CN106768748A - 一种内置式机床主轴轴向动刚度测试装置及测试方法 - Google Patents
一种内置式机床主轴轴向动刚度测试装置及测试方法 Download PDFInfo
- Publication number
- CN106768748A CN106768748A CN201710068020.6A CN201710068020A CN106768748A CN 106768748 A CN106768748 A CN 106768748A CN 201710068020 A CN201710068020 A CN 201710068020A CN 106768748 A CN106768748 A CN 106768748A
- Authority
- CN
- China
- Prior art keywords
- force snesor
- dynamic stiffness
- machine tool
- main shaft
- axial direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 60
- 238000010998 test method Methods 0.000 title claims abstract description 14
- 239000011888 foil Substances 0.000 claims abstract description 38
- 238000012545 processing Methods 0.000 claims abstract description 27
- 238000006073 displacement reaction Methods 0.000 claims description 51
- 239000000523 sample Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 17
- 238000005520 cutting process Methods 0.000 claims description 15
- 230000009466 transformation Effects 0.000 claims description 11
- 238000010586 diagram Methods 0.000 claims description 9
- 238000005070 sampling Methods 0.000 claims description 9
- 238000003754 machining Methods 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 4
- 230000002159 abnormal effect Effects 0.000 claims description 2
- 230000001788 irregular Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000004458 analytical method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 238000013500 data storage Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010358 mechanical oscillation Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0041—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
- G01M5/005—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems
- G01M5/0058—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems of elongated objects, e.g. pipes, masts, towers or railways
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/04—Bearings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
本发明涉及一种内置式机床主轴轴向动刚度测试装置及测试方法,其特征在于该装置包括力传感器套筒、轴向位移传感器、前置器、电荷放大器、数据采集卡、数据处理端、力传感器和磁力座;所述力传感器套筒套装在主轴上,且位于主轴上前部和中部的两个轴承之间,力传感器套筒为圆环状,在圆环内侧面上,沿圆周方向均匀分布有四个应变片,相邻两个应变片的受力类型相反,即一个应变片水平布置,相邻的应变片竖直布置;四个应变片按照全桥电路方式进行连接,构成一个力传感器,全桥电路的输出端从力传感器套筒侧面引出,并通过信号线与放置在工作台上的电荷放大器的输入端连接,电荷放大器的输出端与数据采集卡连接。
Description
技术领域
本发明属于机械振动与测试领域,特别涉及一种内置式机床主轴轴向动刚度测试装置及测试方法。该装置及方法用于数控机床在实际切削状态下的主轴轴向动态刚度的测试。
背景技术
机床的动态性能反映机床抵抗动态外载荷的能力,与负荷能力及抗振性密切相关,直接影响机床的加工精度与零件的加工质量,其中动刚度是衡量机床动态性能的重要指标。机床的动刚度是指机床在以一定频率变化的正弦交变载荷作用下所表现出的刚度,表征机床承受交变动载荷时抵抗动态位移变化的能力,在数值上等于机床产生单位振幅所需的动态激振力,是衡量抗振能力的主要指标,机床动刚度越大,在动态载荷作用下振幅越小,机床抗振能力越好,加工精度越高。反之,动刚度越小,振幅越大,加工精度越低。
目前对主轴动刚度的研究主要以建模仿真、有限元分析为主,测试方法也多集中于空载运行测试和离线实验测试法,空载运行测试工程上常用锤击法、激振器激振、转矩转速仪法和利用传动方式减速后加载测试,该类方法均为接触式激振和加载,不稳定,而且常常需要复杂的辅助器械,成本高,机器磨损严重;离线实验测试法一般采用液压系统或电磁系统对主轴进行静态加载,模拟主轴的受力状况,不足之处在于加载装置复杂、占用空间大、一般需要搭建专用试验台,将主轴拆卸下来进行离线实验检测,且仅适用于专用主轴,不具有通用性,这与被测主轴在实际切削状态下的真实受力情况也有很大差距。
申请号为201310215687.6的中国专利公开了一种非接触式机床主轴运转动刚度检测系统,该系统包括电磁加载装置、测试棒、力传感器及位移检测装置;其中,加载装置设置在机床工作台上,测试棒一端与主轴相连,另一端与加载装置中的电磁铁临近,电磁加载装置由电磁铁通电产生电磁力并对测试棒进行加载以驱动测试棒偏转,力传感器和位移传感器分别用来检测测试棒受到的加载作用力和偏转位移,从而得到机床主轴运转的动刚度。该测试系统只能在主轴空转运行时通过电磁加载装置施力于测试棒,间接获得主轴动刚度,不能用于实际切削状态下主轴动刚度测试,且加载装置复杂,占用空间大。
申请号201310102571.1公开了一种数控机床整机动刚度测试系统,该系统包括激励子系统、力采集子系统、位移采集子系统、数据采集前端和数据处理器,其中,激励子系统的输出端、力采集子系统的输入端、位移采集子系统的输入端分别与机床待测部位相连;力采集子系统、位移采集子系统的输出端均通过数据采集前端与数据处理器相连。该测试系统通过信号发生器可提供稳定的正弦激励信号,经功率放大器后驱动激振器产生动态激振力,并由激光位移传感器测量机床主轴相对工作台的动态位移数据,计算得到机床整机动刚度,该测试系统虽能测试得到动态激振力下的机床主轴相对工作台的动态位移,由于机床加工过程中切削力会出现波动,测试结果易出现较大的误差。
因此,需要发明一种新型内置式主轴动刚度测试装置,检测在实际切削状态下主轴的受力及形变情况,以满足实际工况下的主轴动刚度测试要求,为主轴智能感知、智能检测、智能调整控制参数提供依据。
发明内容
本发明的目的在于克服现有技术的不足,提供一种内置式机床主轴轴向动刚度测试装置及测试方法。该测试装置由内置于主轴的力传感器和位移传感器实时测量机床在实际切削状态下的轴向受力及形变,经数据处理部分计算得到主轴的轴向动刚度,解决了机床主轴的动态特性在实际切削状态下难以测试的问题,并为将来主轴智能感知、智能检测、智能调整控制参数、参数优化提供依据。该测试方法简单可靠、便于操作,不需要专门的驱动、传动、控制等单元的操作,易于上手,解决了机床主轴的动态特性在实际切削状态下难以测试的问题,实现了机床在实际切削状态下主轴动刚度的测试。
本发明是通过以下技术方案实现的:
一种内置式机床主轴轴向动刚度测试装置,其特征在于该装置包括力传感器套筒、轴向位移传感器、前置器、电荷放大器、数据采集卡、数据处理端、力传感器和磁力座;所述力传感器套筒套装在主轴上,且位于主轴上前部和中部的两个轴承之间,力传感器套筒为圆环状,在圆环内侧面上,沿圆周方向均匀分布有四个应变片,相邻两个应变片的受力类型相反,即一个应变片水平布置,相邻的应变片竖直布置;四个应变片按照全桥电路方式进行连接,构成一个力传感器,全桥电路的输出端从力传感器套筒侧面引出,并通过信号线与放置在工作台上的电荷放大器的输入端连接,电荷放大器的输出端与数据采集卡连接;所述轴向位移传感器通过支架安装于主轴前端面,支架由磁力座固定吸附在止推法兰盘上,轴向位移传感器的探头朝向主轴的前端面;轴向位移传感器的输出端通过信号线与放置在工作台上的前置器的输入端相连,前置器的输出端也与数据采集卡连接,数据采集卡的输出端与数据处理端连接;所述数据处理端内加载有动刚度测试软件。
一种内置式机床主轴轴向动刚度测试方法,该测试方法使用上述的测试装置,具体步骤是:
1)按照上述连接方式连接装置各部分,四个应变片安装在力传感器套筒内,轴向位移传感器的探头朝向主轴的前端面,调节轴向位移传感器的探头与主轴前端面的相对位置,使轴向位移传感器的探头对准主轴的前端面光洁测试带,并确保轴向位移传感器在有效量程范围内;启动测试装置中所有部件,使其处于正常工作状态;
2)运行数控机床,按待加工件的工艺流程加工工件;
3)在数控机床切削加工过程中,用户根据需要设置采样频率、采样点数、缓冲区数量、采集通道、最高电压值和最低电压值,设置好上述参数后,启动采集按钮;轴向位移传感器采集轴向位移信号,并通过前置器传输至数据采集卡中,得到主轴轴向的动态位移信号x(t);力传感器采集压力信号,并通过电荷放大器放大后传输至数据采集卡中,得到主轴轴向的动态应力信号f(t),并将力信号、位移信号显示于动刚度测试软件中的波形显示界面中;
4)数据处理端中动刚度测试软件将采集得到的力信号f(t)和位移信号x(t)按照式(1)和式(2)进行傅里叶变换,得到频域信号,并在界面显示;
式中:X(ω)为动态位移信号x(t)的傅里叶变换,F(ω)为动态应力信号f(t)的傅里叶变换,根据计算得到数控机床主轴轴向的动刚度。
与现有技术相比,本发明的有益效果是:
本发明内置式机床主轴轴向动刚度测试装置的力传感器采用内置方式,即将四个应变片安装在力传感器套筒中,四个应变片构成力传感器,该力传感器套筒可以套在主轴上即内置于主轴机箱中,能够有效避免测试装置、导线等对机床加工过程的影响,起轴向定位作用,能够实现在实际切削工件状态下完成对主轴动刚度的测量;在机床实际切削状态下利用力传感器测试出主轴所受到的轴向应力,同时利用轴向位移传感器测试出轴向应力对应的轴向位移大小,进而通过动刚度测试软件分析得出机床在实际切削状态下的主轴轴向动刚度。
本发明测试方法是在机床实际切削工件过程中,直接测试切削过程中的轴向压力信号及轴向位移信号,并经信号处理分析后得出机床主轴的动刚度,能够真实反映主轴在实际加工过程中的动态特性(动态性能主要是指它抵抗振动的能力,包括抗振性和稳定性两方面,动刚度既能反映抗振性又可以间接反映加工过程中切削是稳定的还是不稳定状态或者切削是从稳定到不稳定状态的发展),即能测试或间接判断主轴的抗振能力,所以通过本发明装置及方法测得的动刚度比在激振或静态加载状态下测得的机床动刚度更能科学地反映主轴的动态特性。
本发明不需要任何加载装置,不会对机床结构造成破坏,此外该装置中内置力传感器可以根据主轴轴径尺寸大小及配合精度要求设置不同内外径尺寸的力传感器套筒,配置在主轴上前部和中部的两个轴承之间,可代替现有主轴系统中的轴套,结构简单,操作方便,易于控制,使用范围宽,测试精度高,更能满足实际测试要求。该装置结构简单、使用方便、占用空间小,能够真实反映主轴在实际切削状态下受力及形变情况。
附图说明
图1为本发明内置式机床主轴轴向动刚度测试装置的连接结构示意图;
图2为本发明内置式机床主轴轴向动刚度测试装置中力传感器套筒1的的主视结构示意图;
图3为图2中沿A-A向剖视结构示意图;
图4为本发明内置式机床主轴轴向动刚度测试装置中力传感器套筒中力传感器安装位置示意图;
图5为本发明内置式机床主轴轴向动刚度测试装置中力传感器的全桥式连接电路示意图;
图6为本发明内置式机床主轴轴向动刚度测试装置中轴向位移传感器安装示意图;
图7为本发明内置式机床主轴轴向动刚度测试装置的一种实施例的动刚度测试软件的软件流程图;
图中:1、力传感器套筒,2、轴承,3、止推法兰盘,4、主轴,5、轴向位移传感器,6、前置器,7、电荷放大器,8、数据采集卡,9、数据处理端,10、应变片,11、磁力座。
具体实施方式
下面结合实施例及附图进一步描述本发明,但并不以此作为对本申请权利要求保护范围的限定。
本发明内置式机床主轴轴向动刚度测试装置(简称装置,参见图1-6)包括力传感器套筒1、轴向位移传感器5、前置器6、电荷放大器7、数据采集卡8、数据处理端9、力传感器10和磁力座11;所述力传感器套筒1套装在主轴4上,且位于主轴上前部和中部的两个轴承2之间,力传感器套筒1为圆环状,在圆环内侧面上,沿圆周方向均匀分布有四个应变片10,相邻两个应变片的受力类型相反,即一个应变片水平布置,相邻的应变片竖直布置;四个应变片按照全桥电路方式进行连接,构成一个力传感器,全桥电路的输出端从力传感器套筒1侧面引出,并通过信号线与放置在工作台上的电荷放大器7的输入端连接,电荷放大器7的输出端与数据采集卡8连接;所述轴向位移传感器5通过支架安装于主轴前端面,支架由磁力座11固定吸附在止推法兰盘3上,轴向位移传感器5的探头朝向主轴的前端面;轴向位移传感器5的输出端通过信号线与放置在工作台上的前置器6的输入端相连,前置器6的输出端也与数据采集卡8连接,数据采集卡8的输出端与数据处理端9连接;所述数据处理端9内加载有动刚度测试软件。
力传感器套筒一方面代替主轴系统中的轴套,起轴向定位作用,另一方面作为检测装置,用来实时检测机床在实际切削状态下主轴轴向力。
所述数据处理端9为台式机、笔记本电脑或ipad、智能手机等。
本发明的进一步特征在于所述轴向位移传感器5采用85811系列探头直径为25的电涡流传感器,量程为10mm,灵敏度为0.8mv/μm,分辨率为10μm,工作频率为0-4000Hz,线性度为1.5%FS。
本发明中的数据处理端9内加载的动刚度测试软件可以使用现有的动刚度测试软件,也可以按照本申请中所述的动刚度测试软件,该软件界面包括数据采集部分、数据回放部分、数据处理部分,其中数据采集部分接收数据采集卡8中所输出的力传感器和位移传感器的压力信号和位移信号,并将采集的数据进行保存;其中数据采集部分包括采集参数设置界面、控制采集按钮、波形显示界面和数据存储界面,采集参数设置界面中可以对采样频率、采样点数、缓冲区数量、采集通道、最高电压值、最低电压值进行选择;用户设置好上述参数后就可以启动采集按钮,并将采集的力传感器信号、位移传感器信号显示于波形显示界面中;点击保存按钮就可以将数据存成数据处理端9中的数据文件,支持的格式为文本文件*.txt和Excel文件*.xls;数据回放部分用来读取已存储的数据文件,将数据以波形形式或数组形式显示给用户查看,进行后期离线统计分析;选择需要调用的已存储数据文件,点击回放按钮,就可以在波形显示界面中看到数据文件的波形,同时在数组显示中以二维表格形式显示数据,供用户后期离线统计分析;数据处理部分中将采集得到的力信号和位移信号作FFT分析(快速傅氏变换),分别得到力-频率和位移-频率图(连续的时域信号经傅里叶变换后得到离散的频率幅值图),并在界面显示,计算得到主轴轴向动刚度。
本发明所述的动刚度测试软件的软件流程(参见图7)是:
1)开始,检查数控机床设备是否正常?,若正常,开启机床;若异常,进行诊断并处理,继续检查数控机床设备是否正常?;
2)启动数据处理端、力传感器、轴向位移传感器、前置器、电荷放大器、数据采集卡,并测试数据处理端、力传感器、轴向位移传感器、前置器、电荷放大器和数据采集卡是否处于正常工作状态?,若正常工作,则进入步骤3),若不正常工作,则进行调整、修正,继续判断其是否处于正常工作状态?;
3)设定机床切削参数、输入机床切削程序代码,在数据处理端中分别设置力传感器、轴向位移传感器的采样模式、采集通道、采样频率、缓冲区数量等,再判断是否触发采集,若触发采集则进入步骤4),若不触发,则返回设置力传感器、轴向位移传感器的采样模式、采集通道、采样频率、缓冲区数量等;
4)进行切削加工,并在动刚度测试软件界面中显示采集的位移信号、力信号,并绘制轴向位移-时间曲线和力-时间曲线;
5)判断保存按钮是否按下?,若保存按钮已经按下,将采集的数据保存为*.txt或*.xls文件格式,供后续离线处理;再判断是否按下回放按钮?,若按下,则调用已存储的数据文件,进入步骤6),若没按下,则继续判断是否按下回放按钮?;若保存按钮没有按下,则进入步骤6);
6)将采集的轴向位移信号、力信号分别进行傅里叶变换,得到位移-频率图和力-频率图,并在动刚度测试软件中显示;
7)计算得到主轴轴向动刚度;
8)再判断是否更改切削参数及采集参数继续实验?,若更改切削参数及采集参数继续实验,则转回到步骤3);若不需要更改切削参数及采集参数,则关闭测试装置及数控机床,结束测试。
本发明内置式机床主轴轴向动刚度测试方法(简称方法),该测试方法使用上述的测试装置,具体步骤是:
1)按照上述连接方式连接装置各部分,四个应变片安装在力传感器套筒内,轴向位移传感器5的探头朝向主轴4的前端面,调节轴向位移传感器5的探头与主轴4前端面的相对位置,使轴向位移传感器5的探头对准主轴4的前端面光洁测试带,并确保轴向位移传感器5在有效量程范围内;启动测试装置中所有部件,使其处于正常工作状态;
2)运行数控机床(或机床),按待加工件的正常工艺流程加工工件;
3)在数控机床切削加工过程中,用户根据需要设置采样频率、采样点数、缓冲区数量、采集通道、最高电压值、最低电压值等,设置好上述参数后就可以启动采集按钮,轴向位移传感器5采集位移信号,并通过前置器6传输至数据采集卡8中,得到主轴轴向的动态位移信号x(t);力传感器采集压力信号,并通过电荷放大器7放大后传输至数据采集卡8中,得到主轴轴向的动态应力信号f(t),并将力信号、位移信号显示于动刚度测试软件中的波形显示界面中;
4)数据处理端9中动刚度测试软件将采集得到的力信号f(t)和位移信号x(t)按照式(1)和式(2)进行傅里叶变换,得到频域信号,并在界面显示;
式中:X(ω)为动态位移信号x(t)的傅里叶变换,F(ω)为动态应力信号f(t)的傅里叶变换,根据计算得到数控机床主轴轴向的动刚度,K(ω)为计算得到的机床主轴轴向的动刚度,这种方法得到的动刚度是一个随切削激励信号的频率变化的函数,可以表达主轴动刚度随频率变化的情况,可反映机床抵抗交变载荷的能力。
本发明中内置力传感器可以根据主轴轴径尺寸大小及配合精度要求设置不同内外径尺寸的力传感器套筒,内部结构中的四个应变片选择全桥电路方式进行连接,精度高,线性度好,可以有效抑制漂移。四个应变片分成两组,两个水平布置的应变片为一组,两个竖直布置的应变片为一组,四个应变片采用四个完全相同的应变片,四个应变片按照全桥电路方式进行连接。采用全桥式电路需要保证水平布置的一组应变片和竖直布置的一组应变片受力类型相反,即受力后一组应变片被拉伸而另一组应变片被压缩,四个应变片在力传感器套筒1中的安放方式如图3和图4所示,这样就可以保证在力传感器套筒受到轴向应力后,一组应变片受拉时,另一组受挤压,两者发生极性相反的等量变化。
本发明装置的工作原理是:在机床实际切削工件过程中,能直接测试切削过程中的轴向力信号及位移信号,并经信号处理分析后得出机床主轴的动刚度。在机床进行切削加工时,按照正常切削的工艺流程加工工件,主轴会受到轴向应力的作用,并将轴向应力传递给力传感器套筒中的应变片,主轴在轴向应力的作用下发生轴向位移形变,该位移信号由安装在主轴前端面处的轴向位移传感器拾取,然后由力传感器得到的力信号和由轴向位移传感器得到的位移信号分别通过信号线传输到电荷放大器和前置器中,之后再传输到数据采集卡中,最后通过动刚度测试软件分析后得出机床主轴的轴向动刚度信息,该信息为主轴在实际切削状态下真实的受力及形变情况,该信息更加准确可靠。
本发明未述及之处适用于现有技术,所涉及的元器件均可通过商购获得。
Claims (5)
1.一种内置式机床主轴轴向动刚度测试装置,其特征在于该装置包括力传感器套筒、轴向位移传感器、前置器、电荷放大器、数据采集卡、数据处理端、力传感器和磁力座;所述力传感器套筒套装在主轴上,且位于主轴上前部和中部的两个轴承之间,力传感器套筒为圆环状,在圆环内侧面上,沿圆周方向均匀分布有四个应变片,相邻两个应变片的受力类型相反,即一个应变片水平布置,相邻的应变片竖直布置;四个应变片按照全桥电路方式进行连接,构成一个力传感器,全桥电路的输出端从力传感器套筒侧面引出,并通过信号线与放置在工作台上的电荷放大器的输入端连接,电荷放大器的输出端与数据采集卡连接;所述轴向位移传感器通过支架安装于主轴前端面,支架由磁力座固定吸附在止推法兰盘上,轴向位移传感器的探头朝向主轴的前端面;轴向位移传感器的输出端通过信号线与放置在工作台上的前置器的输入端相连,前置器的输出端也与数据采集卡连接,数据采集卡的输出端与数据处理端连接;所述数据处理端内加载有动刚度测试软件。
2.根据权利要求1所述的内置式机床主轴轴向动刚度测试装置,其特征在于所述数据处理端为台式机、笔记本电脑、ipad或智能手机。
3.根据权利要求1所述的内置式机床主轴轴向动刚度测试装置,其特征在于所述轴向位移传感器采用85811系列探头直径为25的电涡流传感器。
4.根据权利要求1所述的内置式机床主轴轴向动刚度测试装置,其特征在于数据处理端内加载的动刚度测试软件的软件流程是:
1)开始,检查数控机床设备是否正常,若正常,开启机床;若异常,进行诊断并处理,继续检查数控机床设备是否正常;
2)启动数据处理端、力传感器、轴向位移传感器、前置器、电荷放大器和数据采集卡,并测试数据处理端、力传感器、轴向位移传感器、前置器、电荷放大器和数据采集卡是否处于正常工作状态,若正常工作,则进入步骤3),若不正常工作,则进行调整、修正,继续判断其是否处于正常工作状态;
3)设定机床切削参数、输入机床切削程序代码,在数据处理端中分别设置力传感器、轴向位移传感器的采样模式、采集通道、采样频率和缓冲区数量,再判断是否触发采集,若触发采集则进入步骤4),若不触发,则返回设置力传感器、轴向位移传感器的采样模式、采集通道、采样频率和缓冲区数量;
4)进行切削加工,并在动刚度测试软件界面中显示采集的位移信号、力信号,并绘制轴向位移-时间曲线和力-时间曲线;
5)判断保存按钮是否按下,若保存按钮已经按下,将采集的数据保存为*.txt或*.xls文件格式,供后续离线处理;再判断是否按下回放按钮,若按下,则调用已存储的数据文件,进入步骤6),若没按下,则继续判断是否按下回放按钮;若保存按钮没有按下,则进入步骤6);
6)将采集的轴向位移信号、力信号分别进行傅里叶变换,得到位移-频率图和力-频率图,并在动刚度测试软件中显示;
7)计算得到主轴轴向动刚度;
8)再判断是否更改切削参数及采集参数继续实验,若更改切削参数及采集参数继续实验,则转回到步骤3);若不需要更改切削参数及采集参数,则关闭测试装置及数控机床,结束测试。
5.一种内置式机床主轴轴向动刚度测试方法,该测试方法使用权利要求1-4任一所述的测试装置,具体步骤是:
1)按照上述连接方式连接装置各部分,四个应变片安装在力传感器套筒内,轴向位移传感器的探头朝向主轴的前端面,调节轴向位移传感器的探头与主轴前端面的相对位置,使轴向位移传感器的探头对准主轴的前端面光洁测试带,并确保轴向位移传感器在有效量程范围内;启动测试装置中所有部件,使其处于正常工作状态;
2)运行数控机床,按待加工件的工艺流程加工工件;
3)在数控机床切削加工过程中,用户根据需要设置采样频率、采样点数、缓冲区数量、采集通道、最高电压值和最低电压值,设置好上述参数后,启动采集按钮;轴向位移传感器采集轴向位移信号,并通过前置器传输至数据采集卡中,得到主轴轴向的动态位移信号x(t);力传感器采集压力信号,并通过电荷放大器放大后传输至数据采集卡中,得到主轴轴向的动态应力信号f(t),并将力信号、位移信号显示于动刚度测试软件中的波形显示界面中;
4)数据处理端中动刚度测试软件将采集得到的力信号f(t)和位移信号x(t)按照式(1)和式(2)进行傅里叶变换,得到频域信号,并在界面显示;
式中:X(ω)为动态位移信号x(t)的傅里叶变换,F(ω)为动态应力信号f(t)的傅里叶变换,根据计算得到数控机床主轴轴向的动刚度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710068020.6A CN106768748B (zh) | 2017-02-07 | 2017-02-07 | 一种内置式机床主轴轴向动刚度测试装置及测试方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710068020.6A CN106768748B (zh) | 2017-02-07 | 2017-02-07 | 一种内置式机床主轴轴向动刚度测试装置及测试方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106768748A true CN106768748A (zh) | 2017-05-31 |
CN106768748B CN106768748B (zh) | 2023-06-16 |
Family
ID=58956765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710068020.6A Active CN106768748B (zh) | 2017-02-07 | 2017-02-07 | 一种内置式机床主轴轴向动刚度测试装置及测试方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106768748B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108088602A (zh) * | 2018-01-30 | 2018-05-29 | 吉林大学 | 一种内圆切片机刀片张紧状态的测试装置 |
CN108414169A (zh) * | 2018-03-08 | 2018-08-17 | 湖南大学 | 一种高速旋转轴系动态轴向加载刚度测试方法及装置 |
CN109656194A (zh) * | 2017-10-10 | 2019-04-19 | 福特汽车公司 | 用于测量动态响应的动态表征系统 |
CN109765016A (zh) * | 2018-12-19 | 2019-05-17 | 广州市昊志机电股份有限公司 | 一种主轴的轴向动刚度测试方法和装置 |
CN114526853A (zh) * | 2022-02-23 | 2022-05-24 | 深圳瑞湖科技有限公司 | 一种轴扭矩检测装置 |
CN114935420A (zh) * | 2022-03-25 | 2022-08-23 | 保定天威保变电气股份有限公司 | 一种电抗器中心拉杆压紧力大小调节和验证的方法 |
CN115219125A (zh) * | 2021-09-10 | 2022-10-21 | 广州汽车集团股份有限公司 | 一种橡胶弹性件动刚度测试方法及系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT8348000A0 (it) * | 1982-03-26 | 1983-03-25 | Camtech Inc | Sensore per misurare la forza, il momento torcente e lo spostamento per macchine utensili |
CN101000283A (zh) * | 2006-12-22 | 2007-07-18 | 江苏大学 | Hsk工具系统性能的测试方法及其装置 |
CN101344457A (zh) * | 2008-08-27 | 2009-01-14 | 重庆大学 | 高速主轴非接触式磁力耦合动态测试装置及其测试方法 |
CN102152173A (zh) * | 2011-02-24 | 2011-08-17 | 大连理工大学 | 加工中心整机相对动刚度测试系统 |
CN102175436A (zh) * | 2010-12-31 | 2011-09-07 | 西安瑞特快速制造工程研究有限公司 | 一种基于mems的机床主轴动刚度的测试方法 |
WO2012016534A2 (zh) * | 2010-08-06 | 2012-02-09 | 西安理工大学 | 加工中心多轴联动变位加载装置及静刚度分布的检测方法 |
CN105424280A (zh) * | 2015-12-24 | 2016-03-23 | 吴江万工机电设备有限公司 | 摇轴摆动系统不平衡测量装置 |
CN106353084A (zh) * | 2016-10-12 | 2017-01-25 | 燕山大学 | 关节精密轴系刚度和摩擦力矩性能退化试验装置 |
-
2017
- 2017-02-07 CN CN201710068020.6A patent/CN106768748B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT8348000A0 (it) * | 1982-03-26 | 1983-03-25 | Camtech Inc | Sensore per misurare la forza, il momento torcente e lo spostamento per macchine utensili |
CN101000283A (zh) * | 2006-12-22 | 2007-07-18 | 江苏大学 | Hsk工具系统性能的测试方法及其装置 |
CN101344457A (zh) * | 2008-08-27 | 2009-01-14 | 重庆大学 | 高速主轴非接触式磁力耦合动态测试装置及其测试方法 |
WO2012016534A2 (zh) * | 2010-08-06 | 2012-02-09 | 西安理工大学 | 加工中心多轴联动变位加载装置及静刚度分布的检测方法 |
CN102175436A (zh) * | 2010-12-31 | 2011-09-07 | 西安瑞特快速制造工程研究有限公司 | 一种基于mems的机床主轴动刚度的测试方法 |
CN102152173A (zh) * | 2011-02-24 | 2011-08-17 | 大连理工大学 | 加工中心整机相对动刚度测试系统 |
CN105424280A (zh) * | 2015-12-24 | 2016-03-23 | 吴江万工机电设备有限公司 | 摇轴摆动系统不平衡测量装置 |
CN106353084A (zh) * | 2016-10-12 | 2017-01-25 | 燕山大学 | 关节精密轴系刚度和摩擦力矩性能退化试验装置 |
Non-Patent Citations (2)
Title |
---|
刘进强,韩东,王瑞发: "汽轮发电机定子绕组端部振动测量系统", 大电机技术, no. 04, pages 11 - 15 * |
谭竞舟: "多自由度系统准静态刚度理论研究", 制造技术与机床, no. 09, pages 17 - 19 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109656194A (zh) * | 2017-10-10 | 2019-04-19 | 福特汽车公司 | 用于测量动态响应的动态表征系统 |
CN108088602A (zh) * | 2018-01-30 | 2018-05-29 | 吉林大学 | 一种内圆切片机刀片张紧状态的测试装置 |
CN108088602B (zh) * | 2018-01-30 | 2023-06-23 | 吉林大学 | 一种内圆切片机刀片张紧状态的测试装置 |
CN108414169A (zh) * | 2018-03-08 | 2018-08-17 | 湖南大学 | 一种高速旋转轴系动态轴向加载刚度测试方法及装置 |
CN108414169B (zh) * | 2018-03-08 | 2019-07-09 | 湖南大学 | 一种高速旋转轴系动态轴向加载刚度测试方法及装置 |
CN109765016A (zh) * | 2018-12-19 | 2019-05-17 | 广州市昊志机电股份有限公司 | 一种主轴的轴向动刚度测试方法和装置 |
CN115219125A (zh) * | 2021-09-10 | 2022-10-21 | 广州汽车集团股份有限公司 | 一种橡胶弹性件动刚度测试方法及系统 |
CN114526853A (zh) * | 2022-02-23 | 2022-05-24 | 深圳瑞湖科技有限公司 | 一种轴扭矩检测装置 |
CN114935420A (zh) * | 2022-03-25 | 2022-08-23 | 保定天威保变电气股份有限公司 | 一种电抗器中心拉杆压紧力大小调节和验证的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106768748B (zh) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106768748A (zh) | 一种内置式机床主轴轴向动刚度测试装置及测试方法 | |
CN105588718B (zh) | 机床主轴综合性能检测/监测试验系统及方法 | |
Yaldız et al. | Design, development and testing of a four-component milling dynamometer for the measurement of cutting force and torque | |
CN101893512B (zh) | 一种模块化角接触球轴承静刚度试验装置 | |
CN103278320A (zh) | 非接触式机床主轴运转动刚度检测系统 | |
CN201133859Y (zh) | 2mn微机控制电液伺服力标准机 | |
CN102053061B (zh) | 大型结合面实验装置 | |
CN102162778B (zh) | 管道弯头多轴棘轮应变测试系统及方法 | |
CN205426517U (zh) | 机床主轴综合性能检测/监测试验系统 | |
CN206515029U (zh) | 一种机床主轴轴向动刚度测试仪 | |
CN108645583A (zh) | 一种装配结合面法向接触阻尼高精度检测装置及方法 | |
CN103644875A (zh) | 一种动态主轴回转精度检测装置 | |
CN108414221B (zh) | 一种液力变矩器端盖扭转疲劳强度测试方法 | |
JP2001201446A (ja) | 小型自動繰り返し一面せん断試験装置 | |
CN105277149B (zh) | 结合面真实接触面积测量装置与测量方法 | |
CN108956006A (zh) | 小力值测量仪器快速检定校准系统 | |
Alipanahi et al. | Cross-sensitivity control in a novel four-component milling dynamometer for simultaneous measurement of tri-axial forces and torque | |
CN201740656U (zh) | 一种基于LabVIEW的推土机动态参数的测试装置 | |
CN203811126U (zh) | 一种应力环变形检测装置 | |
CN105675329A (zh) | 一种车床静刚度测量装置 | |
CN109298076B (zh) | 一种基于Lamb波的主动式阀门内漏损伤检测系统及方法 | |
CN106950137A (zh) | 切向微动磨损试验装置及试验方法 | |
CN103090901A (zh) | 传感器在线校准方法 | |
CN105021390A (zh) | 数控机床主轴单元静刚度测试装置及测试方法 | |
CN203365157U (zh) | 一种模拟工况的数控转台试验台测试装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |