WO2012017822A1 - カーボンナノチューブの安価な分離方法と分離材並びに分離容器 - Google Patents

カーボンナノチューブの安価な分離方法と分離材並びに分離容器 Download PDF

Info

Publication number
WO2012017822A1
WO2012017822A1 PCT/JP2011/066436 JP2011066436W WO2012017822A1 WO 2012017822 A1 WO2012017822 A1 WO 2012017822A1 JP 2011066436 W JP2011066436 W JP 2011066436W WO 2012017822 A1 WO2012017822 A1 WO 2012017822A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
cnt
carbon nanotubes
type
powder
Prior art date
Application number
PCT/JP2011/066436
Other languages
English (en)
French (fr)
Inventor
丈士 田中
片浦 弘道
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to CN201180038019.XA priority Critical patent/CN103068729B/zh
Priority to US13/814,322 priority patent/US9272289B2/en
Publication of WO2012017822A1 publication Critical patent/WO2012017822A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/172Sorting
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties

Definitions

  • the present invention relates to a method, a separating material, and a separation container for separating a carbon nanotube (CNT) including metallic carbon nanotubes and semiconducting carbon nanotubes at low cost.
  • CNT carbon nanotube
  • CNTs have excellent properties such as electrical characteristics and mechanical strength, and research and development are energetically performed as the ultimate new material.
  • This CNT is synthesized by various methods such as a laser evaporation method, an arc discharge method, and a chemical vapor deposition method (CVD method).
  • CVD method chemical vapor deposition method
  • any synthesis method can be used only in the form of a mixture of metal-type CNTs and semiconductor-type CNTs.
  • any synthesis method can be used only in the form of a mixture of metal-type CNTs and semiconductor-type CNTs.
  • research for separating and purifying only the metal type or semiconductor type CNT from the CNT mixture should be solved urgently. Is an important thing that is under pressure.
  • Non-Patent Document 1 a method of dielectrophoresis of CNT dispersed with a surfactant on a microelectrode (Non-Patent Document 1), a method using amines as a dispersant in a solvent (Non-Patent Documents 2 and 3), hydrogen peroxide
  • Non-patent Document 4 a method of selectively burning semiconductor-type CNTs (Non-patent Document 4).
  • these problems are particularly limited to metal-type CNTs, and the recovery rate is low. The problem has not been resolved.
  • a method of separating a semiconductor-type CNT by dispersing a mixture of the semiconductor-type CNT and the metal-type CNT in a liquid, selectively bonding the metal-type CNT to particles, and removing the metal-type CNT bonded to the particles (Patent Document) 1) After the CNTs are treated with a nitronium ion-containing solution, filtration and heat treatment are performed to remove metal-type CNTs contained in the CNTs to obtain semiconductor-type CNTs (Patent Document 2), and a method using sulfuric acid and nitric acid ( Patent Document 3), and a method (Patent Document 4) for obtaining a semiconductor-type CNT with a narrow electric conductivity range by selectively moving and separating CNTs by applying an electric field.
  • Patent Document 2 After the CNTs are treated with a nitronium ion-containing solution, filtration and heat treatment are performed to remove metal-type CNTs contained in the CNTs to obtain semiconductor-type CNTs
  • Patent Document 3 Patent
  • Non-patent Document 5 There is a method of separating CNT dispersed with a surfactant into metallic CNT and semiconductor CNT by density gradient ultracentrifugation (Non-patent Document 5).
  • This method uses a very expensive device called an ultracentrifuge, the ultracentrifugation operation requires a long time, and the size of the ultracentrifuge itself is limited, and multiple ultracentrifuges are installed in parallel. There was a problem that it would be difficult to perform automation and other processing.
  • Patent Document 5 There is a method in which a CNT-nucleic acid complex composed of CNTs bonded to nucleic acid molecules is produced and separated by ion exchange chromatography.
  • Patent Document 5 There are problems that an expensive synthetic DNA is necessary and that the separation rate is not so high and the recovery rate and purity are not good.
  • Patent Document 6 In addition, by adjusting the pH and ionic strength of the CNT solution dispersed with the surfactant, protonation of a different degree occurs depending on the type of CNT, and an attempt is made to separate the metal type and the semiconductor type by applying an electric field. Although there is a report (Patent Document 6), this method requires a step of pretreating the pH and ionic strength of the suspended nanotube mixture with a strong acid prior to separation, and strict process control for that purpose. In the end, separation of metal-type and semiconductor-type CNTs has not been achieved (Patent Document 6, Example 4).
  • Patent Documents 7 to 9, Non-Patent Documents 6 to 8 All of these inventions use gels, and particularly good separation was observed when an agarose gel was used.
  • metal-type and semiconductor-type CNTs can be separated by performing agarose gel electrophoresis using a CNT solution dispersed with a surfactant (Patent Document 7, Non-Patent Document 6).
  • Non-patent Document 8 a technique for recovering CNT without dissolving the gel by using an appropriate eluent.
  • the continuous separation method using adsorption and desorption in a chromatographic method can not only recover the adsorbed CNTs in a solution state but also reuse the gel as it is.
  • the separation can be automated, and the purity of the separated CNT is improved, which is an extremely excellent technique.
  • JP 2007-31238 A Japanese Patent Laid-Open No. 2005-325020 JP 2005-194180 A JP 2005-104750 A JP 2006-512276 A JP 2005-527455 A JP 2008-285386 A JP 2008-285387 A WO / 2009/075293
  • the method using a gel that we have developed so far is simpler, higher yield, higher purity, and less expensive than the conventional one. Moreover, it is a very excellent method capable of mass processing, but further cost reduction of separation has been desired.
  • the present invention has been made in view of the circumstances as described above, and by using a very inexpensive agarose or agar powder as it is instead of an expensive gel bead, a semiconductor-type CNT is selectively used for the powder.
  • An object of the present invention is to provide a CNT separation method, separation material, and separation container that can be efficiently separated and purified in a large amount in a short time and that can be separated at low cost.
  • the present inventors filled a separation container with agarose or agar powder as it is instead of a gel, and performed separation in the manner of chromatography, so that a metal type and a semiconductor type were obtained. Of CNT can be separated. After adding a carbon nanotube dispersion containing semiconducting carbon nanotubes and metal-type carbon nanotubes to a separation material composed of agar powder or agarose powder, the separation material is allowed to act on the separation material so that it is not adsorbed on the separation material.
  • the metal-type carbon nanotubes are eluted and separated from the semiconductor-type carbon nanotubes adsorbed on the separation material, and then the semiconductor-type carbon nanotubes are eluted from the separation material by causing an eluate to act on the separation material ( FIG. 1).
  • the conventional separation method in order to use agarose or agar as a gel, it is necessary to heat and dissolve an aqueous solution containing agarose or the like, and then follow the gelation procedure or purchase molded expensive gel beads. .
  • the present invention is a very original technique in which agarose or agar powder as a gel source is used as it is or as a suspension of agarose or agar powder (FIG. 2).
  • the material used may be a powdered extract of seaweed other than agarose or agar.
  • the present invention opens up new uses for agar and agarose.
  • the present invention has been made based on such novel findings. That is, according to this application, the following invention is provided. ⁇ 1> After adding a carbon nanotube dispersion containing semiconductor-type carbon nanotubes and metal-type carbon nanotubes to a separation material composed of agar powder or agarose powder, the separation material is allowed to act on the separation material by causing the separation liquid to act on the separation material. The metal-type carbon nanotubes that have not been adsorbed are eluted and separated from the semiconductor-type carbon nanotubes that are adsorbed to the separation material, and then the semiconductor-type carbon nanotubes are separated from the separation material by acting an eluent on the separation material.
  • a method for separating metallic carbon nanotubes from semiconducting carbon nanotubes characterized by elution.
  • ⁇ 2> The method for separating metallic carbon nanotubes and semiconducting carbon nanotubes according to ⁇ 1>, wherein the agar powder or agarose powder constituting the separating material is suspended in an aqueous medium in advance.
  • ⁇ 3> Separation material used in the method for separating a metal-type carbon nanotube and a semiconductor-type carbon nanotube according to ⁇ 1> or ⁇ 2>, wherein the metal-type carbon is composed of agar powder or agarose powder Separation material for separation of nanotubes and semiconducting carbon nanotubes.
  • the agar powder or the agarose powder includes a swelling layer formed on a surface by absorbing and swelling an aqueous medium.
  • the metal-type carbon nanotube and the semiconductor-type carbon nanotube according to ⁇ 3> Separation material for separation.
  • the metal-type carbon nanotubes and the semiconductor-type carbon nanotubes are provided with an elution port in a part, and a separation material composed of agar powder or agarose powder is filled between the introduction port and the elution port Separation container.
  • a filter is disposed between at least one of the introduction port and the separation material and between the elution port and the separation material.
  • separation of metal type CNT and semiconductor type CNT using the separation container filled with powder Diagram showing how to prepare the separation material
  • Schematic diagram of separation container The figure which shows the optical absorption spectrum of CNT isolate
  • the present invention relates to a method of separating a metal-type CNT and a semiconductor-type CNT from a mixture containing the metal-type CNT and the semiconductor-type CNT (hereinafter also simply referred to as CNT).
  • the CNTs used for the separation can be separated from the metal-type CNTs and the semiconductor-type CNTs of the present invention without any problem regarding the manufacturing method, shape (diameter and length) or structure (single-layer, double-layer, etc.). Can be targeted.
  • CNT the structure of CNT is uniquely defined by a chiral index consisting of a pair of two integers (n, m).
  • the synthesized CNTs are usually tens to hundreds of bundles including both metallic CNTs and semiconductor CNTs. Prior to the separation of the metal-type CNT and the semiconductor-type CNT, it is important to disperse and solubilize the CNTs in an isolated state one by one and keep them stable for a long time. Therefore, a mixture of metal-type CNTs and semiconductor-type CNTs is added to a solution to which a surfactant is added as a dispersant, and the CNTs are dispersed and isolated by sufficiently performing ultrasonic treatment or the like.
  • the liquid subjected to the dispersion treatment includes dispersed / isolated CNT, CNT that cannot be dispersed / isolated and remains in a bundle, amorphous carbon, a metal catalyst, and the like as synthesis by-products.
  • a centrifuge By centrifuging the dispersion-treated liquid with a centrifuge, bundled CNTs, amorphous carbon, and metal catalyst are precipitated, while isolated CNTs that form micelles with a surfactant can be recovered as a supernatant. .
  • the obtained supernatant becomes a sample (CNT dispersion) used for separation of metal CNT and semiconductor CNT.
  • water is most preferable. From this point, water is used to prepare the CNT dispersion.
  • an anionic surfactant any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant and a nonionic surfactant can be used.
  • Anionic surfactants include alkyl sulfates such as alkyl sulfates having 10 to 14 carbon atoms, dodecane sulfonic acid, dodecanoyl sarcosine, dodecanoic acid, cholic acid and their salts such as sodium salts. preferable.
  • alkyl sulfate include sodium dodecyl sulfate, sodium decyl sulfate, and sodium tetradecyl sulfate.
  • amphoteric surfactants n-dodecylphosphocholine and the like are preferable. These surfactants can be used in combination, and can also be used in combination with other surfactants.
  • the surfactant used in combination may be an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, or a dispersing agent such as a polymer, DNA or protein.
  • concentration of a dispersant such as a surfactant varies depending on the type and concentration of CNT used, the type of dispersant used, and the like, but can usually be 0.01% to 25% in terms of final concentration.
  • the concentration of CNT in the dispersion can be adjusted to 1 ⁇ g / ml to 10 mg / ml, preferably 0.1 mg / ml to 1 mg / ml.
  • the CNT dispersion obtained as described above is passed through a separation container filled with powder as a separating material, and semiconductor-type CNT is selectively adsorbed on the powder.
  • the metal-type CNTs are collected as an unadsorbed fraction, and then the adsorbed semiconductor-type CNTs are collected by desorption using an eluent and separated (FIG. 1).
  • the powder used for the separation is a powder such as agarose or agar (polysaccharide contained in algae such as the genus Amanita and the main components are agarose and agaropectin).
  • the particle size of the powder is preferably 1 ⁇ m to 500 ⁇ m.
  • the swollen powder has a thin swollen layer on the surface (FIG. 3).
  • CNTs do not enter the powder, and CNTs are adsorbed at the swollen layer portion.
  • CNTs enter the inside of the gel.
  • the CNTs accumulate and remain inside the gel.
  • the separation using the powder having the swelling layer it is considered that there is almost no CNT remaining in the powder even after repeated separation, and the CNT does not enter the powder.
  • An aqueous medium in which agarose powder or agar powder is suspended is a medium composed of 50 wt% to 100 wt% water and 0 wt% to 50 wt% water-soluble organic solvent.
  • the water-soluble organic solvent include acetone, methyl ethyl ketone, tetrahydrofuran and the like in addition to alcohols such as methanol and ethanol.
  • the amount of the aqueous medium added to the agarose powder or agar powder is not particularly limited as long as it is an amount capable of suspending the agarose powder or agar powder.
  • the separation container 1 used for the separation of CNT has a cylindrical shape, and is provided with an introduction port 2 at one end and an elution port 3 at the other end. 3 is filled with a separating material 4 composed of agar powder or agarose powder.
  • a container constituting such a separation container a commercially available column, a cylindrical container, or the like can be used.
  • a filter 5 can be installed in the lower part of the column or cylindrical container, that is, between the elution port 3 and the separation material 4 in order to prevent the powder from leaking out of the container. Pour the previously prepared powder suspension into the container and fill with powder.
  • a filter 6 is also provided at the top of the container, that is, between the inlet 2 and the separation material 4 can do.
  • aqueous solution containing a surfactant for separation.
  • the surfactant for separation may be the same type as that used for dispersing CNTs among the above-mentioned surfactants, a type different from that used for dispersing CNTs, or a mixture thereof.
  • the CNT dispersion is added to the separation vessel after the equilibration. Thereafter, the separation liquid is added to separate the semiconductor CNT that is adsorbed on the powder and held in the separation container and the metal CNT that is not adsorbed on the powder and passes through the separation container.
  • the semiconductor-type CNT adsorbed on the powder is eluted by adding an appropriate eluate to the separation container (FIG. 1).
  • a solution containing a different type of surfactant from the surfactant contained in the separation liquid can be used as the eluent used when desorbing the semiconductor-type CNT adsorbed on the powder.
  • the surfactant contained in the eluate include sodium deoxycholate, sodium cholate, sodium dodecylbenzenesulfonate, Tween-20, Triton X-100, and the like.
  • a solution containing the same type of surfactant as the surfactant used for separation may be used as the eluent.
  • SDS is exemplified. In this case, it is desirable that the concentration of the surfactant contained in the eluate used for separation is higher than that of the surfactant used for separation.
  • the ratio of metal-type CNT and semiconductor-type CNT is estimated from the ratio of the peak sizes of M 11 and S 22 .
  • the absorption wavelength band (M 11 , S 11 , S 22 , S 33 ) varies depending on the average diameter of the CNT to be measured. It shifts to the short wavelength side as the average diameter becomes thin, and shifts to the long wavelength side as the average diameter becomes thick.
  • Example 1 This is an example in which agarose powder or agar powder is filled in a separation container and CNT synthesized by the ARC method is separated. A comparison with an example using agarose gel beads instead of powder was also made.
  • ARC-CNT Meijo Nanocarbon, APJ, CNT synthesized by chemical vapor deposition method, diameter 1.4 ⁇ 0.1 nm
  • SDS sodium dodecyl sulfate
  • the solution was sonicated for 2 hours at an output of 30% while being cooled in cold water using a chip-type ultrasonic crusher (Sonifier, manufactured by Branson, tip diameter: 0.5 inch).
  • the dispersion obtained by sonication was subjected to ultracentrifugation (505,000 ⁇ g, 1 hour), and then 80% of the supernatant was recovered. This solution was used as a CNT dispersion.
  • a suspension obtained by adding water to agarose powder (Agarose H14, Takara Bio, 5014) was filled in a plastic container (the capacity after filling was about 4 ml).
  • “thin line”, “gray thick line”, and “black thick line” indicate the respective spectra of the unadsorbed fraction and the 1% DOC aqueous solution eluted fraction before separation.
  • the metal the proportion of M 11 type CNT are significantly increased, the separation of the metallic CNT was confirmed.
  • the ratio of absorption of the semiconductor CNT (S 22 ) was remarkably increased, and separation of the semiconductor CNT was confirmed.
  • Example 2 The same experiment as in Example 1 was performed using different types of CNT (CoMoCAT-CNT, SG76, Sigma Aldrich, diameter 0.9 ⁇ 0.2 nm).
  • the results using agarose powder are shown in FIG. 8, and the results using agar powder are shown in FIG.
  • “thin line”, “gray thick line”, and “black thick line” indicate the respective spectra of the unadsorbed fraction and the 1% DOC aqueous solution eluted fraction before separation.
  • metal-type CNTs were separated from the unadsorbed fraction and semiconductor-type CNTs were separated from the eluted fraction.
  • Example 3 The same experiment as in Example 1 was performed using different types of CNTs (HiPco-CNT, Unidim, diameter 1.0 ⁇ 0.3 nm). The results using agar powder are shown in FIG. In the figure, “thin line”, “gray thick line”, and “black thick line” indicate the respective spectra of the unadsorbed fraction and the 1% DOC aqueous solution eluted fraction before separation. Also in this case, metal-type CNTs were separated from the unadsorbed fraction and semiconductor-type CNTs were separated from the eluted fraction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 安価な設備と簡便な工程により、金属型CNTと半導体型CNTを含むCNTから両者を短時間で大量に効率良く分離精製することができ、かつ安価な分離が可能な工業的に極めて有利なCNTの分離方法であって、粉末を充填した分離容器にCNT分散液を添加することによって、半導体型CNTを選択的に粉末に吸着させ、金属型CNTを回収した後、粉末に吸着した半導体型CNTを溶出させることにより両者を分離するCNTの分離方法を提供する。

Description

カーボンナノチューブの安価な分離方法と分離材並びに分離容器
 本発明は、金属型カーボンナノチューブと半導体型カーボンナノチューブを含むカーボンナノチューブ(CNT)から両者を安価に分離する方法と分離材並びに分離容器に関する。
 CNTはその電気的特性や機械的強度など優れた性質を持ち、究極の新素材として研究開発が精力的に行われている。このCNTは、レーザー蒸発法、アーク放電法、及び化学気相成長法(CVD法)などの種々の方法で合成されている。しかし、現状ではいずれの合成方法を用いても、金属型CNTと半導体型CNTの混合物の形態でしか得られていない。
 実使用においては、金属型又は半導体型のいずれか一方の性質のみを用いることが多いため、CNT混合物から金属型、又は半導体型のCNTのみを分離精製するための研究は、至急に解決することが迫られている重要なものである。
 金属型CNTと半導体型CNTを分離する報告は既にあるが、いずれも産業的に金属型CNTと半導体型CNTを生産する上で問題点を含んでいる。問題点は以下のようにまとめることができる。(1)複雑な工程を経るため自動化ができないこと、(2)長時間を要すること、(3)大量処理ができないこと、(4)高価な設備や薬品を必要とすること、(5)金属型CNTと半導体型CNTのどちらか一方しか得られないこと、(6)回収率が低いこと、などである。
 例えば、界面活性剤で分散したCNTを微小電極上で誘電泳動する方法(非特許文献1)や、溶媒中でアミン類を分散剤に用いる手法(非特許文献2、3)、過酸化水素によって半導体型CNTを選択的に燃やす方法(非特許文献4)などがあるが、これらは、前記問題点の中でも、特に、得られる最終物質が金属型CNTのみに限定され、その回収率が低いという問題点が解決されていない。
 半導体型CNTと金属型CNTとの混合物を液体中に分散させ、金属型CNTを粒子と選択的に結合させ、粒子と結合した金属型CNTを除去して半導体型CNTを分離する方法(特許文献1)、CNTをニトロニウムイオン含有溶液で処理した後、濾過および熱処理してCNTに含有する金属型CNTを除去し、半導体型CNTを得る方法(特許文献2)、硫酸及び硝酸を用いる方法(特許文献3)、電界を印加してCNTを選択的に移動分離し、電気伝導率範囲を絞った半導体型CNTを得る方法(特許文献4)などがある。
 これらは、前記問題点の中でも、特に、得られる最終物質が半導体型CNTのみに限定され、その回収率が低いという問題点が解決されていない。
 界面活性剤で分散したCNTを、密度勾配超遠心分離法により、金属型CNTと半導体型CNTに分離する方法がある(非特許文献5)。この方法では超遠心分離機という非常に高価な機器を用いること、超遠心分離操作が長時間を要すること、超遠心分離機自体の大型化は限界があり、並列して超遠心分離機を複数設置することとなり、自動化などの処理が難しいことといった問題点があった。
 核酸分子に結合されたCNTからなるCNT-核酸複合体を製造し、イオン交換クロマトグラフィーにより分離する方法がある(特許文献5)。しかし、高価な合成DNAが必要であることや、分離精度があまり高くないため回収率や純度が良くないといった問題点がある。
 また、界面活性剤で分散したCNT溶液のpHやイオン強度を調節することで、CNTの種類によって異なる程度のプロトン化を生じさせ、電場をかけることで金属型と半導体型とを分離しようとする報告があるが(特許文献6)、この方法では、分離に先立って、懸濁したナノチューブ混合物のpHやイオン強度を、強酸を用いて前処理する工程を必要とし、またそのための厳密な工程管理を余儀なくされる上、最終的には金属型と半導体型のCNTの分離は達成されていない(特許文献6 実施例4)。
 前記したとおり、従来の方法は、いずれも前記した問題点を克服できるものになっておらず、新しい考え方に基づくCNTから金属型CNTと半導体型CNTを分離する方法の開発が望まれていた。
 本発明者らは、従来の方法とは相違する新規な金属型CNT及び半導体CNT分離方法に着手し、以下の発明を完成させた(特許文献7~9、非特許文献6~8)。これらの発明は、いずれもゲルを用いるもので、特にアガロースゲルを用いた時に良好な分離が認められた。まず、界面活性剤で分散したCNT溶液を用いてアガロースゲル電気泳動を行うと、金属型と半導体型のCNTを分離できることを初めて見いだした(特許文献7、非特許文献6)。さらに、CNTを溶液状態ではなく、あらかじめゲルの中に固めた状態のもの(CNT含有ゲル)に対して電気泳動を行うと、ほぼすべてのCNTが金属型と半導体型に分離されるという高収率分離法を発明した(特許文献8、非特許文献6)。さらに、CNT含有ゲルを用いて、電気泳動のような電気的な手段ではなく、遠心分離や凍結-解凍-圧搾、拡散、浸透などの物理的手段を適用することでも分離が可能であることを発見した(特許文献9、非特許文献7)。本法は電気泳動を用いた手法より、さらに簡便で大量のCNTを安価に分離できる手法である。以上の手法はいずれの場合においても、半導体型CNTがゲルに選択的に吸着することにより分離が達成されるが、ゲルに吸着した半導体型CNTを回収するために、ゲルを溶かして分離する必要があった。本発明者らは、適当な溶出液を用いることで、ゲルを溶解することなくCNTを回収する手法も開発した(非特許文献8)。特にクロマトグラフィーの手法で吸着と脱着を利用した連続分離法は、吸着したCNTを溶液状態で回収できるだけでなく、ゲルをそのまま再利用することが可能である。さらに、分離の自動化も可能となる上、分離したCNTの純度も改善しており、極めて優れた手法である。しかしながら、この分離法ではゲルを繰り返し使用できるものの、迅速な分離を実現するには、微小なゲル粒子を用いて表面積を大きくしたり、溶液が通り抜けるためのゲル粒子の間の空間を確保するために球状の均一なゲルビーズを用いる必要があった。このような微小で均一な形状のゲルビーズは高価なものが多く、これに代わる材料が強く求められていた。
特開2007-31238号公報 特開2005-325020号公報 特開2005-194180号公報 特開2005-104750号公報 特開2006-512276号公報 特開2005-527455号公報 特開2008-285386号公報 特開2008-285387号公報 WO/2009/075293
Advanced Materials 18, (2006) 1468-1470 J. Am. Chem. Soc. 127, (2005) 10287-10290 J. Am. Chem. Soc. 128, (2006) 12239-12242 J. Phys. Chem. B 110, (2006) 25-29 Nature Nanotechnology 1, (2006) 60-65 Appl. Phys. Express 1, (2008) 114001-1-3 Nano Letters 9, (2009) 1497-1500 Appl. Phys. Express 2, (2009) 125002-1-3
 上述の様に、金属型と半導体型のCNTを分離する手法において、我々がこれまでに開発したゲルを用いる手法は、従来のものと比較して、簡便、高収率、高純度、安価でなおかつ、大量処理も可能な非常に優れた方法であるが、分離のさらなる低コスト化が望まれていた。本発明は、以上のような事情に鑑みてなされたものであって、高価なゲルビーズの代わりに非常に安価なアガロースや寒天の粉末をそのまま用いることによって、当該粉末に半導体型CNTを選択的に吸着させる一方で、金属型CNTを溶液中に存在させることにより、両者を簡便に分離できる技術手段、すなわち、安価な設備と簡便な工程により、金属型CNTと半導体型CNTを含むCNTから両者を短時間で大量に効率良く分離精製することができ、かつ安価な分離が可能なCNTの分離方法と分離材並びに分離容器を提供することを目的とするものである。
 本発明者らは上記課題を解決するため検討を重ねたところ、ゲルでなく、アガロースや寒天の粉末をそのまま分離容器に充填し、クロマトグラフィーの要領で分離を行うことより、金属型と半導体型のCNTを分離できることを見いだした。寒天粉末又はアガロース粉末で構成される分離材に半導体型カーボンナノチューブと金属型カーボンナノチューブを含むカーボンナノチューブ分散液を添加した後、前記分離材に分離液を作用させることにより前記分離材に未吸着の前記金属型カーボンナノチューブを溶出させて前記分離材に吸着する前記半導体型カーボンナノチューブと分離し、次いで、前記分離材に溶出液を作用させることにより前記分離材から前記半導体型カーボンナノチューブを溶出させる(図1)。従来の分離手法では、アガロースや寒天などをゲルとして用いるために、アガロースなどを含む水溶液を加熱して溶解したのちゲル化の手順を踏むか、成形された高価なゲルビーズを購入する必要があった。本発明はゲルの元となるアガロースや寒天の粉末をそのまま、あるいは、アガロースや寒天の粉末の懸濁液として用いるという極めて独創的な手法である(図2)。用いる材料はアガロースや寒天以外の、海藻からの抽出物を粉末にした物でも良い。本発明は、寒天やアガロースの新たな用途を開くものである。
 本発明はかかる新規な知見に基づいてなされたものである。
 すなわち、この出願によれば、以下の発明が提供される。
〈1〉寒天粉末又はアガロース粉末で構成される分離材に半導体型カーボンナノチューブと金属型カーボンナノチューブを含むカーボンナノチューブ分散液を添加した後、前記分離材に分離液を作用させることにより前記分離材に未吸着の前記金属型カーボンナノチューブを溶出させて前記分離材に吸着する前記半導体型カーボンナノチューブと分離し、次いで、前記分離材に溶出液を作用させることにより前記分離材から前記半導体型カーボンナノチューブを溶出させることを特徴とする金属型カーボンナノチューブと半導体型カーボンナノチューブの分離方法。
〈2〉前記分離材を構成する寒天粉末又はアガロース粉末は、あらかじめ水系媒体に懸濁させていることを特徴とする〈1〉に記載の金属型カーボンナノチューブと半導体型カーボンナノチューブの分離方法。
〈3〉〈1〉又は〈2〉記載の金属型カーボンナノチューブと半導体型カーボンナノチューブの分離方法に用いられる分離材であって、寒天粉末又はアガロース粉末で構成されることを特徴とする金属型カーボンナノチューブと半導体型カーボンナノチューブの分離用分離材。
〈4〉前記寒天粉末又は前記アガロース粉末は、表面に、水系媒体を吸収して膨潤してなる膨潤層を備えることを特徴とする〈3〉に記載の金属型カーボンナノチューブと半導体型カーボンナノチューブの分離用分離材。
〈5〉〈1〉又は〈2〉記載の金属型カーボンナノチューブと半導体型カーボンナノチューブの分離方法に用いられる分離容器であって、筒状形状を有し、一方の端部に導入口、他端部に溶出口を備え、前記導入口と前記溶出口との間に、寒天粉末又はアガロース粉末で構成される分離材が充填されていることを特徴とする金属型カーボンナノチューブと半導体型カーボンナノチューブの分離容器。
〈6〉前記導入口と前記分離材との間、および前記溶出口と前記分離材との間の少なくとも一方にフィルターが配設されていることを特徴とする〈5〉に記載の分離容器。
 本発明によれば、高価なゲルビーズを使用せず、あるいは分離に適したゲルの調製の手順を経ずに、アガロース粉末あるいはより安価な寒天粉末を用いて、ゲルを用いた場合と同等の金属型と半導体型のCNTを分離することが可能となる。
粉末を充填した分離容器を用いた金属型CNTと半導体型CNTの分離を示す図。 分離材の調製方法を示した図 寒天粉末またはアガロース粉末の模式図 分離容器の模式図 アガロース粉末を用いて分離したCNT(実施例1、Arc-CNT)の光吸収スペクトルを示す図。細線:分離前、灰色太線:未吸着画分、黒色太線:吸着画分 寒天粉末を用いて分離したCNT(実施例1、Arc-CNT)の光吸収スペクトルを示す図。細線:分離前、灰色太線:未吸着画分、黒色太線:吸着画分 比較例:アガロースゲルビーズを用いて分離したCNT(実施例1、Arc-CNT)の光吸収スペクトルを示す図。細線:分離前、灰色太線:未吸着画分、黒色太線:吸着画分 アガロース粉末を用いて分離したCNT(実施例2、CoMocat-CNT)の光吸収スペクトルを示す図。細線:分離前、灰色太線:未吸着画分、黒色太線:吸着画分 寒天粉末を用いて分離したCNT(実施例2、CoMocat-CNT)の光吸収スペクトルを示す図。細線:分離前、灰色太線:未吸着画分、黒色太線:吸着画分 アガロース粉末を用いて分離したCNT(実施例3、Hipco-CNT)の光吸収スペクトルを示す図。細線:分離前、灰色太線:未吸着画分、黒色太線:吸着画分
 本発明は、金属型CNTと半導体型CNTを含む混合物(以下単にCNTとも言う)を対象にし、このCNTから金属型CNTと半導体型CNTとを分離する方法に関するものである。
 分離に使用するCNTは、製造方法や形状(直径や長さ)あるいは構造(単層、二層など)について問題とされることなく、いずれも本発明の金属型CNTと半導体型CNTの分離の対象とすることができる。
 一般的に、CNTの構造は(n,m)と言う2つの整数の組からなるカイラル指数により一義的に定義される。本発明でいう、金属型CNTと半導体型CNTとは、カーボンナノチューブをその電気的性質から分けたものであり、金属型CNTは、カイラル指数がn-m=(3の倍数)となるものであり、半導体型CNTは、それ以外の(n-m=3の倍数でない)ものと定義される(非特許文献6 齋藤理一郎、篠原久典 共編「カーボンナノチューブの基礎と応用」培風館、p13~22)。
 [CNT分散液の調製について]
 合成されたCNTは通常、金属型CNTと半導体型CNTの両方を含む数十から数百本の束(バンドル)になっている。金属型CNTと半導体型CNTの分離に先立って、一本ずつに孤立した状態のCNTとして分散可溶化して、長時間安定に存在させておくことが肝要である。
 そこで、金属型CNT及び半導体型CNTからなる混合物を、分散剤として界面活性剤を添加した溶液に加え、十分に超音波処理などを行うことにより、CNTを分散・孤立化させる。この分散処理を施した液には、分散・孤立化したCNTと、分散・孤立化できずにバンドルを形成したままのCNT、合成副産物であるアモルファスカーボンや金属触媒などが含まれる。
 分散処理を施した液を遠心分離機により遠心分離することにより、バンドルのままのCNTやアモルファスカーボン、金属触媒は沈殿し、一方、界面活性剤とミセルをなした孤立CNTは上清として回収できる。得られた上清が金属型CNTと半導体型CNTの分離に使用する試料(CNT分散液)となる。
 CNT分散液の調製に用いる溶媒としては、水が最も好ましい。この点からCNT分散液の調製には水が使用される。
 界面活性剤としては、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤及び非イオン性界面活性剤のいずれもが使用できる。
 陰イオン界面活性剤では、アルキル硫酸塩などのアルキル硫酸系で炭素数が10~14のものや、ドデカンスルホン酸、ドデカノイルサルコシン、ドデカン酸、コール酸やこれらの塩、例えば、ナトリウム塩などが好ましい。アルキル硫酸塩は、例えば、ドデシル硫酸ナトリウム、デシル硫酸ナトリウム、テトラデシル硫酸ナトリウムなどが例示される。両性界面活性剤では、n-ドデシルホスホコリンなどが好ましい。これらの界面活性剤は混合して使用することができ、また、他の界面活性剤と併用することもできる。
 併用される界面活性剤は、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤の他、高分子ポリマー、DNA、タンパク質などの分散剤でも良い。界面活性剤などの分散剤の濃度については、使用するCNTの種類や濃度、使用する分散剤の種類などによって異なるが、通常、終濃度で0.01%~25%とすることができる。
 この方法により、分散液中のCNTの濃度を1μg/ml~10mg/ml、好ましくは、0.1mg/ml~1mg/mlとすることができる。
 [分離方法]
 本発明の金属型CNTと半導体型CNTの分離方法は、前述のようにして得られるCNT分散液を、分離材である粉末を充填した分離容器に通し、半導体型CNTを選択的に粉末に吸着させ、金属型CNTを未吸着画分として回収し、その後、吸着した半導体型CNTを、溶出液を用いて脱着して回収し、分離するものである(図1)。
 [分離材]
 分離に用いる粉末は、アガロースや寒天(テングサ属などの藻類に含まれる多糖で、主成分はアガロースとアガロペクチンからなる)などの粉末である。粉末の粒径は、好ましくは1μm~500μmである。後述する分離容器に充填する際には、アガロース粉末や寒天粉末を水などの水系媒体に懸濁し、懸濁液の状態にして充填するのが好ましい。例えば、5gの寒天粉末に適量の水を加えて、寒天粉末懸濁液を調製すると、寒天粉末は水を吸って膨潤し、およそ8倍の重量となる。膨潤した粉末は、表面に薄い膨潤層を有する(図3)。膨潤層を有する粉末を用いたCNTの分離においては、粉末内部にはCNTは進入せず、この膨潤層の部分でCNTを吸着していると考えられる。実際、アガロースゲルを用いたCNTの分離では、ゲルの内部にCNTが進入することが知られているが、同じゲルを用いて繰り返し分離を行うと、ゲル内部にCNTが蓄積・残存する。一方、膨潤層を有する粉末を用いた分離においては、繰り返し分離を行っても粉末に残存するCNTはほとんど無く、粉末内部までCNTが進入していないと考えられる。この粉末を用いた分離は、ゲルを用いた分離に比べ、簡便・安価であることに加え、繰り返し使用に非常に適しているという利点があるといえる。
 アガロース粉末や寒天粉末を懸濁させる水系媒体は、50重量%~100重量%の水と0重量%~50重量%の水溶性有機溶媒とからなる媒体である。水溶性有機溶媒としては、メタノールやエタノールなどのアルコールの他、アセトン、メチルエチルケトン、テトラヒドロフランなどが挙げられる。アガロース粉末や寒天粉末に加える水系媒体の量は、アガロース粉末や寒天粉末を懸濁させることができる量であれば特に制限されない。
 [分離容器]
 CNTの分離に用いられる分離容器1は、図4に示すように、筒状形状を有し、一方の端部に導入口2、他端部に溶出口3を備え、導入口2と溶出口3との間には寒天粉末又はアガロース粉末で構成される分離材4が充填されている。このような分離容器1を構成する容器としては、市販のカラムや円筒形の容器などを用いることができる。カラムや円筒形の容器の下部、すなわち、溶出口3と分離材4との間に、粉末が容器から漏れ出すのを防ぐためにフィルター5を設置することができる。容器に、先に準備した粉末の懸濁液を注ぎ込み、粉末を充填する。CNT分散液や後述する分離液、溶出液などの添加によって、容器に充填した粉末が乱れるのを防ぐために、容器の上部、すなわち、導入口2と分離材4との間にもフィルター6を設置することができる。以上は、容器の上部が解放された状態で使用する場合であるが、充填した粉末上部に液だまりがほとんど無い様な密閉系の容器を用いることも可能である。
 [分離]
 分離に先立って、分離容器中の粉末又はその懸濁液を分離用の界面活性剤を含む水溶液(分離液)で平衡化しておくことが好ましい。分離用の界面活性剤は、上記した界面活性剤のうちCNTの分散に用いたものと同じ種類のものやCNTの分散に用いたものとは違う種類のもの、あるいはその混合物でも良い。平衡化を終えた分離容器にCNT分散液を添加する。その後、分離液を添加することにより、粉末に吸着して分離容器に保持される半導体型CNTと、粉末に吸着せず分離容器を通り抜ける金属型CNTに分離する。粉末に吸着した半導体型CNTは、適当な溶出液を分離容器に添加して溶出させる(図1)。
 上記の方法において、粉末に吸着した半導体型CNTを脱離させる際に用いる溶出液は、分離液に含まれる界面活性剤とは別の種類の界面活性剤を含む溶液が使用できる。溶出液に含まれる界面活性剤の具体例としては、デオキシコール酸ナトリウム、コール酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、Tween-20、TritonX-100などが例示される。また、溶出液に、分離に用いた界面活性剤と同一の種類の界面活性剤を含む溶液を用いてもよい。例えば、SDSが例示される。この場合、分離に用いる溶出液に含まれる界面活性剤の濃度は、分離に用いた界面活性剤よりも高いことが望ましい。
 金属型CNTと半導体型CNTの比率を見積もるために紫外-可視-近赤外光吸収スペクトル測定を利用する。
 HiPco法で合成されたCNT(HiPco-CNT、直径1.0±0.3nm)を用いた時の結果を例として説明する(図10)。M11と呼ばれる吸収波長帯(およそ450-620nm)は金属型CNTによるものである。S11(およそ900nm以上)、S22(およそ620-900nm)とS33(およそ450nm以下)という3つ吸収波長帯は、半導体型CNTによるものである。ここでは、M11とS22のピークの大きさの比率から金属型CNTと半導体型CNTの比率を見積もる。測定するCNTの平均直径によって吸収波長帯(M11、S11、S22、S33)は変化する。平均直径が細くなるにつれて短波長側に、平均直径が太くなるにつれて長波長側にシフトしていく。
 以下、本発明を実施例により詳細に説明するが、本発明がこれに制限されるものではない。
 〈実施例1〉
 アガロース粉末または寒天粉末を分離容器に充填し、ARC法で合成したCNTを分離した例である。粉末の代わりに、アガロースゲルビーズを用いた例との比較も行った。
 [CNT分散液の調製]
 100mgのARC-CNT(名城ナノカーボン社、APJ、化学気相成長法で合成されたCNT、直径1.4±0.1nm)に、1%ドデシル硫酸ナトリウム(SDS)水溶液(100ml)を加え、良く懸濁した。その溶液をチップ型超音波破砕機(ソニファイアー、ブランソン社製、チップ先端径:0.5インチ)を用いて、冷水中で冷却しながら、出力30%で2時間超音波処理した。
 超音波処理よって得られた分散液を、超遠心分離(505,000×g、1時間)にかけた後、上清を80%回収した。この溶液をCNT分散液とした。
 [分離容器の調製と分離]
 アガロース粉末(Agarose H14、タカラバイオ、5014)に水を加えた懸濁液をプラスチック製の容器に充填した(充填後の容量は約4ml)。1%SDS水溶液で平衡化した分離容器に、0.2mlのCNT分散液を分離容器に添加した後、1%SDS水溶液を添加し、未吸着画分を回収した。次に、1%デオキシコール酸ナトリウム(DOC)水溶液を添加して溶出してくるCNTを回収した。
 各画分の光吸収スペクトル測定の結果を図5に示す。また、同様の実験をアガロース粉末の代わりに寒天粉末(植物培地用、和光純薬、016-11875)で行った結果を図6に、アガロースゲルビーズ(セファロース2B、GEヘルスケア社)で行った結果を図7に示す。図中、「細線」、「灰色太線」及び「黒色太線」は、それぞれ、分離前、未吸着画分、1%DOC水溶液溶出画分の各スペクトルを示す。
 いずれの場合においても、分離前のCNT分散液のスペクトルの半導体型CNTの吸収(S22)と金属型CNTの吸収(M11)の比率に比べ、分離後の未吸着画分のスペクトルでは金属型CNTのM11の割合が顕著に増加しており、金属型CNTの分離が確認できた。逆に、溶出画分では半導体型CNTの吸収(S22)の割合が顕著に増加しており、半導体型CNTの分離が確認できた。アガロース粉末や寒天粉末を用いて分離した時の金属型と半導体型のCNTの純度は、アガロースゲルビーズを用いた時の結果とほぼ変わらず、ゲル化やビース成形の手順を踏まずとも、良好な分離ができることを示している。特に、寒天粉末は、精製されたアガロースと異なり、未精製のもので非常に安価であるが、十分な分離能を有していた。
 本実施例は、アガロース粉末や寒天粉末を用いて、半導体型CNTの選択的な粉末への吸着と溶出により、金属型CNTと半導体型CNTを分離できることを明確に示している。
 〈実施例2〉
 実施例1と同様の実験を、異なる種類のCNT(CoMoCAT-CNT、SG76、シグマアルドリッチ、直径0.9±0.2nm)を用いて行った。アガロース粉末を用いた結果を図8に示し、寒天粉末を用いた結果を図9に示す。図中、「細線」、「灰色太線」及び「黒色太線」は、それぞれ、分離前、未吸着画分、1%DOC水溶液溶出画分の各スペクトルを示す。
 この場合においても、未吸着画分に金属型CNT、溶出画分に半導体型CNTが分離された。
 〈実施例3〉
 実施例1と同様の実験を、異なる種類のCNT(HiPco-CNT、ユニダイム社、直径1.0±0.3nm)を用いて行った。寒天粉末を用いた結果を図10に示す。図中、「細線」、「灰色太線」及び「黒色太線」は、それぞれ、分離前、未吸着画分、1%DOC水溶液溶出画分の各スペクトルを示す。
 この場合においても、未吸着画分に金属型CNT、溶出画分に半導体型CNTが分離された。

Claims (6)

  1.  寒天粉末又はアガロース粉末で構成される分離材に半導体型カーボンナノチューブと金属型カーボンナノチューブを含むカーボンナノチューブ分散液を添加した後、前記分離材に分離液を作用させることにより前記分離材に未吸着の前記金属型カーボンナノチューブを溶出させて前記分離材に吸着する前記半導体型カーボンナノチューブと分離し、次いで、前記分離材に溶出液を作用させることにより前記分離材から前記半導体型カーボンナノチューブを溶出させることを特徴とする金属型カーボンナノチューブと半導体型カーボンナノチューブの分離方法。
  2.  前記分離材を構成する寒天粉末又はアガロース粉末は、あらかじめ水系媒体に懸濁し膨潤させていることを特徴とする請求項1に記載の金属型カーボンナノチューブと半導体型カーボンナノチューブの分離方法。
  3.  請求項1又は2記載の金属型カーボンナノチューブと半導体型カーボンナノチューブの分離方法に用いられる分離材であって、寒天粉末又はアガロース粉末で構成されることを特徴とする金属型カーボンナノチューブと半導体型カーボンナノチューブの分離用分離材。 
  4.  前記寒天粉末又は前記アガロース粉末は、表面に、水系媒体を吸収して膨潤してなる膨潤層を備えることを特徴とする請求項3に記載の金属型カーボンナノチューブと半導体型カーボンナノチューブの分離用分離材。
  5.  請求項1又は2記載の金属型カーボンナノチューブと半導体型カーボンナノチューブの分離方法に用いられる分離容器であって、筒状形状を有し、一方の端部に導入口、他端部に溶出口を備え、前記導入口と前記溶出口との間に、寒天粉末又はアガロース粉末で構成される分離材が充填されていることを特徴とする金属型カーボンナノチューブと半導体型カーボンナノチューブの分離容器。
  6.  前記導入口と前記分離材との間、および前記溶出口と前記分離材との間の少なくとも一方にフィルターが配設されていることを特徴とする請求項5に記載の分離容器。
PCT/JP2011/066436 2010-08-06 2011-07-20 カーボンナノチューブの安価な分離方法と分離材並びに分離容器 WO2012017822A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180038019.XA CN103068729B (zh) 2010-08-06 2011-07-20 纳米碳管的廉价的分离方法和分离材料以及分离容器
US13/814,322 US9272289B2 (en) 2010-08-06 2011-07-20 Method and material for inexpensively separating carbon nanotubes, and separation vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-177895 2010-08-06
JP2010177895A JP5663806B2 (ja) 2010-08-06 2010-08-06 カーボンナノチューブの安価な分離方法と分離材並びに分離容器

Publications (1)

Publication Number Publication Date
WO2012017822A1 true WO2012017822A1 (ja) 2012-02-09

Family

ID=45559328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066436 WO2012017822A1 (ja) 2010-08-06 2011-07-20 カーボンナノチューブの安価な分離方法と分離材並びに分離容器

Country Status (4)

Country Link
US (1) US9272289B2 (ja)
JP (1) JP5663806B2 (ja)
CN (1) CN103068729B (ja)
WO (1) WO2012017822A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013184214A1 (en) 2012-05-07 2013-12-12 Massachusetts Institute Of Technology Compositions, methods, and systems for separating carbon-based nanostructures
US10046970B2 (en) 2013-08-20 2018-08-14 National Research Council Of Canada Process for purifying semiconducting single-walled carbon nanotubes
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
CN109867273A (zh) * 2017-12-01 2019-06-11 北京华碳元芯电子科技有限责任公司 半导体性单壁碳纳米管的提纯方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140033555A (ko) 2012-08-29 2014-03-19 삼성전자주식회사 탄소나노튜브 분리 방법
WO2015133387A1 (ja) * 2014-03-01 2015-09-11 昭和電工株式会社 カーボンナノチューブアレイ、材料、電子機器、カーボンナノチューブアレイの製造方法および電界効果トランジスタの製造方法
JP2016135725A (ja) * 2015-01-23 2016-07-28 国立研究開発法人産業技術総合研究所 カーボンナノチューブの溶出・回収方法
CN104692358B (zh) * 2015-02-16 2019-03-15 中国科学院物理研究所 碳纳米管分离方法
WO2019073876A1 (ja) * 2017-10-10 2019-04-18 日本電気株式会社 ナノカーボン分離装置、ナノカーボンの分離方法
JP6939891B2 (ja) * 2017-10-10 2021-09-22 日本電気株式会社 ナノカーボン分離装置、ナノカーボンの分離方法、ナノカーボンの回収方法
JP6954364B2 (ja) * 2017-10-10 2021-10-27 日本電気株式会社 ナノカーボン分離装置、ナノカーボンの分離方法、電極管
US11383984B2 (en) 2017-10-10 2022-07-12 Nec Corporation Nanocarbon separation device, nanocarbon separation method, and nanocarbon recovery method
JP7014675B2 (ja) 2018-05-23 2022-02-01 花王株式会社 半導体型単層カーボンナノチューブ分散液の製造方法
JP6819814B1 (ja) 2019-03-08 2021-01-27 東レ株式会社 カーボンナノチューブ組成物、半導体素子および無線通信装置
JP6900453B2 (ja) 2019-11-15 2021-07-07 花王株式会社 半導体型単層カーボンナノチューブ分散液の製造方法
JP7002517B2 (ja) 2019-11-15 2022-01-20 花王株式会社 半導体型単層カーボンナノチューブ分散液の製造方法
EP4118035A4 (en) * 2020-03-12 2023-09-13 Yazaki Corporation METHOD FOR SEPARATING CARBON NANOTUBE USING MODIFIED CELLULOSE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104750A (ja) * 2003-09-29 2005-04-21 Matsushita Electric Ind Co Ltd ナノチューブの精製方法
JP2007031238A (ja) * 2005-07-29 2007-02-08 Sony Corp 金属的カーボンナノチューブの分離方法ならびに半導体的カーボンナノチューブ薄膜の製造方法ならびに薄膜トランジスタおよびその製造方法ならびに電子素子およびその製造方法
WO2008143281A1 (ja) * 2007-05-21 2008-11-27 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブの高効率分離法
WO2008143279A1 (ja) * 2007-05-21 2008-11-27 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブの分離法
WO2009075293A1 (ja) * 2007-12-10 2009-06-18 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブの簡便な分離法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2200774A (en) * 1935-12-09 1940-05-14 Thomas W Halliday Method for preparing agar-agar flakes
US3458428A (en) * 1966-11-03 1969-07-29 Beckman Instruments Inc Continuous particle electrophoresis apparatus having improved particle band stability
US3704217A (en) * 1969-09-08 1972-11-28 Samuel T Nerenberg Segmental macromolecular separation method and apparatus
JP2006501051A (ja) * 2002-08-14 2006-01-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高液体ローディングの流動可能な固体粉末
US7374649B2 (en) * 2002-11-21 2008-05-20 E. I. Du Pont De Nemours And Company Dispersion of carbon nanotubes by nucleic acids
WO2005052053A1 (ja) * 2003-11-27 2005-06-09 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブ分散極性有機溶媒及びその製造方法
US7785472B2 (en) * 2004-02-16 2010-08-31 Japan Science And Technology Agency Carbon nanotube structure-selective separation and surface fixation
WO2006012541A2 (en) * 2004-07-22 2006-02-02 Henry Eisenson Compositions and methods for treating excessive bleeding
WO2008057108A2 (en) * 2006-01-27 2008-05-15 Los Alamos National Security, Llc Chirality-based separation of carbon nanotubes
US8454923B2 (en) * 2009-06-10 2013-06-04 Carbon Solutions, Inc. Continuous extraction technique for the purification of carbon nanomaterials
JP5594727B2 (ja) * 2009-06-22 2014-09-24 独立行政法人産業技術総合研究所 カーボンナノチューブのより簡便な分離回収方法
US8297444B2 (en) * 2009-08-24 2012-10-30 Empire Technology Development Llc Separation of carbon nanotubes using magnetic particles
JP5553282B2 (ja) * 2010-03-05 2014-07-16 独立行政法人産業技術総合研究所 カーボンナノチューブの分離回収方法及びカーボンナノチューブ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104750A (ja) * 2003-09-29 2005-04-21 Matsushita Electric Ind Co Ltd ナノチューブの精製方法
JP2007031238A (ja) * 2005-07-29 2007-02-08 Sony Corp 金属的カーボンナノチューブの分離方法ならびに半導体的カーボンナノチューブ薄膜の製造方法ならびに薄膜トランジスタおよびその製造方法ならびに電子素子およびその製造方法
WO2008143281A1 (ja) * 2007-05-21 2008-11-27 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブの高効率分離法
WO2008143279A1 (ja) * 2007-05-21 2008-11-27 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブの分離法
WO2009075293A1 (ja) * 2007-12-10 2009-06-18 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブの簡便な分離法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAPING LIU ET AL.: "Diameter-selective metal/ semiconductor separation of single-wall carbon nanotubes by agarose gel", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 114, no. 20, 29 April 2010 (2010-04-29), pages 9270 - 9276, XP002610425 *
TAKESHI TANAKA ET AL.: "Continuous separation of metallic and semiconducting carbon nanotubes using agarose gel", DAI 37 KAI FULLERENE- NANOTUBES GENERAL SYMPOSIUM KOEN YOSHISHU, 1 September 2009 (2009-09-01), pages 22 *
TAKESHI TANAKA ET AL.: "Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes", NANO LETTERS, vol. 9, no. 4, 25 February 2009 (2009-02-25), pages 1497 - 1500, XP002610416, DOI: doi:10.1021/nl8034866 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013184214A1 (en) 2012-05-07 2013-12-12 Massachusetts Institute Of Technology Compositions, methods, and systems for separating carbon-based nanostructures
EP2847130A4 (en) * 2012-05-07 2016-02-17 Massachusetts Inst Technology COMPOSITIONS, METHODS AND SYSTEMS FOR SEPARATING CARBON BASED NANOSTRUCTURES
US10046970B2 (en) 2013-08-20 2018-08-14 National Research Council Of Canada Process for purifying semiconducting single-walled carbon nanotubes
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
CN109867273A (zh) * 2017-12-01 2019-06-11 北京华碳元芯电子科技有限责任公司 半导体性单壁碳纳米管的提纯方法
CN109867273B (zh) * 2017-12-01 2021-04-02 北京华碳元芯电子科技有限责任公司 半导体性单壁碳纳米管的提纯方法

Also Published As

Publication number Publication date
CN103068729A (zh) 2013-04-24
JP5663806B2 (ja) 2015-02-04
US20130180897A1 (en) 2013-07-18
CN103068729B (zh) 2015-04-15
US9272289B2 (en) 2016-03-01
JP2012036041A (ja) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5663806B2 (ja) カーボンナノチューブの安価な分離方法と分離材並びに分離容器
JP5594727B2 (ja) カーボンナノチューブのより簡便な分離回収方法
JP5553282B2 (ja) カーボンナノチューブの分離回収方法及びカーボンナノチューブ
Bahgat et al. Adsorption of methyl green dye onto multi-walled carbon nanotubes decorated with Ni nanoferrite
WO2014157338A1 (ja) 光学活性をもつカーボンナノチューブの分離回収方法及び光学活性をもつカーボンナノチューブ
JP5035891B2 (ja) 遠心分離機を用いた金属性cnt半導体性cntの直接分離方法
JPWO2009075293A1 (ja) カーボンナノチューブの簡便な分離法
KR20070049179A (ko) 밴드갭에 의한 탄소 나노튜브의 벌크 분리 방법
JP6307064B2 (ja) 金属性単層カーボンナノチューブと半導体性単層カーボンナノチューブとの分離方法
CN107298436B (zh) 获取高纯度半导体性单壁碳纳米管的方法
WO2005110594A1 (ja) 微小カーボン分散物
WO2008057108A2 (en) Chirality-based separation of carbon nanotubes
Wang et al. Comparison of chemical, ultrasonic and thermal regeneration of carbon nanotubes for acetaminophen, ibuprofen, and triclosan adsorption
US9403684B2 (en) Compositions, methods, and systems for separating carbon-based nanostructures
JP6212677B1 (ja) 単層カーボンナノチューブ分離装置、単層カーボンナノチューブ分離方法
Makama et al. Recent developments in purification of single wall carbon nanotubes
Yang et al. Role and impact of surfactants in carbon nanotube dispersions and sorting
JP5481175B2 (ja) カーボンナノチューブ直径分離法
Fatemi et al. Gas separation using graphene nanosheet: insights from theory and simulation
JP2008266111A (ja) 有機分子を内包したカーボンナノチューブから有機分子を内包した金属性カーボンナノチューブと有機分子を内包した半導体性カーボンナノチューブの分離方法
JP2016135725A (ja) カーボンナノチューブの溶出・回収方法
Aravind et al. Surface Modification and Engineering of Nanoscale Absorbent and Their Composite
Kurpiel THE IMPACT OF COMMON LABORATORY CONTAMINATION ON THE STABILITY OF A COLLOIDAL GRAPHENE SOLUTION
Scheibe et al. Single-walled carbon nanotubes fractionation via electrophoresis
Lang et al. Separation of Metallic and Semiconducting Single-Walled Carbon Nanotubes by Density Gradient Ultracentrifugation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038019.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13814322

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11814452

Country of ref document: EP

Kind code of ref document: A1