WO2012016534A2 - 加工中心多轴联动变位加载装置及静刚度分布的检测方法 - Google Patents

加工中心多轴联动变位加载装置及静刚度分布的检测方法 Download PDF

Info

Publication number
WO2012016534A2
WO2012016534A2 PCT/CN2011/078005 CN2011078005W WO2012016534A2 WO 2012016534 A2 WO2012016534 A2 WO 2012016534A2 CN 2011078005 W CN2011078005 W CN 2011078005W WO 2012016534 A2 WO2012016534 A2 WO 2012016534A2
Authority
WO
WIPO (PCT)
Prior art keywords
load
connecting member
test piece
axis
loading
Prior art date
Application number
PCT/CN2011/078005
Other languages
English (en)
French (fr)
Other versions
WO2012016534A3 (zh
Inventor
黄玉美
杨新刚
惠烨
赵锐
Original Assignee
西安理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安理工大学 filed Critical 西安理工大学
Priority to US13/811,257 priority Critical patent/US9121799B2/en
Publication of WO2012016534A2 publication Critical patent/WO2012016534A2/zh
Publication of WO2012016534A3 publication Critical patent/WO2012016534A3/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/007Subject matter not provided for in other groups of this subclass by applying a load, e.g. for resistance or wear testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2230/00Special operations in a machine tool
    • B23Q2230/002Using the spindle for performing a non machining or non measuring operation, e.g. cleaning, actuating a mechanism

Definitions

  • the invention belongs to a static rigidity detecting technology of a numerically controlled machine tool under the condition of simulated loading at different positions of a processing work space, and particularly relates to a multi-axis linkage displacement loading device and a detection method of static stiffness distribution in a machining center.
  • the static stiffness of the machine changes. Static stiffness changes at different machining locations can be described by stiffness distribution.
  • the static stiffness and static stiffness distribution directly affect the machining accuracy (especially the stiffness distribution directly affects the shape accuracy of the machined surface) and affect the vibration characteristics of the machine tool.
  • the static stiffness and static stiffness distribution of the design scheme can be predicted by analytical methods, and then the design scheme is modified according to the prediction results to improve the stiffness and improve the stiffness distribution.
  • One of the purposes of the static stiffness test of CNC machine tools is to provide data for evaluating the static stiffness of the machine tool; the other is to verify the correctness of the static stiffness and static stiffness distribution prediction method and the modification method of the scheme, and to study and improve the prediction and the modification method. Provide experimental means.
  • the 5-axis machining center with three linear motions of Z-axis, Y-axis and X-axis and two rotary motions of C-axis and A-axis can process various types of complexes through Z, Y, X, C, and A five-axis linkage. surface.
  • the load on the table is transmitted through the workpiece.
  • the table will withstand six cutting loads (three forces Fx, Fy, Fz and three moments Mx, My, Mz).
  • the same principle spindle will also withstand six cutting loads.
  • the machine static stiffness test uses a simulated load instead of a machining load.
  • the static stiffness detecting device and the detecting method of the existing machining centers at home and abroad can only detect the static stiffness of a certain position, and cannot detect the static stiffness distribution.
  • the 5-axis machining center can process various types of complex surfaces through Z, Y, X, C, and A five-axis linkage.
  • the machining point position changes during machining, and the positions of the Z, Y, X, C, and A five-axis components follow.
  • the change, so the static stiffness on one side of the spindle and on the side of the table will change as the position of the workpiece is changed.
  • the change in stiffness directly affects the shape accuracy of the machined surface, so it is necessary to detect the static stiffness distribution of the machining center.
  • the existing machining center static stiffness detecting device and detection method at home and abroad cannot apply six simulated loads to the spindle, so the spindle side cannot fully simulate the cutting load.
  • the workbench and the main shaft are subjected to the relationship between the load and the reverse load. Therefore, although six simulated loads can be applied on one side of the workbench, the cutting load cannot be completely simulated.
  • the static stiffness test of the machine tool uses the simulated load instead of the machining load. The point applies a three-way simulation force, and it is expected that the spindle side and the table side of the machining center can withstand six simulated loads that fully simulate the cutting load.
  • the object of the present invention is to provide a machining center multi-axis linkage displacement loading device, which can solve the static stiffness of the existing machining center static stiffness detecting device which can only detect a certain point, can not detect the static stiffness distribution and cannot completely simulate the cutting load. The problem.
  • Another object of the present invention is to provide a method for performing static stiffness distribution detection using the above-described multi-axis linkage displacement loading device.
  • the technical solution adopted by the present invention is a multi-axis linkage displacement loading device of a machining center, comprising a loaded test piece and a simulated loaded load-bearing component; the loaded test piece is provided with a load-bearing surface; the load-bearing component comprises steel Ball, cover, ball seat, curved plate, force sensor and connecting piece A; one end of the ball seat is fixedly connected with a cover, the steel ball is built in the cover and the ball seat, and a part of the steel ball is located outside the cover; the other end of the ball seat The other end of the curved plate is fixedly connected with one end of the force sensor, and the other end of the force sensor is fixedly connected with the connecting member A.
  • the connecting member A is further provided with a connecting member B;
  • the connecting member A is cylindrical
  • the connecting member B is composed of a left connecting member and a right connecting member;
  • the left connecting member and the right connecting member are respectively arranged by horizontally disposed crossbars and
  • the vertical rod is composed of a vertical rod perpendicular to the crossbar;
  • the left connecting member and the right connecting member are simultaneously fixed on the connecting member A, and are symmetric structures with a central line of the connecting member A as a line of symmetry.
  • the loaded surface of the loaded test piece has an arbitrary shape.
  • the multi-axis linkage displacement loading device is used in various vertical machining centers, horizontal machining centers or turning and milling composite machining centers.
  • the structure of the displacement loading device is:
  • the utility model comprises a loaded test piece and a simulated loading load-bearing component; the loaded test piece is provided with a load-bearing surface; the load-bearing component comprises a steel ball, a cover, a ball seat, a curved plate, a force sensor and a connecting piece A; one end of the ball seat
  • the fixed connection has a cover, the steel ball is built in the cover and the ball seat, and a part of the steel ball is located outside the cover; the other end of the ball seat is fixedly connected with one end of the curved plate, and the other end of the curved plate is fixedly connected with one end of the force sensor, The other end of the force sensor is fixedly connected with the connecting member A;
  • the step of performing static stiffness distribution detection using the above device is
  • the connecting piece A of the loading component is fixedly connected with the shank, the shank is tightened in the taper hole of the main shaft, the main shaft is positioned; the loaded test piece is mounted on the working table; the main shaft, the main shaft housing and the worktable
  • the displacement sensors are respectively mounted on the upper side; then the load-carrying assembly and the loaded test piece are moved to the first set loading position by the multi-axis linkage motion, and the normal of the loaded surface of the loaded test piece at the load-bearing point is Consistent with the direction of the axis of the ball seat L; through the fine adjustment of the multi-axis linkage motion, the load-bearing component applies a simulated load to the load-bearing point on the load-bearing surface of the loaded test piece; the displacement detected by the displacement sensor and the force sensor of the load-carrying component are detected.
  • the simulated load can be used to determine the stiffness of the loading position under simulated load; then the multi-axis linkage motion is used to move the loading assembly and the loaded test piece to the next loading position, and the loaded surface of the loaded test piece is
  • the normal line at the load point coincides with the direction of the axis L of the ball seat, that is, the loading position is changed by multi-axis linkage, and the rigidity of the next loading position is detected; the above process is repeated, and the stiffness of each loading position is sequentially detected, that is, the simulated negative is obtained. Load the stiffness distribution of the turning and milling composite machining center.
  • the structure of the displacement loading device is:
  • the invention comprises a loaded test piece and a simulated loading load carrying component; the loaded test piece is provided with a receiving surface; the carrying component comprises a steel ball, a cover, a ball seat, a curved plate, a force sensor and a connecting piece A; One end is fixedly connected with a cover, the steel ball is built in the cover and the ball seat, and a part of the steel ball is located outside the cover; the other end of the ball seat is fixedly connected with one end of the curved plate, and the other end of the curved plate is fixed to one end of the force sensor Connection, the other end of the force sensor is fixedly connected with the connecting member A; the connecting member A is further provided with a connecting member B; the connecting member A is cylindrical, the connecting member B is composed of a left connecting member and a right connecting member; the left connecting member and the right The connecting members are respectively composed of a horizontally disposed crossbar and a vertical rod disposed on the crossbar and perpendicular to the crossbar; the left connecting member and the right connecting member are simultaneously
  • the step of performing static stiffness distribution detection using the above device is
  • the connecting piece A of the loading component is fixedly connected with the shank, the shank is tightened in the taper hole of the main shaft, and the connecting piece B disposed on the connecting piece A is connected with the main shaft housing through the vertical rod;
  • the components are mounted on the workbench; the displacement sensors are respectively mounted on the main shaft, the main shaft housing and the worktable; then the loading assembly and the loaded test piece are moved to the preset first loading position by multi-axis linkage motion, and The normal of the loaded surface of the loaded test piece at the load-bearing point coincides with the direction of the axis L of the ball seat; through the fine adjustment of the multi-axis linkage motion, the load-bearing component simulates the load-bearing point on the load-bearing surface of the loaded test piece.
  • the load; the displacement detected by the displacement sensor and the simulated load detected by the force sensor of the load-carrying component can determine the stiffness of the loading position under the simulated load; then the multi-axis linkage motion is used to move the loading assembly and the loaded test piece to The next loading position, and the normal of the loaded surface of the loaded test piece at the load-bearing point coincides with the direction of the ball seat axis L, that is, the loading position is changed by multi-axis linkage, and the rigidity of the next loading position is detected; Process, in turn Measured the stiffness of each loading position, i.e., the center of rigidity obtained vertical machining center or a horizontal machining under simulated load distribution.
  • the invention has the beneficial effects that the simulation full (including force and moment) load can be applied; the loading position can be changed by the multi-axis linkage motion, and the static stiffness distribution of the machining center can be detected; the ball seat of the loading component can be changed by design and adjustment In the axial direction, the machining surface shape of various loaded test pieces can be designed to meet the test requirements of different analog load ratios and different number of linkage axes (3 axis to 5 axis linkage).
  • Figure 1 is a schematic diagram of the motion function of a typical 5-axis simultaneous machining center
  • FIG. 2 is a schematic diagram of a multi-axis linkage displacement loading device and a mounting connection thereof according to the present invention
  • FIG. 3 is a schematic structural view of a loading assembly of the multi-axis linkage displacement loading device of the present invention.
  • FIG. 4 is a schematic structural view of a multi-axis linkage displacement loading device according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural view of a multi-axis linkage displacement loading device according to Embodiment 2 of the present invention.
  • Figure 1 shows a 5-axis machining center with three linear motions of Z-axis, Y-axis and X-axis and two rotary motions of C-axis and A-axis.
  • the 5-axis machining center is mainly composed of spindle component 7, A-axis component 8, and Z-axis component.
  • the X-axis member 10, the column beam member 11, the C-axis member 12, the Y-axis member 13, the bed member 14, and the table 3, etc., n is a spindle rotation motion, is a cutting motion, does not participate in linkage, and serves as a bearing object.
  • the end effector is the main shaft 5 and the worktable 3.
  • the main shaft component 7 includes a shank 4, a main shaft 5 and a main shaft housing 6 (Fig. 2).
  • the shank 4 side performs A, Z, and X axis movements, and the workpiece is mounted at work. On the stage 3, the workpiece side completes the Y and C axis movements.
  • the present invention provides a multi-axis linkage displacement loading device for a machining center, comprising a loaded test piece 1 and a simulated loaded load-carrying assembly 2; the loaded test piece 1 is provided with a load-bearing surface, subject to The carrier surface can be designed in any shape; as shown in Figures 3-5, the loading assembly 2 includes a steel ball 2-1, a cover 2-2, a ball seat 2-3, a curved plate 2-4, a force sensor 2-5, and Connector A 2-6; one end of the ball seat 2-3 is fixedly connected with a cover 2-2, the steel ball 2-1 is built in the cover 2-2 and the ball seat 2-3, and a part of the steel ball 2-1 is located in the cover 2 2; the other end of the ball seat 2-3 is fixedly connected with one end of the curved plate 2-4, and the other end of the curved plate 2-4 is fixedly connected with one end of the force sensor 2-5, and the other end of the force sensor 2-5 is The connector A2-6 is fixedly connected
  • the connecting member A2-6 When the displacement loading device of the present invention is used in a turning and milling combined machining center, the connecting member A2-6 is fixedly connected with the shank 4, and the shank 4 is tightened in the tapered hole of the main shaft 5, and the spindle is positioned to be loaded.
  • the piece 1 is mounted on the table 3 to detect the static stiffness distribution of the machining center.
  • the connecting members B2-7 are further disposed on the connecting member A2-6. As shown in FIGS.
  • the connecting member A2-6 has a cylindrical shape
  • the connecting member B2-7 is composed of a left connecting member and a right connecting member
  • the left connecting member and the right connecting member are respectively provided by horizontally disposed crossbars 2 -7-1 and the vertical rod 2-7-2 disposed on the crossbar 2-7-1 and perpendicular to the crossbar 2-7-1
  • the left connecting member and the right connecting member passing the crossbar 2-7-1 It is fixed on the connecting member A2-6 and has a symmetrical structure with a central line of the connecting member A2-6 as a line of symmetry.
  • the connecting piece A2-6 is fixedly connected with the shank 4, the shank 4 is tightened in the taper hole of the main shaft 5, and the connecting piece B2-7 disposed on the connecting piece A2-6 is connected with the vertical rod 2-7-2
  • the spindle housing 6 is connected, and the loaded test piece 1 is mounted on the table 3 to detect the static stiffness distribution of the machining center.
  • the axis L of the ball seat 2-3 is designed to have ⁇ y and ⁇ z inclination angles according to the simulated load ratio, and the load surface of the steel ball 2-1 and the loaded test piece 1 is Point contact, the simulated load at the point contact can be decomposed into three component forces Fx, Fy, Fz, the inclination angle ⁇ y and ⁇ z are different, then the ratio between Fx, Fy, Fz is different, Fx, Fy, Fz equivalent The moments Mx, My, Mz to the table and the spindle are also different.
  • the displacement loading device of the present invention is applied to a 5-axis linkage vertical machining center or a horizontal machining center, and the method for detecting the static stiffness distribution of the machining center is as follows: as shown in FIG. 2 and FIG. 4, the connection of the loading component 2 is first performed.
  • the piece A2-6 is fixedly connected to the shank 4, the shank 4 is tightened in the taper hole of the main shaft 5, and the connecting piece B2-7 provided on the connecting piece A2-6 passes through the vertical rod 2-7-2 and the main shaft housing 6 connection; mounting the loaded test piece 1 on the worktable 3; installing a displacement sensor, the displacement sensor can be installed multiple, such as mounted on the main shaft 5, the main shaft housing 6 and the worktable 3; then through Z, Y, X , C, A five-axis linkage motion moves the loading assembly 2 and the loaded test piece 1 to a preset first loading position, and causes the normal of the loaded surface of the loaded test piece 1 at the loading point and The axis of the ball is aligned in the L direction; the fine adjustment of the Z, Y, X, C, and A axis motions, the load carrying assembly 2 applies a simulated load to the loaded point on the loaded surface of the loaded test piece 1; the displacement detected by the displacement sensor And the simulated load detected by the force sensor 2-5 of the load
  • the displacement loading device of the present invention is used in a 5-axis linkage turning-milling combined machining center.
  • the only difference from the first embodiment is that the positioning function during spindle turning can be utilized, so that the connecting member B2-7 is not required, and the multi-axis linkage is changed.
  • the position loading device only needs to fixedly connect the connecting member A2-6 of the loading assembly 2 with the shank 4, and the shank 4 is tightened in the tapered hole of the main shaft 5 to mount the loaded test piece 1 at The working table 3 can be used.
  • the method for detecting the static stiffness distribution of the machining center is the same as that of the first embodiment, and the loading position is also changed by the five-axis linkage of Z, Y, X, C, and A, and will not be described herein.
  • the displacement loading device of the present invention is applied to the X, Y, Z, C four-axis linkage machining center (the A-axis in the machining center shown in FIG. 1), and the connection between the loading assembly 2 and the machining center is the same as in the first embodiment. The difference is that the loading position is changed by X, Y, Z, C four-axis linkage.
  • the shape of the loaded surface of the loaded test piece 1 can be designed to be simpler.
  • the rotary axis whose axis of the rotary axis is parallel to the X axis is referred to as the A axis; the rotary axis whose axis of the rotary axis is parallel to the Y axis is referred to as the B axis; and the axis of rotation of the axis of the rotary axis parallel to the Z axis is referred to as the C axis.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种加工中心多轴联动变位加载装置,包括受载试件和施载组件,施载组件由钢球、盖、球座、弯板、力传感器、连接件A及连接件B组成。连接件A与加工中心的刀柄固定连接,刀柄拉紧在主轴的锥孔内,同时连接件A通过连接件B与主轴壳体连接。利用该装置进行静刚度分布的检测方法,通过多轴联动运动将施载组件和受载试件运动到预先设置的加载位置,并使受载试件的受载面在受载点处的法线与球座轴线一致;由安装在主轴、主轴壳体及工作台上的位移传感器检测的位移和施载组件的力传感器检测的模拟载荷可求出该加载位置的模拟负载下的刚度;通过多轴联动变更加载位置,依次重复上述过程,即得到模拟负载下的刚度分布。

Description

加工中心多轴联动变位加载装置及静刚度分布的检测方法 技术领域
本发明属于在加工作业空间的不同位置进行模拟加载条件下的数控机床静刚度检测技术,具体涉及一种加工中心多轴联动变位加载装置及静刚度分布的检测方法。
背景技术
在机床加工作业空间,随着加工点位置的变化使机床构件承载位置及载荷大小(包括力和力矩)发生变化,机床静刚度发生变化。不同加工位置的静刚度变化可以用刚度分布描述。静刚度的大小及静刚度分布直接影响加工精度(特别是刚度分布直接影响加工表面的形状精度),同时影响机床的振动特性。
在设计阶段可以用解析的方法预测设计方案的静刚度及静刚度分布情况,然后根据预测结果进行设计方案修改,从而提高刚度及改善刚度分布。
数控机床静刚度检测试验的用途之一是为评价机床静刚度提供数据;另一用途是考核验证静刚度及静刚度分布预测方法和方案修改方法的正确性,为研究和改进预测及方案修改方法提供试验手段。
对于多轴联动数控机床,不同的数控机床,加工表面形成原理不同,其进给系统伺服轴的运动功能不同,保持各个数控轴严格运动关系的联动轴个数及联动关系不同;各种多轴联动数控机床所承受的载荷性质、不同加工位置载荷的变化规律及各个方向的载荷之间的比例不同。因此各种多轴联动数控机床模拟加载装置及对应的检测方法不同。如具有Z轴、Y轴及X轴三个直线运动和C轴、A轴两个回转运动的5轴加工中心,通过Z、Y、X、C、A五轴联动可以加工各种类型的复杂表面。实际加工时在加工点有三向切削力,工作台的载荷是通过工件传递过来的,工作台将会承受六项切削载荷(三个力Fx,Fy,Fz和三个力矩Mx,My,Mz);同理主轴也将会承受六项切削载荷。
机床静刚度试验是采用模拟载荷代替切削加工载荷。国内外现有的加工中心静刚度检测装置及检测方法只能检测一个确定位置的静刚度,不能检测静刚度分布。5轴加工中心通过Z、Y、X、C、A五轴联动可以加工各种类型的复杂表面,加工时加工点位置在变化,Z、Y、X、C、A五轴部件的位置随之变化,因此主轴一侧和工作台一侧的静刚度都将随着工件加工点位置变化而将变化。刚度变化直接影响加工表面的形状精度,因此需要检测加工中心的静刚度分布。
国内外现有的加工中心静刚度检测装置及检测方法不能对主轴施加六项模拟载荷,因此主轴一侧不能完全模拟切削载荷。工作台与主轴承受的是载荷与反载荷的关系,故工作台一侧虽然可以施加六项模拟载荷,但不能完全模拟切削载荷,机床静刚度试验是采用模拟载荷代替切削加工载荷的,在加载点施加三向模拟力,期望加工中心的主轴一侧和工作台一侧都能够承受完全模拟切削载荷的六项模拟载荷。
技术问题
本发明的目的是提供一种加工中心多轴联动变位加载装置,以解决现有的加工中心静刚度检测装置只能检测一个确定点的静刚度,不能检测静刚度分布及不能完全模拟切削载荷的问题。
本发明的另一个目的是提供利用上述多轴联动变位加载装置进行静刚度分布检测的方法。
技术解决方案
本发明所采用的技术方案为,一种加工中心多轴联动变位加载装置,包括受载试件和模拟加载的施载组件;受载试件上设置有受载面;施载组件包括钢球、盖、球座、弯板、力传感器和连接件A;球座的一端固定连接有盖,钢球内置在盖和球座里,且钢球的一部分位于盖外部;球座的另一端与弯板的一端固定连接,弯板的另一端与力传感器的一端固定连接,力传感器的另一端与连接件A固定连接。
其中,连接件A上还设置有连接件B;连接件A为圆柱形,连接件B由左连接构件和右连接构件组成;左连接构件和右连接构件分别由水平设置的横杆和设置在横杆上且与横杆垂直的竖杆组成;左连接构件和右连接构件同时固定在连接件A上,且是以连接件A中轴线为对称线的对称结构。
其中,受载试件的受载面为任意形状。
另外,该多轴联动变位加载装置用于各种立式加工中心、卧式加工中心或车铣复合加工中心。
本发明所采用的另一个技术方案为,当该变位加载装置用于车铣复合加工中心检测静刚度分布时,该变位加载装置的结构是:
包括受载试件和模拟加载的施载组件;受载试件上设置有受载面;施载组件包括钢球、盖、球座、弯板、力传感器和连接件A;球座的一端固定连接有盖,钢球内置在盖和球座里,且钢球的一部分位于盖外部;球座的另一端与弯板的一端固定连接,弯板的另一端与力传感器的一端固定连接,力传感器的另一端与连接件A固定连接;
利用上述装置,进行静刚度分布检测的步骤是,
先将施载组件的连接件A与刀柄固定连接,刀柄拉紧在主轴的锥孔内,主轴定位;再将受载试件安装在工作台上;在主轴、主轴壳体及工作台上分别安装位移传感器;然后通过多轴联动运动将施载组件和受载试件运动到预先设置的第1个加载位置,并使受载试件的受载面在受载点处的法线与球座轴线L方向一致;通过多轴联动运动的微调,施载组件对受载试件受载面上的受载点施加模拟载荷;由位移传感器检测的位移和施载组件的力传感器检测的模拟载荷可求出该加载位置在模拟负载下的刚度;然后再通过多轴联动运动将施载组件和受载试件运动到下一个加载位置,并使受载试件的受载面在受载点处的法线与球座轴线L方向一致,即通过多轴联动变更加载位置,再检测下一个加载位置的刚度;重复上述过程,依次检测各个加载位置的刚度,即得到模拟负载下车铣复合加工中心的刚度分布。
本发明所采用的还有一个技术方案为,当该变位加载装置用于立式加工中心、卧式加工中心检测静刚度分布时,该变位加载装置的结构是:
包括受载试件和模拟加载的施载组件;受载试件上设置有受载面;所述施载组件包括钢球、盖、球座、弯板、力传感器和连接件A;球座的一端固定连接有盖,钢球内置在盖和球座里,且钢球的一部分位于盖外部;球座的另一端与弯板的一端固定连接,弯板的另一端与力传感器的一端固定连接,力传感器的另一端与连接件A固定连接;连接件A上还设置有连接件B;连接件A为圆柱形,连接件B由左连接构件和右连接构件组成;左连接构件和右连接构件分别由水平设置的横杆和设置在横杆上且与横杆垂直的竖杆组成;左连接构件和右连接构件同时固定在连接件A上,且是以连接件A中轴线为对称线的对称结构;
利用上述装置,进行静刚度分布检测的步骤是,
先将施载组件的连接件A与刀柄固定连接,刀柄拉紧在主轴的锥孔内,设置在连接件A上的连接件B通过竖杆与主轴壳体连接;再将受载试件安装在工作台上;在主轴、主轴壳体及工作台上分别安装位移传感器;然后通过多轴联动运动将施载组件和受载试件运动到预先设置的第1个加载位置,并使受载试件的受载面在受载点处的法线与球座轴线L方向一致;通过多轴联动运动的微调,施载组件对受载试件受载面上的受载点施加模拟载荷;由位移传感器检测的位移和施载组件的力传感器检测的模拟载荷可求出该加载位置在模拟负载下的刚度;然后再通过多轴联动运动将施载组件和受载试件运动到下一个加载位置,并使受载试件的受载面在受载点处的法线与球座轴线L方向一致,即通过多轴联动变更加载位置,检测下一个加载位置的刚度;重复上述过程,依次检测各个加载位置的刚度,即得到模拟负载下的立式加工中心或卧式加工中心刚度分布。
有益效果
本发明的有益效果是:可以施加模拟全(包括力及力矩)载荷;可通过多轴联动运动变换加载位置,能够检测加工中心的静刚度分布;可以通过设计及调整改变施载组件的球座轴线方向,可以设计各种受载试件的加工表面形状,从而满足不同模拟载荷比例和不同联动轴数(可3轴至5轴联动)的试验要求。
附图说明
图1为典型的5轴联动加工中心的运动功能示意图;
图2是本发明多轴联动变位加载装置及安装连接示意图;
图3是本发明多轴联动变位加载装置的施载组件结构示意图;
图4是本发明实施例1的多轴联动变位加载装置结构示意图;
图5是本发明实施例2的多轴联动变位加载装置结构示意图;
图中,1:受载试件,2:施载组件,3:工作台,4:刀柄,5:主轴,6:主轴壳体,2-1:钢球,2-2:盖,2-3:球座,2-4:弯板,2-5:力传感器,2-6:连接件A,2-7:连接件B,2-7-1:横杆,2-7-2:竖杆,7:主轴部件,8:A轴部件,9:Z轴部件,10:X轴部件,11:立柱横梁部件,12:C轴部件,13:Y轴部件,14:床身部件,L为球座轴线。
本发明的实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
图1为具有Z轴、Y轴及X轴三个直线运动和C轴、A轴两个回转运动的5轴加工中心,5轴加工中心主要由主轴部件7、A轴部件8、Z轴部件9、X轴部件10、立柱横梁部件11、C轴部件12、Y轴部件13、床身部件14及工作台3等组成,n为主轴回转运动,是切削运动,不参与联动,作为承载对象的末端执行器为主轴5和工作台3,主轴部件7包括刀柄4、主轴5和主轴壳体6(如图2),刀柄4一方完成A、Z、X轴运动,工件安装在工作台3上,工件一方完成Y、C轴运动。
如图2所示,本发明提供了一种加工中心多轴联动变位加载装置,包括受载试件1和模拟加载的施载组件2;受载试件1上设置有受载面,受载面可设计成任意形状;如图3-5所示,施载组件2包括钢球2-1、盖2-2、球座2-3、弯板2-4、力传感器2-5和连接件A 2-6;球座2-3的一端固定连接有盖2-2,钢球2-1内置在盖2-2和球座2-3里,且钢球2-1的一部分位于盖2-2外;球座2-3的另一端与弯板2-4的一端固定连接,弯板2-4的另一端与力传感器2-5的一端固定连接,力传感器2-5的另一端与连接件A2-6固定连接。当将本发明变位加载装置用于车铣复合加工中心时,将连接件A2-6与刀柄4固定连接,刀柄4拉紧在主轴5的锥孔内,主轴定位,将受载试件1安装在工作台3上,即可对加工中心的静刚度分布进行检测。当将本发明变位加载装置用于各种立式加工中心和卧式加工中心时,在图5所示变位加载装置的基础上,在连接件A2-6上再设置连接件B2-7,如图3和4所示:连接件A2-6的形状为圆柱形,连接件B2-7由左连接构件和右连接构件组成;左连接构件和右连接构件分别由水平设置的横杆2-7-1和设置在横杆2-7-1上且与横杆2-7-1垂直的竖杆2-7-2组成;左连接构件和右连接构件通过横杆2-7-1固定在连接件A2-6上,且是以连接件A2-6中轴线为对称线的对称结构。将连接件A2-6与刀柄4固定连接,刀柄4拉紧在主轴5的锥孔内,设置在连接件A2-6上的连接件B2-7与通过竖杆2-7-2与主轴壳体6连接,将受载试件1安装在工作台3上,即可对加工中心的静刚度分布进行检测。
如图3、4和5,根据模拟载荷比例设计球座2-3的轴线L与Y、Z轴成αy和αz倾角,钢球2-1与受载试件1的受载面为点接触,在点接触处的模拟载荷可分解为三个分力Fx,Fy,Fz,倾角αy和αz不同时则Fx,Fy,Fz之间的比例不同,Fx,Fy,Fz等效到工作台和主轴处的力矩Mx,My,Mz也不同。
实施例1
将本发明变位加载装置用于5轴联动立式加工中心或卧式加工中心,其检测加工中心静刚度分布的方法为:如图2和图4所示,先将施载组件2的连接件A2-6与刀柄4固定连接,刀柄4拉紧在主轴5的锥孔内,设置在连接件A2-6上的连接件B2-7通过竖杆2-7-2与主轴壳体6连接;将受载试件1安装在工作台3上;安装位移传感器,位移传感器可安装多个,如安装在主轴5、主轴壳体6及工作台3上;然后通过Z、Y、X、C、A五轴联动运动将施载组件2和受载试件1运动到预先设置的第1个加载位置,并使受载试件1的受载面在受载点处的法线与球座轴线L方向一致;通过Z、Y、X、C、A轴运动的微调,施载组件2对受载试件1受载面上的受载点施加模拟载荷;由位移传感器检测的位移和施载组件2的力传感器2-5检测的模拟载荷可求出该加载位置的模拟负载下的刚度;然后再通过Z、Y、X、C、A五轴联动运动将施载组件2和受载试件1运动到下一个加载位置,并使受载试件1的受载面在受载点处的法线与球座2-3轴线L方向一致,即通过五轴联动变更加载位置,检测下一个加载位置的刚度;依次重复上述过程,即可得到模拟负载下的刚度分布。
实施例2
将本发明变位加载装置用于5轴联动车铣复合加工中心,同实施例1唯一不同的是,可利用主轴车削时的定位功能,因此不需要连接件B2-7,其多轴联动变位加载装置如图5所示,只需要将施载组件2的连接件A2-6与刀柄4固定连接,刀柄4拉紧在主轴5的锥孔内,将受载试件1安装在工作台3上即可,其检测加工中心静刚度分布的方法与实施例1相同,也是通过Z、Y、X、C、A五轴联动变更加载位置,在此不做赘述。
实施例3
将本发明变位加载装置用于X、Y、Z、C四轴联动加工中心(如图1所示的加工中心中无A轴),施载组件2与加工中心的连接同实施例1,不同的是通过X、Y、Z、C四轴联动变更加载位置。受载试件1的受载面形状可以设计得简单些。
其中,回转轴轴线平行于X轴的回转轴称为A轴;回转轴轴线平行于Y轴的回转轴称为B轴;回转轴轴线平行于Z轴的回转轴称为C轴。

Claims (7)

  1. 一种加工中心多轴联动变位加载装置,其特征在于:包括受载试件(1)和模拟加载的施载组件(2);所述受载试件(1)上设置有受载面;所述施载组件(2)包括钢球(2-1)、盖(2-2)、球座(2-3)、弯板(2-4)、力传感器(2-5)和连接件A(2-6);球座(2-3)的一端固定连接有盖(2-2),钢球(2-1)内置在盖(2-2)和球座(2-3)里,且钢球(2-1)的一部分位于盖(2-2)外部;球座(2-3)的另一端与弯板(2-4)的一端固定连接,弯板(2-4)的另一端与力传感器(2-5)的一端固定连接,力传感器(2-5)的另一端与连接件A(2-6)固定连接。
  2. 根据权利要求1所述的装置,其特征在于:所述连接件A(2-6)上还设置有连接件B(2-7);连接件A(2-6)为圆柱形,连接件B(2-7)由左连接构件和右连接构件组成;左连接构件和右连接构件分别由水平设置的横杆(2-7-1)和设置在横杆(2-7-1)上且与横杆(2-7-1)垂直的竖杆(2-7-2)组成;左连接构件和右连接构件同时固定在连接件A(2-6)上,且是以连接件A(2-6)中轴线为对称线的对称结构。
  3. 根据权利要求1所述的装置,其特征在于:所述受载试件(1)的受载面为任意形状。
  4. 根据权利要求1所述的装置,其特征在于:该多轴联动变位加载装置用于车铣复合加工中心。
  5. 根据权利要求2所述的装置,其特征在于:该多轴联动变位加载装置用于立式加工中心、卧式加工中心。
  6. 一种利用多轴联动变位加载装置进行静刚度分布的检测方法,其特征在于:当该变位加载装置用于车铣复合加工中心检测静刚度分布时,该变位加载装置的结构是:
    包括受载试件(1)和模拟加载的施载组件(2);所述受载试件(1)上设置有受载面;所述施载组件(2)包括钢球(2-1)、盖(2-2)、球座(2-3)、弯板(2-4)、力传感器(2-5)和连接件A(2-6);球座(2-3)的一端固定连接有盖(2-2),钢球(2-1)内置在盖(2-2)和球座(2-3)里,且钢球(2-1)的一部分位于盖(2-2)外部;球座(2-3)的另一端与弯板(2-4)的一端固定连接,弯板(2-4)的另一端与力传感器(2-5)的一端固定连接,力传感器(2-5)的另一端与连接件A(2-6)固定连接;
    利用上述装置,进行静刚度分布检测的步骤是,
    先将施载组件(2)的连接件A(2-6)与刀柄(4)固定连接,刀柄(4)拉紧在主轴(5)的锥孔内,主轴定位;再将受载试件(1)安装在工作台(3)上;在主轴(5)、主轴壳体(6)及工作台(3)上分别安装位移传感器;然后通过多轴联动运动将施载组件(2)和受载试件(1)运动到预先设置的第1个加载位置,并使受载试件(1)的受载面在受载点处的法线与球座(2-3)轴线L方向一致;通过多轴联动运动的微调,施载组件(2)对受载试件(1)受载面上的受载点施加模拟载荷;由位移传感器检测的位移和施载组件(2)的力传感器(2-5)检测的模拟载荷可求出该加载位置在模拟负载下的刚度;然后再通过多轴联动运动将施载组件(2)和受载试件(1)运动到下一个加载位置,并使受载试件(1)的受载面在受载点处的法线与球座(2-3)轴线L方向一致,即通过多轴联动变更加载位置,再检测下一个加载位置的刚度;重复上述过程,依次检测各个加载位置的刚度,即得到模拟负载下车铣复合加工中心的刚度分布。
  7. 一种利用多轴联动变位加载装置进行静刚度分布的检测方法,其特征在于:当该变位加载装置用于立式加工中心、卧式加工中心检测静刚度分布时,该变位加载装置的结构是:
    包括受载试件(1)和模拟加载的施载组件(2);所述受载试件(1)上设置有受载面;所述施载组件(2)包括钢球(2-1)、盖(2-2)、球座(2-3)、弯板(2-4)、力传感器(2-5)和连接件A(2-6);球座(2-3)的一端固定连接有盖(2-2),钢球(2-1)内置在盖(2-2)和球座(2-3)里,且钢球(2-1)的一部分位于盖(2-2)外部;球座(2-3)的另一端与弯板(2-4)的一端固定连接,弯板(2-4)的另一端与力传感器(2-5)的一端固定连接,力传感器(2-5)的另一端与连接件A(2-6)固定连接;连接件A(2-6)上还设置有连接件B(2-7);连接件A(2-6)为圆柱形,连接件B(2-7)由左连接构件和右连接构件组成;左连接构件和右连接构件分别由水平设置的横杆(2-7-1)和设置在横杆(2-7-1)上且与横杆(2-7-1)垂直的竖杆(2-7-2)组成;左连接构件和右连接构件同时固定在连接件A(2-6)上,且是以连接件A(2-6)中轴线为对称线的对称结构;
    利用上述装置,进行静刚度分布检测的步骤是,
    先将施载组件(2)的连接件A(2-6)与刀柄(4)固定连接,刀柄(4)拉紧在主轴(5)的锥孔内,设置在连接件A(2-6)上的连接件B(2-7)通过竖杆(2-7-2)与主轴壳体(6)连接;再将受载试件(1)安装在工作台(3)上;在主轴(5)、主轴壳体(6)及工作台(3)上分别安装位移传感器;然后通过多轴联动运动将施载组件(2)和受载试件(1)运动到预先设置的第1个加载位置,并使受载试件(1)的受载面在受载点处的法线与球座(2-3)轴线L方向一致;通过多轴联动运动的微调,施载组件(2)对受载试件(1)受载面上的受载点施加模拟载荷;由位移传感器检测的位移和施载组件(2)的力传感器(2-5)检测的模拟载荷可求出该加载位置在模拟负载下的刚度;然后再通过多轴联动运动将施载组件(2)和受载试件(1)运动到下一个加载位置,并使受载试件(1)的受载面在受载点处的法线与球座(2-3)轴线L方向一致,即通过多轴联动变更加载位置,检测下一个加载位置的刚度;重复上述过程,依次检测各个加载位置的刚度,即得到模拟负载下立式加工中心或卧式加工中心的刚度分布。
PCT/CN2011/078005 2010-08-06 2011-08-04 加工中心多轴联动变位加载装置及静刚度分布的检测方法 WO2012016534A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/811,257 US9121799B2 (en) 2010-08-06 2011-08-04 Multi-axle joint shifting loading apparatus for processing center and detection method for static stiffness distribution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010246643.6 2010-08-06
CN2010102466436A CN101915679B (zh) 2010-08-06 2010-08-06 加工中心多轴联动变位加载装置及静刚度分布的检测方法

Publications (2)

Publication Number Publication Date
WO2012016534A2 true WO2012016534A2 (zh) 2012-02-09
WO2012016534A3 WO2012016534A3 (zh) 2013-05-02

Family

ID=43323241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078005 WO2012016534A2 (zh) 2010-08-06 2011-08-04 加工中心多轴联动变位加载装置及静刚度分布的检测方法

Country Status (3)

Country Link
US (1) US9121799B2 (zh)
CN (1) CN101915679B (zh)
WO (1) WO2012016534A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106768748A (zh) * 2017-02-07 2017-05-31 河北工业大学 一种内置式机床主轴轴向动刚度测试装置及测试方法
CN108562430A (zh) * 2018-06-19 2018-09-21 中冶建筑研究总院有限公司 一种栏杆推力的现场试验系统和方法
CN108572076A (zh) * 2018-07-12 2018-09-25 中国计量大学 一种静压气浮主轴性能检测装置及其使用方法
CN109986367A (zh) * 2019-05-15 2019-07-09 南京艾提瑞精密机械有限公司 一种用于测量超精密机床气浮垫刚度的装置
CN112683567A (zh) * 2021-01-07 2021-04-20 太原理工大学 一种类截割头式井下掘进面环境模拟装置

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915679B (zh) * 2010-08-06 2011-12-14 西安理工大学 加工中心多轴联动变位加载装置及静刚度分布的检测方法
CN101947749B (zh) * 2010-09-14 2011-11-16 西安理工大学 一种变位自转超声波振动平面双面研磨数控机床
CN102147320B (zh) * 2011-02-28 2012-06-13 西安理工大学 回转液压静压导轨轴向刚度和径向刚度试验方法及装置
CN102410923B (zh) * 2011-08-09 2013-12-04 西安理工大学 圆柱配合结合面的刚度及非线性关系试验装置及方法
CN102829988B (zh) * 2012-08-13 2015-04-15 清华大学 一种在数控移动工作台的任意位置垂直连续加载试验装置
CN103926066A (zh) * 2014-04-11 2014-07-16 北京工业大学 一种测量刀柄-主轴结合部静刚度的实验装置
CN104034523B (zh) * 2014-06-23 2016-06-08 沈阳机床(集团)有限责任公司 用于高速主轴单元多角度铣削力加载的机械装置
CN104385058B (zh) * 2014-10-22 2016-09-14 上海理工大学 数控机床静刚度快速检测装置及方法
CN104697863A (zh) * 2015-01-05 2015-06-10 武汉华威专用汽车检测有限责任公司 车内饰件的刚性试验装置及其试验方法
CN104741971B (zh) * 2015-03-09 2017-01-04 西安理工大学 主轴连续运转状态下整机相对刚度检测装置及方法
RU2619424C2 (ru) * 2015-04-23 2017-05-15 Ринат Габдулхакович Кудояров Способ определения жесткости металлообрабатывающего станка с чпу
JP6637687B2 (ja) * 2015-07-01 2020-01-29 オークマ株式会社 工作機械の主軸負荷モニタ装置
CN105252342B (zh) * 2015-10-26 2018-03-02 电子科技大学 检测五轴数控机床曲面加工能力的检测试件及检测方法
DE102016013890A1 (de) * 2016-11-21 2018-05-24 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Verfahren zur Bestimmung der Achslast auf Linear- und Rundachsen
CN106525619B (zh) * 2016-12-01 2023-07-25 辽宁省交通规划设计院有限责任公司 轮式载荷桥梁与路面疲劳试验系统
CN106863326B (zh) * 2017-03-17 2023-03-24 中国东方电气集团有限公司 基于智能末端执行器的柔性装配系统
CN108061647B (zh) * 2017-12-18 2021-05-04 西安航天动力测控技术研究所 一种用于静力试验的多功能自平衡平台
CN108168807A (zh) * 2017-12-22 2018-06-15 电子科技大学 一种五轴机床变刀具姿态下的静刚度测试装置
DE102018206708A1 (de) * 2018-05-02 2019-11-07 MTU Aero Engines AG Belastungserfassung eines bearbeiteten Werkstücks auf Grundlage einer Simulation
CN109443216B (zh) * 2018-12-27 2023-11-28 上海机动车检测认证技术研究中心有限公司 一种扫描测试用零件定位装置
CN109676200B (zh) * 2019-01-18 2021-05-25 西安理工大学 一种曲面加工机床结构及其运动控制模型
CN109664112B (zh) * 2019-01-18 2021-02-12 西安理工大学 一种双工位曲面加工机床结构
CN109799096A (zh) * 2019-03-22 2019-05-24 上汽通用五菱汽车股份有限公司 一种汽车加油口盖垂直刚度的检测装置
CN110095276B (zh) * 2019-06-09 2020-10-16 吉林大学 便携式动力刀架全工况加载试验装置
CN110608911A (zh) * 2019-09-29 2019-12-24 科德数控股份有限公司 一种五轴机床加载测试装置和方法
CN112264837B (zh) * 2020-09-16 2022-09-02 天津大学 一种摇篮式五轴数控机床摆台静刚度检测装置及其方法
CN112798314B (zh) * 2021-01-25 2022-10-28 北京工业大学 一种专用数控摆角铣头的动静热特性测试自动可调姿工装
CN113533088B (zh) * 2021-07-30 2023-08-18 中国电建集团成都勘测设计研究院有限公司 一种应变控制式现场直剪试验设备及方法
CN114062180B (zh) * 2021-10-25 2023-09-19 北京工业大学 一种两交叉抛物柱体切向刚度测量装置
CN114136618A (zh) * 2021-11-30 2022-03-04 中国航发哈尔滨轴承有限公司 一种外圈异型结构轴承刚度测量工装及方法
CN114264461B (zh) * 2021-12-15 2023-12-26 吉林大学 一种旋转式托盘交换器可靠性试验装置及方法
CN114295401B (zh) * 2021-12-31 2022-11-01 北京空间机电研究所 航天器舱体推进模块静力试验桁架式结构加载装置及方法
CN115855477A (zh) * 2023-02-27 2023-03-28 珞石(北京)科技有限公司 用于机器人关节性能测试的装置及测试方法
CN116577046B (zh) * 2023-07-13 2023-09-08 常州捷乾机电科技有限公司 一种机床电主轴静刚度测试装置
CN116754380B (zh) * 2023-08-17 2023-10-31 国家机床质量监督检验中心 一种主轴单元载荷能力测试装置以及测试方法
CN117387929B (zh) * 2023-12-13 2024-02-09 宁波天控五轴数控技术有限公司 一种a/c摆头夹紧力静动态检测装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1206010A1 (ru) * 1984-01-04 1986-01-23 Волгоградский Ордена Трудового Красного Знамени Политехнический Институт Устройство дл определени жесткости станка
SU1335400A1 (ru) * 1986-04-03 1987-09-07 Уфимский авиационный институт им.Серго Орджоникидзе Способ изменени жесткости узлов металлообрабатывающего станка
CN1161267A (zh) * 1995-09-14 1997-10-08 邵文远 复合加工中心
JP2000202737A (ja) * 1999-01-13 2000-07-25 Toshiba Mach Co Ltd 空気静圧スピンドルの運転中の静剛性および動圧効果測定装置
US6526837B1 (en) * 2000-02-24 2003-03-04 Mts Systems Corporation Screw action grip with adjustable stiffness and alignment guides
US20050081360A1 (en) * 2001-01-15 2005-04-21 Newfrey Llc Method for riveting or piercing and a device for carrying out the method
CN101000283A (zh) * 2006-12-22 2007-07-18 江苏大学 Hsk工具系统性能的测试方法及其装置
CN201037803Y (zh) * 2007-03-28 2008-03-19 清华大学 滚动直线导轨副静刚度实验平台
CN101193727A (zh) * 2005-05-16 2008-06-04 斯塔拉格赫克特股份公司 在分开的滑座上具有两个夹紧位置的机床
WO2009015789A1 (de) * 2007-07-27 2009-02-05 Matec Maschinenbau Gmbh Numerisch gesteuerte werkzeugmaschine
CN101480782A (zh) * 2009-01-21 2009-07-15 东北大学 一种基于万向工作头的多功能数控机床
CN101852671A (zh) * 2010-06-25 2010-10-06 西安理工大学 数控车床自动变位模拟加载装置及静刚度分布检测方法
CN101915679A (zh) * 2010-08-06 2010-12-15 西安理工大学 加工中心多轴联动变位加载装置及静刚度分布的检测方法
CN101941102A (zh) * 2010-08-27 2011-01-12 西安理工大学 成型砂轮磨齿机变位模拟加载装置及刚度分布检测方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559600A (en) * 1983-02-28 1985-12-17 Battelle Memorial Institute Monitoring machine tool conditions by measuring a force component and a vibration component at a fundamental natural frequency
US6145370A (en) * 1998-12-23 2000-11-14 Evans; Paul R. Loading mechanism for machines adapted to test material wear and lubrication properties
WO2002057732A2 (en) * 2001-01-19 2002-07-25 Massachusetts Institute Of Technology Characterization of compliant structure force-displacement behaviour
DE102004051504A1 (de) * 2004-10-21 2006-05-18 Zf Friedrichshafen Ag Kraftmesssystem mit zumindest einem Kugelgelenk
DE102005027826B3 (de) * 2005-06-15 2007-01-18 Zf Friedrichshafen Ag Kugelgelenk mit Sensoreinrichtung und Verfahren zur Verschleißmessung
DE102005030971B4 (de) * 2005-06-30 2016-01-21 Zf Friedrichshafen Ag Kugelgelenk mit Sensoreinrichtung, Verfahren zur Belastungsmessung und Verfahren zur Verschleißmessung
CN100465609C (zh) * 2006-12-30 2009-03-04 北京航空航天大学 数控机床加工动力学特性测试分析系统
KR100786526B1 (ko) * 2007-01-15 2007-12-17 창원대학교 산학협력단 초고속 주축계의 정강성 측정장치
EP2615325B1 (de) * 2012-01-16 2019-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aktives Lager
JP5949175B2 (ja) * 2012-05-31 2016-07-06 株式会社アドヴィックス 剛性測定方法および装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1206010A1 (ru) * 1984-01-04 1986-01-23 Волгоградский Ордена Трудового Красного Знамени Политехнический Институт Устройство дл определени жесткости станка
SU1335400A1 (ru) * 1986-04-03 1987-09-07 Уфимский авиационный институт им.Серго Орджоникидзе Способ изменени жесткости узлов металлообрабатывающего станка
CN1161267A (zh) * 1995-09-14 1997-10-08 邵文远 复合加工中心
JP2000202737A (ja) * 1999-01-13 2000-07-25 Toshiba Mach Co Ltd 空気静圧スピンドルの運転中の静剛性および動圧効果測定装置
US6526837B1 (en) * 2000-02-24 2003-03-04 Mts Systems Corporation Screw action grip with adjustable stiffness and alignment guides
US20050081360A1 (en) * 2001-01-15 2005-04-21 Newfrey Llc Method for riveting or piercing and a device for carrying out the method
CN101193727A (zh) * 2005-05-16 2008-06-04 斯塔拉格赫克特股份公司 在分开的滑座上具有两个夹紧位置的机床
CN101000283A (zh) * 2006-12-22 2007-07-18 江苏大学 Hsk工具系统性能的测试方法及其装置
CN201037803Y (zh) * 2007-03-28 2008-03-19 清华大学 滚动直线导轨副静刚度实验平台
WO2009015789A1 (de) * 2007-07-27 2009-02-05 Matec Maschinenbau Gmbh Numerisch gesteuerte werkzeugmaschine
CN101480782A (zh) * 2009-01-21 2009-07-15 东北大学 一种基于万向工作头的多功能数控机床
CN101852671A (zh) * 2010-06-25 2010-10-06 西安理工大学 数控车床自动变位模拟加载装置及静刚度分布检测方法
CN101915679A (zh) * 2010-08-06 2010-12-15 西安理工大学 加工中心多轴联动变位加载装置及静刚度分布的检测方法
CN101941102A (zh) * 2010-08-27 2011-01-12 西安理工大学 成型砂轮磨齿机变位模拟加载装置及刚度分布检测方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106768748A (zh) * 2017-02-07 2017-05-31 河北工业大学 一种内置式机床主轴轴向动刚度测试装置及测试方法
CN106768748B (zh) * 2017-02-07 2023-06-16 河北工业大学 一种内置式机床主轴轴向动刚度测试装置及测试方法
CN108562430A (zh) * 2018-06-19 2018-09-21 中冶建筑研究总院有限公司 一种栏杆推力的现场试验系统和方法
CN108562430B (zh) * 2018-06-19 2024-02-09 中冶建筑研究总院有限公司 一种栏杆推力的现场试验系统和方法
CN108572076A (zh) * 2018-07-12 2018-09-25 中国计量大学 一种静压气浮主轴性能检测装置及其使用方法
CN108572076B (zh) * 2018-07-12 2024-04-09 中国计量大学 一种静压气浮主轴性能检测装置的使用方法
CN109986367A (zh) * 2019-05-15 2019-07-09 南京艾提瑞精密机械有限公司 一种用于测量超精密机床气浮垫刚度的装置
CN112683567A (zh) * 2021-01-07 2021-04-20 太原理工大学 一种类截割头式井下掘进面环境模拟装置
CN112683567B (zh) * 2021-01-07 2022-05-13 太原理工大学 一种类截割头式井下掘进面环境模拟装置

Also Published As

Publication number Publication date
US20130111981A1 (en) 2013-05-09
CN101915679B (zh) 2011-12-14
CN101915679A (zh) 2010-12-15
WO2012016534A3 (zh) 2013-05-02
US9121799B2 (en) 2015-09-01

Similar Documents

Publication Publication Date Title
WO2012016534A2 (zh) 加工中心多轴联动变位加载装置及静刚度分布的检测方法
WO2012025065A1 (zh) 成型砂轮磨齿机变位模拟加载装置及刚度分布检测方法
Ibaraki et al. Machining tests to identify kinematic errors on five-axis machine tools
CN102853978B (zh) 一种机床三维静刚度加载试验装置及试验方法
Clinton et al. Stiffness modeling of a Stewart-platform-based milling machine
Jha et al. Analysis of geometric errors associated with five-axis machining centre in improving the quality of cam profile
CN111665784B (zh) 一种基于西门子系统的空间定位误差补偿方法
CA1212827A (en) Motor vehicle body repair bench
CN104835399B (zh) 一种模拟交通工具高低频运动的仿真平台及其实施方法
Pandilov et al. Parallel kinematics machine tools: Overview-from history to the future
CN203981405U (zh) 一种伺服电机及谐波减速机综合测试平台
Srinivasa et al. Spindle thermal drift measurement using the laser ball bar
CN105459086B (zh) 一种水平方向及偏航调整的三自由度并联调姿平台
CN112340071B (zh) 大型重载气浮悬挂展开试验装置与测试方法
CN106671055A (zh) 一种助力机械手及其控制系统
CN107728606A (zh) 伺服进给系统可靠性试验装置及试验方法
CN107830998A (zh) 重型数控龙门刨床移动工作台可靠性试验装置
CN107300373A (zh) 基于六自由度辅助机器人的复杂曲面测量装置
CN111122051A (zh) 一种六维力传感器测试平台
CN114911019B (zh) 一种光学元件六自由度位姿精密调整装置及其方法
Wang et al. Design and implementation of multifunctional automatic drilling end effector
Kihlman et al. Affordable reconfigurable tooling
CN108168807A (zh) 一种五轴机床变刀具姿态下的静刚度测试装置
Li et al. Determination of COG based on propagation of positioning and orientation errors in Aero-Engine rotors
Soons Measuring the geometric errors of a hexapod machine tool

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13811257

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814117

Country of ref document: EP

Kind code of ref document: A2