 2008-02-28 2009-09-10 Mitsui Eng & Shipbuild Co Ltd 成膜方法および成膜装置
JP5190307B2 (ja) * 2008-06-29 2013-04-24 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020081902A (ko) * 2001-04-20 2002-10-30 아남반도체 주식회사 산소 라디칼을 이용한 실리콘 산화막의 제조 방법
KR20070055898A (ko) * 2005-11-28 2007-05-31 주식회사 에이이티 실리콘 박막의 원자층 증착 방법
KR20080071515A (ko) * 2007-01-30 2008-08-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
KR20090016403A (ko) * 2007-08-10 2009-02-13 에이에스엠지니텍코리아 주식회사 실리콘 산화막 증착 방법

Also Published As

Publication number Publication date
US20130101752A1 (en) 2013-04-25
TW201220397A (en) 2012-05-16
CN103026471B (zh) 2016-01-13
KR101147727B1 (ko) 2012-05-25
KR20120012582A (ko) 2012-02-10
WO2012018211A3 (ko) 2012-05-03
JP2013542581A (ja) 2013-11-21
TWI474399B (zh) 2015-02-21
CN103026471A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
WO2012018210A2 (ko) 사이클릭 박막 증착 방법
WO2012018211A2 (ko) 사이클릭 박막 증착 방법
WO2016010267A1 (ko) 고종횡비를 가지는 오목부 상에 절연막을 증착하는 방법
WO2017026676A1 (ko) 플라즈마 원자층 증착법을 이용한 실리콘 질화 박막의 제조방법
WO2010095901A2 (en) Method for forming thin film using radicals generated by plasma
WO2021096326A1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
KR20100038311A (ko) 보론 니트라이드 및 보론 니트라이드-유도된 물질 증착 방법
KR101551199B1 (ko) 사이클릭 박막 증착 방법 및 반도체 제조 방법, 그리고 반도체 소자
WO2015190749A1 (en) Novel amino-silyl amine compound and the manufacturing method of dielectric film containing si-n bond by using atomic layer deposition
WO2021141324A1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
WO2016043420A1 (ko) 절연막 증착 방법
WO2017222350A1 (ko) 원자층 증착 장비 가스 모듈, 원자층 증착 장비 및 그를 이용한 원자층 증착 방법
WO2014073892A1 (ko) 실리콘-함유 박막의 제조 방법
WO2015068948A1 (ko) 사이클릭 박막 증착 방법 및 반도체 제조 방법, 그리고 반도체 소자
WO2012033299A2 (ko) 반도체 소자의 제조 방법
WO2016021848A1 (ko) 저에칭률을 가지는 산화막 증착 방법 및 반도체 소자
KR20050018641A (ko) 아미노실란 및 오존을 이용한 저온 유전체 증착
WO2020101375A1 (ko) 기판처리장치 및 기판처리방법
WO2022108034A1 (ko) 선택성 부여제를 이용한 영역 선택적 박막 형성 방법
WO2021137594A1 (ko) 표면 보호 물질을 이용한 물질막 형성 방법
WO2021137595A1 (ko) 표면 보호 물질을 이용한 물질막 형성 방법
WO2023191395A1 (ko) 캐패시터 전극 형성 방법
WO2023068466A1 (ko) 기판 처리 장치 및 이를 이용한 기판 처리 방법
WO2019172619A1 (ko) SiC 전구체 화합물 및 이를 사용하는 박막 형성 방법
WO2023014195A1 (ko) Sic 기판의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036295.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814811

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13808111

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013521723

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814811

Country of ref document: EP

Kind code of ref document: A2