WO2020138520A1 - 셀 발현 균일도가 우수한 발포시트 및 이의 제조방법 - Google Patents

셀 발현 균일도가 우수한 발포시트 및 이의 제조방법 Download PDF

Info

Publication number
WO2020138520A1
WO2020138520A1 PCT/KR2018/016631 KR2018016631W WO2020138520A1 WO 2020138520 A1 WO2020138520 A1 WO 2020138520A1 KR 2018016631 W KR2018016631 W KR 2018016631W WO 2020138520 A1 WO2020138520 A1 WO 2020138520A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam sheet
inorganic particles
equation
polyester resin
average
Prior art date
Application number
PCT/KR2018/016631
Other languages
English (en)
French (fr)
Inventor
김우진
함진수
이광희
허미
최종한
하상훈
Original Assignee
주식회사 휴비스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 휴비스 filed Critical 주식회사 휴비스
Priority to CN201880039857.0A priority Critical patent/CN111655769A/zh
Priority to JP2019517891A priority patent/JP7345392B2/ja
Priority to PCT/KR2018/016631 priority patent/WO2020138520A1/ko
Publication of WO2020138520A1 publication Critical patent/WO2020138520A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a foam sheet excellent in cell expression uniformity including inorganic particles and a method for manufacturing the same.
  • the foamed container is a product in which polystyrene is mixed with foamed gas to be extruded.
  • the foamed container can maintain a relatively thick thickness, so it has advantages of maintaining shape, heat insulation, and price competitiveness, but is harmful to the human body at high temperatures. There is a problem that is released.
  • a non-foaming type container a product made of polypropylene that is heat-stable is used, but the non-foaming type container has a low rate of morphological change at high temperature and no harmful substances are detected, but the price is high and the problem of poor insulation is not good. have.
  • cup ramen container One of the most common products that use disposable heat-resistant containers is the cup ramen container.
  • cup ramen container the aforementioned polystyrene foam container is generally used, and efforts to replace it with a paper container have been attempted.
  • paper containers there is a limit to commercialization since the manufacturing cost is high and the price competitiveness is low.
  • an object of the present invention is to provide a material for an excellent disposable container that is excellent in shape retention and heat insulation, has a competitive price, and is safe for the human body.
  • the average size of the inorganic particles is 0.05 ⁇ m to 60 ⁇ m
  • the average cell size of the foam sheet is 5 ⁇ m to 500 ⁇ m
  • CV 0 is the volume of the foam sheet before exposing the food container in a 200° C. oven for 30 seconds, the unit is cm 3 ,
  • CV 1 is the volume of the foam sheet after exposure of the food container in an oven at 200° C. for 30 seconds, and the unit is cm 3 .
  • the average size of the inorganic particles is 0.05 ⁇ m to 60 ⁇ m
  • the average cell size of the foam sheet provides a method for producing a foam sheet of 5 ⁇ m to 500 ⁇ m.
  • the foam sheet according to the present invention is made of polyester resin, and is competitive in price, safe for the human body, and environmentally friendly.
  • the foamed sheet has excellent impact resistance and moldability, and uniformly disperses inorganic particles of a specific size in a polyester resin to increase the uniformity of cell expression of the foamed sheet, and can adjust the cell size according to the size of the inorganic particles. There is an advantage.
  • the present invention relates to a foam sheet and a method for manufacturing the same.
  • the present invention provides a foam sheet comprising a polyester resin and a method for manufacturing the same.
  • the foam sheet according to the present invention is made of polyester resin, and is competitive in price, safe for the human body, and environmentally friendly.
  • the foam sheet has excellent impact resistance and moldability, and uniformly disperses inorganic particles of a specific size inside the polyester resin, resulting in high cell expression uniformity of the foam sheet, and the cell size according to the size of the inorganic particles during foaming. It has the advantage of being adjustable.
  • the present invention in one embodiment, as a foam sheet of a polyester resin containing inorganic particles,
  • the average size of the inorganic particles is 0.05 ⁇ m to 60 ⁇ m
  • the average cell size of the foam sheet is 5 ⁇ m to 500 ⁇ m
  • V 1 is the volume of the foam sheet, and the unit is cm 3 after exposing the circular foam sheet having a diameter of 10 cm in an oven at 200° C. for 30 seconds.
  • the foam sheet according to the present invention is a foam sheet comprising a polyester resin as a main component, and may have a structure in which inorganic particles are uniformly dispersed inside a layer composed of the polyester resin.
  • the inorganic particles may be included in an amount of 0.05% to 1.00% by weight relative to the total weight of the foam sheet, and more specifically, 0.05% to 0.80% by weight, 0.05% to 0.60% by weight, based on the total weight of the foam sheet, 0.05 wt% to 0.40 wt%, 0.10 wt% to 0.50 wt%, 0.15 wt% to 0.45 wt%, or 0.20 wt% to 0.40 wt%.
  • the inorganic particles may be at least one selected from the group consisting of titanium oxide (TiO 2 ), talc (Talc), silica (silica), and zirconium oxide (ZrO 2 ).
  • the inorganic particles may be titanium oxide (TiO 2 ), talc (Talc) or silica (silica). The inorganic particles may serve to increase the density of the cell while reducing the cell size when foaming the polyester resin.
  • the size of the inorganic particles may be 0.05 ⁇ m to 60 ⁇ m, specifically 0.05 ⁇ m to 50 ⁇ m, 0.05 ⁇ m to 40 ⁇ m, 0.05 ⁇ m to 30 ⁇ m, 0.05 ⁇ m to 20 ⁇ m, 0.05 ⁇ m to 15 ⁇ m, 0.05 ⁇ m to 5 ⁇ m, 0.05 ⁇ m to 1 ⁇ m, 0.05 ⁇ m to 0.6 ⁇ m, 0.05 ⁇ m to 0.2 ⁇ m, 0.15 ⁇ m to 0.6 ⁇ m, 0.4 ⁇ m to 6 ⁇ m, 0.4 ⁇ m to 11 ⁇ m, 0.08 ⁇ m to 40 ⁇ m, 0.1 ⁇ m To 35 ⁇ m, 1 ⁇ m to 15 ⁇ m, 1 ⁇ m to 9 ⁇ m, 1 ⁇ m to 5 ⁇ m, 8 ⁇ m to 20 ⁇ m, 8 ⁇ m to 15 ⁇ m ⁇ 8 ⁇ m to 12 ⁇ m, 12 ⁇ m to 25 ⁇ m, 18
  • the foamability and cell size of the cell can be easily controlled when the polyester resin is foamed.
  • the inorganic particles can be uniformly dispersed in the polyester resin to maintain the foamability of the resin constant, thereby uniformizing the cell uniformity of the extruded sheet, that is, the cell size.
  • the size of the cell decreases, thereby increasing the density of the cell.
  • the cell size of the foam sheet is excellent in uniformity (or uniformity in expression), so the average cell size and the deviation between the maximum and minimum cell sizes may be low.
  • the maximum and minimum cell sizes may be within ⁇ 65%, within ⁇ 60%, within ⁇ 50%, or within ⁇ 45% based on the average cell size.
  • the maximum cell size may be 15 ⁇ m or less
  • the minimum cell size may be 5 ⁇ m or more
  • the maximum cell size is 500 ⁇ m.
  • the minimum cell size may be 200 ⁇ m or more.
  • the average cell density of the foam sheet may be 800 cells/cm 2 to 25000 cells/cm 2, specifically 800 cells/cm 2 to 23000 cells/cm 2, 800 cells/cm 2 to 20000 cells/cm 2, 800 cells/cm 2 to 15000 cells/cm2, 800 cells/cm2 to 11000 cells/cm2, 800 cells/cm2 to 8000 cells/cm2, 1000 cells/cm2 to 5500 cells/cm2, 4500 cells/cm2 to 6000 cells/cm2, 15000 cells/cm2 to 25000 cells/cm2, 20000 cells/cm2 to 24500 cells/cm2, 21000 cells/cm2 to 24500 cells/cm2, 900 cells/cm2 to 2000 cells/cm2, 900 cells/cm2 to 1800 cells/cm2, or 1200 cells/cm2 To 1600 cells/cm 2.
  • V 0 is the volume of the foam sheet before exposing the circular foam sheet having a diameter of 10 cm in a 200° C. oven for 30 seconds, the unit is cm 3 ,
  • the dimensional change rate according to Equation 1 is 50 to 280%, 50 To 250%, 50 to 200%, 50 to 150%, 50 to 100%, 50 to 90%, 50 to 80%, 50 to 70%, 100 to 300%, 150 to 300%, 200 to 300%, 250 To 300%, 80 to 120%, 80 to 140%, 150 to 200%, 180 to 300%, 220 to 290%, 270 to 300%, 90 to 150%, 90 to 160%, 110 to 170%, 130 To 170%, 140 to 160%, 140 to 190%, 190 to 2430%, 170 to 210%, 190 to 210%, 220 to 280%, 240 to 260%, or 230 to 280%.
  • SV 0 is the volume of the foam sheet before the free fall of a sphere (diameter: 7 cm) of 500 g at a position of 30 cm in height from a foam sheet having a length of 10 cm and a width of 10 cm, the unit is cm 3 ,
  • SV 1 is the volume of the foam sheet after the free fall of 500 g spheres (diameter: 7 cm) from the foam sheet having a length of 10 cm and a width of 10 cm to a foam sheet at a position of 30 cm, and the unit is cm 3 .
  • the rate of shape change according to Equation 2 is a value corresponding to the case where the foam sheet is impacted from the outside, and the volume means a value calculated by multiplying each length, width, and thickness of the foam sheet.
  • the foam sheet according to the present invention (average thickness: 2.5 mm) is cut into 10 cm in length and 10 cm in width, and then frees a sphere of 500 g (diameter: 7 cm) from the foam sheet at a height of 30 cm to a foam sheet.
  • the rate of change of the shape of the foam sheet according to Equation 2 may range from 0.01 to 20%, 0.05 to 18%, 0.1 to 15%, 0.1 to 10%, or 0.1 to 5%, and in some cases 0% Can be close to
  • the foamed sheet of the present invention can improve the impact resistance by satisfying Equation 2, so that when it is impacted from the outside, deformation does not occur or it can have a significantly lower form strain.
  • the foam sheet may further include carbon black together with inorganic particles in the polyester resin.
  • the content of the carbon black may be 0.05% to 5% by weight relative to the total weight of the foam sheet, specifically 0.05% to 4.5% by weight, 0.05 to 3.5% by weight, 0.05% to 2.5% by weight, 0.05% to 1.5%, 0.05% to 0.6%, 0.05% to 0.2%, 0.4% to 3.5%, 0.4% to 2.5%, 0.4% to 1.5%, 0.8% %
  • the average size of the carbon black may be 10 nm to 5000 nm, and more specifically 20 nm to 3500 nm, 20 nm to 2500 nm, 20 nm to 2000 nm, 20 nm to 1500 nm, 20 nm to 1000 Nm, 20 nm to 800 nm, 20 nm to 400 nm, 20 nm to 200 nm, 20 nm to 80 nm, 20 nm to 50 nm, 80 nm to 3500 nm, 80 nm to 2500 nm, 100 nm to 1000 nm, It may be 80 nm to 130 nm, 400 nm to 600 nm, 450 nm to 550 nm, 800 nm to 1200 nm, 1000 nm to 3000 nm, 15 nm to 200 nm or 25 nm to 550 nm.
  • the polyester resin of the present invention may include carbon black having an average size of 25 nm to 35 nm at 1 ⁇ 0.5% by weight based on the total weight of the foam sheet.
  • the foam sheet according to the present invention may exhibit a certain value when measuring a specific resistance value.
  • the foam sheet may have an average specific resistance value of 10 7 to 10 14 , and more specifically, 10 7 to 10 13 , 5 ⁇ 10 7 to 10 13 , 5 ⁇ 10 7 to 5 ⁇ 10 12 , 10 8 to 10 12 , or 10 9 to 10 12 may have an average specific resistance value.
  • the foam sheet according to the present invention is a polyester resin foam sheet as mentioned above, and the polyester resin has an advantage in that it not only releases substances harmful to the human body even at high temperatures, but also has price competitiveness.
  • the average thickness of the foam sheet of the present invention may be 1 mm to 10 mm.
  • the thickness of the foam sheet may be 1.5 mm to 9.0 mm, 2.0 mm to 8.0 mm, 1.5 mm to 5.0 mm or 2.0 mm to 7.0 mm.
  • a food container comprising the foam sheet and satisfying Equation 3 below is provided:
  • CV 0 is the volume of the foam sheet before exposing the food container in a 200° C. oven for 30 seconds, the unit is cm 3 ,
  • CV 1 is the volume of the foam sheet after exposure of the food container in an oven at 200° C. for 30 seconds, and the unit is cm 3 .
  • the rate of dimensional change before and after exposing the food container in a 200° C. oven for 30 seconds was measured. This may correspond to a condition that may be encountered in environmental conditions using an actual food container or may be a dimensional change rate measured under more severe conditions, and the volume may be calculated by multiplying the length of each food container length, width, and thickness, for example. Value.
  • the food container of the present invention may have a dimensional change rate according to Equation 3 in the range of 0.01 to 5%, 0.01 to 3%, or 0.01 to 1%.
  • It comprises the step of producing a foam sheet by extrusion foaming a resin mixture comprising a polyester resin and inorganic particles,
  • the average size of the inorganic particles is 0.05 ⁇ m to 60 ⁇ m
  • the average cell size of the foam sheet provides a method for producing a foam sheet of 5 ⁇ m to 500 ⁇ m.
  • the method of manufacturing a foam sheet according to the present invention can uniformly mix inorganic particles having a specific size in a polyester resin during extrusion foaming, thereby increasing the cell expression uniformity of the foam sheet and controlling the cell size to be smaller.
  • the polyester resin may be prepared from raw material components commonly used in the art. Specifically, the polyester resin may be obtained by reacting a dicarboxylic acid component and a glycol component or reacting a hydroxycarboxylic acid component.
  • dicarboxylic acid component one or more selected from the group consisting of terephthalic acid, naphthalene dicarboxylic acid and adipic acid may be used.
  • hydroxycarboxylic acid component may be used one or more selected from the group consisting of lactic acid (glycic acid) and lactic acid (glycolic acid), but is not limited thereto.
  • the polyester resin used in the present invention may be polyethylene terephthalate (PET) obtained by reacting terephthalic acid with ethylene glycol.
  • PET polyethylene terephthalate
  • the inorganic particles included in the resin mixture may be at least one selected from the group consisting of titanium oxide (TiO 2 ), talc, silica and zirconium oxide (ZrO 2 ), and the total weight of the resin mixture It may be included in 0.05% by weight to 1.00% by weight.
  • the average size of the inorganic particles may be 0.05 ⁇ m to 60 ⁇ m. The present invention can increase the cell uniformity of the foam sheet by incorporating the inorganic particles having the above-described configuration into the resin mixture, and the density of the cell while reducing the cell size according to the average size of the inorganic particles when foaming the polyester resin Can increase.
  • the resin mixture may further include carbon black together with inorganic particles.
  • the content of the carbon black may be 0.05% to 5% by weight relative to the total weight of the resin mixture, specifically 0.05% to 4.5% by weight, 0.05 to 3.5% by weight, 0.05% to 2.5% by weight, 0.05% to 1.5%, 0.05% to 0.6%, 0.05% to 0.2%, 0.4% to 3.5%, 0.4% to 2.5%, 0.4% to 1.5%, 0.8% %
  • the average size of the carbon black may be 10 nm to 5000 nm, more specifically 20 nm to 3500 nm, 20 nm to 2500 nm, 20 nm to 2000 nm, 20 nm to 1500 nm, 20 nm to 1000 nm, 20 nm to 800 nm, 20 nm to 400 nm, 20 nm to 200 nm, 20 nm to 80 nm, 20 nm to 50 nm, 80 nm to 3500 nm, 80 nm to 2500 nm, 100 nm to 1000 nm , 80 nm to 130 nm, 400 nm to 600 nm, 450 nm to 550 nm, 800 nm to 1200 nm, 1000 nm to 3000 nm, 15 nm to 200 nm or 25 nm to 550 nm.
  • the present invention can uniformly mix the carbon black with the resin mixture during extrusion foaming of the resin mixture, thereby simultaneously improving the thermal properties and moldability of the foam sheet, and shorten the process time.
  • the polyester resin may be introduced in the form of pellets, granules, beads, chips, powders, etc., and in some cases, introduced in a molten state. It might be.
  • the polyester resin may be introduced into an extruder in the form of a chip and extruded and foamed.
  • the resin chip is melted at a temperature of 260°C to 300°C for melting of the resin chip. It can go through the melting process.
  • various types of additives may be introduced into the fluid connection line or the foaming process as necessary when introducing the extruder of the polyester resin for functionalization of the foam sheet.
  • the additives can impart a barrier performance, a hydrophilicity function or a waterproof function to the foam sheet, a thickener, a surfactant, a hydrophilic agent, a heat stabilizer, a waterproofing agent, a cell size expander, an infrared attenuator, a plasticizer, It may include one or more selected from the group consisting of fire retardant chemicals, pigments, elastomers, extrusion aids, antioxidants, nucleating agents, static inhibitors and UV absorbers.
  • the method for manufacturing a foam sheet of the present invention may input one or more of a thickener, a nucleating agent, a heat stabilizer, and a foaming agent, and may further include one or more of the functional additives listed above.
  • the thickener is not particularly limited, but in the present invention, for example, pyromellitic dianhydride (PMDA) may be used.
  • PMDA pyromellitic dianhydride
  • the thermal stabilizer may be an organic or inorganic phosphorus compound.
  • the organic or inorganic phosphorus compound may be, for example, phosphoric acid and its organic esters, phosphorous acid and its organic esters.
  • the thermal stabilizer is a commercially available material, and may be phosphoric acid, alkyl phosphate, or aryl phosphate, and more specifically, triphenyl phosphate, but is not limited thereto.
  • blowing agent nitrogen (N 2 ), carbon dioxide (CO 2 ), freon, butane, pentane, neopentane, hexane, isohexane, heptane, isoheptane, physical blowing agent such as methyl chloride, or azodicarbon Azodicarbonamide-based compound, p,p'-oxybis(benzene sulfonyl hydrazide)-based compound, N,N'-dinitrosopentamethylenetetra
  • Chemical blowing agents such as amine (N,N'-dinitroso pentamethylene tetramine)-based compounds, and specifically, carbon dioxide (CO 2 ) may be used in the present invention.
  • extrusion performed in the present invention can be performed using various types of extruders.
  • the foaming process can usually be carried out through bead foaming or extrusion foaming, but in the present invention, extrusion foaming is preferred.
  • Extrusion foaming can extrude and foam the resin mixture continuously, simplifying the process steps, mass production is possible, and it is possible to prevent cracking and granular fracture phenomenon between beads during foam expansion, thereby providing better flexural strength and compression. Strength can be achieved.
  • the foam sheet prepared in the present invention may be a foam board and/or foam sheet, and the average thickness is 1 mm to 10 mm, 1.5 mm to 9.0 mm, 2.0 mm to 8.0 mm, 1.5 mm to 5.0 mm or 2 mm. To 7.0 mm.
  • PET oligomer polyethylene terephthalate polymer
  • MPD 2-Methyl-1,3-propanediol
  • PET polyetherine terephthalate
  • an esterification reaction catalyst was added.
  • the esterification reaction was performed at 250 ⁇ 2°C.
  • a condensation polymerization reaction catalyst was prepared by adding a condensation polymerization catalyst to the obtained reaction mixture, and controlling the final temperature in the reaction vessel to be 280 ⁇ 2°C and 0.1 mmHg, respectively.
  • a foam sheet was prepared by performing the same method as in Example 1, except that the average size of the inorganic particles, talc, was adjusted as shown in Table 1 below.
  • Example 2 Average size of inorganic particles Example 2 0.5 ⁇ m Example 3 3 ⁇ m Example 4 10 ⁇ m Example 5 50 ⁇ m
  • Example 2 The same method as in Example 1, except that talc having an average size of 0.1 ⁇ m and carbon black having an average size of 30 nm as inorganic particles were added to 0.3 parts by weight and 0.1 parts by weight, respectively, based on 100 parts by weight of the polyester resin. To prepare a polyester resin foam sheet having an average thickness of 2 ⁇ 0.5mm.
  • a foam sheet was prepared in the same manner as in Example 6, except that the average size and content of the inorganic particles talc and carbon black were adjusted as shown in Table 2 below.
  • Example 7 Talc 0.3 wt% 3 ⁇ m 0.5 wt% 30 ⁇ 5 nm
  • Example 8 1.0 wt% 30 ⁇ 5 nm
  • Example 9 1.0 wt% 100 ⁇ 10 nm
  • Example 10 1.0 wt% 500 ⁇ 50 nm
  • Example 11 1.0 wt% 2000 ⁇ 500 nm
  • Example 12 2.0 wt% 30 ⁇ 5 nm
  • Example 13 3.0 wt% 30 ⁇ 5 nm
  • Example 14 Silica 3.0 wt% 30 ⁇ 5 nm
  • Foaming of a polyester resin having an average thickness of 2 ⁇ 0.5 mm was performed in the same manner as in Example 1, except that talc having an average size of 100 ⁇ m as the inorganic particles was added to 0.3 parts by weight based on 100 parts by weight of the polyester resin. Sheets were prepared.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Average particle size 100 ⁇ m 0.1 ⁇ m 0.5 ⁇ m 3 ⁇ m 10 ⁇ m 50 ⁇ m
  • FIG. 1 is an image taken with a scanning electron microscope (SEM) of the foam sheet obtained in Examples 1 to 5 and Comparative Example 1, (a) to (e) of FIG. 1 are sequentially foamed in Examples 1 to 5
  • the sheet is an image taken with a scanning electron microscope
  • FIG. 1(f) is an image taken with the foam sheet of Comparative Example 1.
  • the cell size of the foam sheet of Examples 1 to 5 is significantly smaller than the average cell size of the foam sheet of Comparative Example 1, and the cell expression uniformity is uniform. More specifically, referring to Table 3, it was confirmed that the foam sheets of Examples 1 to 5 had an average cell size of 10 ⁇ m to 350 ⁇ m, while the foam sheets of Comparative Example 1 had an average cell size of 700 ⁇ m.
  • the foamed sheets of Examples 1 to 5 had a cell density of 1496 cells/cm 2 to 24000 cells/cm 2, it was found that the foamed sheets of Comparative Example 1 had a low cell density of 768 cells/cm 2. . Furthermore, in the foam sheet of Examples 1 to 5, the maximum and minimum cell sizes were ⁇ 50% based on the average cell size, whereas the foam sheet of Comparative Example 1 had the maximum and minimum cell sizes ⁇ 70 based on the average cell size. % Or higher.
  • the foam sheet of the embodiment contains inorganic particles of a certain size and is similar to the comparative example or contains a small amount of inorganic particles in the polyester resin to be more uniformly dispersed to form relatively small size cells with high uniformity.
  • the foam sheets prepared in Examples 1 to 5 and Comparative Example 1 were cut into lengths of 10 cm, widths of 10 cm, and thicknesses of 2.5 cm, respectively, and 500 g spheres (diameter: 7) at a position of 30 cm in height from the foam sheets cm) was freely dropped, and then the volume change of the foam sheet was measured to derive the morphology.
  • the shape strain was set to 100% of the volume before the free fall of the sphere, the volume change after the free fall was set to the shape strain, and the maintained volume was made into impact resistance, and the results are shown in Table 4.
  • Example 1 Example 2
  • Example 3 Example 4
  • Average particle size 100 ⁇ m 0.1 ⁇ m 0.5 ⁇ m 3 ⁇ m 10 ⁇ m 50 ⁇ m Cell size 700 ⁇ m 10 ⁇ m 20 ⁇ m 300 ⁇ m 350 ⁇ m 100 ⁇ m Cell density 768 cells/cm 2 24000 cells/cm 2 22300 cells/cm 2 1496 cells/cm 2 1520 cells/cm 2 5200 cells/cm 2 Impact resistance 80% 97% 96.4% 92.5% 90% 93% Shape strain 20% 3% 3.6% 7.5% 10% 7%
  • the foam sheet of Examples 1 to 5 had a morphology of 3% to 10%, whereas the foam sheet of Comparative Example 1 showed a morphology of more than 15%. This indicates that the impact resistance of the foam sheet is dependent on the size and density of the cell.
  • the foam sheet of the present invention when the resin constituting the foam sheet is polymerized, inorganic particles are mixed to control the cell uniformity and size, thereby increasing the cell density. It can be seen that, accordingly, the impact resistance of the foam sheet is improved.
  • the specific sheet was measured for the foam sheets obtained in Examples 6 to 14 and Comparative Example 1. Specifically, the foam sheet was cut into widths of 25 cm and length of 25 cm, and the surface resistivity meter (PRS-801, Prostat) was used to three times the specific resistance value of the foam sheet surface at a temperature of 25° C. and a relative humidity of 40%. It was measured and the average value was derived.
  • PRS-801, Prostat surface resistivity meter
  • Example 11 Example 12
  • Example 13 Example 14 Inorganic particle type Talc Talc Silica Carbon black content [% by weight] 0 0.1 0.5 One One One One One 2 3 3 Carbon black average size [nm] - 30 ⁇ 5 30 ⁇ 5 30 ⁇ 5 100 ⁇ 10 500 ⁇ 50 2000 ⁇ 500 30 ⁇ 5 30 ⁇ 5 30 ⁇ 5
  • the foam sheet of Examples 6 to 14 has an average resistivity value of 10 8 to 10 12 ⁇ cm, and the specific resistance value decreases as the content of carbon black dispersed in the foam sheet increases. Was confirmed. On the other hand, it was confirmed that the foam sheet of Comparative Example 1 has a high specific resistance value of 10 15 ⁇ cm. In addition, the foam sheets of Examples 6 to 14 did not generate static electricity, but it was confirmed that the foam sheets of Comparative Example 1 generated static electricity. Through this, it can be seen that the foam sheets of Examples 6 to 14 have a relatively low specific resistance value and suppression of static electricity generation by adding carbon black.
  • the foam sheets of Examples 6 to 14 and Comparative Example 1 were put into a pre-heater of a molding machine, and the time taken until the surface temperature of the foam sheet reached 180° C. was measured to evaluate the sheet preheating time. .
  • each foam sheet was molded into a mold at 200°C using a mold machine having a bent portion, and the molding state at the bent portion of the mold machine was visually evaluated. At this time, the molding state was evaluated by dividing it into three stages: excellent, normal, and bad.
  • the foam sheets (average thickness: 2.5 mm) of Examples 6 to 14 and Comparative Example 1 were cut into circles each having a diameter of 10 cm, and the cut sheets were left in an oven at 200° C. for 30 seconds, and then returned to room temperature. After cooling, the volume change was confirmed by measuring the diameter and thickness of the foam sheet.
  • the foam sheet (average thickness: 2.5 mm) was molded into a mold to prepare a cylindrical shaped article having a diameter of 15 cm and a height of 8 cm, and heat treated under the same conditions (in an oven at 200° C. for 30 seconds and cooled to room temperature). The volume change was measured accordingly. The measured results are shown in Table 6.
  • Example 11 Example 12
  • Example 13 Example 14
  • Inorganic particle type Talc Talc Silica Carbon black content [% by weight] 0 0.1 0.5 One One One One 2 3 3
  • Carbon black average size [nm] - 30 ⁇ 5 30 ⁇ 5 30 ⁇ 5 100 ⁇ 10 500 ⁇ 50 2000 ⁇ 500 30 ⁇ 5 30 ⁇ 5 30 ⁇ 5 Sheet preheating time (sec) 20
  • 10 10
  • 10 10
  • 10 10
  • Formability Bad usually usually Great Great Great Great Great Great Great Great Great Great Great Great Great Great Volume change (%)
  • Foam sheet 40 100 150 200 200 200 200 250 250 150 Molded article 17 5 5 5 5 5 5 5 3 2 2
  • the foam sheet of Examples 6 to 14 takes less than 15 seconds, specifically 5 to 12 seconds, to reach a surface temperature of 180° C., whereas the foam sheet of Comparative Example 1 has a time of 20 seconds or more. It was confirmed that it reached 180°C only after passing. This means that the foam sheet of the embodiment has a high thermal conductivity.
  • the foamed sheets of Examples 6 to 14 were excellent in moldability, and it was found that no breakage or crushing of the bend was found at the bent portion of the mold machine. However, it was confirmed that the foam sheet of Comparative Example 1 had low moldability and had cracks or dents in the bent portions.
  • the foam sheets of Examples 6 to 14 were left in an oven at 200°C for 30 seconds, the volume change of about 80 to 270% was exhibited, and in the case of a molded article molded from the foam sheet, the volume change was 6 %.
  • the foam sheet of Comparative Example 1 exhibited a volume change of less than about 50% when left in an oven at 200° C. for 30 seconds, and the molded article molded from the foam sheet was significantly reduced with the shrinkage of the foam sheet under the same conditions. A morphological change appeared, and it was confirmed that the volume change was 15% or more.
  • the foamed sheet according to the present invention has a high thermal conductivity, so that the surface temperature of the foamed sheet rises rapidly, so that the moldability is excellent and the molding time is short. It can be seen that even if it does, damage such as shape change does not occur.
  • the foam sheet of the present invention is made of polyester resin, and is competitive in price, safe for the human body, and environmentally friendly.
  • the foamed sheet has the advantage of uniformly dispersing inorganic particles of a specific size in a polyester resin, so that the cell expression uniformity of the foamed sheet is high, and the cell size can be adjusted according to the size of the inorganic particles.
  • the foam sheet is excellent in impact resistance and moldability, and the molded molded article has excellent heat resistance, and thus can be usefully used in food and beverage containers, disposable food containers, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

본 발명에 따른 발포시트는 폴리에스테르 수지로 구성되어 가격 경쟁력이 있으면서 인체에 안전하며, 친환경적이다. 또한, 상기 발포시트는 내충격성 및 성형성이 우수하며, 특정 크기의 무기입자를 폴리에스테르 수지 내부에 균일하게 분산하여 발포시트의 셀 발현 균일도가 높고, 무기입자의 크기에 따라 셀 사이즈를 조절할 수 있는 이점이 있다.

Description

셀 발현 균일도가 우수한 발포시트 및 이의 제조방법
본 발명은 무기입자를 포함하여 셀 발현 균일도가 우수한 발포시트 및 이의 제조방법에 관한 것이다.
일회용 식품 용기로 사용되고 있는 제품은 발포식과 비발포식으로 나뉜다. 일반적으로 발포식 용기는 폴리스타이렌을 발포 가스와 혼합시켜 압출시킨 제품이 사용되고 있는데, 상기 발포식 용기는 두께를 비교적 두껍게 유지할 수 있어 형태 유지, 단열성, 가격 경쟁력이 높은 이점이 있으나 고온에서 인체에 유해한 물질이 방출되는 문제가 있다. 또한, 비발포식 용기의 경우 열에 안정한 폴리프로필렌을 필름형태로 제작된 제품이 사용되는데, 상기 비발포식 용기는 고온에서 형태변화율이 적고 유해물질이 검출되지 않으나, 가격이 비싸고 단열이 잘 되지 않는 문제가 있다.
일회용 내열용기를 가장 많이 쓰는 대표적인 제품으로는 컵라면 용기를 꼽을 수 있다. 이러한 컵라면 용기로는 앞서 언급된 폴리스타이렌 발포 용기가 대체로 사용되므로 이를 종이 용기로 대체하고자 하는 노력이 시도되고 있다. 그러나, 종이 용기의 경우 제조 단가가 높아 가격 경쟁력이 낮으므로 상용화에 한계가 있다.
한편, 최근 1인 가구가 증가함에 따라 배달음식 및 간편요리 제품의 수요가 점차 늘어나고 있는 가운데, 경제적이면서 인체에 유해한 물질로부터 안전한 일회용 용기에 대한 니즈가 점차 증가하고 있다.
따라서, 형태 유지나 단열성이 우수하고, 외관 디자인이 용이하여 심미적 효과가 뛰어날 뿐만 아니라, 가격 경쟁력이 있으면서 인체에 안전하고 친환경적인 일회용 용기에 대한 개발이 요구되고 있다.
이에, 본 발명의 목적은 형태 유지나 단열성이 우수하고, 가격 경쟁력이 있으면서, 인체에 안전하며, 친환경적인 일회용 용기를 위한 소재를 제공하는데 있다.
본 발명은 일실시예에서,
무기입자를 포함하는 폴리에스테르 수지의 발포시트로서,
무기입자의 평균 크기는 0.05 ㎛ 내지 60 ㎛이며,
발포시트의 평균 셀 사이즈는 5 ㎛ 내지 500 ㎛이고,
하기 수학식 1을 만족하는 발포시트를 제공한다:
[수학식 1]
50% = |V1-V0| / V0 × 100 = 300%
상기 수학식 1에서,
V0은 지름이 10 cm인 원형의 발포시트를 200℃ 오븐에서 30초 동안 노출시키기 이전의 발포시트의 체적으로, 단위는 cm3이고,
V1은 지름이 10 cm인 원형의 발포시트를 200℃ 오븐에서 30초 동안 노출시킨 후 발포시트의 체적으로, 단위는 cm3이다.
또한, 본 발명은 일실시예에서,
상기 발포시트를 포함하는 식품용기로서, 하기 수학식 3을 만족하는 식품용기를 제공한다:
[수학식 3]
|CV1-CV0| / CV0 × 100 = 15%
상기 수학식 3에서,
CV0은 식품용기를 200℃ 오븐에서 30초 동안 노출시키기 이전의 발포시트의 체적으로, 단위는 cm3이고,
CV1은 식품용기를 200℃ 오븐에서 30초 동안 노출시킨 후 발포시트의 체적으로, 단위는 cm3이다.
나아가, 본 발명은 일실시예에서,
폴리에스테르 수지, 및 무기입자를 포함하는 수지 혼합물을 압출 발포하여 발포시트를 제조하는 단계를 포함하고,
무기입자의 평균 크기는 0.05 ㎛ 내지 60 ㎛이며,
발포시트의 평균 셀 사이즈는 5 ㎛ 내지 500 ㎛인 발포시트의 제조방법을 제공한다.
본 발명에 따른 발포시트는 폴리에스테르 수지로 구성되어 가격 경쟁력이 있으면서 인체에 안전하며, 친환경적이다. 또한, 상기 발포시트는 내충격성 및 성형성이 우수하며, 특정 크기의 무기입자를 폴리에스테르 수지 내부에 균일하게 분산하여 발포시트의 셀 발현 균일도가 높고, 무기입자의 크기에 따라 셀 사이즈를 조절할 수 있는 이점이 있다.
도 1은 실시예 및 비교예를 대상으로 주사전자현미경(SEM) 촬영한 이미지이다.
본 발명은 발포시트 및 이의 제조방법에 관한 것이다.
최근 폴리스타이렌을 이용한 발포식 용기나 폴리프로필렌을 이용한 비발포식 용기를 대체하기 위하여 폴리에스테르를 이용한 발포식 용기를 개발하고자 하는 시도가 이어졌다. 그러나, 폴리에스테르, 특히 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET)를 발포시트로 제조하는 경우 기핵제 마스터배치를 투입하면서 발포를 유도하나 별도의 기핵제를 투입하게 되면 첨가된 기핵제의 분산성 부족에 따라 발현된 셀(cell)의 균일도가 저하될 수 있으며, 공정 오류에 따른 함량 불균일이 발생될 수 있다. 뿐만 아니라, 종래 PET 발포시트는 용융점(melting point)이 폴리스타이렌 발포시트에 비해 낮아 폴리스타이렌의 성형 온도 조건에서 성형이 어려운 문제가 있다.
이와 같은 문제를 개선하기 위하여, 본 발명은 폴리에스테르 수지를 포함하는 발포시트 및 이의 제조방법을 제공한다.
본 발명에 따른 발포시트는 폴리에스테르 수지로 구성되어 가격 경쟁력이 있으면서 인체에 안전하며, 친환경적이다. 또한, 상기 발포시트는 내충격성 및 성형성이 우수하며, 특정 크기의 무기입자를 폴리에스테르 수지 내부에 균일하게 분산하여 발포시트의 셀 발현 균일도가 높고, 발포 시 무기입자의 크기에 따라 셀 사이즈를 조절할 수 있는 이점이 있다.
이하, 본 발명을 보다 상세하게 설명한다.
발포시트
본 발명은 일실시예에서, 무기입자를 포함하는 폴리에스테르 수지의 발포시트로서,
무기입자의 평균 크기는 0.05 ㎛ 내지 60 ㎛이며,
발포시트의 평균 셀 사이즈는 5 ㎛ 내지 500 ㎛이며,
하기 수학식 1을 만족하는 발포시트를 제공한다:
[수학식 1]
50% = |V1-V0| / V0 × 100 = 300%
상기 수학식 1에서,
V0은 지름이 10 cm인 원형의 발포시트를 200℃ 오븐에서 30초 동안 노출시키기 이전의 발포시트의 체적으로, 단위는 cm3이고,
V1은 지름이 10 cm인 원형의 발포시트를 200℃ 오븐에서 30초 동안 노출시킨 후 발포시트의 체적으로, 단위는 cm3이다.
본 발명에 따른 발포시트는 폴리에스테르 수지를 주성분으로 포함하는 발포시트로서, 상기 폴리에스테르 수지로 구성되는 층 내부에 무기입자가 균일하게 분산된 구조를 가질 수 있다.
이때, 상기 무기입자는 발포시트 전체 중량에 대하여 0.05 중량% 내지 1.00 중량%로 포함될 수 있으며, 보다 구체적으로는 발포시트 전체 중량에 대하여 0.05 중량% 내지 0.80 중량%, 0.05 중량% 내지 0.60 중량%, 0.05 중량% 내지 0.40 중량%, 0.10 중량% 내지 0.50 중량%, 0.15 중량% 내지 0.45 중량%, 또는 0.20 중량% 내지 0.40 중량%를 포함할 수 있다.
또한, 상기 무기입자는 산화티탄 (TiO2), 활석 (Talc), 실리카 (silica) 및 산화지르코늄(ZrO2)로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 하나의 예로서, 상기 무기입자는 산화티탄 (TiO2), 활석 (Talc) 또는 실리카 (silica)일 수 있다. 상기 무기입자들은 폴리에스테르 수지의 발포 시 셀의 사이즈를 작아지게 하면서 셀의 밀도를 높이는 역할을 수행할 수 있다.
아울러, 상기 무기입자의 크기는 0.05 ㎛ 내지 60 ㎛일 수 있으며, 구체적으로는 0.05 ㎛ 내지 50 ㎛, 0.05 ㎛ 내지 40 ㎛, 0.05 ㎛ 내지 30 ㎛, 0.05 ㎛ 내지 20 ㎛, 0.05 ㎛ 내지 15 ㎛, 0.05 ㎛ 내지 5 ㎛, 0.05 ㎛ 내지 1 ㎛, 0.05 ㎛ 내지 0.6 ㎛, 0.05 ㎛ 내지 0.2 ㎛, 0.15 ㎛ 내지 0.6 ㎛, 0.4 ㎛ 내지 6 ㎛, 0.4 ㎛ 내지 11 ㎛, 0.08 ㎛ 내지 40 ㎛, 0.1 ㎛ 내지 35 ㎛, 1 ㎛ 내지 15 ㎛, 1 ㎛ 내지 9 ㎛, 1 ㎛ 내지 5 ㎛, 8 ㎛ 내지 20 ㎛, 8 ㎛ 내지 15 ㎛¸8 ㎛ 내지 12 ㎛, 12 ㎛ 내지 25 ㎛, 18 ㎛ 내지 30 ㎛, 20 ㎛ 내지 40 ㎛, 35 ㎛ 내지 60 ㎛, 45 ㎛ 내지 60 ㎛, 또는 45 ㎛ 내지 55 ㎛일 수 있다. 본 발명은 무기입자의 크기를 상기 범위로 제어함으로써 폴리에스테르 수지의 발포 시 셀의 발포성 및 셀 사이즈를 용이하게 제어할 수 있다. 예컨대, 상기 무기입자는 폴리에스테르 수지에 균일하게 분산되어 수지의 발포성을 일정하게 유지시킴으로써 압출된 시트의 셀 균일도, 즉 셀 사이즈의 분산도를 균일하게 하게 할 수 있다. 또한, 폴리에스테르 수지에 균일하게 분산된 무기입자의 크기가 줄어들수록 셀의 사이즈는 감소하여 셀의 밀도를 증가시킬 수 있다.
예를 들어, 발포시트의 평균 셀 사이즈는 5 ㎛ 내지 500 ㎛일 수 있으며, 구체적으로는 10 ㎛ 내지 400 ㎛, 15 ㎛ 내지 450 ㎛, 20 ㎛ 내지 400 ㎛, 50 ㎛ 내지 370 ㎛, 15 ㎛ 내지 200 ㎛, 80 ㎛ 내지 350 ㎛, 100 ㎛ 내지 300 ㎛, 70 ㎛ 내지 120 ㎛, 30 ㎛ 내지 110 ㎛, 250 ㎛ 내지 370 ㎛, 290 ㎛ 내지 410 ㎛, 280 ㎛ 내지 320 ㎛, 330 ㎛ 내지 380 ㎛, 5 ㎛ 내지 50 ㎛ 또는 5 ㎛ 내지 30 ㎛일 수 있다.
또한, 발포시트의 셀 사이즈는 균일도(또는 발현 균일도)가 우수하여 평균 셀 사이즈와 최대 및 최소 셀 사이즈의 편차는 낮을 수 있다. 구체적으로, 본 발명의 발포 시트는 최대 및 최소 셀 사이즈가 평균 셀 사이즈를 기준으로 ±65% 이내, ±60% 이내, ±50% 이내 또는 ±45% 이내일 수 있다. 하나의 예로서, 상기 발포시트의 평균 셀 사이즈가 10 ㎛인 경우 최대 셀 사이즈는 15 ㎛ 이하이고, 최소 셀 사이즈는 5 ㎛ 이상일 수 있으며, 평균 셀 사이즈가 350 ㎛인 경우 최대 셀 사이즈는 500 ㎛ 이하이고, 최소 셀 사이즈는 200 ㎛ 이상일 수 있다.
나아가, 발포시트의 평균 셀 밀도는 800 cells/㎠ 내지 25000 cells/㎠ 일 수 있으며, 구체적으로는 800 cells/㎠ 내지 23000 cells/㎠, 800 cells/㎠ 내지 20000 cells/㎠, 800 cells/㎠ 내지 15000 cells/㎠, 800 cells/㎠ 내지 11000 cells/㎠, 800 cells/㎠ 내지 8000 cells/㎠, 1000 cells/㎠ 내지 5500 cells/㎠, 4500 cells/㎠ 내지 6000 cells/㎠, 15000 cells/㎠ 내지 25000 cells/㎠, 20000 cells/㎠ 내지 24500 cells/㎠, 21000 cells/㎠ 내지 24500 cells/㎠, 900 cells/㎠ 내지 2000 cells/㎠, 900 cells/㎠ 내지 1800 cells/㎠, 또는 1200 cells/㎠ 내지 1600 cells/㎠일 수 있다.
아울러, 상기 발포시트는 수학식 1을 만족한다:
[수학식 1]
50% = |V1-V0| / V0 × 100 = 300%
상기 수학식 1에서,
V0은 지름이 10 cm인 원형의 발포시트를 200℃ 오븐에서 30초 동안 노출시키기 이전의 발포시트의 체적으로, 단위는 cm3이고,
V1은 지름이 10 cm인 원형의 발포시트를 200℃ 오븐에서 30초 동안 노출시킨 후 발포시트의 체적으로, 단위는 cm3이다.
구체적으로, 본 발명의 발포시트는 200℃ 오븐에 30초 동안 노출시키기 전 후의 지름 및 두께의 치수 변화율을 측정하여 체적 변화를 평가하는 경우, 수학식 1에 따른 치수 변화율이 50 내지 280%, 50 내지 250%, 50 내지 200%, 50 내지 150%, 50 내지 100%, 50 내지 90%, 50 내지 80%, 50 내지 70%, 100 내지 300%, 150 내지 300%, 200 내지 300%, 250 내지 300%, 80 내지 120%, 80 내지 140%, 150 내지 200%, 180 내지 300%, 220 내지 290%, 270 내지 300%, 90 내지 150%, 90 내지 160%, 110 내지 170%, 130 내지 170%, 140 내지 160%, 140 내지 190%, 190 내지 2430%, 170 내지 210%, 190 내지 210%, 220 내지 280%, 240 내지 260%, 또는 230 내지 280% 범위일 수 있다.
또한, 상기 발포시트는 높은 평균 셀 밀도를 나타내어 식품용기나 식음료용 용기에 적합한 내충격성을 구현할 수 있다. 하나의 예로서, 본 발명에 따른 발포시트는 내충격성이 우수하여 하기 수학식 2의 조건을 만족할 수 있다:
[수학식 2]
|SV1-SV0| / SV0 × 100 = 20%
상기 수학식 2에서,
SV0은 길이 10 cm 및 너비 10 cm인 발포시트로부터 높이가 30 cm 되는 위치에서 500g의 구(직경: 7 cm)를 자유 낙하시키기 전 발포시트의 체적으로, 단위는 cm3이고,
SV1은 길이 10 cm 및 너비 10 cm인 발포시트로부터 높이가 30 cm 되는 위치에서 500g의 구(직경: 7 cm)를 발포시트로 자유 낙하시킨 후 발포시트의 체적으로, 단위는 cm3이다.
상기 수학식 2에 따른 형태 변화율은 발포시트가 외부로부터 충격을 받을 경우에 대응하는 값으로서, 체적은 발포시트의 길이, 너비 및 두께 각각의 길이를 곱하여 계산된 값을 의미한다. 본 발명에 따른 발포시트(평균 두께: 2.5 ㎜)는 길이 10 cm 및 너비 10 cm 로 재단한 다음, 발포시트로부터 높이가 30 cm 되는 위치에서 500g의 구(직경: 7 cm)를 발포시트로 자유 낙하시키는 경우, 수학식 2에 따른 발포시트의 형태 변화율이 0.01 내지 20%, 0.05 내지 18%, 0.1 내지 15%, 0.1 내지 10% 또는 0.1 내지 5% 범위일 수 있고, 경우에 따라서는 0%에 가까울 수 있다. 본 발명의 발포시트는 수학식 2를 만족함으로써 내충격성이 향상되어 외부로부터 충격을 받을 경우 변형이 일어나지 않거나 현저히 낮은 형태 변형률을 가질 수 있다.
나아가, 상기 발포시트는 폴리에스테르 수지 내에 무기입자와 함께 카본블랙(Carbon black)을 더 포함할 수 있다. 이때, 상기 카본블랙의 함량은 발포시트 전체 중량에 대하여 0.05 중량% 내지 5 중량%일 수 있고, 구체적으로는 0.05 중량% 내지 4.5 중량%, 0.05 내지 3.5 중량%, 0.05 중량% 내지 2.5 중량%, 0.05 중량% 내지 1.5 중량%, 0.05 중량% 내지 0.6 중량%, 0.05 중량% 내지 0.2 중량%, 0.4 중량% 내지 3.5 중량%, 0.4 중량% 내지 2.5 중량%, 0.4 중량% 내지 1.5 중량%, 0.8 중량% 내지 3.5 중량%, 0.8 중량% 내지 2.5 중량%, 0.8 중량% 내지 1.5 중량%, 0.8 중량% 내지 1.2 중량%, 1.2 중량% 내지 2.5 중량%, 1.8 중량% 내지 2.2 중량%, 2.2 중량% 내지 3.2 중량%, 2.3 중량% 내지 2.8 중량%, 2.7 중량% 내지 3.3 중량%, 0.3 내지 3.1 중량%, 0.2 내지 0.8 중량% 또는 0.15 중량% 내지 3.5 중량%일 수 있다.
또한, 상기 카본블랙의 평균 크기는 10 nm 내지 5000 nm일 수 있고, 보다 구체적으로는 20 ㎚ 내지 3500 ㎚, 20 ㎚ 내지 2500 ㎚, 20 ㎚ 내지 2000 ㎚, 20 ㎚ 내지 1500 ㎚, 20 ㎚ 내지 1000 ㎚, 20 ㎚ 내지 800 ㎚, 20 ㎚ 내지 400 ㎚, 20 ㎚ 내지 200 ㎚, 20 ㎚ 내지 80 ㎚, 20 ㎚ 내지 50 ㎚, 80 ㎚ 내지 3500 ㎚, 80 ㎚ 내지 2500 ㎚, 100 ㎚ 내지 1000 ㎚, 80 ㎚ 내지 130 ㎚, 400 ㎚ 내지 600 ㎚, 450 ㎚ 내지 550 ㎚, 800 ㎚ 내지 1200 ㎚, 1000 ㎚ 내지 3000 ㎚, 15 ㎚ 내지 200 ㎚ 또는 25 ㎚ 내지 550 ㎚일 수 있다.
예를 들어, 본 발명의 폴리에스테르 수지는 25 nm 내지 35nm의 평균 크기를 갖는 카본블랙을 발포시트 전체 중량에 대하여 1±0.5 중량%로 포함할 수 있다.
본 발명은 폴리에스테르 수지 내에 카본블랙의 평균 크기와 함량을 상기 범위로 제어함으로써 폴리에스테르 수지를 포함하는 발포시트의 열적 물성과 성형성을 동시에 향상시켜 성형 시 공정 시간을 단축시킬 수 있다.
또한, 본 발명에 따른 발포시트는 비저항값 측정 시 일정값을 나타낼 수 있다. 구체적으로, 상기 발포시트는 107 내지 1014의 평균 비저항값을 가질 수 있고, 보다 구체적으로는, 107 내지 1013, 5×107 내지 1013, 5×107 내지 5×1012, 108 내지 1012, 또는 109 내지 1012의 평균 비저항값을 가질 수 있다.
한편, 본 발명에 따른 발포시트는 앞서 언급된 바와 같이 폴리에스테르 수지 발포시트로서, 상기 폴리에스테르 수지는 고온에서도 인체에 유해한 물질을 방출하지 않을 뿐만 아니라, 가격 경쟁력이 있다는 점에서 이점이 있다.
이러한 폴리에스테르 수지로는 디카르복실산 성분과 글리콜 성분이 중합되거나 또는 히드록시카르복실산으로부터 합성된 방향족 및 지방족 폴리에스테르 수지를 들 수 있다. 예를 들어, 상기 폴리에스테르 수지는 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate, PET), 폴리부틸렌 테레프탈레이트(Polybutylene Terephthalate, PBT), 폴리트리메틸렌 테레프탈레이트(Polytrimethylene Terephthalate, PTT), 폴리에틸렌 나프탈레이트(Polyethylene naphthalate, PEN), 폴리에틸렌 아디파트(Polyehtylene adipate, PEA), 폴리락트산(Poly Lactic acid, PLA), 및 폴리글리코르산(Polyglycolic acid, PGA)으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있으며, 구체적으로는 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate, PET)를 포함할 수 있다.
또한, 본 발명의 발포시트의 평균 두께는 1 ㎜ 내지 10 ㎜일 수 있다. 구체적으로, 상기 발포시트의 두께는 1.5 ㎜ 내지 9.0 ㎜, 2.0 ㎜ 내지 8.0 ㎜, 1.5 ㎜ 내지 5.0 ㎜ 또는 2.0 ㎜ 내지 7.0 ㎜일 수 있다.
식품용기
또한, 본 발명은 일실시예에서,
상기 발포시트를 포함하고, 하기 수학식 3을 만족하는 식품용기를 제공한다:
[수학식 3]
|CV1-CV0| / CV0 × 100 = 15%
상기 수학식 3에서,
CV0은 식품용기를 200℃ 오븐에서 30초 동안 노출시키기 이전의 발포시트의 체적으로, 단위는 cm3이고,
CV1은 식품용기를 200℃ 오븐에서 30초 동안 노출시킨 후 발포시트의 체적으로, 단위는 cm3이다.
본 발명에 따른 식품용기는 상기 발포시트를 포함하며, 내열성이 우수하여 200℃ 오븐에서 30초 동안 노출시켜도 체적 변화가 낮을 수 있다.
구체적으로, 상기 식품용기를 200℃ 오븐에서 30초 동안 노출시키기 전 후의 치수 변화율을 측정하였다. 이는 실제 식품 용기를 사용하는 환경 조건에서 처해질 수 있는 조건에 대응하거나 보다 가혹한 조건에서 측정된 치수 변화율일 수 있으며, 상기 체적은 예를 들어, 식품용기의 길이, 너비 및 두께 각각의 길이를 곱하여 계산된 값을 의미할 수 있다. 본 발명의 식품용기는 수학식 3에 따른 치수 변화율이 0.01 내지 5%, 0.01 내지 3% 또는 0.01 내지 1% 범위일 수 있다. 상기 범위 내의 수학식 3의 값을 만족함으로써, 본 발명에 따른 발포시트는 높은 온도 환경에서의 사용에도 형태 변화가 거의 일어나지 않는다는 것을 알 수 있다. 결과적으로, 본 발명에 따른 식품용기는 내열성이 우수하다는 것을 알 수 있다.
발포시트의 제조방법
나아가, 본 발명은 일실시예에서,
폴리에스테르 수지 및 무기입자를 포함하는 수지 혼합물을 압출 발포하여 발포시트를 제조하는 단계를 포함하고,
무기입자의 평균 크기는 0.05 ㎛ 내지 60 ㎛이며,
발포시트의 평균 셀 사이즈는 5 ㎛ 내지 500 ㎛인 발포시트의 제조방법을 제공한다.
본 발명에 따른 발포시트의 제조방법은 압출 발포 시 폴리에스테르 수지에 특정 크기를 갖는 무기입자를 균일하게 혼합함으로써 발포시트의 셀 발현 균일도를 증가시키고, 셀의 사이즈를 보다 작게 제어할 수 있다.
이때, 상기 폴리에스테르 수지는 당업계에서 통상적으로 사용되는 원료 성분들로부터 제조될 수 있다. 구체적으로, 상기 폴리에스테르 수지는 디카르복실산 성분과 글리콜 성분을 반응시키거나 히드록시카르복실산 성분을 반응시켜 얻을 수 있다.
여기서, 상기 디카르복실산 성분으로는 테레프탈산(terephthalic acid), 나프탈렌 디카르복실산(naphthalene dicarboxylic acid) 및 아디프산(adipic acid)으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
또한, 상기 글리콜 성분으로는 에틸렌 글리콜(ethylene glycol), 부틸렌 글리콜(butylehe glycol) 및 프로판 디올(propanediol)로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
아울러, 상기 히드록시카르복실산 성분은 락트산(lactic acid) 및 글리콜산(glycolic acid)으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있으나, 이에 제한되지 않는다.
하나의 예로서, 본 발명에서 사용되는 폴리에스테르 수지는 테레프탈산과 에틸렌 글리콜을 반응시킨 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET)일 수 있다.
또한, 상기 수지 혼합물에 포함되는 무기입자는 산화티탄(TiO2), 활석(Talc), 실리카(Silica) 및 산화지르코늄(ZrO2)로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 수지 혼합물 전체 중량에 대하여 0.05 중량% 내지 1.00 중량%로 포함될 수 있다. 이와 더불어, 상기 무기입자의 평균 크기는 0.05 ㎛ 내지 60 ㎛일 수 있다. 본 발명은 상기와 같은 구성을 갖는 무기입자를 수지 혼합물 내에 포함함으로써 발포시트의 셀 균일성을 높일 수 있고, 폴리에스테르 수지의 발포 시 무기입자의 평균 크기에 따라 셀의 사이즈를 작게 하면서 셀의 밀도를 높일 수 있다.
아울러, 상기 수지 혼합물은 무기입자와 함께 카본블랙을 더 포함할 수 있다. 이때, 상기 카본블랙의 함량은 수지 혼합물 전체 중량에 대하여 0.05 중량% 내지 5 중량%일 수 있고, 구체적으로는 0.05 중량% 내지 4.5 중량%, 0.05 내지 3.5 중량%, 0.05 중량% 내지 2.5 중량%, 0.05 중량% 내지 1.5 중량%, 0.05 중량% 내지 0.6 중량%, 0.05 중량% 내지 0.2 중량%, 0.4 중량% 내지 3.5 중량%, 0.4 중량% 내지 2.5 중량%, 0.4 중량% 내지 1.5 중량%, 0.8 중량% 내지 3.5 중량%, 0.8 중량% 내지 2.5 중량%, 0.8 중량% 내지 1.5 중량%, 0.8 중량% 내지 1.2 중량%, 1.2 중량% 내지 2.5 중량%, 1.8 중량% 내지 2.2 중량%, 2.2 중량% 내지 3.2 중량%, 2.3 중량% 내지 2.8 중량%, 2.7 중량% 내지 3.3 중량%, 0.3 내지 3.1 중량%, 0.2 내지 0.8 중량% 또는 0.15 중량% 내지 3.5 중량%일 수 있다.
이와 더불어, 상기 카본블랙의 평균 크기는 10 nm 내지 5000 nm일 수 있고, 보다 구체적으로는 20 ㎚ 내지 3500 ㎚, 20 ㎚ 내지 2500 ㎚, 20 ㎚ 내지 2000 ㎚, 20 ㎚ 내지 1500 ㎚, 20 ㎚ 내지 1000 ㎚, 20 ㎚ 내지 800 ㎚, 20 ㎚ 내지 400 ㎚, 20 ㎚ 내지 200 ㎚, 20 ㎚ 내지 80 ㎚, 20 ㎚ 내지 50 ㎚, 80 ㎚ 내지 3500 ㎚, 80 ㎚ 내지 2500 ㎚, 100 ㎚ 내지 1000 ㎚, 80 ㎚ 내지 130 ㎚, 400 ㎚ 내지 600 ㎚, 450 ㎚ 내지 550 ㎚, 800 ㎚ 내지 1200 ㎚, 1000 ㎚ 내지 3000 ㎚, 15 ㎚ 내지 200 ㎚ 또는 25 ㎚ 내지 550 ㎚일 수 있다.
본 발명은 수지 혼합물의 압출 발포 시 카본블랙을 수지 혼합물에 균일 혼합함으로써 발포시트의 열적 물성 및 성형성을 동시에 향상시킬 수 있으며, 공정 시간을 단축할 수 있다.
한편, 상기 폴리에스테르 수지는 펠렛(pellet), 그래뉼(granule), 비드(bead), 칩(chip), 분말(powder) 등의 형태로 도입될 수 있고, 경우에 따라서는 용융된 상태로 도입될 수도 있다.
하나의 예로서, 상기 폴리에스테르 수지는 칩(chip) 형태로 압출기에 도입되어 압출 발포될 수 있으며, 이 경우, 수지 칩(resin chip)의 용융을 위하여 260℃ 내지 300℃의 온도에서 수지 칩을 용융하는 과정을 거칠 수 있다.
또한, 발포시트를 제조하는 단계는 발포시트의 기능화를 위하여 폴리에스테르 수지의 압출기 도입 시 다양한 형태의 첨가제를 필요에 따라 유체 연결 라인 중에 투입되거나, 혹은 발포 공정 중에 투입할 수 있다.
구체적으로 상기 첨가제들은 배리어(Barrier) 성능, 친수화 기능 또는 방수 기능을 발포시트에 부여할 수 있으며, 증점제, 계면활성제, 친수화제, 열안정제, 방수제, 셀 크기 확대제, 적외선 감쇠제, 가소제, 방화 화학 약품, 안료, 탄성폴리머, 압출 보조제, 산화방지제, 기핵제, 공전 방지제 및 UV 흡수제로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다.
하나의 예로서, 본 발명의 발포시트 제조방법은 증점제, 기핵제, 열안정제 및 발포제 중 1종 이상을 투입할 수 있으며, 앞서 열거된 기능성 첨가제들 중 1종 이상을 더 포함할 수 있다.
여기서, 상기 증점제는 특별히 한정하지 않으나, 본 발명에서는 예를 들면 피로멜리트산 이무수물(PMDA)이 사용될 수 있다.
또한, 상기 열안정제는 유기 또는 무기 인 화합물일 수 있다. 이러한 유기 또는 무기 인 화합물로는 예를 들어, 인산 및 그 유기 에스테르, 아인산 및 그 유기 에스테르일 수 있다. 예를 들어, 상기 열안정제는 상업적으로 입수 가능한 물질로서, 인산, 알킬 포스페이트 또는 아릴 포스페이트일 수 있고, 보다 구체적으로, 트리페닐 포스페이트일 수 있으나, 이에 제한되는 것은 아니다.
아울러, 상기 발포제의 예로는, 질소(N2), 이산화탄소(CO2), 프레온, 부탄, 펜탄, 네오펜탄, 헥산, 이소헥산, 헵탄, 이소헵탄, 메틸클로라이드 등의 물리적 발포제, 또는 아조디카르본아마이드(azodicarbonamide)계 화합물, p,p'-옥시비스(벤젠술포닐하이드라지드)[p,p'-oxy bis (benzene sulfonyl hydrazide)]계 화합물, N,N'-디니트로소펜타메틸렌테트라아민(N,N'-dinitroso pentamethylene tetramine)계 화합물 등의 화학적 발포제가 있으며, 구체적으로 본 발명에서는 이산화탄소(CO2)가 사용될 수 있다.
이와 더불어, 본 발명에서 수행되는 압출은 다양한 형태의 압출기를 이용하여 수행 가능하다. 발포 공정은 통상적으로 비드 발포 또는 압출 발포를 통해 수행할 수 있으나, 본 발명에서는 압출 발포가 바람직하다. 압출 발포는 수지 혼합물을 연속적으로 압출 및 발포시키므로 공정 단계를 단순화할 수 있고, 대량 생산이 가능하며, 비드 발포 시의 비드 사이에서 균열과 입상 파괴 현상 등을 방지할 수 있으므로 보다 우수한 굴곡강도 및 압축강도를 구현할 수 있다.
아울러, 본 발명에서 제조된 발포시트는 발포보드 및/또는 발포시트일 수 있으며, 평균 두께는 1 ㎜ 내지 10 ㎜, 1.5 ㎜ 내지 9.0 ㎜, 2.0 ㎜ 내지 8.0 ㎜, 1.5 ㎜ 내지 5.0 ㎜ 또는 2 ㎜ 내지 7.0 ㎜일 수 있다.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
실시예 1.
에스테르 반응조에 테레프탈산 및 에틸렌글리콜을 투입하고, 258℃ 에서 통상적인 중합반응을 수행하여 반응률이 약 96%인 폴리에틸렌 테레프탈레이트 중합체 (PET oligomer)를 제조하였다. 제조된 폴리에텔린 테레프탈레이트(PET)에 2-메틸-1,3-프로판디올(MPD)을 2 mol% (에틸렌글리콜의 단위 분율: 98 mol%)이 되도록 혼합하고, 에스테르화 반응 촉매를 첨가하여 250±2℃에서 에스테르화 반응을 수행하였다. 그 후 얻어진 반응 혼합물에 축중합 반응 촉매를 첨가하고 반응조 내 최종 온도 미 압력이 각각 280±2℃ 및 0.1 mmHg가 되도록 조절하면서 축중합 반응을 수행하여 공중합 폴리에스테르 수지를 제조하였다.
제조된 상기 폴리에스테르 수지 100 중량부를 기준으로 피로멜리틱 디언하이드리드 0.5 중량부; 0.1 ㎛의 평균 크기를 갖는 탈크(Talc) 0.3 중량부; 및 Irganox (IRG 1010) 0.1 중량부를 혼합하고, 280℃로 가열하여 수지 혼합물을 제조하였다. 그런 다음, 제1 압출기에 발포제로서 부탄(Butane)을 폴리에스테르 수지 100 중량부를 기준으로 3 중량부 투입하고 압출 발포하여 평균 두께 2±0.5mm의 폴리에스테르 수지 발포시트를 제조하였다.
실시예 2 내지 5.
무기입자인 탈크의 평균 크기를 하기 표 1에 나타낸 바와 같이 조절한 것을 제외하고, 실시예 1과 동일한 방법으로 수행하여 발포시트를 제조하였다.
무기입자의 평균 크기
실시예 2 0.5 ㎛
실시예 3 3 ㎛
실시예 4 10 ㎛
실시예 5 50 ㎛
실시예 6.
무기입자로서 평균 크기가 0.1 ㎛인 탈크와 평균 크기가 30 nm인 카본 블랙을, 폴리에스테르 수지 100 중량부를 기준으로 각각 0.3 중량부 및 0.1 중량부가 되도록 첨가하는 것을 제외하고, 실시예 1과 동일한 방법으로 수행하여 평균 두께 2±0.5mm의 폴리에스테르 수지 발포시트를 제조하였다.
실시예 7 내지 14.
무기입자인 탈크와 카본 블랙의 평균 크기 및 함량을 하기 표 2에 나타낸 바와 같이 조절한 것을 제외하고, 실시예 6과 동일한 방법으로 수행하여 발포시트를 제조하였다.
무기입자 카본 블랙
종류 함량 평균 크기 함량 평균 크기
실시예 7 탈크 0.3 중량% 3 ㎛ 0.5 중량% 30±5 nm
실시예 8 1.0 중량% 30±5 nm
실시예 9 1.0 중량% 100±10 nm
실시예 10 1.0 중량% 500±50 nm
실시예 11 1.0 중량% 2000±500 nm
실시예 12 2.0 중량% 30±5 nm
실시예 13 3.0 중량% 30±5 nm
실시예 14 실리카 3.0 중량% 30±5 nm
비교예 1.
무기입자로서 평균 크기가 100 ㎛인 탈크를 폴리에스테르 수지 100 중량부를 기준으로 각각 0.3 중량부가 되도록 첨가하는 것을 제외하고, 실시예 1과 동일한 방법으로 수행하여 평균 두께 2±0.5mm의 폴리에스테르 수지 발포시트를 제조하였다.
실험예.
본 발명에 따른 발포시트의 물성을 확인하기 위하여, 하기와 같은 실험을 수행하였다.
1) 셀 사이즈 및 밀도 평가
실시예 1 내지 실시예 5 및 비교예 1에서 제조된 발포시트를 대상으로 주사전자현미경(SEM) 촬영을 수행하였으며, 촬영된 이미지로부터 일정 단위 면적 내에서 셀의 개수를 세고 이를 단위 면적(가로 1 cm X 세로 1cm)으로 환산하여 평균 셀 밀도를 평가하였다. 또한, 셀 발현 균일도를 평가하기 위하여, 발현된 셀 중 최대 및 최소 셀 사이즈를 측정하고, 측정된 최대 및 최소 셀 사이즈와 평균 셀 사이즈의 편차율을 산출하여 균일도를 평가하였다. 그 결과를 도 1과 표 3에 나타내었다.
구분 비교예 1 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5
무기입자의평균 크기 100 ㎛ 0.1 ㎛ 0.5 ㎛ 3 ㎛ 10 ㎛ 50 ㎛
평균 셀 사이즈 700 ㎛ 10 ㎛ 20 ㎛ 300 ㎛ 350 ㎛ 100 ㎛
셀발현균일도 최소 셀 사이즈 ≥200 ㎛ ≥5 ㎛ ≥10 ㎛ ≥200 ㎛ ≥200 ㎛ ≥50 ㎛
최대 셀 사이즈 ≤1100 ㎛ ≤15 ㎛ ≤30 ㎛ ≤400 ㎛ ≤500 ㎛ ≤150 ㎛
평균 셀 사이즈 기준 편차율 ±71.4% ±50% ±50% ±50% ±42.8% ±50%
평균 셀 밀도 768 cells/cm2 24000 cells/cm2 22300 cells/cm2 1496 cells/cm2 1520 cells/cm2 5200 cells/cm2
도 1은 실시예 1 내지 5와 비교예 1에서 얻은 발포시트를 대상으로 주사전자현미경(SEM) 촬영한 이미지로서, 도 1의 (a) 내지 (e)는 순차적으로 실시예 1 내지 5의 발포시트를 주사전자현미경으로 촬영한 이미지이고, 도 1의 (f)는 비교예 1의 발포시트를 촬영한 이미지이다. 도 1을 살펴보면, 실시예 1 내지 5의 발포시트의 셀 사이즈가 비교예 1의 발포시트의 평균 셀 사이즈보다 현저히 작고, 셀 발현 균일도가 균일한 것을 알 수 있다. 보다 구체적으로, 표 3을 참고하면, 실시예 1 내지 5의 발포시트는 평균 셀 사이즈가 10 ㎛ 내지 350 ㎛를 가지는 반면, 비교예 1의 발포시트는 평균 셀 사이즈가 700 ㎛인 것으로 확인되었다. 또한, 실시예 1 내지 5의 발포시트는 셀 밀도가 1496 cells/㎠ 내지 24000 cells/㎠인데 반해, 비교예 1의 발포시트는 셀 밀도가 768 cells/㎠로 낮은 셀 밀도를 갖는 것을 알 수 있다. 나아가, 실시예 1 내지 5의 발포시트는 최대 및 최소 셀 사이즈가 평균 셀 사이즈를 기준으로 ±50%인데 반해, 비교예 1의 발포시트는 최대 및 최소 셀 사이즈가 평균 셀 사이즈를 기준으로 ±70% 이상인 것으로 확인되었다.
이는 실시예의 발포시트가 특정 크기의 무기입자를 포함하여 비교예와 비슷하거나 적은 양의 무기입자를 폴리에스테르 수지 내에 포함함에도 불구하고 보다 균일하게 분산되어 상대적으로 작은 사이즈의 셀을 높은 균일도로 형성함을 의미한다.
2) 내충격성 평가
또한, 실시예 1 내지 5와 비교예 1에서 제조된 발포시트를 각각 길이 10 cm, 너비 10 cm 및 두께 2.5 cm로 재단하고, 발포시트로부터 높이가 30 cm 되는 위치에서 500g의 구(직경: 7 cm)를 자유 낙하시킨 후 발포시트의 체적 변화를 측정하여 형태 변형률을 도출하였다. 이때, 상기 형태 변형률은 구의 자유 낙하 전의 체적을 100%로 하여, 자유 낙하 후 변화된 체적량을 형태 변형률로 하고, 유지된 체적을 내충격성으로 하였으며, 그 결과를 표 4에 나타내었다.
구분 비교예 1 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5
무기입자의평균 크기 100 ㎛ 0.1 ㎛ 0.5 ㎛ 3 ㎛ 10 ㎛ 50 ㎛
셀 사이즈 700 ㎛ 10 ㎛ 20 ㎛ 300 ㎛ 350 ㎛ 100 ㎛
셀 밀도 768 cells/cm2 24000 cells/cm2 22300 cells/cm2 1496 cells/cm2 1520 cells/cm2 5200 cells/cm2
내충격성 80% 97% 96.4% 92.5% 90% 93%
형태 변형률 20% 3% 3.6% 7.5% 10% 7%
상기 표 4를 살펴보면, 내충격성 실험 결과, 실시예 1 내지 5의 발포시트는 형태 변형률이 3% 내지 10%인 반면, 비교예 1의 발포시트는 형태 변형률이 15%을 초과하는 것으로 나타났다. 이는 발포시트의 내충격성은 셀의 사이즈와 밀도에 의존한다는 것을 나타내는 것으로서, 본 발명의 발포시트는 발포시트를 구성하는 수지의 중합 시 무기입자가 혼합됨으로써 셀의 균일도와 사이즈가 제어되어 셀 밀도가 증가되고, 이에 따라 발포시트의 내충격성이 향상됨을 알 수 있다.
3) 전기적 물성 평가
실시예 6 내지 14와 비교예 1에서 얻은 발포시트를 대상으로 비저항을 측정하였다. 구체적으로, 발포시트를 가로 25 cm 및 세로 25 cm로 제단하고, 표면저항측정기(PRS-801, Prostat사)를 이용하여 온도 25℃, 상대습도 40% 조건에서 발포시트 표면의 비저항값을 3회 측정하였으며, 그 평균값을 도출하였다.
그런 다음, 동일 조건 하에서 정전기 측정기(Stat Clean Eye-02, VESSEL사)로 발포시트 표면에서 정전기가 발생하는지 확인하였으며, 측정 결과는 표 5에 나타내었다.
구분 비교예 2 실시예 6 실시예 7 실시예 8 실시예 9 실시예 10 실시예 11 실시예 12 실시예 13 실시예 14
무기입자종류 탈크 탈크 실리카
카본블랙 함량[중량%] 0 0.1 0.5 1 1 1 1 2 3 3
카본 블랙평균 크기[nm] - 30±5 30±5 30±5 100±10 500±50 2000±500 30±5 30±5 30±5
발포시트 비저항값[Ω·㎝] 1015 1012 1012 1012 1012 1012 1012 1010 108 108
정전기 발생유무 X X X X X X X X X
표 5를 살펴보면, 실시예 6 내지 실시예 14의 발포시트는 평균 108 내지 1012 Ω·㎝의 비저항값을 가지며, 상기 비저항값은 발포시트에 분산된 카본블랙의 함량이 증가할수록 감소하는 것으로 확인되었다. 이에 반해, 비교예 1의 발포시트는 1015 Ω·㎝의 높은 비저항값을 갖는 것으로 확인되었다. 또한, 실시예 6 내지 14의 발포시트는 정전기가 발생하지 않으나, 비교예 1의 발포시트는 정전기가 발생하는 것으로 확인되었다. 이를 통해 실시예 6 내지 14의 발포시트는 카본블랙을 첨가함으로써 상대적으로 낮은 비저항값을 갖고 정전기 발생이 억제되는 것을 알 수 있다.
4) 열적 물성 평가
성형기의 프리-히터(Pre-Heater) 내에 실시예 6 내지 14와 비교예 1의 발포시트를 넣고, 발포시트의 표면온도가 180℃가 되는 시점까지 걸리는 시간을 측정하여 시트의 예열 시간을 평가하였다.
그런 다음, 굴곡 부위를 갖는 금형기를 이용하여 각 발포시트를 200℃의 금형으로 성형하고, 금형기의 굴곡 부위에서의 성형상태를 육안으로 평가하였다. 이때, 성형상태는 우수, 보통, 나쁨의 3단계로 나눠 평가하였다.
마지막으로, 실시예 6 내지 14와 비교예 1의 발포시트(평균 두께: 2.5 mm)를 각각 지름이 10 cm인 원형으로 재단하고, 재단된 시트를 200℃의 오븐에서 30초간 방치하고 상온으로 다시 냉각시킨 후 발포시트의 지름 및 두께를 측정하여 체적 변화를 확인하였다. 아울러, 상기 발포시트(평균 두께: 2.5 mm)를 금형으로 성형하여 지름 15cm 및 높이 8cm인 원통형의 성형품을 제조하고, 이를 대상으로 동일한 조건(200℃의 오븐에서 30초간 방치하고 상온 냉각)에서 열처리를 수행하였으며, 이에 따른 체적 변화를 측정하였다. 측정된 결과는 표 6에 나타내었다.
구분 비교예 1 실시예 6 실시예 7 실시예 8 실시예 9 실시예 10 실시예 11 실시예 12 실시예 13 실시예 14
무기입자종류 탈크 탈크 실리카
카본블랙 함량[중량%] 0 0.1 0.5 1 1 1 1 2 3 3
카본 블랙평균 크기[nm] - 30±5 30±5 30±5 100±10 500±50 2000±500 30±5 30±5 30±5
시트예열 시간(sec) 20 10 10 10 10 10 10 8 6 6
성형성 나쁨 보통 보통 우수 우수 우수 우수 우수 우수 우수
체적변화(%) 발포시트 40 100 150 200 200 200 200 250 250 150
성형품 17 5 5 5 5 5 5 3 2 2
표 6을 참고하면, 실시예 6 내지 14의 발포시트는 표면온도가 180℃에 도달하는 시간이 15초 미만, 구체적으로 5 내지 12초가 걸리는데 반해, 비교예 1의 발포시트는 20초 이상의 시간이 경과해서야 180℃에 도달하는 것으로 확인되었다. 이는 실시예의 발포시트가 높은 열 전도성을 가짐을 의미한다.
또한, 실시예 6 내지 14의 발포시트는 성형성이 우수하여 금형기의 굴곡 부위에서 굴곡의 깨짐이나 찌그러짐이 발견되지 않는 것으로 나타났다. 그러나, 비교예 1의 발포시트는 성형성이 낮아 굴곡부분의 깨짐이나 찌그러짐이 있는 것으로 확인되었다.
아울러, 실시예 6 내지 14의 발포시트를 200℃의 오븐에서 30초 동안 방치한 경우, 약 80 내지 270%의 체적변화를 나타내고, 상기 발포시트를 성형한 성형품의 경우 동일 조건에서 체적변화가 6% 이하인 것으로 나타났다. 이와 비교하여, 비교예 1의 발포시트는 200℃의 오븐에서 30초 동안 방치한 경우 약 50% 미만의 체적 변화를 나타내고, 상기 발포시트를 성형한 성형품은 동일 조건에서 발포시트의 수축과 함께 상당한 형태 변화가 나타나 체적 변화가 15% 이상인 것으로 확인되었다.
이러한 결과로부터, 본 발명에 따른 발포시트는 열 전도율이 높아 발포시트의 표면온도가 빠르게 상승하므로 성형성이 우수하고 성형시간이 짧으며, 이를 이용하여 제조된 식품용기는 내열성이 뛰어나 높은 온도에서 성형하는 경우에도 형태 변화 등의 손상이 발생하지 않는 것을 알 수 있다.
본 발명의 발포시트는 폴리에스테르 수지로 구성되어 가격 경쟁력이 있으면서 인체에 안전하며, 친환경적이다. 또한, 상기 발포시트는 특정 크기의 무기입자를 폴리에스테르 수지 내부에 균일하게 분산하여 발포시트의 셀 발현 균일도가 높고, 무기입자의 크기에 따라 셀 사이즈를 조절할 수 있는 이점이 있다. 나아가, 상기 발포시트는 내충격성 및 성형성이 우수하며, 성형된 성형품은 내열성이 뛰어나므로, 식음료 용기나 일회용 식품용기 등에 유용하게 사용될 수 있다.

Claims (14)

  1. 무기입자를 포함하는 폴리에스테르 수지의 발포시트로서,
    무기입자의 평균 크기는 0.05 ㎛ 내지 60 ㎛이며,
    발포시트의 평균 셀 사이즈는 5 ㎛ 내지 500 ㎛이고,
    하기 수학식 1을 만족하는 발포시트:
    [수학식 1]
    50% = |V1-V0| / V0 × 100 = 300%
    상기 수학식 1에서,
    V0은 지름이 10 cm인 원형의 발포시트를 200℃ 오븐에서 30초 동안 노출시키기 이전의 발포시트의 체적으로, 단위는 cm3이고,
    V1은 지름이 10 cm인 원형의 발포시트를 200℃ 오븐에서 30초 동안 노출시킨 후 발포시트의 체적으로, 단위는 cm3이다.
  2. 제1항에 있어서,
    발포시트는 하기 수학식 2를 만족하는 발포시트:
    [수학식 2]
    |SV1-SV0| / SV0 × 100 = 20%
    상기 수학식 2에서,
    SV0은 길이 10 cm 및 너비 10 cm인 발포시트로부터 높이가 30 cm 되는 위치에서 500g의 구(직경: 7 cm)를 자유 낙하시키기 전 발포시트의 체적으로, 단위는 cm3이고,
    SV1은 길이 10 cm 및 너비 10 cm인 발포시트로부터 높이가 30 cm 되는 위치에서 500g의 구(직경: 7 cm)를 발포시트로 자유 낙하시킨 후 발포시트의 체적으로, 단위는 cm3이다.
  3. 제1항에 있어서,
    무기입자의 함량은 발포시트 전체 중량에 대하여 0.05 중량% 내지 1.00 중량%인 발포시트.
  4. 제1항에 있어서,
    무기입자는 산화티탄(TiO2), 활석(Talc), 실리카(Silica) 및 산화지르코늄(ZrO2)으로 이루어진 군으로부터 선택되는 1종 이상인 발포시트.
  5. 제1항에 있어서,
    발포시트의 평균 셀 밀도는 800 cells/㎠ 내지 25000 cells/㎠인 것을 특징으로 하는 발포시트.
  6. 제1항에 있어서,
    폴리에스테르 수지는 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate, PET), 폴리부틸렌 테레프탈레이트(Polybutylene Terephthalate, PBT), 폴리트리메틸렌 테레프탈레이트(Polytrimethylene Terephthalate, PTT), 폴리에틸렌 나프탈레이트(Polyethylene naphthalate, PEN), 폴리에틸렌 아디파트(Polyehtylene adipate, PEA), 폴리락트산(Poly Lactic acid, PLA), 및 폴리글리코르산(Polyglycolic acid, PGA)으로 이루어진 군으로부터 선택되는 1종 이상인 발포시트.
  7. 제1항에 있어서,
    폴리에스테르 수지는 카본블랙을 더 포함하며,
    상기 카본블랙의 함량은 발포시트 전체 중량에 대하여 0.05 중량% 내지 5 중량%인 발포시트.
  8. 제6항에 있어서,
    카본블랙의 크기는 평균 10 nm 내지 5000 nm 인 발포시트.
  9. 제1항에 따른 발포시트를 포함하는 식품용기로서,
    하기 수학식 3을 만족하는 식품용기:
    [수학식 3]
    |CV1-CV0| / CV0 × 100 = 15%
    상기 수학식 3에서,
    CV0은 식품용기를 200℃ 오븐에서 30초 동안 노출시키기 이전의 발포시트의 체적으로, 단위는 cm3이고,
    CV1은 식품용기를 200℃ 오븐에서 30초 동안 노출시킨 후 발포시트의 체적으로, 단위는 cm3이다.
  10. 폴리에스테르 수지 및 무기입자를 포함하는 수지 혼합물을 압출 발포하여 발포시트를 제조하는 단계를 포함하고,
    무기입자의 평균 크기는 0.05 ㎛ 내지 60 ㎛이며,
    발포시트의 평균 셀 사이즈는 5 ㎛ 내지 500 ㎛인 발포시트의 제조방법.
  11. 제10항에 있어서,
    폴리에스테르 수지는 디카르복실산 성분 및 글리콜 성분으로부터 중합되거나; 히드록시카르복실산 성분을 중합하여 제조되는 발포시트의 제조방법.
  12. 제10항에 있어서,
    발포시트를 제조하는 단계는 1 ㎜ 내지 10 ㎜의 평균 두께로 발포시트를 형성하는 발포시트의 제조방법.
  13. 제10항에 있어서,
    무기입자의 함량은 수지 혼합물 전체 중량에 대하여 0.05 중량% 내지 1.00 중량%인 발포시트의 제조방법.
  14. 제10항에 있어서,
    수지 혼합물은 전체 중량에 대하여 0.05 중량% 내지 5 중량%의 카본 블랙을 더 포함하는 발포시트의 제조방법.
PCT/KR2018/016631 2018-12-26 2018-12-26 셀 발현 균일도가 우수한 발포시트 및 이의 제조방법 WO2020138520A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880039857.0A CN111655769A (zh) 2018-12-26 2018-12-26 具有优异的泡孔形成均匀性的发泡片材及其制备方法
JP2019517891A JP7345392B2 (ja) 2018-12-26 2018-12-26 セル発現均一度が優秀な発泡シートおよびその製造方法
PCT/KR2018/016631 WO2020138520A1 (ko) 2018-12-26 2018-12-26 셀 발현 균일도가 우수한 발포시트 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/016631 WO2020138520A1 (ko) 2018-12-26 2018-12-26 셀 발현 균일도가 우수한 발포시트 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2020138520A1 true WO2020138520A1 (ko) 2020-07-02

Family

ID=71125982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016631 WO2020138520A1 (ko) 2018-12-26 2018-12-26 셀 발현 균일도가 우수한 발포시트 및 이의 제조방법

Country Status (3)

Country Link
JP (1) JP7345392B2 (ko)
CN (1) CN111655769A (ko)
WO (1) WO2020138520A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696176A (en) * 1995-09-22 1997-12-09 Eastman Chemical Company Foamable polyester compositions having a low level of unreacted branching agent
JP4570224B2 (ja) * 1999-09-29 2010-10-27 株式会社ジェイエスピー 熱可塑性樹脂積層発泡シート及びポリスチレン系樹脂発泡シート、並びにそれらの容器
KR20140071359A (ko) * 2011-08-10 2014-06-11 닛토덴코 가부시키가이샤 폴리에스터계 엘라스토머 발포체
KR20170067937A (ko) * 2015-12-08 2017-06-19 주식회사 휴비스 치수 안정성이 우수한 내열재 및 이를 포함하는 포장 용기
KR20170073824A (ko) * 2015-12-18 2017-06-29 주식회사 휴비스 내한성이 우수한 수지 발포체 및 이를 포함하는 포장 용기

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6058281B2 (ja) * 2011-07-05 2017-01-11 日東電工株式会社 ポリエステル系エラストマー発泡体及び発泡部材
JP6039502B2 (ja) * 2012-05-28 2016-12-07 日東電工株式会社 樹脂発泡体及び発泡部材
JP6039501B2 (ja) * 2012-05-28 2016-12-07 日東電工株式会社 樹脂発泡体及び発泡部材
JP5509369B2 (ja) * 2012-05-28 2014-06-04 日東電工株式会社 樹脂発泡体及び発泡部材
JP6251673B2 (ja) * 2012-12-21 2017-12-20 日東電工株式会社 樹脂発泡体及び発泡部材
CN107446327A (zh) * 2016-06-01 2017-12-08 黑龙江鑫达企业集团有限公司 一种全生物降解耐热聚乳酸发泡材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696176A (en) * 1995-09-22 1997-12-09 Eastman Chemical Company Foamable polyester compositions having a low level of unreacted branching agent
JP4570224B2 (ja) * 1999-09-29 2010-10-27 株式会社ジェイエスピー 熱可塑性樹脂積層発泡シート及びポリスチレン系樹脂発泡シート、並びにそれらの容器
KR20140071359A (ko) * 2011-08-10 2014-06-11 닛토덴코 가부시키가이샤 폴리에스터계 엘라스토머 발포체
KR20170067937A (ko) * 2015-12-08 2017-06-19 주식회사 휴비스 치수 안정성이 우수한 내열재 및 이를 포함하는 포장 용기
KR20170073824A (ko) * 2015-12-18 2017-06-29 주식회사 휴비스 내한성이 우수한 수지 발포체 및 이를 포함하는 포장 용기

Also Published As

Publication number Publication date
JP2021511391A (ja) 2021-05-06
JP7345392B2 (ja) 2023-09-15
CN111655769A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2020004744A1 (ko) 가스 베리어층을 포함하는 성형체, 이를 포함하는 포장용기 및 성형체의 제조방법
EP2258754B1 (en) Polyester foam material having flame-resistant behaviour
KR102160456B1 (ko) 성형성이 우수한 발포시트, 이의 제조방법 및 이를 이용한 식품용기
WO2018062623A1 (ko) 유해 물질 용출량이 저감된 식품용기
KR101997619B1 (ko) 셀 발현 균일도가 우수한 무기입자를 포함하는 발포시트 및 이의 제조방법
WO2020138520A1 (ko) 셀 발현 균일도가 우수한 발포시트 및 이의 제조방법
WO2019124948A1 (ko) 내열성 및 가공성이 우수한 식품용기용 복합시트 및 이의 제조방법
KR20030051778A (ko) 전도성 폴리프로필렌계 수지 발포 시트 및 용기
WO2018012951A2 (ko) 소맥피를 포함한 바이오 플라스틱 조성물 및 이를 이용한 바이오 플라스틱 필름
KR102160454B1 (ko) 내열성이 우수한 발포시트, 이의 제조방법 및 이를 포함하는 식품용기
KR102190656B1 (ko) 셀 발현 균일도가 우수한 발포시트 및 이의 제조방법
WO2022265394A1 (ko) 고분자 발포체 및 폴리이미드를 포함하는 완충 복합 시트 및 이의 제조방법
WO2020005000A1 (ko) 식품 포장용기 및 이의 제조방법
WO2020004748A1 (ko) 탄산칼슘을 포함하는 발포시트, 이의 제조방법 및 이를 포함하는 식품용기
WO2021210856A1 (ko) 발포용 폴리에스테르 수지 칩, 이를 이용한 폴리에스테르 발포시트 및 이의 제조방법
WO2020222550A1 (ko) 인쇄 적성 및 단열성이 향상된 용기 및 이의 제조방법
EP1055700B1 (en) Expansion-molded product of electrically conductive polypropylene-based resin
WO2020218684A1 (ko) 무기입자를 포함하는 발포시트 및 이의 제조방법
KR101976434B1 (ko) 무기입자 및 카본블랙을 포함하는 발포시트 및 이의 제조방법
WO2021215697A1 (ko) 마스터배치 조성물 및 이를 이용한 발포시트의 제조방법
KR102190657B1 (ko) 탄산칼슘을 포함하는 발포시트, 이의 제조방법 및 이를 포함하는 식품용기
KR101967808B1 (ko) 무기입자를 포함하는 발포체 및 이의 제조방법
WO2020130451A1 (ko) 생분해성 수지 컴파운드 및 이의 제조방법
KR102160455B1 (ko) 가공성이 우수한 발포시트, 이의 제조방법 및 이를 포함하는 식품용기
KR102339321B1 (ko) 마스터배치 조성물 및 이를 이용한 발포시트의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019517891

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944748

Country of ref document: EP

Kind code of ref document: A1