WO2012008784A2 - 발포성 전분 비드 및 이의 제조방법 - Google Patents

발포성 전분 비드 및 이의 제조방법 Download PDF

Info

Publication number
WO2012008784A2
WO2012008784A2 PCT/KR2011/005205 KR2011005205W WO2012008784A2 WO 2012008784 A2 WO2012008784 A2 WO 2012008784A2 KR 2011005205 W KR2011005205 W KR 2011005205W WO 2012008784 A2 WO2012008784 A2 WO 2012008784A2
Authority
WO
WIPO (PCT)
Prior art keywords
starch
weight
beads
monomer copolymer
expandable
Prior art date
Application number
PCT/KR2011/005205
Other languages
English (en)
French (fr)
Other versions
WO2012008784A3 (ko
Inventor
조영모
김쌍옥
이건규
윤지영
전영승
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Priority to US13/809,973 priority Critical patent/US9018268B2/en
Priority to JP2013519603A priority patent/JP5710760B2/ja
Publication of WO2012008784A2 publication Critical patent/WO2012008784A2/ko
Publication of WO2012008784A3 publication Critical patent/WO2012008784A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/02Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a foamed starch bead and a method for preparing the same, more particularly, a foamed starch bead comprising a starch-monomer copolymer formed by binding a specific monomer to starch and a volatile blowing agent impregnated in the starch-monomer copolymer; It relates to a manufacturing method thereof.
  • Styrofoam prepared by foaming expanded polystyrene beads is widely used as a material for disposable products, but if discarded in the natural environment after use, it remains semi-permanent without being decomposed and is a main cause of environmental pollution. Therefore, researches on biodegradable materials that replace styrofoam are being actively conducted, but materials that can completely replace styrofoam have not been developed.
  • Starch is mainly used as a main material of biodegradable material that can replace styrofoam.
  • US Patent No. 4,863,655 discloses a method of manufacturing a biodegradable buffer material by supplying water to an extruder with foamed starch or modified starch and a blowing agent. Is disclosed. However, when foaming using an extruder, it is difficult to produce foams with various shapes and sizes, and mainly peanut-shaped foams are produced. In addition, in the case of a foam mainly containing starch as a main material, there is a limit to replace styrofoam in physical properties.
  • the present invention is derived to solve the conventional problems, one object of the present invention is the main raw material is environmentally friendly starch, and can be molded into a foam having a specific shape in a variety of molds, such as expandable polystyrene beads To provide effervescent starch beads.
  • Another object of the present invention to provide a method for producing the expandable starch bead.
  • the present invention comprises a starch-monomer copolymer and a blowing agent impregnated in the starch-monomer copolymer
  • the starch-monomer copolymer is styrene, ⁇ -methylstyrene, lactide , Lactic acid, acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, acrylonitrile, acrylamide, and at least one monomer selected from the group consisting of caprolactone is formed by bonding to starch
  • the blowing agent is C 2 It provides an expandable starch bead characterized by consisting of at least one member selected from the group consisting of aliphatic hydrocarbon of ⁇ C 7 , C 2 ⁇ C 7 halogenated hydrocarbon, and carbon dioxide.
  • the present invention comprises a fine pellet formed by extruding a mixture of a starch-monomer copolymer and a resin and a blowing agent impregnated in the fine pellet
  • the starch-monomer copolymer is styrene, ⁇ -methylstyrene, lactide, Lactic acid, acrylic acid, methacrylic acid, acrylic ester, methacrylic acid ester, acrylonitrile, acrylamide
  • the resin is polystyrene, polyethylene , Polypropylene, ethylene vinyl acetate, polylactic acid, polycaprolactone, polybutylene succinate, polybutylene succinate adipate and polybutylene adipate terephthalate
  • at least one member selected from the group consisting of the blowing agent is a halogenated hydrocarbon, carbon dioxide and a C 2 ⁇ C 7 alipha
  • the present invention comprises the steps of preparing a starch-monomer copolymer; And impregnating a blowing agent in the prepared starch-monomer copolymer, wherein the starch-monomer copolymer comprises styrene, ⁇ -methylstyrene, lactide, lactic acid, acrylic acid, methacrylic acid, acrylic acid ester, methacrylic At least one monomer selected from the group consisting of acid esters, acrylonitrile, acrylamide and caprolactone is formed by bonding to starch, and the blowing agent is C 2 to C 7 aliphatic hydrocarbon, C 2 to C 7 halogenated hydrocarbon It provides a method for producing expandable starch beads, characterized in that composed of at least one selected from the group consisting of, and carbon dioxide.
  • the present invention comprises the steps of preparing a fine pellet by mixing and extruding the starch-monomer copolymer and resin; And containing a blowing agent in the prepared fine pellets, wherein the starch-monomer copolymer comprises styrene, ⁇ -methylstyrene, lactide, lactic acid, acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester , At least one monomer selected from the group consisting of acrylonitrile, acrylamide and caprolactone is formed by bonding to starch, and the resin is polystyrene, polyethylene, polypropylene, ethylene vinyl acetate, polylactic acid, polycaprolactone, It is composed of one or more selected from the group consisting of polybutylene succinate, polybutylene succinate adipate and polybutylene adipate terephthalate, the blowing agent C 2 ⁇ C 7 aliphatic hydrocarbon, C 2 ⁇ C that
  • the expandable starch beads according to the present invention have similar properties to the expandable polystyrene beads and can be foamed by the foaming equipment of the expandable polystyrene beads.
  • foams having various sizes and various shapes may be manufactured by a mold.
  • foam molding using a foaming apparatus including an extruder the size and shape of the foam is limited by the die provided in front of the extruder, and typically, only foam in the form of a rump or sheet can be produced. Therefore, the foam produced from the expandable starch beads of the present invention has the advantage that it can be used in a variety of forms, such as styrofoam and small and medium packaging as well as small packaging.
  • the foams produced from the effervescent starch beads of the present invention have an environmentally friendly advantage of being degraded by microorganisms in the soil when disposed.
  • Figure 2 is a photograph showing the fine granules produced by the extruder in Preparation Example 10.
  • Figure 4 is a photograph showing a foam in the form of a plate prepared in Test Example 1.
  • FIG. 5 is a photograph showing a foam in the form of a rectangular box container prepared in Test Example 10.
  • Figure 6 is a photograph showing a peanut-shaped foam prepared in Comparative Test Example 2.
  • Figure 7 is a photograph showing a foam in the form of a plate prepared in Comparative Test Example 4.
  • Effervescent starch beads according to an embodiment of the present invention includes a starch-monomer copolymer and a blowing agent impregnated in the starch-monomer copolymer.
  • the starch-monomer copolymer is selected from the group consisting of styrene, ⁇ -methylstyrene, lactide, lactic acid, acrylic acid, methacrylic acid, acrylic ester, methacrylic acid ester, acrylonitrile, acrylamide and caprolactone It is a graft copolymer formed by bond
  • the acrylic ester is preferably an ester of acrylic acid and an alcohol having 1 to 8 carbon atoms, for example, methyl acrylate, ethyl acrylate, butyl acrylate and the like.
  • the methacrylic acid ester is preferably an ester of methacrylic acid and an alcohol having 1 to 8 carbon atoms, for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate and the like.
  • the starch constituting the starch-monomer copolymer may be composed of one or more selected from the group consisting of corn starch, waxy corn starch, tapioca starch, potato starch, sweet potato starch, wheat starch, rice starch and modified starches thereof. It is not limited to this.
  • the modified starch may be selected from the group consisting of oxidized starch, acid treated starch, ester starch, ether starch, phosphate crosslinked starch and acetyladipic acid starch.
  • the weight ratio of starch to monomer constituting the starch-monomer copolymer is not particularly limited, and preferably has a range of 10:90 to 90:10.
  • the blowing agent is a volatile low boiling point, can be composed of at least one element selected from the group consisting of halogenated hydrocarbons, and carbon dioxide C 2 ⁇ C 7 aliphatic hydrocarbon, C 2 ⁇ C 7 a.
  • the C 2 to C 7 aliphatic hydrocarbons include propane, butane, isobutane, pentane, isopentane, neopentane, hexane and the like.
  • the expandable starch beads according to one embodiment of the present invention prepared by impregnating the starch-monomer copolymer with the above blowing agent have properties similar to those of conventional expandable polystyrene beads.
  • Effervescent starch beads according to an embodiment of the present invention preferably comprises 90 to 99 parts by weight of starch-monomer copolymer and 1 to 10 parts by weight of blowing agent.
  • the expandable starch beads according to an embodiment of the present invention preferably further comprises 0.1 to 10 parts by weight of an initiator and 0.1 to 10 parts by weight of a dispersant based on 100 parts by weight of the starch and monomer constituting the starch-monomer copolymer. can do.
  • the initiator may be preferably composed of one or more selected from the group consisting of potassium persulfate, ammonium persulfate, benzoyl peroxide, ceric ammonium nitrate, azobisisobutyronitrile and tin octoate, but is not limited thereto. It is not.
  • the type of the dispersant is not particularly limited, such as organic dispersant, inorganic dispersant, polyvinyl alcohol, polyvinylacetate, methyl cellulose, hydroxyethyl cellulose, polyvinylpyrrolidone, tricalcium phosphate, calcium carbonate, It may be composed of one or more selected from the group consisting of talc, bentonite and magnesium silicate.
  • Effervescent starch beads according to an embodiment of the present invention is largely dependent on the size of the starch-monomer copolymer in the form of particles, for example having a diameter of 0.1 to 5.0 mm, preferably 0.3 to 3.0 mm It may be, but is not limited thereto.
  • Method for producing expandable starch beads comprises the steps of preparing a starch-monomer copolymer; And impregnating a blowing agent into the prepared starch-monomer copolymer.
  • the starch-monomer copolymer is selected from the group consisting of styrene, ⁇ -methylstyrene, lactide, lactic acid, acrylic acid, methacrylic acid, acrylic ester, methacrylic acid ester, acrylonitrile, acrylamide and caprolactone
  • the blowing agent is composed of one or more selected from the group consisting of C 2 ⁇ C 7 aliphatic hydrocarbons, C 2 ⁇ C 7 halogenated hydrocarbons, and carbon dioxide.
  • Preparing the starch-monomer copolymer in the method for producing expandable starch beads according to an embodiment of the present invention is preferably added to the reactor in a weight ratio of 10:90 to 90:10, the starch and 0.1 to 10 parts by weight of initiator, 0.1 to 10 parts by weight of dispersant and 100 to 2000 parts by weight of water are added to 100 parts by weight of the monomer, followed by reacting at a temperature of more than 30 ° C and less than 150 ° C for 1 to 10 hours. It is characterized by.
  • the reaction temperature is preferably 50 ⁇ 120 °C
  • the reaction time is preferably 3 to 8 hours.
  • the initiator is preferably one selected from the group consisting of potassium persulfate, ammonium persulfate, benzoyl peroxide, ceric ammonium nitrate, azobisisobutyronitrile and tin octoate. It may be configured as described above.
  • the dispersing agent in the preparation of the starch-monomer copolymer is preferably polyvinyl alcohol, polyvinylacetate, methylcellulose, hydroxyethyl cellulose, polyvinylpyrrolidone, tricalcium phosphate, calcium carbonate, talc, bentonite And it may be composed of one or more selected from the group consisting of magnesium silicate.
  • the dispersant serves to stably starch the starch in the step of preparing the starch-monomer copolymer, and uniformly disperse the starch-monomer copolymer in the impregnation of the foaming agent described later.
  • Impregnating the blowing agent in the method for preparing expandable starch beads according to an embodiment of the present invention preferably comprises a weight ratio of starch-monomer copolymer: foaming agent in a reactor prepared with the starch-monomer copolymer of 90:10 to 99:
  • the blowing agent is added so as to be 1, and reacted at a temperature of 30 to 150 ° C. for 1 to 10 hours to impregnate the blowing agent in the starch-monomer copolymer.
  • the reaction temperature in the impregnating the blowing agent is preferably 50 ⁇ 120 °C, the reaction time is preferably 3 to 8 hours. If the reaction temperature is less than 30 ° C.
  • the content of the blowing agent may be insufficient. If the temperature exceeds 150 ° C., the starch-monomer copolymer may aggregate to form agglomerates. Further, the step of impregnating the blowing agent is carried out at about 5 to inert gas atmosphere of 20kg f / cm2, preferably 8 ⁇ 15kg f / cm2 nitrogen atmosphere.
  • the expandable starch beads according to another embodiment of the present invention include fine pellets formed by extruding a mixture of a starch-monomer copolymer and a resin, and a blowing agent impregnated in the fine pellets.
  • the starch-monomer copolymer is selected from the group consisting of styrene, ⁇ -methylstyrene, lactide, lactic acid, acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, acrylonitrile, acrylamide and caprolactone
  • One or more monomers to be formed are bonded to the starch.
  • Starch-monomer copolymer in the effervescent starch bead according to another embodiment of the present invention is the same as described above in the effervescent starch bead according to an embodiment of the present invention and a detailed description thereof will be omitted.
  • the resin is polystyrene, polyethylene, polypropylene, ethylene vinyl acetate, polylactic acid, polycaprolactone, polybutylene succinate, polybutylene succinate adipate and polybutylene It consists of 1 or more types chosen from the group which consists of adipate terephthalate.
  • the blowing agent is composed of at least one member selected from the group consisting of C 2 to C 7 aliphatic hydrocarbons, C 2 to C 7 halogenated hydrocarbons, and carbon dioxide.
  • the particulate pellet preferably includes 10 to 90 parts by weight of the starch-monomer copolymer and 10 to 90 parts by weight of the resin.
  • the fine pellets preferably have a diameter of 0.5 to 5.0 mm, more preferably 1.0 to 3.0 mm.
  • the size of the expandable starch beads according to another example of the present invention mainly depends on the size of the fine pellets.
  • the expandable starch beads according to another embodiment of the present invention may preferably include 1 to 10 parts by weight of the blowing agent, and more preferably 0.1 to 10 parts by weight of the dispersant based on 100 parts by weight of fine pellets. do.
  • the type of dispersant is not particularly limited, and is preferably polyvinyl alcohol, polyvinylacetate, methyl cellulose, hydroxyethyl cellulose, polyvinylpyrrolidone, tricalcium phosphate, calcium carbonate, talc, bentonite and magnesium silicate. It may be composed of one or more selected from the group consisting of.
  • the foamed starch beads according to another embodiment of the present invention may further include a trace amount of the initiator introduced from the starch-monomer copolymer.
  • Method for producing expandable starch beads comprises the steps of preparing a fine pellet by mixing and extruding the starch-monomer copolymer and resin; And containing a blowing agent in the prepared fine pellets.
  • the starch-monomer copolymer is selected from the group consisting of styrene, ⁇ -methylstyrene, lactide, lactic acid, acrylic acid, methacrylic acid, acrylic ester, methacrylic acid ester, acrylonitrile, acrylamide and caprolactone
  • One or more monomers to be formed are bonded to the starch.
  • the resin is selected from the group consisting of polystyrene, polyethylene, polypropylene, ethylene vinyl acetate, polylactic acid, polycaprolactone, polybutylene succinate, polybutylene succinate adipate and polybutylene adipate terephthalate It consists of 1 or more types.
  • the blowing agent is composed of at least one member selected from the group consisting of C 2 to C 7 aliphatic hydrocarbons, C 2 to C 7 halogenated hydrocarbons, and carbon dioxide.
  • a method for preparing expandable starch beads may further include preparing a starch-monomer copolymer before preparing fine pellets, and preparing the starch-monomer copolymer may include:
  • preparing the starch-monomer copolymer may include:
  • the weight ratio of starch-monomer copolymer: resin of the step of preparing the fine pellets is preferably 10:90 to 90:10.
  • the preparing of the pellets may be performed by a conventional extruder.
  • impregnating the fine pellet with the blowing agent is preferably 1 to 10 parts by weight of the blowing agent per 100 parts by weight of the prepared pellet, and 0.1 to 10 weight of the dispersant. And 100 to 2000 parts by weight of water are added and reacted at a temperature of 30 to 150 ° C. for 1 to 10 hours.
  • the reaction temperature is preferably 50 to 120 ° C, and the reaction time is 3 to 8 hours in the step of impregnating the blowing pellet in the fine pellets. If the reaction temperature is less than 30 ° C. in the step of impregnating the particulate pellet with the foaming agent, the content of the blowing agent may be inadequate.
  • the particulate pellets may aggregate together to form agglomerates.
  • the step of impregnating the foaming agent in the fine pellets is carried out at about 5 to inert gas atmosphere of 20kg f / cm2, preferably 8 ⁇ 15kg f / cm2 nitrogen atmosphere.
  • the dispersant is preferably one selected from the group consisting of polyvinyl alcohol, polyvinylacetate, methyl cellulose, hydroxyethyl cellulose, polyvinylpyrrolidone, tricalcium phosphate, calcium carbonate, talc, bentonite and magnesium silicate. It consists of the above.
  • the expandable starch beads according to the present invention can be molded into foams by foaming equipment of conventional expandable polystyrene.
  • the foam refers to an article made by foaming the foamed starch beads, for example, a film, a sheet, an injection molded product such as styrofoam, a three-dimensional three-dimensional packaging material of various shapes, and the like, but is not limited thereto.
  • the expandable starch beads according to the present invention can be foamed by any foaming equipment capable of a foaming process, as well as foaming equipment of conventional foamable polystyrene.
  • Expandable starch beads were obtained in the same manner as in Preparation Example 1, except that 0.12 kg of potassium persulfate was used.
  • Expandable starch beads were obtained in the same manner as in Preparation Example 1, except that ammonium persulfate was used instead of potassium persulfate.
  • Expandable starch beads were obtained in the same manner as in Preparation Example 1, except that 9 kg of corn starch and 3 kg of styrene were used.
  • Expandable starch beads were obtained in the same manner as in Preparation Example 1, except that 3 kg of corn starch and 9 kg of styrene were used.
  • Expandable starch beads were obtained in the same manner as in Preparation Example 1, except that lactic acid was used instead of styrene and tin octoate was used instead of potassium persulfate.
  • Effervescent starch beads were obtained in the same manner as in Preparation Example 1, except that tapioca starch was used instead of corn starch.
  • Expandable starch beads were obtained in the same manner as in Preparation Example 1, except that butane was used instead of pentane.
  • Figure 2 is a photograph showing the fine granules produced by the extruder in Preparation Example 10. Thereafter, 10 kg of the prepared pellets, 0.06 kg of polyvinyl alcohol, 30 kg of water, and 1 kg of pentane were placed in a reactor, and reacted for 8 hours at a temperature of 100 ° C. and a nitrogen atmosphere of 10 kg f / cm 2 for fine pentane. The pellet was impregnated. The reaction product was then filtered and dried at 30 ° C. to yield effervescent starch beads. 3 is a photograph showing the effervescent starch beads obtained in Preparation Example 10.
  • Expandable starch beads were obtained in the same manner as in Production Example 10, except that 0.12 kg of potassium persulfate was used.
  • Expandable starch beads were obtained in the same manner as in Preparation Example 10, except that ammonium persulfate was used instead of potassium persulfate.
  • Expandable starch beads were obtained in the same manner as in Preparation Example 10, except that 9 kg of corn starch and 3 kg of styrene were used.
  • Expandable starch beads were obtained in the same manner as in Preparation Example 10, except that 3 kg of corn starch and 9 kg of styrene were used.
  • Effervescent starch beads were obtained in the same manner as in Preparation Example 10 except that lactic acid was used instead of styrene and tin octoate was used instead of potassium persulfate.
  • Expandable starch beads were obtained in the same manner as in Preparation Example 10, except that tapioca starch was used instead of corn starch.
  • Expandable starch beads were obtained in the same manner as in Preparation Example 10, except that butane was used instead of pentane.
  • a starch-monomer copolymer was prepared by adding 6 kg of corn starch, 6 kg of styrene, 30 kg of water, 0.06 kg of potassium persulfate, and 0.06 kg of tricalcium phosphate into the reactor for 6 hours at a temperature of 30 ° C. Thereafter, the starch-monomer copolymer was filtered with water and washed with water, and dried with a hot air dryer at 60 ° C. 6 kg of dried starch-monomer copolymer, 0.06 kg of polyvinyl alcohol, 20 kg of water, and 1 kg of pentane were placed in a reactor and reacted for 8 hours at a temperature of 100 ° C. and a nitrogen atmosphere of 10 kg f / cm 2. At this time, the dried starch-monomer copolymer was not gelatinized to form expandable starch beads.
  • a starch-monomer copolymer was prepared by adding 6 kg of corn starch, 6 kg of styrene, 30 kg of water, 0.06 kg of potassium persulfate, and 0.06 kg of tricalcium phosphate into the reactor for 50 minutes at a temperature of 60 ° C. Thereafter, the starch-monomer copolymer was filtered with water and washed with water, and dried with a hot air dryer at 60 ° C. 6 kg of dried starch-monomer copolymer, 0.06 kg of polyvinyl alcohol, 20 kg of water, and 1 kg of pentane were placed in a reactor and reacted for 8 hours at a temperature of 100 ° C. and a nitrogen atmosphere of 10 kg f / cm 2. At this time, the dried starch-monomer copolymer was not gelatinized to form expandable starch beads.
  • a starch-monomer copolymer was prepared by adding 6 kg of corn starch, 6 kg of styrene, 30 kg of water, 0.06 kg of potassium persulfate, and 0.06 kg of tricalcium phosphate into the reactor for 6 hours at 150 ° C. At this time, the starch-monomer copolymer agglomerated with each other to form a lump, and the subsequent blowing agent impregnation process could not proceed.
  • Fine pellets were prepared by passing a mixture of 6 kg of corn starch and 6 kg of polystyrene through an extruder. Thereafter, 10 kg of the prepared pellets, 0.06 kg of polyvinyl alcohol, 30 kg of water, and 1 kg of pentane were placed in a reactor, and reacted for 8 hours at a temperature of 100 ° C. and a nitrogen atmosphere of 10 kg f / cm 2 for fine pentane. The pellet was impregnated. At this time, a significant amount of the corn starch constituting the fine pellet was separated from the polystyrene. The reaction product was then filtered and dried at 30 ° C. to yield effervescent starch beads.
  • the copolymerization rate of the prepared starch-monomer copolymer was analyzed in the process of obtaining the expandable beads of Preparation Examples 1 to 9 and Comparative Preparation Examples 1 and 2.
  • the copolymerization rate of the starch-monomer copolymers prepared in Preparation Examples 10 to 18 is the same as that of the starch-monomer copolymers prepared in Preparation Examples 1-9, respectively.
  • the copolymerization rate was calculated by the following formula after extracting and removing the uncopolymerized monomer to monomer between monomers from the starch-monomer copolymer using a soxhlet apparatus (solvent: toluene; 100 ° C; 24 hours).
  • W 1 is the amount of starch-monomer copolymer and W 0 is the amount of added starch.
  • the copolymerization rate of the starch-monomer copolymer calculated by the above formula is shown in Table 1 below.
  • the copolymer when the starch-monomer copolymer was prepared, the copolymer was not produced when the reaction temperature was 30 ° C. or less, or the reaction time was 50 minutes or less. In addition, when the reaction temperature is 150 °C or more copolymers agglomerate with each other to form a foamed starch bead was impossible.
  • FIG. 4 is a photograph showing a foam in the form of a plate prepared in Test Example 1.
  • a foam was prepared in the same manner as in Test Example 1, except that the expandable starch beads obtained in Preparation Example 2 were used.
  • a foam was prepared in the same manner as in Test Example 1, except that the expandable starch beads obtained in Preparation Example 3 were used.
  • a foam was prepared in the same manner as in Test Example 1, except that the expandable starch beads obtained in Preparation Example 6 were used.
  • a foam was prepared in the same manner as in Test Example 1, except that the expandable starch beads obtained in Preparation Example 7 were used.
  • a foam was prepared in the same manner as in Test Example 1, except that the expandable starch beads obtained in Preparation Example 8 were used.
  • a foam was prepared in the same manner as in Test Example 1, except that the expandable starch beads obtained in Preparation Example 10 were used.
  • a foam was prepared in the same manner as in Test Example 1, except that the expandable starch beads obtained in Preparation Example 16 were used.
  • a foam was prepared in the same manner as in Test Example 1, except that the expandable starch beads obtained in Preparation Example 17 were used.
  • the foamed starch beads obtained in Preparation Example 10 were placed in a mold in the form of a rectangular box container mounted on the foaming equipment of the expandable polystyrene beads, and steamed and then foamed to prepare a foam.
  • 5 is a photograph showing a foam in the form of a rectangular box container prepared in Test Example 10.
  • a foam was prepared in the same manner as in Test Example 1, except that the expandable starch beads prepared in Comparative Preparation Example 5 were used. At this time, foaming was hardly achieved.
  • the foamed starch beads prepared in Comparative Preparation Example 5 were introduced into an extruder-type foaming facility having a screw diameter of 55 mm and an L / D of 7, and foamed at a barrel temperature of 220 ° C. and a screw speed of 75 rpm to prepare a foam.
  • the die of the extruder was then circular.
  • Figure 6 is a photograph showing a peanut-shaped foam prepared in Comparative Test Example 2.
  • a foam was prepared in the same manner as in Test Example 1 except that the expandable starch beads prepared in Comparative Preparation Example 6 were used.
  • a foam was prepared in the same manner as in Test Example 1, except that the expandable polystyrene beads prepared in Comparative Preparation Example 7 were used.
  • Figure 7 is a photograph showing a foam in the form of a plate prepared in Comparative Test Example 4.
  • the apparent density of the foam was determined by measuring the volume and weights of the foam and the following formula.
  • the foaming rate of the foam prepared from the expandable polystyrene beads was set to 100, and based on the relative foaming rate of the remaining foams was calculated. Foaming rate is inversely proportional to the apparent density of the foam.
  • the compressive strength of the foam was measured using an Instron apparatus, and specifically, the compressive strength when the foam was deformed 10% was measured.
  • Table 3 shows the results of the measurement of the apparent density, relative foaming rate, and compressive strength of the foams prepared in the test and comparative test examples.
  • the foams prepared from the expandable starch beads of the present invention were found to have similar foaming rate and mechanical strength as the foams prepared from the expandable polystyrene beads.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 전분-모노머 공중합체 및 상기 전분-모노머 공중합체에 함침된 발포제를 포함하고, 상기 전분-모노머 공중합체는 스티렌, α-메틸스티렌, 락타이드, 락틱산, 아크릴산, 메타크릴산, 아크릴산 에스테르, 메타크릴산 에스테르, 아크릴로니트릴, 아크릴아미드 및 카프로락톤으로 이루어진 군에서 선택되는 1종 이상의 모노머가 전분에 결합되어 형성된 것이고, 상기 발포제는 C2~C7의 지방족 탄화수소, C2~C7의 할로겐화탄화수소, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상으로 구성된 것을 특징으로 하는 발포성 전분 비드를 제공한다. 본 발명에 따른 발포성 전분 비드는 발포성 폴리스티렌 비드와 특성이 유사하여 발포성 폴리스티렌 비드의 발포설비에 의해 발포성형될 수 있기 때문에 다양한 크기 및 다양한 형태를 가진 발포체의 제조가 가능하다.

Description

발포성 전분 비드 및 이의 제조방법
본 발명은 발포성 전분 비드 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 특정 모노머가 전분에 결합되어 형성된 전분-모노머 공중합체 및 상기 전분-모노머 공중합체에 함침된 휘발성 발포제를 포함하는 발포성 전분 비드 및 이의 제조방법에 관한 것이다.
발포성 폴리스티렌 비드를 발포하여 제조한 스티로폼은 일회용품의 재료로 많이 사용되나, 사용 후 자연환경에 버려질 경우 분해가 되지 않고 반영구적으로 남아 환경오염의 주원인으로 부각되고 있다. 그래서 스티로폼을 대체하는 생분해성 소재에 관한 연구가 활발히 진행되고 있으나, 스티로폼을 완전히 대체할 수 있는 하는 소재가 개발되지 않고 있다.
스티로폼을 대체할 수 있는 생분해성 소재의 주재료로 전분이 주로 사용되는데, 미국등록특허공보 제4,863,655호에는 전분 또는 변성전분 및 발포제로 물을 압출기에 공급하고 발포성형하여 생분해성 완충재를 제조하는 방법이 개시되어 있다. 그러나, 압출기를 사용하여 발포성형하는 경우 다양한 형상 및 크기를 가진 발포체를 제조하기 어렵고 주로 땅콩 형태의 발포체가 제조된다. 또한, 일반적인 전분을 주재료로 하는 발포체의 경우 물성 등에서 스티로폼을 대체하기에는 한계가 있다. 또한, 압출기를 사용하여 전분을 발포한 후 발포된 압출물로부터 압축, 접합, 절단 등과 같은 복잡한 가공 과정을 통해 형태를 갖춘 발포체를 제조하는 사례도 있으나, 발포성 폴리스티렌 비드의 발포 설비를 이용하지 못하고, 다단계의 공정으로 경제성이나 용도에 한계가 있다. 또한, 미국공개특허공보 제2007/0021515호에는 전분 및 물 또는 알코올과 같은 발포제를 포함하는 전분 조성물을 압출기로 압출하여 비드로 만들고, 이를 발포성형하여 특정 형태를 갖춘 발포체를 제조하는 방법이 개시되어 있으나, 전분의 특성 상 사용될 수 있는 발포제의 종류가 제한되어 발포체 제조시 다양한 금형 및 스팀을 사용하는 발포성 폴리스티렌 비드의 발포 설비 대신 별도의 발포설비가 요구되고 발포율 등에 한계가 있는 문제점이 있다.
한편, 폴리부틸렌숙시네이트, 폴리락틱산 등의 생분해성 수지를 사용하여 발포성 비드 또는 발포체를 제조하는 연구는 꾸준히 진행되고 있고, 개발 사례도 보고되고 있으나, 발포성 폴리스티렌 비드에 비해 고가이고, 스티로폼에 비해 기계적 물성이 좋지 않아 사용하는 데는 한계가 있다.
본 발명은 종래의 문제점을 해결하기 위하여 도출된 것으로서, 본 발명의 일 목적은 환경 친화적인 전분을 주원료로 하고, 발포성 폴리스티렌 비드와 같이 다양한 형태의 금형 내에서 특정 형태를 갖춘 발포체로 성형될 수 있는 발포성 전분 비드를 제공하는데에 있다.
또한, 본 발명의 다른 목적은 상기 발포성 전분 비드의 제조방법을 제공하는데에 있다.
본 발명의 상기 일 목적을 해결하기 위하여, 본 발명은 전분-모노머 공중합체 및 상기 전분-모노머 공중합체에 함침된 발포제를 포함하고, 상기 전분-모노머 공중합체는 스티렌, α-메틸스티렌, 락타이드, 락틱산, 아크릴산, 메타크릴산, 아크릴산 에스테르, 메타크릴산 에스테르, 아크릴로니트릴, 아크릴아미드 및 카프로락톤으로 이루어진 군에서 선택되는 1종 이상의 모노머가 전분에 결합되어 형성된 것이고, 상기 발포제는 C2~C7의 지방족 탄화수소, C2~C7의 할로겐화탄화수소, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상으로 구성된 것을 특징으로 하는 발포성 전분 비드를 제공한다.
또한, 본 발명은 전분-모노머 공중합체와 수지의 혼합물을 압출하여 형성한 미립펠렛 및 상기 미립펠렛에 함침된 발포제를 포함하고, 상기 전분-모노머 공중합체는 스티렌, α-메틸스티렌, 락타이드, 락틱산, 아크릴산, 메타크릴산, 아크릴산 에스테르, 메타크릴산 에스테르, 아크릴로니트릴, 아크릴아미드 및 카프로락톤으로 이루어진 군에서 선택되는 1종 이상의 모노머가 전분에 결합되어 형성된 것이고, 상기 수지는 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 에틸렌비닐아세테이트, 폴리락틱산, 폴리카프로락톤, 폴리부틸렌숙시네이트, 폴리부틸렌숙시네이트아디페이트 및 폴리부틸렌아디페이트테레프탈레이트로 이루어진 군에서 선택되는 1종 이상으로 구성되고, 상기 발포제는 C2~C7의 지방족 탄화수소, C2~C7의 할로겐화탄화수소, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상으로 구성된 것을 특징으로 하는 발포성 전분 비드를 제공한다.
본 발명의 상기 다른 목적을 해결하기 위하여, 본 발명은 전분-모노머 공중합체를 준비하는 단계; 및 상기 준비된 전분-모노머 공중합체에 발포제를 함침시키는 단계;를 포함하고, 상기 전분-모노머 공중합체는 스티렌, α-메틸스티렌, 락타이드, 락틱산, 아크릴산, 메타크릴산, 아크릴산 에스테르, 메타크릴산 에스테르, 아크릴로니트릴, 아크릴아미드 및 카프로락톤으로 이루어진 군에서 선택되는 1종 이상의 모노머가 전분에 결합되어 형성된 것이고, 상기 발포제는 C2~C7의 지방족 탄화수소, C2~C7의 할로겐화탄화수소, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상으로 구성된 것을 특징으로 하는 발포성 전분 비드의 제조방법을 제공한다.
또한, 본 발명은 전분-모노머 공중합체와 수지를 혼합하고 압출하여 미립펠렛을 제조하는 단계; 및 상기 제조된 미립펠렛에 발포제를 함유시키는 단계;를 포함하고, 상기 전분-모노머 공중합체는 스티렌, α-메틸스티렌, 락타이드, 락틱산, 아크릴산, 메타크릴산, 아크릴산 에스테르, 메타크릴산 에스테르, 아크릴로니트릴, 아크릴아미드 및 카프로락톤으로 이루어진 군에서 선택되는 1종 이상의 모노머가 전분에 결합되어 형성된 것이고, 상기 수지는 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 에틸렌비닐아세테이트, 폴리락틱산, 폴리카프로락톤, 폴리부틸렌숙시네이트, 폴리부틸렌숙시네이트아디페이트 및 폴리부틸렌아디페이트테레프탈레이트로 이루어진 군에서 선택되는 1종 이상으로 구성되고, 상기 발포제는 C2~C7의 지방족 탄화수소, C2~C7의 할로겐화탄화수소, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상으로 구성된 것을 특징으로 하는 발포성 전분 비드의 제조방법을 제공한다.
본 발명에 따른 발포성 전분 비드는 발포성 폴리스티렌 비드와 특성이 유사하여 발포성 폴리스티렌 비드의 발포설비에 의해 발포성형될 수 있다. 일반적으로 발포성 폴리스티렌 비드의 발포 설비를 이용하여 발포성형하는 경우 금형에 의해 다양한 크기 및 다양한 형태를 가진 발포체이 제조가 가능하다. 반면 압출기를 포함하는 발포설비를 이용하는 발포성형하는 경우 발포체의 크기 및 형태는 압출기 앞에 구비된 다이에 의해 제한되며 통상적으로 땅꽁 모양이나 시트 형태의 발포체만을 제조할 수 있다. 따라서, 본 발명의 발포성 전분 비드로부터 제조된 발포체는 스티로폼과 같이 다양한 형태가 가능하고 소형 포장은 물론 중형 및 대형 포장에도 사용이 가능하다는 장점이 있다.
또한, 본 발명의 발포성 전분 비드로부터 제조된 발포체는 폐기할 때 토양중의 미생물에 의해 분해되는 환경 친화적인 장점이 있다.
도 1은 제조예 10에서 제조한 전분-스티렌 공중합체를 나타낸 사진이다.
도 2는 제조예 10에서 압출기로 제조한 미립펠렛을 나타낸 사진이다.
도 3은 제조예 10에서 수득한 발포성 전분 비드를 나타낸 사진이다.
도 4는 시험예 1에서 제조한 판상 형태의 발포체를 나타낸 사진이다.
도 5는 시험예 10에서 제조한 사각 박스 용기 형태의 발포체를 나타낸 사진이다.
도 6은 비교시험예 2에서 제조한 땅콩 모양의 발포체를 나타낸 사진이다.
도 7은 비교시험예 4에서 제조한 판상 형태의 발포체를 나타낸 사진이다.
이하, 본 발명을 구체적으로 설명한다.
본 발명의 일 예에 따른 발포성 전분 비드는 전분-모노머 공중합체 및 상기 전분-모노머 공중합체에 함침된 발포제를 포함한다.
상기 전분-모노머 공중합체는 스티렌, α-메틸스티렌, 락타이드, 락틱산, 아크릴산, 메타크릴산, 아크릴산 에스테르, 메타크릴산 에스테르, 아크릴로니트릴, 아크릴아미드 및 카프로락톤으로 이루어진 군에서 선택되는 1종 이상의 모노머가 전분에 결합되어 형성된 것으로서, 바람직하게는 모노머가 전분에 그라프트 결합되어 형성된 그라프트 공중합체이다. 아크릴산 에스테르는 바람직하게는 아크릴산과 탄소수 1~8인 알코올의 에스테르로서 예를 들어 메틸 아크릴레이트, 에틸 아크릴레이트, 부틸 아크릴레이트 등이 있다. 또한, 메타크릴산 에스테르는 바람직하게는 메타크릴산과 탄소수 1~8인 알코올의 에스테르로서 예를 들어 메틸 메타크릴레이트, 에틸 메타크릴레이트, 부틸 메타크릴레이트 등이 있다. 전분-모노머 공중합체를 구성하는 전분은 옥수수전분, 찰옥수수전분, 타피오카전분, 감자전분, 고구마전분, 밀전분, 쌀전분 및 이들의 변성전분으로 이루어진 군에서 선택되는 1종 이상으로 구성될 수 있으나 이에 한정되는 것은 아니다. 또한, 상기 변성전분은 산화전분, 산처리전분, 에스테르전분, 에테르전분, 인산가교전분 및 아세틸아디핀산전분으로 이루어진 군에서 선택될 수 있다.
전분-모노머 공중합체를 구성하는 전분 대 모노머의 중량비는 크게 제한되지 않으며, 바람직하게는 10:90 내지 90:10의 범위를 갖는다.
상기 발포제는 저비점의 휘발성이며, C2~C7의 지방족 탄화수소, C2~C7의 할로겐화탄화수소, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상으로 구성될 수 있다. C2~C7의 지방족 탄화수소로는 예를 들어 프로판, 부탄, 이소부탄, 펜탄, 이소펜탄, 네오펜탄, 헥산 등이 있다. 전분-모노머 공중합체에 상기의 발포제를 함침시켜 제조한 본 발명의 일 예에 따른 발포성 전분 비드는 통상적인 발포성 폴리스티렌 비드와 유사한 특성을 갖는다.
본 발명의 일 예에 따른 발포성 전분 비드는 바람직하게는 전분-모노머 공중합체 90~99 중량부 및 발포제 1~10 중량부를 포함한다. 또한, 본 발명의 일 예에 따른 발포성 전분 비드는 바람직하게는 전분-모노머 공중합체를 구성하는 전분 및 모노머의 중량 합 100 중량부에 대하여 개시제 0.1~10 중량부 및 분산제 0.1~10 중량부를 더 포함할 수 있다. 이때 개시제는 바람직하게는 과황산칼륨, 과황산암모늄, 과산화벤조일, 세릭암모늄나이트레이트, 아조비스이소부티로니트릴 및 주석 옥토에이트로 이루어진 군에서 선택되는 1종 이상으로 구성될 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 분산제도 유기 분산제, 무기 분산제 등 그 종류가 크게 제한되지 않으며 바람직하게는 폴리비닐알콜, 폴리비닐아세테이트, 메틸셀룰로오스, 하이드록시에틸셀룰로오스, 폴리비닐피롤리돈, 트리칼슘포스페이트, 탄산칼슘, 탈크, 벤토나이트 및 마그네슘실리케이트로 이루어진 군에서 선택되는 1종 이상으로 구성될 수 있다.
본 발명의 일 예에 따른 발포성 전분 비드는 그 크기가 주로 입자 형태의 전분-모노머 공중합체의 크기에 의존하며, 예를 들어 0.1~5.0㎜의 직경, 바람직하게는 0.3~3.0㎜의 직경을 가질 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 예에 따른 발포성 전분 비드의 제조방법은 전분-모노머 공중합체를 준비하는 단계; 및 상기 준비된 전분-모노머 공중합체에 발포제를 함침시키는 단계;를 포함한다. 이때, 상기 전분-모노머 공중합체는 스티렌, α-메틸스티렌, 락타이드, 락틱산, 아크릴산, 메타크릴산, 아크릴산 에스테르, 메타크릴산 에스테르, 아크릴로니트릴, 아크릴아미드 및 카프로락톤으로 이루어진 군에서 선택되는 1종 이상의 모노머가 전분에 결합되어 형성된 것이고, 상기 발포제는 C2~C7의 지방족 탄화수소, C2~C7의 할로겐화탄화수소, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상으로 구성된 것이다.
본 발명의 일 예에 따른 발포성 전분 비드의 제조방법에서 상기 전분-모노머 공중합체를 준비하는 단계는 바람직하게는 반응기에 전분과 모노머를 10:90 내지 90:10의 중량비로 첨가하고, 상기 전분 및 모노머의 중량 합 100 중량부에 대하여 개시제 0.1~10 중량부, 분산제 0.1~10 중량부 및 물 100~2000 중량부를 첨가한 후, 30℃ 초과 및 150℃ 미만의 온도에서 1~10시간 동안 반응시키는 것을 특징으로 한다. 또한, 상기 전분-모노머 공중합체를 준비하는 단계에서 반응온도는 50~120℃인 것이 바람직하고, 반응시간은 3~8시간인 것이 바람직하다. 전분-모노머 공중합체를 준비하는 단계에서 반응온도가 30℃ 이하이거나 반응시간이 1시간 미만인 경우 중합반응이 거의 일어나지 않으며, 반응온도가 150℃ 이상인 경우 공중합체가 서로 뭉쳐서 덩어리가 형성된다. 전분-모노머 공중합체를 준비하는 단계에서 상기 개시제는 바람직하게는 과황산칼륨, 과황산암모늄, 과산화벤조일, 세릭암모늄나이트레이트, 아조비스이소부티로니트릴 및 주석 옥토에이트로 이루어진 군에서 선택되는 1종 이상으로 구성될 수 있다. 또한, 전분-모노머 공중합체를 준비하는 단계에서 상기 분산제는 바람직하게는 폴리비닐알콜, 폴리비닐아세테이트, 메틸셀룰로오스, 하이드록시에틸셀룰로오스, 폴리비닐피롤리돈, 트리칼슘포스페이트, 탄산칼슘, 탈크, 벤토나이트 및 마그네슘실리케이트로 이루어진 군에서 선택되는 1종 이상으로 구성될 수 있다. 상기 분산제는 전분-모노머 공중합체를 준비하는 단계에서 전분을 안정적으로 현탁시키는 역할을 하며, 후술하느 발포제를 함침시키는 단계에서는 전분-모노머 공중합체를 균일하게 분산시키는 역할을 한다.
본 발명의 일 예에 따른 발포성 전분 비드의 제조방법에서 상기 발포제를 함침시키는 단계는 바람직하게는 상기 전분-모노머 공중합체가 준비된 반응기에 전분-모노머 공중합체:발포제의 중량비가 90:10 내지 99:1이 되도록 발포제를 첨가하고 30~150℃의 온도에서 1~10시간동안 반응시켜서 전분-모노머 공중합체에 발포제를 함침시키는 것을 특징으로 한다. 또한, 상기 발포제를 함침시키는 단계에서 반응온도는 50~120℃인 것이 바람직하고, 반응시간은 3~8시간인 것이 바람직하다. 발포제를 함침시키는 단계에서 반응온도가 30℃ 미만이면 발포제의 함유량이 미비할 염려가 있고, 150℃를 초과하면 전분-모노머 공중합체가 서로 뭉쳐 덩어리를 형성할 수 있다. 또한, 발포제를 함침시키는 단계는 약 5~20㎏f/㎠의 비활성 기체 분위기, 바람직하게는 8~15㎏f/㎠ 질소 분위기에서 수행된다.
본 발명의 다른 예에 따른 발포성 전분 비드는 전분-모노머 공중합체와 수지의 혼합물을 압출하여 형성한 미립펠렛 및 상기 미립펠렛에 함침된 발포제를 포함한다. 이때, 상기 전분-모노머 공중합체는 스티렌, α-메틸스티렌, 락타이드, 락틱산, 아크릴산, 메타크릴산, 아크릴산 에스테르, 메타크릴산 에스테르, 아크릴로니트릴, 아크릴아미드 및 카프로락톤으로 이루어진 군에서 선택되는 1종 이상의 모노머가 전분에 결합되어 형성된 것이다. 본 발명의 다른 예에 따른 발포성 전분 비드에서 전분-모노머 공중합체는 본 발명의 일 예에 따른 발포성 전분 비드에서 전술한 내용과 동일하므로 구체적인 설명을 생략한다.
본 발명의 다른 예에 따른 발포성 전분 비드에서 상기 수지는 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 에틸렌비닐아세테이트, 폴리락틱산, 폴리카프로락톤, 폴리부틸렌숙시네이트, 폴리부틸렌숙시네이트아디페이트 및 폴리부틸렌아디페이트테레프탈레이트로 이루어진 군에서 선택되는 1종 이상으로 구성된다. 또한, 본 발명의 다른 예에 따른 발포성 전분 비드에서 상기 발포제는 C2~C7의 지방족 탄화수소, C2~C7의 할로겐화탄화수소, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상으로 구성된다.
본 발명의 다른 예에 따른 발포성 전분 비드에서 미립펠렛은 바람직하게는 전분-모노머 공중합체 10~90 중량부 및 수지 10~90 중량부를 포함한다. 상기 미립펠렛은 바람직하게는 은 0.5~5.0mm의 직경을 가지며, 더 바람직하게는 1.0~3.0mm의 직경을 가진다. 본 발명의 다른 예에 따른 발포성 전분 비드의 크기는 주로 미립펠렛의 크기에 의존한다.
또한, 본 발명의 다른 예에 따른 발포성 전분 비드는 바람직하게는 미립펠렛 100 중량부에 대하여 발포제 1~10 중량부를 포함할 수 있고, 더 바람직하게는 분산제 0.1~10 중량부를 더 포함할 수 있다.한다. 상기 분산제는 그 종류가 크게 제한되지 않으며, 바람직하게는 폴리비닐알콜, 폴리비닐아세테이트, 메틸셀룰로오스, 하이드록시에틸셀룰로오스, 폴리비닐피롤리돈, 트리칼슘포스페이트, 탄산칼슘, 탈크, 벤토나이트 및 마그네슘실리케이트로 이루어진 군에서 선택되는 1종 이상으로 구성될 수 있다. 아울러 본 발명의 다른 예에 따른 발포성 전분 비드는 전분-모노머 공중합체에서 유입된 개시제를 미량으로 더 포함할 수 있다.
본 발명의 다른 예에 따른 발포성 전분 비드의 제조방법은 전분-모노머 공중합체와 수지를 혼합하고 압출하여 미립펠렛을 제조하는 단계; 및 상기 제조된 미립펠렛에 발포제를 함유시키는 단계;를 포함한다. 이때, 상기 전분-모노머 공중합체는 스티렌, α-메틸스티렌, 락타이드, 락틱산, 아크릴산, 메타크릴산, 아크릴산 에스테르, 메타크릴산 에스테르, 아크릴로니트릴, 아크릴아미드 및 카프로락톤으로 이루어진 군에서 선택되는 1종 이상의 모노머가 전분에 결합되어 형성된 것이다. 또한, 상기 수지는 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 에틸렌비닐아세테이트, 폴리락틱산, 폴리카프로락톤, 폴리부틸렌숙시네이트, 폴리부틸렌숙시네이트아디페이트 및 폴리부틸렌아디페이트테레프탈레이트로 이루어진 군에서 선택되는 1종 이상으로 구성된다. 또한, 상기 발포제는 C2~C7의 지방족 탄화수소, C2~C7의 할로겐화탄화수소, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상으로 구성된다.
본 발명의 다른 예에 따른 발포성 전분 비드의 제조방법은 미립펠렛을 제조하는 단계 이전에 전분-모노머 공중합체를 준비하는 단계를 더 포함할 수 있고, 상기 전분-모노머 공중합체를 준비하는 단계는 본 발명의 일 예에 따른 발포성 전분 비드의 제조방법에서 전술한 내용과 동일하므로 자세한 설명을 생략한다.
본 발명의 다른 예에 따른 발포성 전분 비드의 제조방법에서 상기 미립펠렛을 제조하는 단계의 전분-모노머 공중합체:수지의 중량비는 바람직하게는 10:90 내지 90:10이다. 상기 미립펠렛을 제조하는 단계는 통상의 압출기에 의해 수행될 수 있다.
본 발명의 다른 예에 따른 발포성 전분 비드의 제조방법에서 상기 미립펠렛에 발포제를 함침시키는 단계는 바람직하게는 반응기에 상기 제조된 미립펠렛 100 중량부 당 발포제 1~10 중량부, 분산제 0.1~10 중량부, 및 물 100~2000 중량부를 첨가하고, 30~150℃의 온도에서 1~10시간동안 반응시키는 것을 특징으로 한다. 또한, 상기 미립펠렛에 발포제를 함침시키는 단계에서 반응온도는 50~120℃인 것이 바람직하고, 반응시간은 3~8시간인 것이 바람직하다. 미립펠렛에 발포제를 함침시키는 단계에서 반응온도가 30℃ 미만이면 발포제의 함유량이 미비할 염려가 있고, 150℃를 초과하면 미립펠렛이 서로 뭉쳐 덩어리를 형성할 수 있다. 또한, 미립펠렛에 발포제를 함침시키는 단계는 약 5~20㎏f/㎠의 비활성 기체 분위기, 바람직하게는 8~15㎏f/㎠ 질소 분위기에서 수행된다. 이때, 분산제는 바람직하게는 폴리비닐알콜, 폴리비닐아세테이트, 메틸셀룰로오스, 하이드록시에틸셀룰로오스, 폴리비닐피롤리돈, 트리칼슘포스페이트, 탄산칼슘, 탈크, 벤토나이트 및 마그네슘실리케이트로 이루어진 군에서 선택되는 1종 이상으로 구성된다.
본 발명에 따른 발포성 전분 비드는 통상적인 발포성 폴리스티렌의 발포설비에 의해 발포체로 성형될 수 있다. 본 발명에서 발포체란 발포성 전분 비드를 발포성형시켜 만든 물품을 말하여, 예를 들어 필름, 시트, 스티로폼과 같은 사출품, 다양한 형상의 삼차원 입체 포장재 등이 있으나, 이에 한정되지 않고 발포성 물품이면 무방하다. 또한, 본 발명에 따른 발포성 전분 비드는 통상적인 발포성 폴리스티렌의 발포설비 뿐만 아니라 발포공정이 가능한 모든 발포설비에 의해 발포성형이 가능하다.
이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명을 명확히 예시하기 위한 것일 뿐, 본 발명의 보호범위를 한정하는 것은 아니다.
1. 발포성 비드의 제조
제조예 1.
옥수수전분 6㎏, 스티렌 6㎏, 물 30㎏, 과황산칼륨 0.06㎏, 및 트리칼슘포스페이트 0.06㎏을 반응기에 넣고, 60℃의 온도에서 6시간동안 반응시켜 전분-스티렌 공중합체를 제조하였다. 이후, 반응기에 펜탄 1㎏을 주입하고, 100℃의 온도 및 10㎏f/㎠의 질소 분위기에서 6시간동안 반응시켜 펜탄을 전분-스티렌 공중합체에 함침시켰다. 이후 반응 생성물을 여과하고 건조하여 발포성 전분 비드를 수득하였다.
제조예 2.
과황산칼륨 0.12㎏을 사용한 점을 제외하고는 제조예 1과 동일한 방법으로 발포성 전분 비드를 수득하였다.
제조예 3.
과황산칼륨 대신 과황산암모늄을 사용한 점을 제외하고는 제조예 1과 동일한 방법으로 발포성 전분 비드를 수득하였다.
제조예 4.
옥수수전분 9㎏, 스티렌 3㎏을 사용한 점을 제외하고는 제조예 1과 동일한 방법으로 발포성 전분 비드를 수득하였다.
제조예 5.
옥수수전분 3㎏, 스티렌 9㎏을 사용한 점을 제외하고는 제조예 1과 동일한 방법으로 발포성 전분 비드를 수득하였다.
제조예 6.
스티렌 대신 락틱산을 사용하고 과황산칼륨 대신 주석 옥토에이트를 사용한 점을 제외하고는 제조예 1과 동일한 방법으로 발포성 전분 비드를 수득하였다.
제조예 7.
옥수수전분 6㎏, 스티렌 5.5㎏, 아크릴산 0.5㎏, 물 30㎏, 과황산칼륨 0.06㎏, 및 트리칼슘포스페이트 0.06㎏을 반응기에 넣고, 60℃의 온도에서 6시간동안 반응시켜 전분-모노머(스티렌, 아크릴산) 공중합체를 제조하였다. 이후, 반응기에 펜탄 1㎏을 주입하고, 100℃의 온도 및 10㎏f/㎠의 질소 분위기에서 6시간동안 반응시켜 펜탄을 전분-모노머 공중합체에 함침시켰다. 이후 반응 생성물을 여과하고 건조하여 발포성 전분 비드를 수득하였다.
제조예 8.
옥수수전분 대신 타피오카전분을 사용한 점을 제외하고는 제조예 1과 동일한 방법으로 발포성 전분 비드를 수득하였다.
제조예 9.
펜탄 대신 부탄을 사용한 점을 제외하고는 제조예 1과 동일한 방법으로 발포성 전분 비드를 수득하였다.
제조예 10.
옥수수전분 6㎏, 스티렌 6㎏, 물 30㎏, 과황산칼륨 0.06㎏, 및 트리칼슘포스페이트 0.06㎏을 반응기에 넣고, 60℃의 온도에서 6시간동안 반응시켜 전분-스티렌 공중합체를 제조하였다. 이후, 전분-스티렌 공중합체를 물로 수세하면서 여과하고, 100℃에서 열풍건조기로 건조하였다. 도 1은 제조예 10에서 제조한 전분-스티렌 공중합체를 나타낸 사진이다. 건조된 전분-스티렌 공중합체 6㎏ 및 폴리스티렌 6㎏을 혼합한 혼합물을 압출기에 통과시켜 미립펠렛을 제조하였다. 도 2는 제조예 10에서 압출기로 제조한 미립펠렛을 나타낸 사진이다. 이후, 제조한 미립펠렛 10㎏, 폴리비닐알콜 0.06㎏, 물 30㎏, 및 펜탄 1㎏을 반응기에 넣고, 100℃의 온도 및 10㎏f/㎠의 질소 분위기에서 8시간동안 반응시켜 펜탄을 미립펠렛에 함침시켰다. 이후 반응 생성물을 여과하고 30℃에서 건조하여 발포성 전분 비드를 수득하였다. 도 3은 제조예 10에서 수득한 발포성 전분 비드를 나타낸 사진이다.
제조예 11.
과황산칼륨 0.12㎏을 사용한 점을 제외하고는 제조예 10과 동일한 방법으로 발포성 전분 비드를 수득하였다.
제조예 12.
과황산칼륨 대신 과황산암모늄을 사용한 점을 제외하고는 제조예 10과 동일한 방법으로 발포성 전분 비드를 수득하였다.
제조예 13.
옥수수전분 9㎏, 스티렌 3㎏을 사용한 점을 제외하고는 제조예 10과 동일한 방법으로 발포성 전분 비드를 수득하였다.
제조예 14.
옥수수전분 3㎏, 스티렌 9㎏을 사용한 점을 제외하고는 제조예 10과 동일한 방법으로 발포성 전분 비드를 수득하였다.
제조예 15.
스티렌 대신 락틱산을 사용하고 과황산칼륨 대신 주석 옥토에이트를 사용한 점을 제외하고는 제조예 10과 동일한 방법으로 발포성 전분 비드를 수득하였다.
제조예 16.
옥수수전분 6㎏, 스티렌 5.5㎏, 아크릴산 0.5㎏, 물 30㎏, 과황산칼륨 0.06㎏, 및 트리칼슘포스페이트 0.06㎏을 반응기에 넣고, 60℃의 온도에서 6시간동안 반응시켜 전분-모노머(스티렌, 아크릴산) 공중합체를 제조하였다. 이후, 전분-모노머 공중합체를 물로 수세하면서 여과하고, 100℃에서 열풍건조기로 건조하였다. 건조된 전분-모노머 공중합체 6㎏ 및 폴리스티렌 6㎏을 혼합한 혼합물을 압출기에 통과시켜 미립펠렛을 제조하였다. 이후, 제조한 미립펠렛 10㎏, 메틸셀룰로오스 0.06㎏, 물 30㎏, 및 펜탄 1㎏을 반응기에 넣고, 100℃의 온도 및 10㎏f/㎠의 질소 분위기에서 8시간동안 반응시켜 펜탄을 미립펠렛에 함침시켰다. 이후 반응 생성물을 여과하고 30℃에서 건조하여 발포성 전분 비드를 수득하였다.
제조예 17.
옥수수전분 대신 타피오카전분을 사용한 점을 제외하고는 제조예 10과 동일한 방법으로 발포성 전분 비드를 수득하였다.
제조예 18.
펜탄 대신 부탄을 사용한 점을 제외하고는 제조예 10과 동일한 방법으로 발포성 전분 비드를 수득하였다.
비교제조예 1.
옥수수전분 6㎏, 스티렌 6㎏, 물 30㎏, 과황산칼륨 0.06㎏를, 및 트리칼슘포스페이트 0.06㎏을 반응기에 넣고 30℃의 온도에서 6시간동안 반응시켜 전분-모노머 공중합체를 제조하였다. 이후, 전분-모노머 공중합체를 물로 수세하면서 여과하고, 60℃에서 열풍건조기로 건조하였다. 건조된 전분-모노머 공중합체 6㎏, 폴리비닐알콜 0.06㎏, 물 20㎏, 및 펜탄 1㎏을 반응기에 넣고, 100℃의 온도 및 10㎏f/㎠의 질소 분위기에서 8시간동안 반응시켰다. 이때 건조된 전분-모노머 공중합체는 호화되어 발포성 전분 비드를 형성하지 못하였다.
비교제조예 2.
옥수수전분 6㎏, 스티렌 6㎏, 물 30㎏, 과황산칼륨 0.06㎏를, 및 트리칼슘포스페이트 0.06㎏을 반응기에 넣고 60℃의 온도에서 50분동안 반응시켜 전분-모노머 공중합체를 제조하였다. 이후, 전분-모노머 공중합체를 물로 수세하면서 여과하고, 60℃에서 열풍건조기로 건조하였다. 건조된 전분-모노머 공중합체 6㎏, 폴리비닐알콜 0.06㎏, 물 20㎏, 및 펜탄 1㎏을 반응기에 넣고, 100℃의 온도 및 10㎏f/㎠의 질소 분위기에서 8시간동안 반응시켰다. 이때 건조된 전분-모노머 공중합체는 호화되어 발포성 전분 비드를 형성하지 못하였다.
비교제조예 3.
옥수수전분 6㎏, 스티렌 6㎏, 물 30㎏, 과황산칼륨 0.06㎏를, 및 트리칼슘포스페이트 0.06㎏을 반응기에 넣고 150℃에서 6시간동안 반응시켜 전분-모노머 공중합체를 제조하였다. 이때 전분-모노머 공중합체는 서로 뭉쳐 덩어리를 형성하였고, 이후의 발포제 함침 과정을 진행할 수 없었다.
비교제조예 4.
옥수수전분 6㎏, 폴리비닐알콜 0.06㎏, 물 20㎏, 및 펜탄 1㎏을 반응기에 넣고, 100℃의 온도 및 10㎏f/㎠의 질소 분위기에서 8시간동안 반응시켰다. 이때 옥수수 전분은 호화되어 발포성 전분 비드를 형성하지 못하였다.
비교제조예 5.
옥수수전분 10㎏, 고령토 분말 0.3㎏, 폴리비닐아세테이트 0.6㎏, 글루코오스 0.5㎏, 탄산칼륨 0.08㎏g, 스티렌 5㎏, 및 과황산칼륨 0.06㎏을 혼합기에 넣고 혼합한 후, 추가로 물을 첨가하고 수분 함량을 20%로 조절하여 전분계 조성물을 제조하였다. 상기 전분계 조성물을 압출기에 투입하여 압출시킨 후 펠렛화시켰다. 이후 펠렛을 재수화시켜 수분 함량이 20%인 발포성 전분 비드를 수득하였다. 이때 수분은 발포제로 작용한다.
비교제조예 6.
옥수수전분 6㎏ 및 폴리스티렌 6㎏을 혼합한 혼합물을 압출기에 통과시켜 미립펠렛을 제조하였다. 이후, 제조한 미립펠렛 10㎏, 폴리비닐알콜 0.06㎏, 물 30㎏, 및 펜탄 1㎏을 반응기에 넣고, 100℃의 온도 및 10㎏f/㎠의 질소 분위기에서 8시간동안 반응시켜 펜탄을 미립펠렛에 함침시켰다. 이때 미립펠렛을 구성하는 옥수수전분의 상당량이 폴리스티렌과 분리되었다. 이후 반응 생성물을 여과하고 30℃에서 건조하여 발포성 전분 비드를 수득하였다.
비교제조예 7.
스티렌 12㎏, 물 30㎏, 과산화벤조일 0.06㎏, 및 트리칼슘포스페이트 0.12㎏을 반응기에 넣고, 80℃의 온도에서 6시간동안 반응시켜 폴리스티렌을 제조하였다. 이후, 반응기에 펜탄 1㎏을 주입하고, 100℃의 온도 및 10㎏f/㎠의 질소 분위기에서 6시간동안 반응시켜 펜탄을 폴리스티렌에 함침시켰다. 이후 반응 생성물을 여과하고 건조하여 발포성 폴리스티렌 비드를 수득하였다.
2. 전분-모노머 공중합체의 공중합율 및 발포성 비드의 발포제 함량
(1) 공중합체의 공중합율
제조예 1~9 및 비교제조예 1~2의 발포성 비드의 수득 과정에서 제조 전분-모노머 공중합체의 공중합율을 분석하였다. 제조예 10~18에서 제조한 전분-모노머 공중합체의 공중합율은 각각 제조예 1-9에서 제조한 전분-모노머 공중합체의 공중합율과 동일하다. 구체적으로 속실렛장치(용매 : 톨루엔; 100℃; 24시간)를 이용하여 전분-모노머 공중합체로부터 공중합되지 않은 모노머 내지 모노머간의 중합체를 추출하고 제거한 후 하기 식에 의해 공중합율을 계산하였다.
Figure PCTKR2011005205-appb-I000001
상기 식에서 W1은 전분-모너머 공중합체의 양이고 W0는 투입한 전분의 양이다.
상기 식에 의해 계산된 전분-모노머 공중합체의 공중합율을 하기 표 1에 나타내었다.
표 1
제조예 구분 G(공중합율, %)
제조예 1 25
제조예 2 26
제조예 3 20
제조예 4 15
제조예 5 12
제조예 6 15
제조예 7 28
제조예 8 24
제조예 9 22
비교예 1 0
비교예 2 0
표 1에서 보이는 바와 같이 전분-모노머 공중합체 제조시 반응온도가 30℃ 이하, 또는 반응시간이 50분 이하인 경우 공중합체가 생성되지 않았다. 또한, 반응온도가 150℃ 이상인 경우 공중합체가 서로 뭉쳐 덩어리를 형성하여 발포성 전분 비드의 제조가 불가능하였다.
(2) 발포성 비드의 발포제 함량
제조예 1~18 및 비교제조예 6~7에서 제조한 발포성 비드의 발포제 함량을 가스 크로마토그래피를 이용하여 측정하였고, 그 결과를 표 2에 나타내었다.
표 2
제조예 구분 발포제 함량(%)
제조예 1 3.9
제조예 2 3.6
제조예 3 3.2
제조예 4 3.4
제조예 5 3.1
제조예 6 3.4
제조예 7 4.5
제조예 8 3.8
제조예 9 3.2
제조예 10 3.0
제조예 11 3.0
제조예 12 2.9
제조예 13 3.1
제조예 14 2.9
제조예 15 3.0
제조예 16 3.6
제조예 17 3.1
제조예 18 2.9
비교제조예 6 1.0
비교제조예 7 4.8
표 2의 비교제조예 6에서 보이는 바와 같이 일반 옥수수전분 및 폴리스티렌의 혼합물을 압출하여 형성한 미립펠렛에 발포제를 함침시키는 경우 발포제 함량이 매우 낮았다.
3. 발포성 비드로부터 발포체의 제조
시험예 1.
제조예 1에서 수득한 발포성 전분 비드를 발포성 폴리스티렌 비드의 발포설비에 장착된 판상 형태의 금형에 넣고 스팀을 공급한 후 발포성형하여 발포체를 제조하였다. 도 4는 시험예 1에서 제조한 판상 형태의 발포체를 나타낸 사진이다.
시험예 2.
제조예 2에서 수득한 발포성 전분 비드를 사용한 점을 제외하고는 시험예 1과 동일한 방법으로 발포체를 제조하였다.
시험예 3.
제조예 3에서 수득한 발포성 전분 비드를 사용한 점을 제외하고는 시험예 1과 동일한 방법으로 발포체를 제조하였다.
시험예 4.
제조예 6에서 수득한 발포성 전분 비드를 사용한 점을 제외하고는 시험예 1과 동일한 방법으로 발포체를 제조하였다.
시험예 5.
제조예 7에서 수득한 발포성 전분 비드를 사용한 점을 제외하고는 시험예 1과 동일한 방법으로 발포체를 제조하였다.
시험예 6.
제조예 8에서 수득한 발포성 전분 비드를 사용한 점을 제외하고는 시험예 1과 동일한 방법으로 발포체를 제조하였다.
시험예 7.
제조예 10에서 수득한 발포성 전분 비드를 사용한 점을 제외하고는 시험예 1과 동일한 방법으로 발포체를 제조하였다.
시험예 8.
제조예 16에서 수득한 발포성 전분 비드를 사용한 점을 제외하고는 시험예 1과 동일한 방법으로 발포체를 제조하였다.
시험예 9.
제조예 17에서 수득한 발포성 전분 비드를 사용한 점을 제외하고는 시험예 1과 동일한 방법으로 발포체를 제조하였다.
시험예 10.
제조예 10에서 수득한 발포성 전분 비드를 발포성 폴리스티렌 비드의 발포설비에 장착된 사각 박스 용기 형태의 금형에 넣고 스팀을 공급한 후 발포성형하여 발포체를 제조하였다. 도 5는 시험예 10에서 제조한 사각 박스 용기 형태의 발포체를 나타낸 사진이다.
비교시험예 1.
비교제조예 5에서 제조한 발포성 전분 비드를 사용한 점을 제외하고는 시험예 1과 동일한 방법으로 발포체를 제조하였다. 이때 발포는 거의 이루어지지 않았다.
비교시험예 2.
비교제조예 5에서 제조한 발포성 전분 비드를 스크류 지름 55 ㎜, L/D가 7인 압출기 형태의 발포설비에 투입하고 배럴 온도 220℃, 스크류 속도 75rpm의 운전조건에서 발포시켜 발포체를 제조하였다. 이때 압출기의 다이는 원형이었다. 도 6은 비교시험예 2에서 제조한 땅콩 모양의 발포체를 나타낸 사진이다.
비교시험예 3.
비교제조예 6에서 제조한 발포성 전분 비드를 사용한 점을 제외하고는 시험예 1과 동일한 방법으로 발포체를 제조하였다.
비교시험예 4.
비교제조예 7에서 제조한 발포성 폴리스티렌 비드를 사용한 점을 제외하고는 시험예 1과 동일한 방법으로 발포체를 제조하였다. 도 7은 비교시험예 4에서 제조한 판상 형태의 발포체를 나타낸 사진이다.
4. 발포성 비드로부터 제조한 발포체의 물성
(1) 발포체의 겉보기 밀도 및 이루부터 환산한 발포율
발포체의 겉보기 밀도는 발포체의 부피와 무게들 측정하고 아래의 식에 의해 계산하였다.
Figure PCTKR2011005205-appb-I000002
또한, 발포성 폴리스티렌 비드로부터 제조한 발포체(비교시험예 4)의 발포율을 100으로 정하고, 이를 기준으로 나머지 발포체의 상대적인 발포율을 계산하였다. 발포율은 발포체의 겉보기 밀도에 반비례한다.
(2) 발포체의 압축강도 측정
발포체의 압축강도는 인스트론 장치를 이용하여 측정하였고, 구체적으로 발포체가 10% 변형될 때의 압축강도를 측정하였다.
Figure PCTKR2011005205-appb-I000003
표 3에 시험예 및 비교시험예에서 제조한 발포체의 겉보기 밀도, 상대적인 발포율, 및 압축강도의 측정 결과를 나타내었다.
표 3
시험예 구분 겉보기 밀도(㎏/㎥) 상대적인 발포율(비교시험예 4의 발포체 기준) 압축강도(㎏/㎠)
시험예 1 17 100.0 0.9
시험예 2 18 94.4 0.9
시험예 3 20 85.0 1.0
시험예 4 18 94.4 0.9
시험예 5 15 113.3 0.8
시험예 6 17 100.0 0.8
시험예 7 22 77.3 1.2
시험예 8 24 70.8 1.3
시험예 9 21 81.0 1.2
시험예 10 22 77.3 1.2
비교시험예 1 35 48.6 2.1
비교시험예 2 10 170.0 0.6
비교시험예 3 29 58.6 1.8
비교시험예 4 17 기준(100) 1.1
표 3에서 보이는 바와 같이 본 발명의 발포성 전분 비드로부터 제조된 발포체는 발포성 폴리스티렌 비드로부터 제조된 발포체와 발포율, 기계적 강도가 비슷한 것으로 나타났다.
이상에서와 같이 본 발명을 상기의 실시예를 통해 설명하였지만 본 발명이 반드시 여기에만 한정되는 것은 아니며 본 발명의 범주와 사상을 벗어나지 않는 범위 내에서 다양한 변형실시가 가능함은 물론이다. 또한, 본 발명의 본질적인 범주를 벗어나지 않고서도 많은 변형을 실시하여 특정 상황 및 재료를 본 발명의 교시내용에 채용할 수 있다. 따라서, 본 발명의 보호범위는 본 발명을 실시하는데 계획된 최상의 양식으로서 개시된 특정 실시 태양으로 국한되는 것이 아니며, 본 발명에 첨부된 특허청구의 범위에 속하는 모든 실시 태양을 포함하는 것으로 해석되어야 한다.

Claims (20)

  1. 전분-모노머 공중합체 및 상기 전분-모노머 공중합체에 함침된 발포제를 포함하고,
    상기 전분-모노머 공중합체는 스티렌, α-메틸스티렌, 락타이드, 락틱산, 아크릴산, 메타크릴산, 아크릴산 에스테르, 메타크릴산 에스테르, 아크릴로니트릴, 아크릴아미드 및 카프로락톤으로 이루어진 군에서 선택되는 1종 이상의 모노머가 전분에 결합되어 형성된 것이고,
    상기 발포제는 C2~C7의 지방족 탄화수소, C2~C7의 할로겐화탄화수소, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상으로 구성된 것을 특징으로 하는 발포성 전분 비드.
  2. 제 1항에 있어서,
    상기 전분-모노머 공중합체를 구성하는 전분 대 모노머의 중량비는 10:90 내지 90:10인 것을 특징으로 하는 발포성 전분 비드.
  3. 제 1항에 있어서,
    상기 발포성 전분 비드는 전분-모노머 공중합체 90~99 중량부 및 발포제 1~10 중량부를 포함하는 것을 특징으로 하는 발포성 전분 비드.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 발포성 전분 비드는 상기 전분 및 모노머의 중량 합 100 중량부에 대하여 개시제 0.1~10 중량부 및 분산제 0.1~10 중량부를 더 포함하는 것을 특징으로 하는 발포성 전분 비드.
  5. 제 4항에 있어서,
    상기 개시제는 과황산칼륨, 과황산암모늄, 과산화벤조일, 세릭암모늄나이트레이트, 아조비스이소부티로니트릴 및 주석 옥토에이트로 이루어진 군에서 선택되는 1종 이상으로 구성되고,
    상기 분산제는 폴리비닐알콜, 폴리비닐아세테이트, 메틸셀룰로오스, 하이드록시에틸셀룰로오스, 폴리비닐피롤리돈, 트리칼슘포스페이트, 탄산칼슘, 탈크, 벤토나이트 및 마그네슘실리케이트로 이루어진 군에서 선택되는 1종 이상으로 구성되는 것을 특징으로 하는 발포성 전분 비드.
  6. 전분-모노머 공중합체와 수지의 혼합물을 압출하여 형성한 미립펠렛 및 상기 미립펠렛에 함침된 발포제를 포함하고,
    상기 전분-모노머 공중합체는 스티렌, α-메틸스티렌, 락타이드, 락틱산, 아크릴산, 메타크릴산, 아크릴산 에스테르, 메타크릴산 에스테르, 아크릴로니트릴, 아크릴아미드 및 카프로락톤으로 이루어진 군에서 선택되는 1종 이상의 모노머가 전분에 결합되어 형성된 것이고,
    상기 수지는 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 에틸렌비닐아세테이트, 폴리락틱산, 폴리카프로락톤, 폴리부틸렌숙시네이트, 폴리부틸렌숙시네이트아디페이트 및 폴리부틸렌아디페이트테레프탈레이트로 이루어진 군에서 선택되는 1종 이상으로 구성되고,
    상기 발포제는 C2~C7의 지방족 탄화수소, C2~C7의 할로겐화탄화수소, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상으로 구성된 것을 특징으로 하는 발포성 전분 비드.
  7. 제 6항에 있어서,
    상기 미립펠렛은 전분-모노머 공중합체 10~90 중량부 및 수지 10~90 중량부를 포함하고,
    상기 발포성 전분 비드는 미립펠렛 100 중량부에 대하여 발포제 1~10 중량부를 포함하는 것을 특징으로 하는 발포성 전분 비드.
  8. 제 7항에 있어서,
    상기 미립펠렛은 0.5~5.0mm의 직경을 가지는 것을 특징으로 하는 발포성 전분 비드.
  9. 제 6항 내지 제 8항 중 어느 한 항에 있어서,
    상기 발포성 전분 비드는 미립펠렛 100 중량부에 대하여 분산제 0.1~10 중량부를 더 포함하는 것을 특징으로 하는 발포성 전분 비드.
  10. 제 9항에 있어서,
    상기 분산제는 폴리비닐알콜, 폴리비닐아세테이트, 메틸셀룰로오스, 하이드록시에틸셀룰로오스, 폴리비닐피롤리돈, 트리칼슘포스페이트, 탄산칼슘, 탈크, 벤토나이트 및 마그네슘실리케이트로 이루어진 군에서 선택되는 1종 이상으로 구성된 것을 특징으로 하는 발포성 전분 비드.
  11. 전분-모노머 공중합체를 준비하는 단계; 및
    상기 준비된 전분-모노머 공중합체에 발포제를 함침시키는 단계;를 포함하고,
    상기 전분-모노머 공중합체는 스티렌, α-메틸스티렌, 락타이드, 락틱산, 아크릴산, 메타크릴산, 아크릴산 에스테르, 메타크릴산 에스테르, 아크릴로니트릴, 아크릴아미드 및 카프로락톤으로 이루어진 군에서 선택되는 1종 이상의 모노머가 전분에 결합되어 형성된 것이고,
    상기 발포제는 C2~C7의 지방족 탄화수소, C2~C7의 할로겐화탄화수소, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상으로 구성된 것을 특징으로 하는 발포성 전분 비드의 제조방법.
  12. 제 11항에 있어서,
    상기 전분-모노머 공중합체를 준비하는 단계는 반응기에 전분과 모노머를 10:90 내지 90:10의 중량비로 첨가하고, 상기 전분 및 모노머의 중량 합 100 중량부에 대하여 개시제 0.1~10 중량부, 분산제 0.1~10 중량부 및 물 100~2000 중량부를 첨가한 후, 30℃ 초과 및 150℃ 미만의 온도에서 1~10시간 동안 반응시키는 것을 특징으로 하는 발포성 전분 비드 제조방법.
  13. 제 11항에 있어서,
    상기 발포제를 함침시키는 단계는 상기 전분-모노머 공중합체가 준비된 반응기에 전분-모노머 공중합체:발포제의 중량비가 90:10 내지 99:1이 되도록 발포제를 첨가하고 30~150℃의 온도에서 1~10시간 동안 반응시켜서 전분-모노머 공중합체에 발포제를 함침시키는 것을 특징으로 하는 발포성 전분 비드의 제조방법.
  14. 제 12항에 있어서,
    상기 개시제는 과황산칼륨, 과황산암모늄, 과산화벤조일, 세릭암모늄나이트레이트, 아조비스이소부티로니트릴 및 주석 옥토에이트로 이루어진 군에서 선택되는 1종 이상으로 구성된 것을 특징으로 하는 발포성 전분 비드의 제조방법.
  15. 제 12항에 있어서,
    상기 분산제는 폴리비닐알콜, 폴리비닐아세테이트, 메틸셀룰로오스, 하이드록시에틸셀룰로오스, 폴리비닐피롤리돈, 트리칼슘포스페이트, 탄산칼슘, 탈크, 벤토나이트 및 마그네슘실리케이트로 이루어진 군에서 선택되는 1종 이상으로 구성된 것을 특징으로 하는 발포성 전분 비드의 제조방법.
  16. 전분-모노머 공중합체와 수지를 혼합하고 압출하여 미립펠렛을 제조하는 단계; 및
    상기 제조된 미립펠렛에 발포제를 함유시키는 단계;를 포함하고,
    상기 전분-모노머 공중합체는 스티렌, α-메틸스티렌, 락타이드, 락틱산, 아크릴산, 메타크릴산, 아크릴산 에스테르, 메타크릴산 에스테르, 아크릴로니트릴, 아크릴아미드 및 카프로락톤으로 이루어진 군에서 선택되는 1종 이상의 모노머가 전분에 결합되어 형성된 것이고,
    상기 수지는 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 에틸렌비닐아세테이트, 폴리락틱산, 폴리카프로락톤, 폴리부틸렌숙시네이트, 폴리부틸렌숙시네이트아디페이트 및 폴리부틸렌아디페이트테레프탈레이트로 이루어진 군에서 선택되는 1종 이상으로 구성되고,
    상기 발포제는 C2~C7의 지방족 탄화수소, C2~C7의 할로겐화탄화수소, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상으로 구성된 것을 특징으로 하는 발포성 전분 비드의 제조방법.
  17. 제 16항에 있어서,
    상기 미립펠렛을 제조하는 단계의 전분-모노머 공중합체:수지의 중량비는 10:90 내지 90:10인 것을 특징으로 하는 발포성 전분 비드의 제조방법.
  18. 제 16항에 있어서,
    상기 전분-모노머 공중합체를 구성하는 전분 대 모노머의 중량비는 10:90 내지 90:10인 것을 특징으로 하는 발포성 전분 비드의 제조방법.
  19. 제 16항에 있어서,
    상기 미립펠렛에 발포제를 함침시키는 단계는 반응기에 상기 제조된 미립펠렛 100 중량부 당 발포제 1~10 중량부, 분산제 0.1~10 중량부, 및 물 100~2000 중량부를 첨가하고, 30~150℃의 온도에서 1~10시간 동안 반응시키는 것을 특징으로 발포성 전분 비드 제조방법
  20. 제 19항에 있어서,
    상기 분산제는 폴리비닐알콜, 폴리비닐아세테이트, 메틸셀룰로오스, 하이드록시에틸셀룰로오스, 폴리비닐피롤리돈, 트리칼슘포스페이트, 탄산칼슘, 탈크, 벤토나이트 및 마그네슘실리케이트로 이루어진 군에서 선택되는 1종 이상으로 구성된 것을 특징으로 하는 발포성 전분 비드의 제조방법.
PCT/KR2011/005205 2010-07-15 2011-07-14 발포성 전분 비드 및 이의 제조방법 WO2012008784A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/809,973 US9018268B2 (en) 2010-07-15 2011-07-14 Expandable starch beads and method for preparing the same
JP2013519603A JP5710760B2 (ja) 2010-07-15 2011-07-14 発泡性でん粉ビード及びこの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0068412 2010-07-15
KR1020100068412A KR101110638B1 (ko) 2010-07-15 2010-07-15 발포성 전분 비드 및 그의 제조방법

Publications (2)

Publication Number Publication Date
WO2012008784A2 true WO2012008784A2 (ko) 2012-01-19
WO2012008784A3 WO2012008784A3 (ko) 2012-05-18

Family

ID=45469946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005205 WO2012008784A2 (ko) 2010-07-15 2011-07-14 발포성 전분 비드 및 이의 제조방법

Country Status (4)

Country Link
US (1) US9018268B2 (ko)
JP (1) JP5710760B2 (ko)
KR (1) KR101110638B1 (ko)
WO (1) WO2012008784A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746635A (zh) * 2019-11-20 2020-02-04 湖南工业大学 一种复合淀粉发泡微珠及其制备方法
CN111040080A (zh) * 2020-01-08 2020-04-21 周丹 一种亲肤性吸液材料、制备方法及其用途

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10688698B2 (en) 2014-11-26 2020-06-23 Lifoam Industries, Llc Method of molding foam articles
US10400105B2 (en) 2015-06-19 2019-09-03 The Research Foundation For The State University Of New York Extruded starch-lignin foams
US11701872B1 (en) 2017-04-28 2023-07-18 TemperPack Technologies, Inc. Insulation panel
US10357936B1 (en) * 2017-04-28 2019-07-23 TemperPack Technologies, Inc. Insulation panel
KR20190036407A (ko) 2017-09-27 2019-04-04 주식회사 엠씨나노웍스 친환경 발포수지 제조방법 및 이를 이용한 친환경 발포체 제조방법
CN109401164B (zh) * 2018-11-01 2021-04-06 浙江大胜达包装股份有限公司 淀粉基发泡缓冲材料以及包装材料
CN109369851B (zh) * 2018-11-01 2021-04-06 浙江大胜达包装股份有限公司 淀粉基发泡缓冲材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044715A (ja) * 1998-07-30 2000-02-15 Mitsui Chemicals Inc 発泡体製造用組成物、発泡体の製造方法、及び、発泡体
KR100578113B1 (ko) * 2003-02-24 2006-05-10 대상 주식회사 생분해성 포장용 완충재 조성물, 2차원료 및 완충재의제조방법
KR20080049790A (ko) * 2005-08-31 2008-06-04 갈라 인더스트리스 인코포레이티드 생체 고분자 복합체의 펠렛화방법 및 장치
KR100858544B1 (ko) * 2007-03-15 2008-09-12 주식회사 삼양제넥스 전분-비닐 공중합체의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863655A (en) 1988-12-30 1989-09-05 National Starch And Chemical Corporation Biodegradable packaging material and the method of preparation thereof
FI903500A0 (fi) 1989-07-18 1990-07-11 Warner Lambert Co Polymerbaserade blandningskompositioner, som innehaoller till sin struktur modifierad staerkelse.
JP3287088B2 (ja) * 1993-12-08 2002-05-27 ジェイエスアール株式会社 共重合体ラテックス
JPH11100457A (ja) * 1997-09-29 1999-04-13 Kanegafuchi Chem Ind Co Ltd ポリオレフィン系樹脂組成物からの予備発泡粒子の製法
US6130266A (en) * 1999-02-04 2000-10-10 Kaneka Corporation Pre-expanded particles of propylene resin, process for preparing the same and flow-restricting device
JP2000351867A (ja) * 1999-06-14 2000-12-19 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂予備発泡粒子の製造方法
US20070021515A1 (en) * 2005-07-19 2007-01-25 United States (as represented by the Secretary of Agriculture) Expandable starch-based beads and method of manufacturing molded articles therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044715A (ja) * 1998-07-30 2000-02-15 Mitsui Chemicals Inc 発泡体製造用組成物、発泡体の製造方法、及び、発泡体
KR100578113B1 (ko) * 2003-02-24 2006-05-10 대상 주식회사 생분해성 포장용 완충재 조성물, 2차원료 및 완충재의제조방법
KR20080049790A (ko) * 2005-08-31 2008-06-04 갈라 인더스트리스 인코포레이티드 생체 고분자 복합체의 펠렛화방법 및 장치
KR100858544B1 (ko) * 2007-03-15 2008-09-12 주식회사 삼양제넥스 전분-비닐 공중합체의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746635A (zh) * 2019-11-20 2020-02-04 湖南工业大学 一种复合淀粉发泡微珠及其制备方法
CN111040080A (zh) * 2020-01-08 2020-04-21 周丹 一种亲肤性吸液材料、制备方法及其用途

Also Published As

Publication number Publication date
US9018268B2 (en) 2015-04-28
US20130116352A1 (en) 2013-05-09
JP5710760B2 (ja) 2015-04-30
KR20120007733A (ko) 2012-01-25
JP2013530301A (ja) 2013-07-25
KR101110638B1 (ko) 2012-02-15
WO2012008784A3 (ko) 2012-05-18

Similar Documents

Publication Publication Date Title
WO2012008784A2 (ko) 발포성 전분 비드 및 이의 제조방법
EP0587078B1 (en) Process for preparing biodegradable resin foam
WO2016195434A1 (ko) 염화비닐계 공중합체의 제조방법 및 이로부터 제조된 염화비닐계 공중합체
WO2018084486A2 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 asa계 수지 조성물의 제조방법 및 asa계 성형품의 제조방법
WO2016195436A1 (ko) 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2018174395A1 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
WO2021054695A1 (ko) 가소제 조성물 및 이를 포함하는 염화비닐계 수지 조성물
WO2018084436A1 (ko) 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2019225827A1 (ko) 공중합체의 제조방법
WO2018128336A1 (ko) 에멀젼 입자, 이를 포함하는 에멀젼 및 에멀젼의 제조 방법
WO2016182338A1 (ko) 아크릴계 가공조제 및 이를 포함하는 염화비닐계 수지 조성물
WO2016195435A1 (ko) 비닐계 중합체 및 그 제조방법
WO2010128797A2 (ko) 불연 발포성 폴리스티렌 입자 및 그 제조방법, 그리고 이 입자로 제조된 불연성 스티로폴
WO2023158109A1 (ko) 염화비닐계 공중합체 및 이의 제조 방법
KR900006330B1 (ko) 교차 결합된 실란-작용성 비닐리덴 클로라이드 중합체
WO2020149691A1 (ko) 고흡수성 수지 및 이의 제조 방법
US5439946A (en) Process for preparing intrinsically foamed thermoplastic polymer
WO2020004748A1 (ko) 탄산칼슘을 포함하는 발포시트, 이의 제조방법 및 이를 포함하는 식품용기
WO2017191899A1 (ko) 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체
WO2023120887A1 (ko) 에틸렌-비닐알코올 공중합체의 제조방법
WO2019156383A1 (ko) 아크릴 필름
WO2024117865A1 (ko) 생분해성 필름용 조성물, 이를 포함하는 생분해성 필름 및 생분해성 필름의 제조방법
WO2017099373A1 (ko) 염화비닐계 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020076023A1 (ko) 염화비닐계 중합체 중합용 조성물 및 이를 이용한 염화비닐계 중합체의 제조방법
WO2020138520A1 (ko) 셀 발현 균일도가 우수한 발포시트 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11807069

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13809973

Country of ref document: US

ENP Entry into the national phase in:

Ref document number: 2013519603

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11807069

Country of ref document: EP

Kind code of ref document: A2