WO2012014726A1 - リンス剤及びハードディスク基板の製造方法 - Google Patents

リンス剤及びハードディスク基板の製造方法 Download PDF

Info

Publication number
WO2012014726A1
WO2012014726A1 PCT/JP2011/066366 JP2011066366W WO2012014726A1 WO 2012014726 A1 WO2012014726 A1 WO 2012014726A1 JP 2011066366 W JP2011066366 W JP 2011066366W WO 2012014726 A1 WO2012014726 A1 WO 2012014726A1
Authority
WO
WIPO (PCT)
Prior art keywords
abrasive grains
colloidal silica
hard disk
polishing
rinsing
Prior art date
Application number
PCT/JP2011/066366
Other languages
English (en)
French (fr)
Inventor
暢宏 岩元
展彰 迎
一隆 新井
竜二 小谷
Original Assignee
東洋鋼鈑株式会社
鋼鈑工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社, 鋼鈑工業株式会社 filed Critical 東洋鋼鈑株式会社
Priority to SG2013005152A priority Critical patent/SG187170A1/en
Priority to US13/812,271 priority patent/US9187718B2/en
Priority to CN2011800400738A priority patent/CN103080292A/zh
Publication of WO2012014726A1 publication Critical patent/WO2012014726A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0013Liquid compositions with insoluble particles in suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/14Fillers; Abrasives ; Abrasive compositions; Suspending or absorbing agents not provided for in one single group of C11D3/12; Specific features concerning abrasives, e.g. granulometry or mixtures
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/20Water-insoluble oxides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/20Industrial or commercial equipment, e.g. reactors, tubes or engines

Definitions

  • the present invention relates to a rinsing agent for a hard disk substrate and a method of manufacturing a hard disk substrate using the rinsing agent.
  • Hard disks incorporated in magnetic disk storage devices such as computers are becoming smaller and higher capacity year by year, and hard disk substrates are required to have extremely high quality. Therefore, conventionally, polishing for smoothing the substrate surface of the hard disk substrate has been performed. For example, a rough polishing process using alumina abrasive grains and a final polishing process using colloidal silica abrasive grains are employed.
  • Patent Document 1 a method is known in which a rinsing step is provided between the rough polishing step and the final polishing step, and the hard disk substrate is rinsed (rinsed) with a rinsing liquid using colloidal silica abrasive grains to reduce residual alumina on the substrate surface.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a rinsing agent for manufacturing a hard disk substrate in which no abrasive grains remain on the substrate surface and no dent defect exists, and the rinsing An object of the present invention is to provide a method of manufacturing a hard disk substrate using an agent.
  • the rinsing agent of the present invention that solves the above problems is a rinsing agent containing colloidal silica abrasive grains, where C is the concentration of colloidal silica abrasive grains and R is the average particle diameter of colloidal silica abrasive grains (C , R are represented by% by weight and nm, respectively, and the relationship between the concentration C of colloidal silica abrasive grains and the average particle diameter R satisfies the following formula (1).
  • the concentration C of the colloidal silica abrasive grains is preferably 0.8 to 8.0% by weight, and the average particle diameter R of the colloidal silica abrasive grains is 20 to 80 nm. Is preferred.
  • the method of manufacturing a hard disk substrate of the present invention includes a rinsing step of rinsing the hard disk substrate using a rinsing agent in which the relationship between the concentration C of colloidal silica abrasive grains and the average particle diameter R satisfies the above formula (1). It is said.
  • This rinsing process includes a rough polishing process for rough polishing a hard disk substrate using a polishing liquid containing alumina abrasive grains, and a final polishing process for finish polishing the hard disk substrate using a polishing liquid containing colloidal silica abrasive grains. It is preferable to be performed in between.
  • the substrate surface of the hard disk substrate is rinsed (rinsed) with the rinsing agent.
  • the amount of alumina abrasive grains present on the surface can be reduced, and the occurrence of a dent defect having a depth of several tens of nanometers in the rinsing process can be suppressed.
  • the method of manufacturing a hard disk substrate using the rinse agent of the present invention includes a step of polishing an aluminum blank material to form a substrate, a step of applying Ni—P plating to the substrate to form a Ni—P layer on the substrate surface, alumina A rough polishing process for rough polishing a substrate surface using a polishing liquid containing abrasive grains, a rinsing process for rinsing a rough polished substrate, and a final polishing process for final polishing using a polishing liquid containing colloidal silica abrasive grains Have.
  • Ni-P plating process The substrate is sequentially subjected to a series of processes of etching, zincate treatment, Ni—P plating, pure water cleaning, drying, and baking.
  • the Ni—P plated substrate surface of the heat-treated substrate is roughly polished. Rough polishing is performed while supplying a polishing liquid containing alumina abrasive grains using a surface plate to which an organic polymer polishing cloth is attached.
  • the polishing liquid used in this step preferably contains a hydrogen peroxide solution, an organic acid, an inorganic acid, and a surfactant as a general etchant component that is not particularly limited.
  • the average particle diameter of the alumina abrasive grains is preferably 1 ⁇ m or less, more preferably 0.7 ⁇ m or less, from the viewpoint of reducing alumina residue or waviness.
  • the concentration of the alumina abrasive grains is preferably 10% by weight or less, more preferably 7% by weight or less from the viewpoints of improving the polishing rate and economy.
  • the rinsing agent of the present invention used in the rinsing step is a rinsing liquid containing colloidal silica as abrasive grains, and when the concentration of colloidal silica abrasive grains is C and the average particle diameter of colloidal silica abrasive grains is R ( C and R are represented by weight% and nm, respectively, and the relationship between the concentration C of colloidal silica abrasive grains and the average particle diameter R satisfies the following formula (1).
  • the concentration C of the colloidal silica abrasive grains is preferably in the range of 0.8 to 8.0% by weight, and the average particle diameter R of the colloidal silica abrasive grains is in the range of 20 to 80 nm. Preferably there is.
  • a detergent may be used in combination or ultrasonic DiP may be used in combination.
  • the average particle diameter can be determined by observing with a scanning electron microscope or a transmission electron microscope, performing image analysis, and measuring the particle diameter.
  • the final polishing is performed using a surface plate with an organic polymer-based polishing cloth and supplying a polishing liquid containing colloidal silica abrasive grains.
  • the polishing liquid used in this step preferably contains a hydrogen peroxide solution, an organic acid, an inorganic acid, and a surfactant as a general etchant component that is not particularly limited.
  • the average particle size of the colloidal silica abrasive is preferably 5 to 100 nm, and is preferably 30 nm or less, and more preferably 20 nm or less, from the viewpoint of surface roughness, undulation reduction, and economy. Further, the concentration of the colloidal silica abrasive is preferably 20% by weight or less, more preferably 2 to 10% by weight from the viewpoints of improving the polishing rate, reducing scratches, reducing waviness and economy.
  • general scrub cleaning using ion-exchanged water or ultrapure water can be used.
  • a detergent may be used in combination or ultrasonic DiP may be used in combination.
  • the rinse agent in which the relationship between the concentration C of the colloidal silica abrasive grains and the average particle diameter R is out of the range of the above formula (1) aggregates the colloidal silica abrasive grains in the rinse agent. It is considered that a dent defect having a depth of several tens of nanometers is generated on the substrate surface due to the particles.
  • the rinse agent of the present invention is suitable for rinsing a hard disk substrate having a Ni—P layer.
  • the hard disk substrate having the Ni—P layer is not particularly limited and is not particularly limited.
  • As the substrate material for the Ni—P layer an aluminum alloy substrate, a glass substrate, or a carbon substrate can be used. In general, a substrate made of an aluminum alloy is suitable.
  • the average particle size R was measured using a transmission electron microscope (manufactured by JEOL Ltd., transmission electron microscope, JEM2000FX (200 kV)) with a field of view at a magnification of 100,000 times, and this photograph was taken as analysis software (manufactured by Mountec, Mac-View Ver.4.0) was used for analysis and measurement.
  • a rough polishing process, a rinsing process with a rinse agent shown in Table 1, a final polishing process, and a cleaning process are performed on a substrate surface of a Ni-P plated aluminum alloy having a diameter of 95 mm, an inner diameter of 25 mm, and a thickness of 1.27 mm.
  • the processing was carried out in this order to obtain a Ni—P plated aluminum alloy substrate used as a hard disk substrate.
  • Polishing test machine System Seiko Co., Ltd. 9B double-side polishing machine
  • Polishing pad FILWEL P1 polishing pad slurry supply amount: 12ml / min / pc Polishing time: Rough polishing 150-300sec Processing pressure: 100g / cm 2 Number of substrates inserted: 10 Number of platen rotations: 12 to 14 rpm
  • Rough polishing polishing composition Alumina abrasive grain size 0.6 ⁇ m, concentration 3.9% by weight, and contains hydrogen peroxide, organic acid, sulfuric acid, and surfactant as additives.
  • Polishing testing machine System Seiko Co., Ltd. 9B double-side polishing machine
  • Polishing pad FILWEL P2 polishing pad slurry supply amount: 12ml / min / pc Polishing time: 150-300sec
  • Processing pressure 100g / cm 2
  • Number of substrates loaded 10
  • Surface plate rotation speed 13-20rpm ⁇ Cleaning after the final polishing process> Scrub washing with ion-exchanged water was performed and centrifugal drying was performed.
  • the dent defect on the substrate surface has a condition for generating and a condition for not generating depending on the relationship between the average particle diameter R and the concentration C of the colloidal silica abrasive grains. It can also be seen that the residual amount of alumina abrasive grains (pieces / ⁇ m 2 ) can be reduced by rinsing with a rinse agent containing colloidal silica abrasive grains after the rough polishing step. From these facts, by setting the composition of the rinse agent so that the relationship between the particle size R and the concentration C of the colloidal silica abrasive grains contained in the rinse agent satisfies the above formula (1), the residual alumina can be reduced. It has become possible to suppress dent defects.
  • FIG. 1 is a graph showing the results of Table 1 above.
  • the dent defect on the substrate surface occurs in a region below the straight line connecting the two points of the value of Example 1 (Actual 1) and the value of Example 6 (Actual 6) (Comparative Examples 1 to 5).
  • the region S1 is represented by the above formula (1).
  • the minimum value (actual 1) and the maximum value (actual 6 and 7) of the concentration C of the colloidal silica abrasive grains in Examples 1 to 7 and the minimum of the average particle diameter R of the colloidal silica abrasive grains in Examples 1 to 7 The region S2 shown in FIG. 1 is defined by the value (real 1) and the maximum value (real 5). In the region S2, the concentration C of the colloidal silica abrasive grains is in the range of 0.8 to 8.0% by weight, and the average particle diameter R of the colloidal silica abrasive grains is in the range of 20 to 80 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Detergent Compositions (AREA)

Abstract

 基板表面に砥粒の残留がなく凹み欠陥も存在しないハードディスク基板を製造するためのリンス剤、及び該リンス剤を使用したハードディスク基板の製造方法を提供する。本発明のリンス剤は、砥粒としてコロイダルシリカを含有するリンス液であり、コロイダルシリカ砥粒の濃度をC、コロイダルシリカ砥粒の平均粒径をRとしたときに(C、Rはそれぞれ重量%、nmで表される)、コロイダルシリカ砥粒の濃度Cと平均粒径Rの関係が下記の式(1)を満足する構成を有している。 R≧2.2C+18.2・・・・・(1)

Description

リンス剤及びハードディスク基板の製造方法
 本発明は、ハードディスク基板用のリンス剤及び該リンス剤を使用したハードディスク基板の製造方法に関する。
 コンピュータ等の磁気ディスク記憶装置に組み込まれるハードディスクは、年々小型化、高容量化の一途をたどっており、ハードディスク基板には極めて高い精度の品質が要求されている。したがって、従来からハードディスク基板の基板表面を平滑化する研磨が行われており、例えば、アルミナ砥粒による粗研磨工程と、コロイダルシリカ砥粒による仕上げ研磨工程が採用されている。
 しかし、粗研磨工程において使用したアルミナ砥粒が基板表面に残留して仕上げ研磨工程でも取り除くことができなかった場合に、ハードディスク基板のメディア特性低下を引き起こすおそれがある。
 そこで、粗研磨工程と仕上げ研磨工程との間にリンス工程を設けて、コロイダルシリカ砥粒によるリンス液でハードディスク基板のリンス(すすぎ洗い)を行い、基板表面のアルミナの残留を低減させる方法が公知である(特許文献1)。
特開昭62-208869号公報
 しかしながら、従来のリンス剤では、リンス工程において深さが数十nm単位の凹み欠陥が基板表面に発生するおそれがあることを発明者らは見出した。したがって、基板表面に凹み欠陥を発生させることなく、基板表面のアルミナ砥粒を十分に取り除くことができる優れたリンス剤が求められている。
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、基板表面に砥粒の残留がなく凹み欠陥も存在しないハードディスク基板を製造するためのリンス剤、及び該リンス剤を使用したハードディスク基板の製造方法を提供することを目的とする。
 上記課題を解決する本発明のリンス剤は、コロイダルシリカ砥粒を含有するリンス剤であって、コロイダルシリカ砥粒の濃度をC、コロイダルシリカ砥粒の平均粒径をRとしたときに(C、Rはそれぞれ重量%、nmで表される)、コロイダルシリカ砥粒の濃度Cと平均粒径Rの関係が下記の式(1)を満足することを特徴としている。
 R≧2.2C+18.2・・・・・(1)
 本発明のリンス剤は、コロイダルシリカ砥粒の濃度Cが、0.8~8.0重量%であることが好ましく、また、コロイダルシリカ砥粒の平均粒径Rが、20~80nmであることが好ましい。
 本発明のハードディスク基板の製造方法は、コロイダルシリカ砥粒の濃度Cと平均粒径Rの関係が上記式(1)を満足するリンス剤を用いてハードディスク基板をリンスするリンス工程を有することを特徴としている。このリンス工程は、アルミナ砥粒を含有する研磨液を用いてハードディスク基板を粗研磨する粗研磨工程と、コロイダルシリカ砥粒を含有する研磨液を用いてハードディスク基板を仕上げ研磨する仕上げ研磨工程との間に行われることが好ましい。
 本発明のハードディスク基板用のリンス剤及び該リンス剤を使用したハードディスク基板の製造方法によれば、該リンス剤を用いてハードディスク基板の基板表面をリンス(すすぎ洗い)することによって、ハードディスク基板の基板表面に存在するアルミナ砥粒の量を低減することができ、リンス工程において深さが数十nm単位の凹み欠陥が基板表面に発生するのを抑制することができる。
表1の結果をグラフに示した図。
[ハードディスク基板の製造方法]
 本発明のリンス剤を用いたハードディスク基板の製造方法は、アルミブランク材を研磨して基板を形成する工程、基板にNi-Pめっきを施して基板表面にNi-P層を形成する工程、アルミナ砥粒を含有する研磨液を用いて基板表面を粗研磨する粗研磨工程、粗研磨された基板をリンスするリンス工程、コロイダルシリカ砥粒を含有する研磨液を用いて仕上げ研磨する仕上げ研磨工程を有する。
[アルミブランク材の研磨工程]
 アルミニウム合金製のブランク材の内外径端面を旋盤加工し、グラインダー工程により表面を研磨する。
[Ni-Pめっき工程]
 基板に対して、エッチング、ジンケート処理、Ni-Pめっき、純水洗浄、乾燥、ベーキングの一連の処理を順次行う。
[粗研磨工程]
 加熱処理された基板のNi-Pめっきされた基板表面を粗研磨する。粗研磨は、有機高分子系の研磨布を貼付した定盤を用いて、アルミナ砥粒を含有する研磨液を供給しながら行う。本工程において使用される研磨液は、特に限定されない一般的なエッチャント成分として過酸化水素水、有機酸、無機酸、界面活性剤を含有するものが好ましい。
 アルミナ砥粒の平均粒径は、アルミナ残留、またはうねりの低減の観点から1μm以下が好ましく、より好ましくは0.7μm以下である。また、アルミナ砥粒の濃度は、研磨速度向上、経済性の観点から好ましくは10重量%以下、より好ましくは7重量%以下である。
[リンス工程]
 リンスでは、有機高分子系の研磨布を貼付した定盤を用いて、リンス液を供給しながらハードディスク基板の基板表面のアルミナ砥粒を低減する。
 リンス工程に使用される本発明のリンス剤は、砥粒としてコロイダルシリカを含有するリンス液であり、コロイダルシリカ砥粒の濃度をC、コロイダルシリカ砥粒の平均粒径をRとしたときに(C、Rはそれぞれ重量%、nmで表される)、コロイダルシリカ砥粒の濃度Cと平均粒径Rの関係が下記の式(1)を満足する構成を有している。
 R≧2.2C+18.2・・・・・(1)
 上記式(1)において、コロイダルシリカ砥粒の濃度Cは、0.8~8.0重量%の範囲にあることが好ましく、コロイダルシリカ砥粒の平均粒径Rは、20~80nmの範囲にあることが好ましい。
 リンス工程後の洗浄は、イオン交換水または超純水を使用した一般的なスクラブ洗浄を用いることができる。また、アルミナ残留低減の観点から、洗剤を併用したり、超音波DiPを併用しても良い。なお、平均粒径は、走査型電子顕微鏡又は透過型電子顕微鏡で観察して画像解析を行い、粒径を測定することにより求めることができる。
[仕上げ研磨工程]
 仕上げ研磨は、有機高分子系の研磨布を貼付した定盤を用い、コロイダルシリカ砥粒を含有する研磨液を供給しながら行う。
 本工程において使用される研磨液は、特に限定されない一般的なエッチャント成分として過酸化水素水、有機酸、無機酸、界面活性剤を含有するものが好ましい。
 コロイダルシリカ砥粒の平均粒径は、5~100nmが好ましく、表面粗度、うねり低減、経済性の観点から、30nm以下が好ましく、20nm以下がより好ましい。また、コロイダルシリカ砥粒の濃度は、研磨速度向上、スクラッチ低減、うねり低減、経済性の観点から20重量%以下が好ましく、2~10重量%がより好ましい。 
 仕上げ研磨工程後の洗浄は、イオン交換水または超純水を使用した一般的なスクラブ洗浄を用いることができる。また、アルミナ残留やコロイダルシリカ残留低減の観点から、洗剤を併用したり、超音波DiPを併用しても良い。
 なお、コロイダルシリカ砥粒を含有する研磨液を供給しながらハードディスク基板の基板表面のアルミナ砥粒を低減することはリンス工程と仕上げ研磨工程で共通するが、仕上げ研磨工程でのハードディスク基板の基板表面のアルミナ砥粒はリンス工程で低減されているので、深さが数十nm単位の凹み欠陥が基板表面に発生する確率はほとんどない。
[本製造方法による効果]
 本発明のリンス剤を用いて、ハードディスク基板のリンスを行うことにより、ハードディスク基板の基板表面に残留するアルミナ砥粒の量を低減することができ、リンス工程において深さが数十nm単位の凹み欠陥が基板表面に発生するのを抑制するという効果を得ることができる。
 その理由は、コロイダルシリカ砥粒の濃度Cと平均粒径Rの関係が上記の式(1)の範囲を外れたリンス剤は、リンス剤中のコロイダルシリカ砥粒が凝集して、その凝集した粒子が原因となって、基板表面に深さが数十nm単位の凹み欠陥を発生させると考えられる。
[その他]
 本発明のリンス剤は、Ni-P層を有するハードディスク基板のリンスに好適である。Ni-P層を有するハードディスク基板としては、公知のもので特に限定されることはなく、Ni-P層の基板材料としては、アルミニウム合金基板、ガラス基板、カーボン基板を使用することができるが、一般的にはアルミニウム合金製の基板が好適である。
 コロイダルシリカ砥粒の平均粒径Rと濃度Cが、表1に示す関係を有するリンス剤を得た(実施例1~7及び比較例1~6)。
 なお、平均粒径Rは、透過型電子顕微鏡(日本電子製、透過型電子顕微鏡 JEM2000FX(200kV))を用いて倍率10万倍の視野の写真を撮影し、この写真を解析ソフト(マウンテック製、Mac-View Ver.4.0)を用いて解析して測定した。
 そして、直径95mm、内径25mm、厚み1.27mmのNi-Pめっきされたアルミニウム合金からなる基板の基板表面に対して、粗研磨工程、表1に示すリンス剤によるリンス工程、仕上げ研磨工程、洗浄工程の順に加工を実施し、ハードディスク基板として用いられるNi-Pめっきされたアルミニウム合金基板を得た。
 研磨条件を下記に示す。
<粗研磨工程の設定条件>
研磨試験機: システム精工株式会社 9B両面研磨機
研磨パッド: 株式会社 FILWEL製 P1用研磨パッド
スラリー供給量: 12ml/min/pc
研磨時間: 粗研磨 150~300sec
加工圧力: 100g/cm2 
基板投入枚数: 10枚
定盤回転数: 12rpm~14rpm
粗研磨用研磨液組成物: アルミナ砥粒粒径0.6μm、濃度3.9重量%、添加剤として過酸化水素水、有機酸、硫酸、界面活性剤を含む。
<リンス工程の設定条件>
研磨試験機: システム精工株式会社 9B両面研磨機
研磨パッド: 株式会社 FILWEL製 P1用研磨パッド
リンス時間: 60sec
基板投入枚数: 10枚
定盤回転数: 12rpm~14rpm
リンス剤: コロイダルシリカ砥粒の粒径R及び濃度Cを表1に示す範囲で調整し、さらに過酸化水素水、硫酸、界面活性剤を添加した。
<仕上げ研磨工程の設定条件>
研磨試験機: システム精工株式会社 9B両面研磨機
研磨パッド: 株式会社 FILWEL製 P2用研磨パッド
スラリー供給量: 12ml/min/pc
研磨時間: 150~300sec
加工圧: 100g/cm2
基板投入枚数: 10枚
定盤回転数 : 13~20rpm
<仕上げ研磨工程後の洗浄>
 イオン交換水によるスクラブ洗浄を行い、遠心乾燥を行った。
 [凹み欠陥の評価]
 乾燥後の基板表面を光学系表面測定装置OPTIFLATにて観察し、深さが数十nm単位の凹み欠陥の有無を確認した。
○・・・凹み欠陥無し
×・・・凹み欠陥有り
 [アルミナ砥粒の残留状態の評価]
 リンス工程後の基板をイオン交換水によるスクラブ洗浄を行い、遠心乾燥した。その後、基板表面の白点を日立製作所製S-4800 SEMを使用して50,000倍にて観察し、白点をカウントすることにより、基板表面におけるアルミナ砥粒の残留状態を評価した。
 表1の結果により、基板表面の凹み欠陥は、コロイダルシリカ砥粒の平均粒径Rと濃度Cとの関係に応じて、発生する条件と発生しない条件があることがわかる。また、粗研磨工程後にコロイダルシリカ砥粒を含有するリンス剤によりリンスすることにより、アルミナ砥粒の残留量(個/μm)も低減できることがわかる。これらのことから、リンス剤に含有されるコロイダルシリカ砥粒の粒径Rと濃度Cの関係が上記式(1)を満足するようにリンス剤の組成物を設定することで、アルミナ残留低減と凹み欠陥抑制の両立が可能になった。
Figure JPOXMLDOC01-appb-T000001
 図1は、上記した表1の結果をグラフに示したものである。図1において、実施例1の値(実1)と実施例6の値(実6)の2点を結ぶ直線よりも上方の領域S1では、基板表面の凹み欠陥は発生していない(実施例1~7)。基板表面の凹み欠陥は、実施例1の値(実1)と実施例6の値(実6)の2点を結ぶ直線よりも下方の領域で発生していることがわかる(比較例1~5)。領域S1は、上記式(1)によって示される。
 そして、実施例1~7におけるコロイダルシリカ砥粒の濃度Cの最小値(実1)及び最大値(実6、7)と、実施例1~7におけるコロイダルシリカ砥粒の平均粒径Rの最小値(実1)及び最大値(実5)によって、図1に示す領域S2が規定される。領域S2は、コロイダルシリカ砥粒の濃度Cが0.8~8.0重量%の範囲となり、コロイダルシリカ砥粒の平均粒径Rが20~80nmの範囲となる。

Claims (5)

  1.  コロイダルシリカ砥粒を含有するリンス剤であって、
     前記コロイダルシリカ砥粒の濃度をC、該コロイダルシリカ砥粒の平均粒径をRとしたときに(C、Rはそれぞれ重量%、nmで表される)、前記コロイダルシリカ砥粒の平均粒径Rと濃度Cの関係が下記の式(1)を満足することを特徴とするリンス剤。
     R≧2.2C+18.2・・・・・(1)
  2.  前記コロイダルシリカ砥粒の濃度Cが、0.8~8.0重量%であることを特徴とする請求項1に記載のリンス剤。
  3.  前記コロイダルシリカ砥粒の平均粒径Rが、20~80nmであることを特徴とする請求項1又は2に記載のリンス剤。
  4.  前記請求項1から請求項3のいずれか一項に記載のリンス剤を用いてハードディスク基板をリンスするリンス工程を有することを特徴とするハードディスク基板の製造方法。
  5.  前記リンス工程は、アルミナ砥粒を含有する研磨液を用いてハードディスク基板を粗研磨する粗研磨工程と、コロイダルシリカ砥粒を含有する研磨液を用いてハードディスク基板を仕上げ研磨する仕上げ研磨工程との間に行われることを特徴とする請求項4に記載のハードディスク基板の製造方法。
PCT/JP2011/066366 2010-07-26 2011-07-19 リンス剤及びハードディスク基板の製造方法 WO2012014726A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG2013005152A SG187170A1 (en) 2010-07-26 2011-07-19 Rising agent, and method for production of hard disk substrate
US13/812,271 US9187718B2 (en) 2010-07-26 2011-07-19 Rinsing agent, and method for production of hard disk substrate
CN2011800400738A CN103080292A (zh) 2010-07-26 2011-07-19 冲洗剂及用于生产硬盘基材的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010166840A JP5795843B2 (ja) 2010-07-26 2010-07-26 ハードディスク基板の製造方法
JP2010-166840 2010-07-26

Publications (1)

Publication Number Publication Date
WO2012014726A1 true WO2012014726A1 (ja) 2012-02-02

Family

ID=45529942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066366 WO2012014726A1 (ja) 2010-07-26 2011-07-19 リンス剤及びハードディスク基板の製造方法

Country Status (7)

Country Link
US (1) US9187718B2 (ja)
JP (1) JP5795843B2 (ja)
CN (1) CN103080292A (ja)
MY (1) MY159056A (ja)
SG (1) SG187170A1 (ja)
TW (1) TWI597338B (ja)
WO (1) WO2012014726A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5872322B2 (ja) * 2012-02-24 2016-03-01 株式会社Uacj 磁気ディスク用基板の製造方法、磁気ディスク用基板、磁気ディスク、磁気ディスク基板用洗浄剤

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208869A (ja) * 1986-03-05 1987-09-14 Kobe Steel Ltd 磁気デイスク基板の研磨方法
JPH06177095A (ja) * 1992-12-03 1994-06-24 Mitsubishi Materials Corp 化合物半導体ウェハの研磨方法
JP2003178430A (ja) * 2001-12-07 2003-06-27 Toyo Kohan Co Ltd 磁気ディスク基板研磨液
JP2003266299A (ja) * 2002-03-12 2003-09-24 Toyo Kohan Co Ltd 磁気ディスク基板研磨液
JP2006095676A (ja) * 2004-08-30 2006-04-13 Showa Denko Kk 磁気ディスク用基板および磁気ディスクの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4141514B2 (ja) 1996-11-26 2008-08-27 株式会社フジミインコーポレーテッド リンス用組成物
KR100474537B1 (ko) 2002-07-16 2005-03-10 주식회사 하이닉스반도체 산화막용 cmp 슬러리 조성물 및 이를 이용한 반도체소자의 제조 방법
JP4707311B2 (ja) 2003-08-08 2011-06-22 花王株式会社 磁気ディスク用基板
TWI364450B (en) * 2004-08-09 2012-05-21 Kao Corp Polishing composition
JP4214093B2 (ja) * 2004-08-24 2009-01-28 花王株式会社 研磨液組成物
WO2006025509A1 (en) * 2004-08-30 2006-03-09 Showa Denko K.K. Magnetic disk substrate and production method of magnetic disk
WO2006133249A2 (en) 2005-06-06 2006-12-14 Advanced Technology Materials, Inc. Integrated chemical mechanical polishing composition and process for single platen processing
TWI506621B (zh) * 2005-12-22 2015-11-01 Kao Corp 硬碟基板用研磨液組合物
JP4523935B2 (ja) * 2006-12-27 2010-08-11 昭和電工株式会社 炭化珪素単結晶基板の研磨用水系研磨スラリー及び研磨法。
US8404009B2 (en) * 2007-10-29 2013-03-26 Kao Corporation Polishing composition for hard disk substrate
US10144849B2 (en) 2008-02-01 2018-12-04 Fujimi Incorporated Polishing composition and polishing method using the same
CN101821058A (zh) * 2008-06-11 2010-09-01 信越化学工业株式会社 合成石英玻璃基板用抛光剂
DE102008059044B4 (de) 2008-11-26 2013-08-22 Siltronic Ag Verfahren zum Polieren einer Halbleiterscheibe mit einer verspannt-relaxierten Si1-xGex-Schicht
JP5371416B2 (ja) 2008-12-25 2013-12-18 富士フイルム株式会社 研磨液及び研磨方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208869A (ja) * 1986-03-05 1987-09-14 Kobe Steel Ltd 磁気デイスク基板の研磨方法
JPH06177095A (ja) * 1992-12-03 1994-06-24 Mitsubishi Materials Corp 化合物半導体ウェハの研磨方法
JP2003178430A (ja) * 2001-12-07 2003-06-27 Toyo Kohan Co Ltd 磁気ディスク基板研磨液
JP2003266299A (ja) * 2002-03-12 2003-09-24 Toyo Kohan Co Ltd 磁気ディスク基板研磨液
JP2006095676A (ja) * 2004-08-30 2006-04-13 Showa Denko Kk 磁気ディスク用基板および磁気ディスクの製造方法

Also Published As

Publication number Publication date
MY159056A (en) 2016-12-15
TW201224088A (en) 2012-06-16
JP2012024888A (ja) 2012-02-09
US20130122786A1 (en) 2013-05-16
SG187170A1 (en) 2013-02-28
US9187718B2 (en) 2015-11-17
CN103080292A (zh) 2013-05-01
TWI597338B (zh) 2017-09-01
JP5795843B2 (ja) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5474400B2 (ja) 半導体用濡れ剤、それを用いた研磨用組成物および研磨方法
JP7148506B2 (ja) 研磨用組成物およびこれを用いた研磨方法
JP5251861B2 (ja) 合成石英ガラス基板の製造方法
JP4993046B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP4667848B2 (ja) ガラス基板用研磨液組成物
JP4202157B2 (ja) 研磨用組成物
JP6513454B2 (ja) 研磨物の製造方法
JP2010170615A (ja) ハードディスク用基板用の洗浄剤組成物
JP5795843B2 (ja) ハードディスク基板の製造方法
JP5575735B2 (ja) 研磨用組成物濃縮物
JP5906823B2 (ja) 磁気記録媒体用ガラス基板の製造方法
JP6393228B2 (ja) 研磨用組成物および研磨物の製造方法
JP5574702B2 (ja) 有機粒子とシリカ粒子の凝集体からなる研磨用粒子分散液およびその製造方法
US10570355B2 (en) Cleaning agent composition for glass hard disk substrate
JPWO2017061109A1 (ja) 磁気ディスク用研磨材及び磁気ディスクの製造方法
TW202225368A (zh) 研磨用組合物及使用此的研磨方法
JP7158889B2 (ja) ガラスハードディスク基板用研磨液組成物
JP2016059973A (ja) 研磨スラリーの再生方法、基板の製造方法
JP6653238B2 (ja) 研磨用組成物、およびこれを用いた研磨方法および磁気ディスク用基板の製造方法
JP4640981B2 (ja) 基板の製造方法
JP7492366B2 (ja) 磁気ディスク基板用研磨剤組成物
JP7368998B2 (ja) 研磨用組成物および磁気ディスク基板製造方法
JP2022057581A (ja) 研磨用組成物、基板の研磨方法および基板の製造方法
JP2022057432A (ja) 研磨用組成物、基板の製造方法および研磨方法
JP6393227B2 (ja) 研磨用組成物および研磨物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040073.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13812271

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812318

Country of ref document: EP

Kind code of ref document: A1