WO2020222550A1 - 인쇄 적성 및 단열성이 향상된 용기 및 이의 제조방법 - Google Patents

인쇄 적성 및 단열성이 향상된 용기 및 이의 제조방법 Download PDF

Info

Publication number
WO2020222550A1
WO2020222550A1 PCT/KR2020/005731 KR2020005731W WO2020222550A1 WO 2020222550 A1 WO2020222550 A1 WO 2020222550A1 KR 2020005731 W KR2020005731 W KR 2020005731W WO 2020222550 A1 WO2020222550 A1 WO 2020222550A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
foam sheet
polyester
layer
manufacturing
Prior art date
Application number
PCT/KR2020/005731
Other languages
English (en)
French (fr)
Inventor
김우진
함진수
이광희
허미
최종한
하상훈
Original Assignee
주식회사 휴비스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190050783A external-priority patent/KR102319818B1/ko
Priority claimed from KR1020190050784A external-priority patent/KR102175970B1/ko
Application filed by 주식회사 휴비스 filed Critical 주식회사 휴비스
Priority to JP2021564540A priority Critical patent/JP7404397B2/ja
Priority to CN202080029478.0A priority patent/CN113748072B/zh
Publication of WO2020222550A1 publication Critical patent/WO2020222550A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D3/00Rigid or semi-rigid containers having bodies or peripheral walls of curved or partially-curved cross-section made by winding or bending paper without folding along defined lines
    • B65D3/02Rigid or semi-rigid containers having bodies or peripheral walls of curved or partially-curved cross-section made by winding or bending paper without folding along defined lines characterised by shape
    • B65D3/06Rigid or semi-rigid containers having bodies or peripheral walls of curved or partially-curved cross-section made by winding or bending paper without folding along defined lines characterised by shape essentially conical or frusto-conical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation

Definitions

  • the present invention relates to a container having excellent printability and/or heat insulation properties, and a method of manufacturing the same.
  • Products used as disposable beverage containers are divided into foaming type and non-foaming type.
  • a foamed container a product obtained by mixing polystyrene with a foaming gas and extruding is used, and such a foamed container has advantages of maintaining shape, insulating properties, and price competitiveness because it can keep its thickness relatively thick. Since harmful substances are released to the body, the safety of the human body is low, and the printing aptitude is low, so there is an inconvenience of introducing a separate printing layer on the surface or packaging with a printing film.
  • PET polyethylene terephthalate
  • non-foaming container a cup made of paper with high processability or a product formed by forming a heat-stable polypropylene film in a cup shape is used.
  • a non-foaming container has a small change in shape at high temperature and no harmful substances are detected. The price is high, and the heat insulation is remarkably low, so it is difficult for the user to hold the container by hand, and the temperature of the contents is easily cooled when the contents of high temperature are contained.
  • An object of the present invention is to provide a container capable of maintaining a constant temperature even when a liquid of high temperature and/or cold temperature is contained because it is cost-competitive, safe for the human body, eco-friendly, and excellent in heat resistance and/or insulation, and a manufacturing method thereof. Is to do.
  • Another object of the present invention is to provide a container with excellent surface printability and a method for manufacturing the same.
  • Another object of the present invention is to provide a container having excellent shape stability against heat and a method for manufacturing the same.
  • the present invention is to achieve the above object, the body comprising a polyester foam sheet; And a container located at the lower end of the body and having a bottom including a polyester foam sheet, the container is not manufactured integrally by press molding of the foam sheet, and the container is sealed by bonding the separately manufactured body and the bottom to each other.
  • a container is provided in which the temperature difference between the outer surface of the body and the inner water is 10°C or more after 3 minutes have elapsed with 100°C water in the container.
  • the body and the bottom portion may be bonded by any one or more of thermal fusion bonding, ultrasonic bonding, adhesive and adhesive sheet.
  • the adhesive or adhesive sheet may include a low melting point polyester resin
  • the low melting point polyester resin may include a repeating unit represented by the following Chemical Formulas 1 and 2, and a softening point of 100°C to 130°C or glass
  • the transition temperature may be 50 °C to 80 °C.
  • polyester is polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyethylene adipate (PEA), polylactic acid (PLA). , It may be one or more selected from polyglycolic acid (PGA).
  • the container may be a beverage container, and the average thickness of the polyester foam sheet may be 0.5 mm to 3 mm, the side height H of the body may be 5 cm to 20 cm, and the side height of the body
  • the ratio (H/D) of (H) and the diameter (D) of the bottom may be 0.5 or more, and the average thickness ratio (body/bottom) of the body and the bottom may be 0.8 or more.
  • the polyester foam sheet may include a foam layer and a skin layer, and the centerline surface roughness (R a ) of the skin layer may be 0.1 ⁇ m to 2.5 ⁇ m, and the surface of the foam sheet
  • the tension can be 25 mN/m or more.
  • the crystallinity of the foam layer may be 1% to 20%
  • the average cell density of the foam layer may be 100 cells/cm 2 to 25,000 cells/cm 2
  • the average cell size of the skin layer May be 100 ⁇ m or less.
  • the polyester foam sheet may further include a printing layer on the skin layer.
  • the polyester foam sheet may be composed of a single layer, and the polyester foam sheet may be a heat-treated foam sheet.
  • the average cell density of the polyester foam sheet may be 100 cells/cm 2 to 25,000 cells/cm 2, and the crystallinity of the heat-treated polyester foam sheet may be 10% to 30%, After leaving the container in an oven at 100° C. for 3 minutes, the volume change rate of the container may be 5% or less.
  • the present invention is a method of manufacturing the container described above, comprising the steps of manufacturing or cutting a polyester foam sheet by separating it into a body and a bottom shape; It provides a method of manufacturing a container comprising the step of bonding the body and the bottom portion.
  • the skin layer when producing a polyester foam sheet, after forming the foam layer, the skin layer can be formed by cooling the surface of the foam layer.
  • a printing layer can be formed on the skin layer.
  • a step of heat-treating the polyester foam sheet at 150°C to 300°C for 10 seconds to 100 seconds may be further included.
  • the container according to the present invention has a simple structure in which a body including a polyester foam sheet and a bottom part are joined, so it is economical, eco-friendly, and harmless to the human body, and it is possible to manufacture a container of a deep depth during processing, and heat resistance. And/or the heat insulation property is excellent, so that the temperature of the hot and/or cold beverage can be maintained for a long time, and there is an advantage in that printing on the outer surface of the container is easy.
  • the container according to the present invention is economical, eco-friendly, and harmless to the human body by using a polyester foam sheet having high crystallinity, and it is possible to manufacture a container of a deep depth, and the heat resistance and heat insulation of the manufactured container are improved. It is excellent and has the advantage of maintaining the temperature for a long time when used for hot and/or cold beverages.
  • cell refers to a microstructure expanded by foaming in a polymer.
  • Cells may comprise closed cells and/or open cells.
  • the present invention relates to a container and a method of manufacturing the same.
  • the present invention provides a container having excellent printability, heat insulation, heat resistance, and the like, and a manufacturing method thereof.
  • the container according to the present invention has a simple structure in which a body including a polyester foam sheet and a bottom part are bonded, it is economical, eco-friendly, and harmless to the human body, and has excellent heat resistance and/or heat insulation, so that high temperature and/or It is possible to maintain the temperature of hot and cold beverages for a long time, and there is an advantage that printing on the outer surface of the container is easy during processing.
  • the container according to the present invention may be a food container, a packaging container, or the like, and in particular may be a container for beverages.
  • the container according to the present invention comprises a body comprising a polyester foam sheet; And a container located at the lower end of the body and having a bottom including a polyester foam sheet, the container is not manufactured integrally by press molding of the foam sheet, and the container is sealed by bonding the separately manufactured body and the bottom to each other. It is characterized by forming a structure.
  • press molding is a method of placing the foam sheet between the female mold and the male mold of the press molding apparatus, and then pressing the female mold and the male mold to integrally form the body and the bottom of the container.
  • the temperature difference between the outer surface of the body and the inner water may be 10°C or more.
  • water at 60 to 120°C is filled inside the container to be 70 ⁇ 20% (v/v) of the total volume inside the container.
  • the temperature difference between the water contained in the container and the outer surface of the container may be 10°C or more, and specifically 10 to 35°C, 10 to 30°C, 10 to 20°C, 10 to 18°C, 10 to It may be 16 °C, 13 to 40 °C, 15 to 35 °C, 20 to 32 °C or 21.5 to 30 °C. If the temperature difference between the water contained in the container and the outer surface of the container is 10°C or higher, the temperature difference between the inside and the outside of the container is kept relatively high, and the heat shielding property of the container is excellent, and accordingly, the temperature of the beverage contained in the container is increased. It indicates that it can be effectively preserved.
  • the body may have a cylindrical shape or a truncated cone shape of the upper and lower narrow sides.
  • the bottom portion may be bonded to the inner side of the lower end portion of the tubular body to form a structure to seal the lower end portion of the tubular body, and accordingly, the container of the present invention may provide a space to contain a liquid substance.
  • the bottom portion may have the same shape as the inner bottom of the body, and the size may be the same as or smaller than the inner bottom of the body.
  • the bottom part is located at the lower end of the body, but may be located at the most distal end of the lower part, and may also be located slightly upward from the distal end. If it is located at the far end, there may be no space under the bottom, and if it is located slightly upward from the end, a little space may be formed under the bottom.
  • the side height (H) of the body may be 5 cm to 20 cm, specifically 5 cm to 18 cm, 5 cm to 16 cm, 5 cm to 14 cm, 5 cm to 12 cm, 5 cm to 10 cm, 8 cm to 20 cm, 10 cm to 20 cm, 12 cm to 20 cm, 14 cm to 20 cm, 16 cm to 20 cm, 7 cm to 18 cm, 7 cm to 16 cm or 7 cm to 14 cm. .
  • the ratio of the size of the bottom portion to the side height (H) of the body may be constant.
  • the shape of the body is a cylindrical or truncated tubular shape
  • the shape of the bottom joined to the inner bottom of the body is circular
  • the ratio of the side height (H) of the body and the diameter of the bottom (D) (H/D) Is 0.5 or more, more specifically 0.5 to 5; 0.5 to 4; 0.5 to 3; 0.5 to 2; 0.5 to 1.5; 1 to 5; 1.5 to 5; 2 to 5; 2.5 to 5; 3 to 5; 3.5 to 5; 4 to 5; 0.9 to 1.5; 0.7 to 3; 0.9 to 3; 1 to 3; 1.1 to 4; 1.1 to 2; 1.1 to 1.5; 1.2 to 3; 1.2 to 2.5; 1.2 to 2; 1.2 to 1.8; 1.2 to 1.5; 1.3 to 1.8; 1.3 to 1.6; 1.4 to 1.9; 1.4 to 1.7 or 1.5 to 1.8.
  • the side height (H) of the body means the vertical height, and even if the body has a tapered structure, it means the vertical height rather than the length from the top to the bottom of the body.
  • the bottom portion is not circular, for example, if it is a polygon or an ellipse, an equivalent diameter can be applied.
  • the container since the container is manufactured by cutting and bonding without press molding, a container having a deep depth (height), that is, a container having a large H/D ratio can be easily manufactured.
  • the average thickness ratio (body/bottom) of the body and the bottom may be 0.8 or more, specifically 0.8 to 1.2, 0.9 to 1.1, or 0.95 to 1.05, and may be close to 1 in some cases. This may mean that the container according to the present invention is manufactured through cutting and bonding, not by high temperature and pressure molding such as press molding.
  • the body and the bottom portion may be bonded by one or more of heat fusion bonding, ultrasonic bonding, adhesive, and adhesive sheet. That is, the bottom portion may be bonded by heat fusion or ultrasonic bonding, or bonded to the inside of the lower end of the body by an adhesive or an adhesive sheet. More specifically, the bottom portion is pushed up and inserted inside the lower end of the body, and an adhesive or adhesive sheet containing a low melting point polyester resin is positioned between the inserted bottom and the inner side of the lower end of the body to bond the bottom and the body, This allows the lower end of the container to be completely sealed.
  • the low-melting-point polyester resin includes a repeating unit represented by the following Chemical Formulas 1 and 2, and can further strengthen the adhesion of the body and the bottom including the polyester resin foam sheet.
  • the low melting point polyester resin may be a copolymer polyester resin having a structure including a repeating unit represented by Chemical Formulas 1 and 2.
  • the repeating unit represented by Formula 1 represents a repeating unit of polyethylene terephthalate (PET), and the repeating unit represented by Formula 2 performs a function of improving the tearing characteristics of the polyester resin including the PET repeating unit.
  • PET polyethylene terephthalate
  • the repeating unit represented by Formula 2 includes a methyl group (-CH 3 ) in the ethylene chain bonded to terephthalate as a side chain to secure a space so that the main chain of the polymerized resin can rotate, thereby increasing the degree of freedom of the main chain and
  • the softening point (Ts) and/or the glass transition temperature (Tg) can be adjusted by inducing a decrease in crystallinity of the resin. This may exhibit the same effect as in the case of using isophthalic acid (IPA) containing an asymmetric aromatic ring in order to lower the crystallinity of the conventional crystalline polyester resin.
  • IPA isophthalic acid
  • the low melting point polyester resin may include 0.5 to 1 repeating units represented by Chemical Formulas 1 and 2 when the molar fraction of the total resin is 1, specifically 0.55 to 1; 0.6 to 1; 0.7 to 1; 0.8 to 1; 0.9 to 1; 0.5 to 0.9; 0.5 to 0.85; 0.5 to 0.7; Alternatively, it may be included in 0.6 to 0.95.
  • m may be 0 to 0.99, specifically 0 to 0.95; 0.1 to 0.95; 0.2 to 0.95; 0.3 to 0.95; 0.4 to 0.95; 0.5 to 0.95; 0.6 to 0.95; 0.7 to 0.95; 0.7 to 0.9; 0 to 0.45; 0 to 0.4; 0 to 0.3; 0 to 0.2; 0.1 to 0.5; 0.15 to 0.5; 0.3 to 0.5; 0.05 to 0.4; 0.6 to 0.95; 0.65 to 0.85; Or 0.7 to 0.8.
  • the melting point (Tm) of the low melting point polyester resin may be 180°C to 250°C, or a melting point may not exist. Specifically, the melting point (Tm) may be 180°C to 250°C, 185°C to 245°C, 190°C to 240°C, 180°C to 200°C, 200°C to 230°C, 195°C to 230°C or not.
  • the softening point of the low melting point polyester resin may be 100°C to 130°C, specifically 110°C to 120°C; 115°C to 125°C; 118°C to 128°C; 120°C to 125°C; 121°C to 124°C; It may be 124 °C to 128 °C or 119 °C to 126 °C.
  • the low melting point polyester resin may have a glass transition temperature (Tg) of 50°C or higher.
  • Tg glass transition temperature
  • the glass transition temperature may be 50 °C to 80 °C, more specifically 50 °C to 60 °C, 60 °C to 70 °C, 70 °C to 80 °C, 50 °C to 55 °C, 55 °C to 60 °C, 60 °C To 65°C, 65°C to 70°C, 68°C to 75°C, 54°C to 58°C, 58°C to 68°C, 59°C to 63°C, or 55°C to 70°C.
  • the low-melting-point polyester resin includes the repeating unit represented by Chemical Formula 2 and can adjust the softening point (Ts) and/or the glass transition temperature (Tg) of the polyester resin in a range, thus achieving thermal adhesion at 100°C to 200°C. I can.
  • the glass transition temperature, softening point, melting point, etc. can be measured using a differential scanning calorimeter (DSC), a melting point meter, and a thermomechanical analyzer (TMA).
  • the container according to the present invention may be composed of a polyester foam sheet.
  • the body and the bottom may each be composed of the same or different polyester foam sheet, preferably the same PET foam sheet.
  • the polyester foam sheet is a single sheet containing a polyester resin as a main component and is inexpensive, does not emit harmful substances even at high temperatures, and has eco-friendly advantages.
  • "to be a main component” means 90 parts by weight or more, 95 parts by weight or more, 96 parts by weight or more, 97 parts by weight or more, 98 parts by weight or more, or 99 parts by weight or more of polyester resin based on the total weight of the foam sheet. it means.
  • Polyester resins are polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyethylene adipate (PEA), polylactic acid (PLA), poly It may be one or more selected from glycolic acid (PGA), and preferably polyethylene terephthalate (PET) may be used.
  • the polyester foam sheet contains polyester resin as a main component, so it is inexpensive, does not emit harmful substances even at high temperatures, and has eco-friendly advantages.
  • the average thickness of the polyester foam sheet may be 0.5 mm to 3 mm.
  • the thickness of the foam sheet is 0.5 mm to 2.5 mm, 1 mm to 2.5 mm, 1.5 mm to 2.5 mm, 2 mm to 2.5 mm, 0.5 mm to 2 mm, 0.5 mm to 1.5 mm, 0.5 mm to 1 mm, It may be 1 mm to 2 mm, 1 mm to 1.5 mm, or 0.8 mm to 1.7 mm.
  • the polyester foam sheet may include a foam layer and a skin layer.
  • the skin layer may be formed on one or both sides of the foam layer.
  • the skin layer may be a foam or a coating layer containing a polyester resin.
  • the foam layer and the skin layer may be separately formed and then laminated, and the foam layer may be coated with a skin layer.
  • the foam layer and the skin layer may be integrally formed, and for example, a skin layer may be formed on the foam layer surface by cooling the surface of the foam layer during manufacture of the foam sheet.
  • the foam layer and the skin layer may be classified by a cell size or the like. For example, the cell size of the foam layer may be relatively large, and the cell size of the skin layer may be relatively small.
  • the average cell size of the skin layer may be 100 ⁇ m or less.
  • the average cell size of the skin layer is 80 ⁇ m or less, 60 ⁇ m or less, 40 ⁇ m or less, 20 ⁇ m or less, 0.1 to 100 ⁇ m, 5 to 80 ⁇ m, 10 to 50 ⁇ m, 10 to 30 ⁇ m, 40 to 90 ⁇ m Alternatively, it may be 50 to 100 ⁇ m, and in some cases, a cell size may be close to 0 ⁇ m (non-foam) because a cell is not formed like a film.
  • the present invention may have excellent surface uniformity of the foam sheet by including such a skin layer. When the average cell size of the skin layer is too large, the centerline surface roughness (R a ) of the skin layer may become too large.
  • the average cell size of the skin layer can be determined through a scanning electron microscope (SEM) image.
  • polyester resins included in the foam layer and the skin layer may be the same or different.
  • both the foam layer and the skin layer may be made of PET.
  • the centerline surface roughness (R a ) of the skin layer may be 0.1 ⁇ m to 2.5 ⁇ m.
  • the centerline surface roughness R a may be according to KS B 0161.
  • the centerline surface roughness (R a ) of the skin layer is 0.1 ⁇ m to 2.1 ⁇ m, 0.1 ⁇ m to 1.6 ⁇ m, 0.9 ⁇ m to 1.5 ⁇ m, 0.1 ⁇ m to 1.1 ⁇ m, 0.3 ⁇ m to 1.4 ⁇ m, 0.5 ⁇ m to 1.2 ⁇ m, It may be 0.8 ⁇ m to 1.1 ⁇ m, 0.1 ⁇ m to 0.7 ⁇ m, 0.3 ⁇ m to 0.8 ⁇ m, 1.8 ⁇ m to 2.2 ⁇ m, 0.5 ⁇ m to 2 ⁇ m, 0.5 ⁇ m to 1 ⁇ m, or 1 ⁇ m to 2 ⁇ m.
  • the surface area may be increased, and thus absorbency and/or adhesion to the ink, that is, printability may be improved when the ink layer is formed.
  • the surface roughness can be measured using a roughness meter or the like.
  • the surface tension of the foam sheet including the foam layer and the skin layer may be 25 mN/m or more.
  • the surface tension of the foam sheet is 28 mN/m or more, 25 mN/m to 40 mN/m, 28 mN/m to 40 mN/m, 30 mN/m to 40 mN/m, 25 mN/m to 35 mN/m, 25 mN/m to 34 mN/m, 28 mN/m to 36 mN/m, 28 mN/m to 32 mN/m, 31 mN/m to 36 mN/m, 31 mN/m to It may be 34 mN/m, 32 mN/m to 37 mN/m, or 30 mN/m to 35 mN/m.
  • Surface tension can be measured using a surface tension test ink pen or the like.
  • the surface tension measurement surface may be
  • the skin layer not only has excellent surface smoothness, but also has excellent printing aptitude because surface area and surface energy are optimized. Specifically, printability is affected by the smoothness, surface area, and surface energy of the surface of the material on which the printing layer is formed, and the greater the smoothness, the surface area, and the surface energy, the better the printability.
  • the smoothness and surface area of the material can be influenced by the surface roughness. According to the surface roughness value, the smoothness and the surface area are in a trade-off relationship, and in the case of the foam sheet, it is easy to control the surface smoothness or surface energy. Therefore, there is a difficulty in improving printability.
  • it is possible to remarkably improve the printability of the container by optimizing the centerline surface roughness (R a ) and surface tension of the skin layer provided on the outermost side of the polyester foam sheet.
  • the crystallinity of the foam layer may be 1% to 20%, specifically 1% to 18%, 1% to 15%, 1% to 12%, 1% to 10%, 1% to 8%, 1% to 6 %, 1% to 4%, 1% to 2%, 2% to 20%, 4% to 20%, 6% to 20%, 8% to 20%, 10% to 20%, 12% to 20%, It may be 15% to 20%.
  • the degree of crystallinity can be calculated according to the following equation after measuring the melting enthalpy at the melting temperature and the crystallization enthalpy at the cooling crystallization temperature using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • ⁇ Hm means melting enthalpy
  • ⁇ Hc means crystallization enthalpy
  • ⁇ Hm means standard melting enthalpy (140 J/g).
  • the foam layer may have a low crystallinity of 10% or less when the container is used for holding a cold or hot beverage, and a crystallinity of more than 10%, specifically 15% or more when used for holding a hot beverage. I can.
  • the average cell density of the foam layer may be 100 cells/cm2 to 25,000 cells/cm2, specifically 100 to 20,000 cells/cm2, 100 to 15,000 cells/cm2, 100 to 10,000 cells/cm2, 100 to 5,000 cells/cm2 , 100 to 1,000 cells/cm2, 100 to 500 cells/cm2, 100 to 400 cells/cm2, 100 to 350 cells/cm2, 100 to 300 cells/cm2, 100 to 250 cells/cm2, 100 to 200 cells/cm2 or It may be 160 to 350 cells/cm 2.
  • the cell density can be determined by counting the number of cells within a certain unit area through an image of a scanning electron microscope (SEM) and converting it to cm 3.
  • SEM scanning electron microscope
  • the average thickness of the foam layer may be 0.5 to 3 mm, 0.6 to 2 mm, 0.7 to 1.5 mm, 0.8 to 1.2 mm, 0.9 to 1.1 mm, or 1 to 1.5 mm.
  • the average thickness of the skin layer is 0.01 to 1 mm, 0.02 to 0.8 mm, 0.03 to 0.6 mm, 0.04 to 0.4 mm, 0.05 to 0.3 mm, 0.06 to 0.2 mm, 0.07 to 0.15 mm, 0.08 to 0.12 mm, or 0.05 to 0.1 mm.
  • the skin layer may be disposed outside the container, and the foam layer may be disposed inside the container.
  • the polyester foam sheet may further include a printing layer on the skin layer.
  • the printing layer may be formed on all or part of the surface of the skin layer.
  • the printing layer may be formed by printing a conventional ink composition, and a printing layer in the form of a sheet may be attached to the skin layer.
  • the average thickness of the printing layer may be 0.01 to 5 ⁇ m, specifically 0.01 to 4.5 ⁇ m, 0.01 to 3 ⁇ m, 0.01 to 2 ⁇ m, 0.1 to 1 ⁇ m, 0.1 to 0.5 ⁇ m, 1 to 5 ⁇ m, 1 to 3 It may be ⁇ m, 2 to 4 ⁇ m, or 0.1 to 0.2 ⁇ m.
  • Conventional containers have low print aptitude, and color discoloration occurs due to thermal processes such as press molding performed when forming the container, so it was difficult to use four or more different inks, but the container of the present invention has an outer surface (skin Layer) not only improves the print aptitude, but also minimizes heat exposure of the printed layer as it is manufactured through cutting and bonding of already printed foam sheets, so that the desired image is printed using 4 or more, specifically 5 or more colors. There is an advantage that it is possible.
  • the polyester foam sheet may be composed of a single layer, and the polyester foam sheet may be a heat-treated foam sheet. After manufacturing the foam sheet, before cutting the foam sheet, by heat treatment of the foam sheet, the crystallinity of the foam sheet can be increased, and as the crystallinity is increased, heat resistance as well as heat resistance (dimension change rate) can be improved.
  • the heat-treated polyester foam sheet may have high crystallinity, and specifically, the crystallinity of the heat-treated polyester foam sheet is 10% to 30%, 12% to 30%, 15% to 30%, 18% to 30%, 21 % To 30%, 12% to 21%, 15% to 21%, or 18% to 21%. If the degree of crystallinity is too low, insulation properties can be secured to some extent, but heat resistance (dimension change rate) may be deteriorated.
  • the average cell density of the polyester foam sheet according to the second embodiment may be 100 cells/cm 2 to 25,000 cells/cm 2, and specifically 150 to 20,000 cells/cm 2, 200 to 15,000 cells/cm 2, 250 to 10,000 cells/cm 2 cm2, 300 to 5,000 cells/cm2, 310 to 1,000 cells/cm2, 320 to 800 cells/cm2, 330 to 600 cells/cm2, 340 to 500 cells/cm2, or 350 to 460 cells/cm2. As the cell density increases, the degree of crystallinity may increase.
  • the foam sheet may be formed in a multilayer structure of a foam layer and a skin layer, and the foam sheet having a multilayer structure may be heat treated.
  • the present invention by having such a configuration, it is possible to prevent deformation of the container from stacked load and/or external impact, as well as suppress deformation of the container due to temperature change, and increase the heat resistance and heat insulation effect of the container. I can.
  • the container may satisfy the condition of Equation 2 below because the container is less deformed according to temperature change:
  • V 0 is the volume of the container (mm 3 ) after exposure at -10°C for 3 hours
  • V 1 is the volume (mm 3 ) of the container after exposure at 110° C. for 3 hours.
  • Equation 2 may mean the rate of dimensional change when the container is exposed at -10°C for 3 hours and at 110°C for 3 hours.
  • the volume may mean a value calculated by multiplying the width of the bottom of the container and the length of the side of the body.
  • the container of the present invention may have a dimensional change rate ((V 1 -V 0 ) / V 0 ⁇ 100) according to Equation 2 in the range of 0.01 to 5%, 0.01 to 3%, or 0.01 to 1%.
  • the fact that the dimensional change rate of the container between high temperature and cold temperature is 5% or less means that the container has excellent heat resistance even with rapid temperature changes, so that there is little change in shape of the container.
  • the volume change rate may be 5% or less.
  • the volume change rate of the container may be 5% or less.
  • volume is a value calculated by multiplying the width of the bottom of the container and the length of the side of the body, and the container is 0.01% to 5%, 0.5% to 5%, 0.5% to 4%, 0.5% to 3% , 0.5% to 2%, 0.5% to 1%, 1% to 4%, 2% to 4%, 3% to 5%, or may have a volume change rate of 3.5% to 5%.
  • the container according to the present invention is economical, environmentally friendly, harmless to the human body, and it is possible to manufacture a container with a deep depth.
  • the container according to the present invention has excellent processability because it is easy to print on the outer surface.
  • the container according to the present invention is excellent in heat resistance, heat insulation, etc., so that the contents of high temperature and/or cold temperature can be stored for a long time without temperature change, so it can be usefully used as a container for food and beverage.
  • the container of the present invention is individually cut and bonded to the body and the bottom, such as a disposable cup, it can be easily manufactured even with a foam sheet having high crystallinity, and a container manufactured under high temperature and/or pressure conditions such as conventional press molding Compared to those, since elongation of the foam sheet does not occur and the average thickness ratio of the body and the bottom is high, it can be usefully used as a container for a hot and/or cold beverage.
  • the container manufacturing method according to the present invention comprises the steps of manufacturing or cutting by separating the polyester foam sheet into a body and a bottom shape; It may include the step of bonding the body and the bottom.
  • the polyester foam sheet may be manufactured using a polyester resin composition.
  • the polyester resin can be obtained by reacting a dicarboxylic acid component and a glycol component or reacting a hydroxycarboxylic acid component.
  • the dicarboxylic acid component at least one selected from the group consisting of terephthalic acid, naphthalene dicarboxylic acid, and adipic acid may be used.
  • the glycol component at least one selected from the group consisting of ethylene glycol, butylene glycol and 2-methyl-1,3-propanediol may be used.
  • the hydroxycarboxylic acid component at least one selected from the group consisting of lactic acid and glycolic acid may be used.
  • PET polyethylene terephthalate
  • the polyester resin may be introduced in the form of pellets, granules, beads, chips, powder, etc., and in some cases, may be introduced in a molten state.
  • the polyester resin may be introduced into an extruder in the form of a chip to be extruded and foamed, and in this case, the resin chip may be melted at a temperature of 260 to 300°C to melt the resin chip.
  • additives may be introduced into the fluid connection line as necessary, or may be introduced during the foaming process when the polyester resin is introduced into the extruder.
  • additives can impart barrier performance, hydrophilization function, waterproof function, etc. to the foam sheet, and thickener, surfactant, hydrophilic agent, heat stabilizer, waterproof agent, cell size enlarger, infrared attenuator, plasticizer, fire prevention chemistry Drugs, pigments, elastomers, extrusion aids, antioxidants, nucleating agents, anti-rotation agents, and may include one or more selected from the group consisting of UV absorbers.
  • the foam sheet of the present invention may be prepared using one or more of a thickener, a nucleating agent, a heat stabilizer, and a foaming agent in addition to the polyester resin, and further use one or more of the functional additives listed above. I can.
  • the thickener is added to control the melt viscosity of the foamed composition, and for example, pyromellitic dianhydride (PMDA) or the like may be used.
  • the content of the thickener may be 0.1 to 5 parts by weight, 0.3 to 3 parts by weight, or 0.5 to 2 parts by weight based on 100 parts by weight of the resin.
  • Nucleating agents are added to control the cell density, such as talc, mica, silica, diatomaceous earth, alumina, titanium oxide, zinc oxide, magnesium oxide, magnesium hydroxide, aluminum hydroxide, calcium hydroxide, potassium carbonate, calcium carbonate, Magnesium carbonate, potassium sulfate, barium sulfate, sodium hydrogen carbonate, glass beads, and the like can be used.
  • the content of the nucleating agent may be 0.1 to 5 parts by weight, 0.3 to 3 parts by weight, or 0.5 to 2 parts by weight based on 100 parts by weight of the resin.
  • organic or inorganic phosphorus compounds may be used, and specifically phosphoric acid, alkyl phosphate, aryl phosphate, for example, triphenyl phosphate, and the like may be used.
  • the content of the heat stabilizer may be 0.01 to 5 parts by weight, 0.03 to 3 parts by weight, or 0.05 to 1 part by weight based on 100 parts by weight of the resin.
  • the foaming agent is added to foam the composition and to control the density of the foam sheet, for example, gases such as N 2 , CO 2 , and freon; Physical blowing agents such as butane, pentane, neopentane, hexane, isohexane, heptane, isoheptane, and methyl chloride; Chemical blowing agents such as an azodicarboxylic amide compound, a P,P'-oxybis(benzenesulfonylhydrazide) compound, and an N,N'-dinitrosopentamethylenetetraamine compound can be used.
  • the content of the foaming agent may be 0.1 to 10 parts by weight, 1 to 8 parts by weight, or 3 to 7 parts by weight based on 100 parts by weight of the resin.
  • Extrusion can be performed using various types of extruders.
  • the foaming process may be usually carried out through bead foaming or extrusion foaming, but extrusion foaming is preferred in the present invention.
  • Extrusion foaming continuously extrudes and foams a resin mixture, which simplifies the process steps, enables mass production, and prevents cracks and granular fracture between beads during bead foaming, so superior flexural strength and compressive strength Can be implemented.
  • the foam sheet can be directly manufactured in the shape of a body.
  • a cylindrical body can be directly manufactured by using an annular nozzle when manufacturing a polyester foam sheet.
  • the foam sheet is manufactured, it is cut into a body-forming member, and then the body can be formed by bonding both ends of the body-forming member.
  • the polyester foam sheet is cut into a shape such as a square or a fan shape, the body can be manufactured by bonding both ends.
  • Cutting of the foam sheet can be performed using a conventional cutting machine. Bonding of the foam sheet may be performed by applying heat or ultrasonic waves, or using a low melting point polyester resin adhesive or adhesive sheet.
  • the bottom portion may be manufactured or cut to have the same shape as the inner bottom portion of the body thus manufactured.
  • the bottom portion may be manufactured or cut in a circular shape (a disk).
  • the size of the bottom may be the same as or smaller than the inner side of the lower body.
  • the bottom part When joining the body and the bottom part, the bottom part can be pushed up and inserted into the inner lower part of the body and then joined.
  • heat or ultrasonic waves may be applied to a portion where the inserted bottom portion and the inner side of the body are in contact, or the bottom portion may be bonded to the lower end of the body using a low melting point polyester resin adhesive or an adhesive sheet.
  • the temperature of heat applied during bonding may be 100 to 400°C, specifically 100 to 350°C, 100 to 300°C, 100 to 250°C, 100 to 200°C, 100 to 150°C, 100 to 130°C or 120 To 140°C.
  • heat when an adhesive or an adhesive sheet is not used, heat of 200 to 330°C can be applied, and when an adhesive or an adhesive sheet is used, a low melting point polyester resin may exhibit adhesiveness of 100 to 200°C. Heat can be applied.
  • the skin layer when producing a polyester foam sheet, after forming the foam layer, the skin layer can be formed by cooling the surface of the foam layer.
  • a skin layer when the foam sheet is manufactured, a skin layer can be formed by rapidly cooling the surface of the foam layer by controlling the temperature of a mandrel, which is a cooling device.
  • the temperature of the mandrel may be -30 to 0°C, -25 to -5°C, and -20 to -10°C.
  • a printing layer can be formed on the skin layer.
  • a printing layer may be formed using an ink composition according to a conventional printing method.
  • the printed layer may be formed at the time of manufacturing the foam sheet, before or after cutting, or before or after bonding.
  • a pattern and/or a pattern may be applied by a conventional printing method using four or more inks having different colors.
  • inkjet printing, gravure printing, screen printing, offset printing, rotary printing, flexo printing, and the like can be used.
  • the second embodiment of the present invention prior to cutting, it may further include a step of heat-treating the polyester foam sheet.
  • the heat treatment temperature may be 150 to 300°C, 160 to 270°C, 170 to 250°C, 180 to 230°C, or 190 to 210°C.
  • the heat treatment time may be 10 to 100 seconds, 15 to 80 seconds, or 20 to 60 seconds. As the heat treatment temperature and heat treatment time increase, the crystallinity of the foam sheet may increase.
  • PET resin melt was prepared by mixing parts by weight and 0.1 parts by weight of Irganox (IRG 1010) and heating to 280°C. Then, 5 parts by weight of butane gas was added to the extruder as a foaming agent based on 100 parts by weight of the PET resin, and then extruded to produce a PET foam sheet.At this time, the temperature of the cylindrical mandrel as a cooling device was adjusted as shown in Table 1 below. The foam layer surface was rapidly cooled to form a skin layer. The cell density, cell size, and average thickness of the foam sheet thus prepared are shown in Table 1 below.
  • Example 1-1 Example 1-2 Example 1-3 Example 1-4 Example 1-5 Foam layer cell density [cell/cm2] 350 350 350 200 160 Foam layer average thickness [mm] One One One 1.5 1.5 Skin layer cell size [ ⁇ m] 40 ⁇ 90 50 ⁇ 100 About 0 40 ⁇ 90 40 ⁇ 90 Average thickness of skin layer [mm] 0.1 0.1 0.05 0.1 0.1 Mandrel temperature [°C] -20 -10 -20 -20 -20 -20
  • a commercially available paper cup was purchased. At this time, the side height (H) and bottom surface diameter (D) of the paper cup were the same as the container of Example 1-1, and the average thickness of the paper cup was 1 ⁇ 0.1 mm.
  • a container was manufactured in the same manner as in Example 1-1, except that a polypropylene film (PP rigid film, average thickness: 1.0 ⁇ 0.05 mm) was purchased and used on the market. At this time, the cell density of the polypropylene film was 900 cells/cm 2.
  • PP rigid film average thickness: 1.0 ⁇ 0.05 mm
  • Example 2 It was carried out in the same manner as in Example 1-1, except that the cell density and average thickness of the foam layer provided in the PET foam sheet, the cell size and average thickness of the skin layer, and the mandrel temperature were controlled as shown in Table 2 below. The container was made.
  • the PET foam sheet was introduced into a press molding machine so that the surface temperature of the foam sheet was 160°C, and then a male mold (Plug) The temperature was set to 60°C and the female mold temperature was set to 120°C, followed by press molding for 10 seconds to prepare a container.
  • a male mold Plug
  • the surface tension of the outer surface of the container was measured using a surface tension test ink pen (Dyne pen, Arotes). At this time, a product exhibiting a surface tension of 30 to 60 mN/m was used for the ink pen, and the dyne of the ink pen was applied to the outer surface of the surface when the ink pen was painted on the outer surface of the container and no stains occurred on the surface. Was decided.
  • water at 100° C. was contained so as to be 70% by volume of the container receiving portion, and left at room temperature (20° C.) and atmospheric pressure (1 atm) for 3 minutes. Thereafter, the temperature of the water contained in the receiving portion and the temperature of the outer surface of the container body were measured, and the deviation of the measured temperature was calculated.
  • Example 1-1 One 33 10
  • Example 1-2 2 30 10
  • Example 1-3 0.5 35 12
  • Example 1-4 One 33 15
  • Example 1-5 One 30 18
  • Comparative Example 1-1 One 40 5 Comparative Example 1-2 0.5 28 0 Comparative Example 1-3 3 25 13 Comparative Example 1-4 One 28 8
  • the container according to the present invention has excellent printability and excellent heat resistance and/or warmth.
  • the containers prepared in the examples had a low centerline surface roughness (R a ) of less than 2.5 ⁇ m and a high surface tension exceeding 28 mN/m, whereas the beverage containers of the comparative example had low surface roughness (R a ). It was confirmed that both and high surface tension were not satisfied.
  • the temperature difference between the inside and the outside of the container is 10° C. or more, whereas the beverage containers prepared in the Comparative Example have a lower temperature difference.
  • the heat barrier properties of the containers manufactured in the examples are excellent, so that the temperature difference between the inside and the outside of the container is maintained relatively large.
  • Comparative Example 1-1 the surface tension was on the large side, and the thermal insulation property was lowered.
  • Comparative Example 1-2 the surface tension was on the small side, and the thermal insulation property was very low.
  • Comparative Example 1-3 the cell size of the skin layer was too large, the surface roughness was too large, and the surface tension was too small.
  • Comparative Example 1-4 by press molding, the surface tension was on the small side, and the heat insulation property was lowered.
  • the containers according to the present invention not only have excellent thermal properties such as heat insulation, but also have excellent printability.
  • PET resin melt was prepared by mixing parts by weight and 0.1 parts by weight of Irganox (IRG 1010) and heating to 280°C. Then, 5 parts by weight of butane gas was added to the extruder as a foaming agent based on 100 parts by weight of the PET resin, followed by extrusion foaming to prepare a PET foam sheet.
  • Irganox IRG 1010
  • butane gas was added to the extruder as a foaming agent based on 100 parts by weight of the PET resin, followed by extrusion foaming to prepare a PET foam sheet.
  • the cell density, average thickness, crystallinity, heat treatment time, and thickness ratio of the body and the bottom of the foam sheet are shown in Table 4 below.
  • the prepared PET foam sheet was heat-treated in a 200°C chamber for the time shown in Table 4 below, and the heat-treated foam sheet was fan-shaped (large arc: 22.2 cm, small arc: 15.7 cm, side length: 7.5 cm) And circles (diameter: 5 cm). Thereafter, a low melting point polyester adhesive sheet was attached to a thickness of about 5 mm to the outside of one end and the inside of the other end of the foam sheet cut into a fan shape, and the ends were rolled to overlap, and then heat of 130°C was applied to make a body.
  • Example 2-1 Example 2-2 Example 2-3
  • Example 2-4 Example 2-5
  • Example 2-6 Cell density [cell/cm2] 350 350 350 460 460 Average thickness [mm] 1.5 1.5 1.5 One One Crystallinity [%] 12 15 18 15 18 21 Heat treatment time [sec] 20 40 60
  • Body to bottom thickness ratio 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
  • a commercially available paper cup was purchased. At this time, the side height (H) and bottom surface diameter (D) of the paper cup were the same as the container of Example 2-1, and the average thickness of the paper cup was 1 ⁇ 0.1 mm.
  • a container was manufactured in the same manner as in Example 2-1, except that a commercially available polypropylene film (PP rigid film, average thickness: 0.7 ⁇ 0.05 mm) was purchased and used. At this time, the cell density of the polypropylene film was 900 cells/cm2, and the thickness ratio of the body and the bottom was 1.0.
  • PP rigid film PP rigid film, average thickness: 0.7 ⁇ 0.05 mm
  • a PET foam sheet (cell density: 350 cells/cm2, average thickness: 1.5 mm, crystallinity: 4%) under the same conditions as in Example 2-1 was prepared. Then, the prepared PET foam sheet was introduced into a press molding machine without a separate heat treatment so that the surface temperature of the foam sheet was 160°C. Then, the male mold temperature was set to 60°C and the female mold temperature was set to 120°C. And press for 10 seconds to prepare a container. The H/D of the mold was 1.0, the depth (H) of the receiving portion was 10 cm, and the diameter of the opening (D) was 10 cm. The container design was applied, and the thickness ratio of the body and the bottom of the manufactured container was 0.5.
  • a container was manufactured in the same manner as in Example 2-1, except that the heat treatment of the PET foam sheet was not separately performed, and the cell density, average thickness, and crystallinity of the foam sheet were adjusted as shown in Table 5 below. I did.
  • Comparative Example 2-4 Comparative Example 2-5 Cell density [cell/cm2] 350 460 Average thickness [mm] 1.5 One Crystallinity [%] 4 6 Heat treatment time [sec] 0 0 Body to bottom thickness ratio 1.0 1.0
  • water at 100° C. was contained so as to be 70% by volume of the container receiving portion, and left at room temperature (20° C.) and atmospheric pressure (1 atm) for 3 minutes. Thereafter, the temperature of the water contained in the receiving portion and the temperature of the outer surface of the container body were measured, and the deviation of the measured temperature was calculated.
  • each container prepared in Examples and Comparative Examples were measured, and the volume of each container was calculated from the measured diameter and height. Then, each container was allowed to stand in an oven at 100° C. for 3 minutes for heat treatment, cooled to room temperature again, and then the volume of the container was calculated in the same manner as described above, and the volume change rate of the container before and after the heat treatment was derived.
  • the container according to the present invention has excellent thermal insulation properties and heat resistance.
  • the containers prepared in the Examples contained water at 100°C and showed that the temperature of the outer surface of the container was 10°C or more different from the temperature of the water even after 3 minutes had elapsed.
  • the containers manufactured in the manufactured comparative example showed a low temperature deviation of less than 10°C. This means that the heat shielding properties of the containers manufactured in the embodiment are excellent, so that the temperature difference between the inside and the outside of the container is maintained relatively large.
  • the containers manufactured in the examples had a volume change rate of less than 5% even when left at a high temperature of 100°C.
  • the volume change rate of the containers of the comparative example manufactured using the foam sheet was 8% or more. This means that the containers of the embodiment are excellent in heat resistance, so that the shape of the container is hardly changed even when the temperature changes rapidly.
  • the crystallinity increased As the cell density increased, the crystallinity increased, the crystallinity increased as the heat treatment time increased, and the heat resistance improved as the crystallinity increased.
  • the containers according to the present invention have excellent heat resistance and/or heat insulation (ie, heat retention).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Packages (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

본 발명은 폴리에스테르 발포시트를 구비하는 용기 및 이의 제조방법에 관한 것으로, 폴리에스테르 발포시트를 포함하는 몸체와 바닥부를 접합한 간단한 구조를 가지므로, 경제적이고, 친환경적이며, 인체에 무해할 뿐만 아니라, 내열성 및/또는 단열성이 우수하여 고온 및/또는 냉온 음료의 온도를 장시간 유지시킬 수 있다. 또한, 가공 시 깊은 깊이의 용기 제작이 가능하며, 용기 외측면에 인쇄가 용이한 이점이 있다.

Description

인쇄 적성 및 단열성이 향상된 용기 및 이의 제조방법
본 발명은 인쇄 적성 및/또는 단열성이 우수한 용기 및 이의 제조방법에 관한 것이다.
일회용 음료 용기로 사용되는 제품은 발포식과 비발포식으로 나뉜다. 일반적으로 발포식 용기로는 폴리스티렌을 발포 가스와 혼합시켜 압출시킨 제품이 사용되고 있는데, 이러한 발포식 용기는 두께를 비교적 두껍게 유지할 수 있어서, 형태 유지, 단열성, 가격 경쟁력이 높은 이점이 있으나, 고온에서 인체에 유해한 물질이 방출되므로 인체 안전성이 낮고, 인쇄 적성이 낮아 표면에 별도의 인쇄층을 도입하거나 인쇄 필름으로 포장하여야 하는 번거로움이 있다. 이에 따라, 고온에서 유해 물질이 방출되지 않는 폴리에틸렌 테레프탈레이트(PET)를 활용한 발포식 용기 소재가 점차 사용되고 있는데, PET는 높은 결정성으로 인해 음료 용기와 같이 깊이가 깊은 형태의 열 성형 용기를 제조하는데 성형이 불량한 어려움이 있다.
아울러, 비발포식 용기로는 가공성이 높은 종이를 이용한 컵이나, 열에 안정한 폴리프로필렌 필름을 컵 형태로 성형한 제품이 사용되는데, 이러한 비발포식 용기는 고온에서 형태 변화율이 적고 유해물질이 검출되지 않으나, 가격이 비싸며, 단열성이 현저히 낮아 고온의 내용물을 담을 경우 사용자가 용기를 손으로 잡기 쉽기 어렵고, 내용물의 온도 또한 쉽게 냉각되는 문제가 있다.
최근 환경에 대한 관심과 함께 개인의 삶의 질에 대한 관심이 높아지고 있는 가운데, 재사용이나 재활용이 가능하여 친환경적이고 인체에 무해하면서 용기에 담기는 물질의 상태를 장시간 동안 온전히 보존할 수 있는 다기능성 용기에 대한 필요성이 대두되고 있다.
따라서, 내열성 및/또는 단열성이 우수하여 고온 및/또는 냉온 음료의 온도를 장시간 동안 일정하게 유지시킬 수 있을 뿐만 아니라, 표면의 인쇄성이 우수하며, 가격 경쟁력이 있으면서 인체에 안전하고 친환경적인 음료용 용기에 대한 개발이 요구되고 있다.
본 발명의 목적은 가격 경쟁력이 있고, 인체에 안전하며, 친환경적이면서, 내열성 및/또는 단열성이 우수하여 고온 및/또는 냉온의 액체를 담아도 온도를 일정하게 유지할 수 있는 용기 및 이의 제조방법을 제공하는 것이다.
본 발명의 다른 목적은 표면의 인쇄성이 우수한 용기 및 이의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 열에 대한 형태 안정성이 우수한 용기 및 이의 제조방법을 제공하는 것이다.
본 발명은 상술한 목적을 달성하기 위해, 폴리에스테르 발포시트를 포함하는 몸체; 및 몸체의 하단부에 위치하고, 폴리에스테르 발포시트를 포함하는 바닥부를 구비하는 용기로서, 용기는 발포시트의 프레스 성형에 의해 일체로 제조되지 않고, 용기는 각각 분리 제작된 몸체와 바닥부가 서로 접합되어 밀폐 구조를 형성하며, 용기에 100℃ 물을 담고 3분이 경과된 후, 몸체 외측면과 내부 물의 온도 차이가 10℃ 이상인 용기를 제공한다.
본 발명에서 몸체와 바닥부는 열 융착, 초음파 접착, 접착제 및 접착시트 중 어느 하나 이상에 의해 접합될 수 있다.
본 발명에서 접착제 또는 접착시트는 저융점 폴리에스테르 수지를 포함할 수 있고, 저융점 폴리에스테르 수지는 하기 화학식 1 및 화학식 2로 나타내는 반복단위를 포함할 수 있으며, 연화점이 100℃ 내지 130℃이거나 유리전이온도가 50℃ 내지 80℃일 수 있다.
[화학식 1]
Figure PCTKR2020005731-appb-img-000001
[화학식 2]
Figure PCTKR2020005731-appb-img-000002
화학식 1 및 화학식 2에서, m 및 n은 저융점 폴리에스테르 수지에 함유된 반복단위의 몰 분율을 나타내고, m+n=1을 기준으로, n은 0.05 내지 0.5일 수 있다.
본 발명에서 폴리에스테르는 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 폴리트리메틸렌 테레프탈레이트(PTT), 폴리에틸렌 나프탈레이트(PEN), 폴리에틸렌 아디페이트(PEA), 폴리락트산(PLA), 폴리글리콜산(PGA) 중에서 선택되는 1종 이상일 수 있다.
본 발명에서 용기는 음료용 용기일 수 있고, 폴리에스테르 발포시트의 평균 두께는 0.5 ㎜ 내지 3 ㎜일 수 있으며, 몸체의 측면 높이(H)는 5 ㎝ 내지 20 ㎝일 수 있고, 몸체의 측면 높이(H)와 바닥부의 직경(D)의 비율(H/D)은 0.5 이상일 수 있으며, 몸체와 바닥부의 평균 두께 비율(몸체/바닥부)은 0.8 이상일 수 있다.
본 발명의 제1실시형태에 따르면, 폴리에스테르 발포시트는 발포층 및 스킨층을 포함할 수 있고, 스킨층의 중심선 표면 거칠기(R a)는 0.1 ㎛ 내지 2.5 ㎛일 수 있으며, 발포시트의 표면장력은 25 mN/m 이상일 수 있다.
본 발명의 제1실시형태에 따르면, 발포층의 결정화도는 1% 내지 20%일 수 있고, 발포층의 평균 셀 밀도는 100 cells/㎠ 내지 25,000 cells/㎠일 수 있으며, 스킨층의 평균 셀 크기는 100 ㎛ 이하일 수 있다.
본 발명의 제1실시형태에 따르면, 폴리에스테르 발포시트는 스킨층 상에 인쇄층을 더 포함할 수 있다.
본 발명의 제2실시형태에 따르면, 폴리에스테르 발포시트는 단일 층으로 구성될 수 있고, 폴리에스테르 발포시트는 열처리된 발포시트일 수 있다.
본 발명의 제2실시형태에 따르면, 폴리에스테르 발포시트의 평균 셀 밀도는 100 cells/㎠ 내지 25,000 cells/㎠일 수 있고, 열처리된 폴리에스테르 발포시트의 결정화도는 10% 내지 30%일 수 있으며, 용기를 100℃ 오븐에 3분간 방치한 후, 용기의 체적 변화율은 5% 이하일 수 있다.
또한, 본 발명은 상술한 용기의 제조방법으로서, 폴리에스테르 발포시트를 몸체 및 바닥부 형상으로 분리하여 제작하거나 재단하는 단계; 몸체와 바닥부를 접합하는 단계를 포함하는 용기의 제조방법을 제공한다.
본 발명에서는 몸체 하단부 내측, 바닥부의 두께 방향 측면, 또는 양쪽 모두에, 저융점 폴리에스테르 수지를 포함하는 접착제를 도포하거나 또는 접착시트를 적층한 후, 몸체의 내측 하단부에 바닥부를 밀어 올려 삽입한 후, 삽입된 바닥부와 몸체의 접합 부위에 100℃ 내지 400℃의 온도를 가하여 접합할 수 있다.
본 발명의 제1실시형태에 따르면, 폴리에스테르 발포시트를 제조할 때, 발포층을 형성한 후, 발포층의 표면을 냉각하여 스킨층을 형성할 수 있다.
본 발명의 제1실시형태에 따르면, 스킨층에 상에 인쇄층을 형성할 수 있다.
본 발명의 제2실시형태에 따르면, 재단 전에, 폴리에스테르 발포시트를 150℃ 내지 300℃에서 10초 내지 100초 동안 열처리하는 단계를 추가로 포함할 수 있다.
본 발명에 따른 용기는 폴리에스테르 발포시트를 포함하는 몸체와 바닥부를 접합한 간단한 구조를 가지므로, 경제적이고, 친환경적이며, 인체에 무해할 뿐만 아니라, 가공 시 깊은 깊이의 용기 제작이 가능하고, 내열성 및/또는 단열성이 우수하여 고온 및/또는 냉온 음료의 온도를 장시간 유지시킬 수 있으며, 용기 외측면에 인쇄가 용이한 이점이 있다.
또한, 본 발명에 따른 용기는 결정성이 높은 폴리에스테르 발포시트를 사용하여 경제적이고, 친환경적이며, 인체에 무해할 뿐만 아니라, 깊은 깊이의 용기 제작이 가능하고, 제조된 용기의 내열성 및 단열성 등이 우수하여 고온 및/또는 냉온 음료용으로 사용 시 온도를 장시간 유지시킬 수 있는 이점이 있다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시형태를 가질 수 있는 바, 특정 실시형태들을 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시형태에 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경 및 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명에서, "셀(cell)"이란, 고분자 내 발포에 의해 팽창된 미세구조를 의미한다. 셀은 폐쇄 셀 및/또는 개방 셀을 포함할 수 있다.
본 발명은 용기 및 이의 제조방법에 관한 것이다.
최근 환경에 대한 관심과 함께 개인의 삶의 질에 대한 관심이 높아지고 있는 가운데, 재사용이나 재활용이 가능하여 친환경적이고 인체에 무해하면서, 인쇄 등의 가공이 용이하여 디자인성이 우수하며, 용기에 담기는 물질의 상태를 장시간 동안 온전히 보존할 수 있는 다기능성 용기에 대한 요구가 증가되고 있으나, 이러한 요구를 충족시킬만한 소재는 아직 개발되지 않고 있는 실정이다.
이에, 본 발명은 인쇄 적성, 단열성, 내열성 등이 우수한 용기 및 이의 제조방법을 제공한다.
본 발명에 따른 용기는 폴리에스테르 발포시트를 포함하는 몸체와 바닥부를 접합한 간단한 구조를 가지므로, 경제적이고, 친환경적이며, 인체에 무해할 뿐만 아니라, 내열성 및/또는 단열성이 우수하여 고온 및/또는 냉온 음료의 온도를 장시간 유지시킬 수 있고, 가공 시 용기 외측면에 인쇄가 용이한 이점이 있다.
이하, 본 발명을 보다 상세하게 설명한다.
[용기]
본 발명에 따른 용기는 식품 용기, 포장 용기 등일 수 있고, 특히 음료용 용기일 수 있다.
본 발명에 따른 용기는 폴리에스테르 발포시트를 포함하는 몸체; 및 몸체의 하단부에 위치하고, 폴리에스테르 발포시트를 포함하는 바닥부를 구비하는 용기로서, 용기는 발포시트의 프레스 성형에 의해 일체로 제조되지 않고, 용기는 각각 분리 제작된 몸체와 바닥부가 서로 접합되어 밀폐 구조를 형성하는 것을 특징으로 한다.
용기를 프레스 성형(열 성형)을 통해 제조할 경우, 단열성과 인쇄적성 등의 물성이 저하될 수 있다. 또한, 음료 용기와 같이 깊이(높이)가 깊은 형태의 용기를 제조할 경우, 프레스 성형에 어려움이 있다. 이때, 프레스 성형은 발포시트를 프레스 성형 장치의 암형 금형과 수형 금형 사이에 배치한 후, 암형 금형과 수형 금형을 가압하여 용기의 몸체와 바닥부를 일체로 성형하는 방법이다.
본 발명에서는 프레스 성형을 이용하지 않고, 발포시트를 단순히 몸체와 바닥부로 재단한 후 접합함으로써, 단열성과 인쇄적성 등의 물성을 개선할 수 있으며, 또한 깊이가 깊은 형태의 용기를 용이하게 제작할 수 있다.
단열성과 관련하여, 용기에 100℃ 물을 담고 3분이 경과된 후, 몸체 외측면과 내부 물의 온도 차이는 10℃ 이상일 수 있다. 구체적으로, 상온(23±5℃) 및 상압(1±0.2 atm)의 조건에서, 용기 내부에 60 내지 120℃의 물을, 용기 내측 전체 부피의 70±20%(v/v)가 되도록 채우고, 3분이 경과된 시점에서 용기에 담긴 물과 용기 외측면의 온도 차이는 10℃ 이상일 수 있으며, 구체적으로는 10 내지 35℃, 10 내지 30℃, 10 내지 20℃, 10 내지 18℃, 10 내지 16℃, 13 내지 40℃, 15 내지 35℃, 20 내지 32℃ 혹은 21.5 내지 30℃일 수 있다. 용기에 담긴 물과 용기 외측면의 온도 편차가 10℃ 이상이라는 것은 용기의 내부와 외부의 온도 차이를 비교적 높게 유지한다는 것으로, 용기의 열차단성이 우수하고, 이에 따라 용기에 담기는 음료의 온도가 효과적으로 보존될 수 있음을 나타낸다.
몸체는 그 형태가 특별히 제한되지 않고, 성형성이나 작업성 등을 고려할 때, 몸체의 상단부 및 하단부의 형태 및 크기가 동일한 원기둥, n각(n=3~20의 정수) 기둥, 몸체의 상단부 및 하단부의 형태는 동일하나 상단부의 길이 또는 지름이 하단부의 길이 또는 지름보다 큰 상광하협의 원뿔대, n각(n=3~20의 정수) 뿔대 모양의 관형일 수 있다. 예를 들어, 몸체는 원기둥 모양이거나, 상광하협의 원뿔대 모양일 수 있다.
바닥부는 관형 몸체의 하단부 내측에 접합되어 관형 몸체의 하단부를 밀폐시키는 구조를 형성할 수 있으며, 이에 따라 본 발명의 용기는 액체 물질을 담을 공간을 마련할 수 있다. 이를 위해, 바닥부는 몸체 하단부 내측과 동일한 모양을 가질 수 있으며, 그 크기는 몸체 하단부 내측과 동일하거나 작을 수 있다. 바닥부는 몸체의 하단부에 위치하되, 하단부의 가장 말단에 위치할 수 있고, 또한 말단으로부터 위쪽으로 약간 떨어져서 위치할 수 있다. 가장 말단에 위치할 경우 바닥부 하부에 공간이 없을 수 있고, 말단으로부터 위쪽으로 약간 떨어져서 위치할 경우 바닥부 하부에 약간 공간이 형성될 수 있다.
몸체의 측면 높이(H)는 5 ㎝ 내지 20 ㎝일 수 있고, 구체적으로는 5 ㎝ 내지 18 ㎝, 5 ㎝ 내지 16 ㎝, 5 ㎝ 내지 14 ㎝, 5 ㎝ 내지 12 ㎝, 5 ㎝ 내지 10 ㎝, 8 ㎝ 내지 20 ㎝, 10 ㎝ 내지 20 ㎝, 12 ㎝ 내지 20 ㎝, 14 ㎝ 내지 20 ㎝, 16 ㎝ 내지 20 ㎝, 7 ㎝ 내지 18 ㎝, 7 ㎝ 내지 16 ㎝ 또는 7 ㎝ 내지 14 ㎝일 수 있다.
몸체의 측면 높이(H)에 대한 바닥부의 크기에 대한 비율은 일정할 수 있다. 구체적으로, 몸체의 형태가 원기둥 또는 원뿔대 모양의 관형인 경우 몸체 하단부 내측에 접합된 바닥부의 형태는 원형이고, 이때 몸체의 측면 높이(H)와 바닥부의 직경(D)의 비율(H/D)은 0.5 이상, 보다 구체적으로는 0.5 내지 5; 0.5 내지 4; 0.5 내지 3; 0.5 내지 2; 0.5 내지 1.5; 1 내지 5; 1.5 내지 5; 2 내지 5; 2.5 내지 5; 3 내지 5; 3.5 내지 5; 4 내지 5; 0.9 내지 1.5; 0.7 내지 3; 0.9 내지 3; 1 내지 3; 1.1 내지 4; 1.1 내지 2; 1.1 내지 1.5; 1.2 내지 3; 1.2 내지 2.5; 1.2 내지 2; 1.2 내지 1.8; 1.2 내지 1.5; 1.3 내지 1.8; 1.3 내지 1.6; 1.4 내지 1.9; 1.4 내지 1.7 또는 1.5 내지 1.8일 수 있다. 몸체의 측면 높이(H)는 수직 높이를 의미하고, 몸체가 테이퍼 구조를 갖더라도 몸체의 상단부터 하단까지의 길이가 아니라 수직 높이를 의미한다. 바닥부가 원형이 아닐 경우, 예를 들어 다각형이나 타원형 등일 경우에는, 상당 직경을 적용할 수 있다. 본 발명에서는 프레스 성형 없이 재단과 접합에 의해 용기를 제조하므로, 깊이(높이)가 깊은 용기, 즉 H/D의 비율이 큰 용기도 용이하게 제조할 수 있다.
몸체와 바닥부의 평균 두께 비율(몸체/바닥부)은 0.8 이상일 수 있고, 구체적으로는 0.8 내지 1.2, 0.9 내지 1.1 또는 0.95 내지 1.05일 수 있으며, 경우에 따라서는 1에 가까울 수 있다. 이는 본 발명에 따른 용기가 프레스 성형 등의 고온 및 가압 성형이 아니라, 재단 및 접합을 통해 제조됨을 의미할 수 있다.
몸체와 바닥부는 열 융착, 초음파 접착, 접착제 및 접착시트 중 어느 하나 이상에 의해 접합될 수 있다. 즉, 바닥부는 열융착 또는 초음파 접착으로 접합되거나, 또는 접착제 또는 접착시트에 의해 몸체 하단부 내측에 접합될 수 있다. 보다 구체적으로, 바닥부는 몸체 하단부 내측에 밀어 올려 삽입되되, 삽입된 바닥부와 몸체 하단부 내측 사이에 저융점 폴리에스테르 수지를 포함하는 접착제 또는 접착시트가 위치하여 바닥부와 몸체를 접합시킬 수 있으며, 이를 통해 용기의 하단부가 완전히 밀폐될 수 있다.
저융점 폴리에스테르 수지는 하기 화학식 1 및 2로 나타내는 반복단위를 포함하여, 폴리에스테르 수지 발포시트를 포함하는 몸체 및 바닥부의 접착력을 보다 공고히 할 수 있다.
[화학식 1]
Figure PCTKR2020005731-appb-img-000003
[화학식 2]
Figure PCTKR2020005731-appb-img-000004
화학식 1 및 화학식 2에서, m 및 n은 저융점 폴리에스테르 수지에 함유된 반복단위의 몰 분율을 나타내고, m+n=1을 기준으로 n은 0.05 내지 0.5, 0.05 내지 0.4, 0.1 내지 0.4, 0.15 내지 0.35 또는 0.2 내지 0.3일 수 있고, m은 0.5 내지 0.95, 0.6 내지 0.95, 0.6 내지 0.9, 0.65 내지 0.85 또는 0.7 내지 0.8일 수 있다.
구체적으로, 저융점 폴리에스테르 수지는 화학식 1 및 화학식 2로 나타내는 반복단위를 포함하는 구조를 가지는 공중합 폴리에스테르 수지일 수 있다. 화학식 1로 나타내는 반복단위는 폴리에틸렌 테레프탈레이트(PET)의 반복단위를 나타내고, 화학식 2로 나타내는 반복단위는 PET 반복단위를 포함하는 폴리에스테르 수지의 인열 특성을 개선하는 기능을 수행한다. 구체적으로, 화학식 2로 나타내는 반복단위는 테레프탈레이트에 결합된 에틸렌 사슬에 메틸기(-CH 3)를 측쇄로 포함하여 중합된 수지의 주쇄가 회전할 수 있도록 공간을 확보함으로써, 주쇄의 자유도 증가 및 수지의 결정성 저하를 유도하여 연화점(Ts) 및/또는 유리전이온도(Tg)를 조절할 수 있다. 이는 종래 결정성 폴리에스테르 수지의 결정성을 저하시키기 위하여 비대칭 방향족 고리를 함유하는 이소프탈산(IPA)을 사용하는 경우와 동일한 효과를 나타낼 수 있다.
저융점 폴리에스테르 수지는 전체 수지의 몰 분율을 1로 하였을 경우, 화학식 1 및 2로 나타내는 반복단위를 0.5 내지 1로 포함할 수 있고, 구체적으로는 0.55 내지 1; 0.6 내지 1; 0.7 내지 1; 0.8 내지 1; 0.9 내지 1; 0.5 내지 0.9; 0.5 내지 0.85; 0.5 내지 0.7; 또는 0.6 내지 0.95로 포함할 수 있다.
저융점 폴리에스테르 수지에 포함된 화학식 2로 나타내는 반복단위의 몰 분율(n)은 화학식 1 및 화학식 2로 나타내는 반복단위의 총 몰 분율이 1인 경우(m+n=1) 0.01 내지 1일 수 있고, 구체적으로는 0.05 내지 1; 0.05 내지 0.9; 0.05 내지 0.8; 0.05 내지 0.7; 0.05 내지 0.6; 0.05 내지 0.5; 0.05 내지 0.4; 0.05 내지 0.3; 0.1 내지 0.3; 0.55 내지 1; 0.6 내지 1; 0.7 내지 1; 0.8 내지 1; 0.5 내지 0.9; 0.5 내지 0.85; 0.5 내지 0.7; 0.6 내지 0.95; 0.05 내지 0.4, 0.15 내지 0.35; 또는 0.2 내지 0.3일 수 있다. m은 0 내지 0.99일 수 있고, 구체적으로는 0 내지 0.95; 0.1 내지 0.95; 0.2 내지 0.95; 0.3 내지 0.95; 0.4 내지 0.95; 0.5 내지 0.95; 0.6 내지 0.95; 0.7 내지 0.95; 0.7 내지 0.9; 0 내지 0.45; 0 내지 0.4; 0 내지 0.3; 0 내지 0.2; 0.1 내지 0.5; 0.15 내지 0.5; 0.3 내지 0.5; 0.05 내지 0.4; 0.6 내지 0.95; 0.65 내지 0.85; 또는 0.7 내지 0.8일 수 있다. 여기서, 화학식 1로 나타내는 반복단위의 몰 분율이 0(m=0)이고 화학식 2로 나타내는 반복단위의 몰 분율이 1(n=1)인 폴리에스테르 수지는 화학식 2로 나타내는 반복단위를 주쇄로 포함하는 구조를 가질 수 있다.
저융점 폴리에스테르 수지의 융점(Tm)은 180℃ 내지 250℃이거나, 융점이 존재하지 않을 수 있다. 구체적으로, 융점(Tm)은 180℃ 내지 250℃, 185℃ 내지 245℃, 190℃ 내지 240℃, 180℃ 내지 200℃, 200℃ 내지 230℃, 195℃ 내지 230℃이거나 존재하지 않을 수 있다.
저융점 폴리에스테르 수지의 연화점은 100℃ 내지 130℃일 수 있으며, 구체적으로는 110℃ 내지 120℃; 115℃ 내지 125℃; 118℃ 내지 128℃; 120℃ 내지 125℃; 121℃ 내지 124℃; 124℃ 내지 128℃ 또는 119℃ 내지 126℃일 수 있다.
저융점 폴리에스테르 수지는 50℃ 이상의 유리전이온도(Tg)를 가질 수 있다. 구체적으로 유리전이온도는 50℃ 내지 80℃일 수 있으며, 보다 구체적으로 50℃ 내지 60℃, 60℃ 내지 70℃, 70℃ 내지 80℃, 50℃ 내지 55℃, 55℃ 내지 60℃, 60℃ 내지 65℃, 65℃ 내지 70℃, 68℃ 내지 75℃, 54℃ 내지 58℃, 58℃ 내지 68℃, 59℃ 내지 63℃, 또는 55℃ 내지 70℃일 수 있다.
저융점 폴리에스테르 수지는 화학식 2로 나타내는 반복단위를 포함하여 폴리에스테르 수지의 연화점(Ts), 및/또는 유리전이온도(Tg)를 범위로 조절할 수 있으므로 100℃ 내지 200℃에서 열 접착성을 구현할 수 있다. 유리전이온도, 연화점, 융점 등은 시차 주사 열량계(DSC), 융점 측정기, 열기계 분석기(TMA) 등을 이용하여 측정할 수 있다.
본 발명에 따른 용기는 폴리에스테르 발포시트로 구성될 수 있다. 몸체와 바닥부는 각각 동일하거나 상이한 폴리에스테르 발포시트로 구성될 수 있고, 바람직하게는 동일한 PET 발포시트로 구성될 수 있다. 여기서, 폴리에스테르 발포시트는 폴리에스테르 수지를 주성분으로 하는 단일 시트로서 가격이 저렴하고, 고온에서도 인체에 유해한 물질을 방출하지 않으며, 친환경적인 이점이 있다. 여기서, "주성분으로 한다"란 발포시트 전체 중량에 대하여 90 중량부 이상, 95 중량부 이상, 96 중량부 이상, 97 중량부 이상, 98 중량부 이상 또는 99 중량부 이상 폴리에스테르 수지를 포함하는 것을 의미한다.
폴리에스테르 수지는 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 폴리트리메틸렌 테레프탈레이트(PTT), 폴리에틸렌 나프탈레이트(PEN), 폴리에틸렌 아디페이트(PEA), 폴리락트산(PLA), 폴리글리콜산(PGA) 중에서 선택되는 1종 이상일 수 있고, 바람직하게는 폴리에틸렌 테레프탈레이트(PET)를 사용할 수 있다. 폴리에스테르 발포시트는 폴리에스테르 수지를 주성분으로 포함하여 가격이 저렴하고, 고온에서도 인체에 유해한 물질을 방출하지 않으며, 친환경적인 이점이 있다.
폴리에스테르 발포시트의 평균 두께는 0.5 ㎜ 내지 3 ㎜일 수 있다. 구체적으로, 발포시트의 두께는 0.5 ㎜ 내지 2.5 ㎜, 1 ㎜ 내지 2.5 ㎜, 1.5 ㎜ 내지 2.5 ㎜, 2 ㎜ 내지 2.5 ㎜, 0.5 ㎜ 내지 2 ㎜, 0.5 ㎜ 내지 1.5 ㎜, 0.5 ㎜ 내지 1 ㎜, 1 ㎜ 내지 2 ㎜, 1 ㎜ 내지 1.5 ㎜, 또는 0.8 ㎜ 내지 1.7 ㎜일 수 있다.
본 발명의 제1실시형태에 따르면, 폴리에스테르 발포시트는 발포층 및 스킨층을 포함할 수 있다. 스킨층은 발포층의 일면 또는 양면에 형성될 수 있다. 스킨층은 폴리에스테르 수지를 함유하는 발포체 또는 코팅층일 수 있다. 발포층 및 스킨층은 별도로 형성된 후 적층될 수 있고, 또한 발포층에 스킨층이 코팅될 수 있다. 바람직하게는 발포층 및 스킨층은 일체로 형성될 수 있고, 예를 들어 발포시트의 제조 시에 발포층의 표면을 냉각함으로써 발포층 표면에 스킨층을 형성할 수 있다. 발포층 및 스킨층은 셀 크기 등에 의해 구분될 수 있고, 예를 들어 발포층의 셀 크기는 상대적으로 클 수 있고, 스킨층의 셀 크기는 상대적으로 작을 수 있다.
스킨층이 발포체인 경우, 스킨층의 평균 셀 크기는 100 ㎛ 이하일 수 있다. 구체적으로, 스킨층의 평균 셀 크기는 80 ㎛ 이하, 60 ㎛ 이하, 40 ㎛ 이하, 20 ㎛ 이하, 0.1 내지 100 ㎛, 5 내지 80 ㎛, 10 내지 50 ㎛, 10 내지 30 ㎛, 40 내지 90 ㎛ 또는 50 내지 100 ㎛일 수 있으며, 경우에 따라서는 필름과 같이 셀을 형성하지 않아 셀 크기가 0 ㎛(비-발포체)에 가까울 수 있다. 본 발명은 이러한 스킨층을 포함함으로써 발포시트의 표면 균일도가 우수할 수 있다. 스킨층의 평균 셀 크기가 너무 클 경우에, 스킨층의 중심선 표면 거칠기(R a)가 지나치게 커질 수 있다. 스킨층의 평균 셀 크기는 주사전자현미경(SEM)의 이미지를 통해 결정할 수 있다.
발포층 및 스킨층에 포함된 폴리에스테르 수지는 동일하거나 상이할 수 있다. 바람직하게는, 발포층과 스킨층은 모두 PET로 구성될 수 있다.
스킨층의 중심선 표면 거칠기(R a)는 0.1 ㎛ 내지 2.5 ㎛일 수 있다. 중심선 표면 거칠기(R a)는 KS B 0161에 따른 것일 수 있다. 구체적으로, 스킨층의 중심선 표면 거칠기(R a)는 0.1 ㎛ 내지 2.1 ㎛, 0.1 ㎛ 내지 1.6 ㎛, 0.9 ㎛ 내지 1.5 ㎛, 0.1 ㎛ 내지 1.1 ㎛, 0.3 ㎛ 내지 1.4 ㎛, 0.5 ㎛ 내지 1.2 ㎛, 0.8 ㎛ 내지 1.1 ㎛, 0.1 ㎛ 내지 0.7 ㎛, 0.3 ㎛ 내지 0.8 ㎛, 1.8 ㎛ 내지 2.2 ㎛, 0.5 ㎛ 내지 2 ㎛, 0.5 ㎛ 내지 1 ㎛ 또는 1 ㎛ 내지 2 ㎛일 수 있다. 스킨층의 중심선 표면 거칠기(R a)를 이러한 범위로 제어함으로써 표면적을 증가시켜 잉크층 형성 시 잉크에 대한 흡수성 및/또는 고착성, 즉 인쇄 적성을 향상시킬 수 있다. 표면 거칠기는 조도 측정기 등을 이용하여 측정될 수 있다.
발포층 및 스킨층을 포함하는 발포시트의 표면장력은 25 mN/m 이상일 수 있다. 구체적으로, 발포시트의 표면장력은 28 mN/m 이상, 25 mN/m 내지 40 mN/m, 28 mN/m 내지 40 mN/m, 30 mN/m 내지 40 mN/m, 25 mN/m 내지 35 mN/m, 25 mN/m 내지 34 mN/m, 28 mN/m 내지 36 mN/m, 28 mN/m 내지 32 mN/m, 31 mN/m 내지 36 mN/m, 31 mN/m 내지 34 mN/m, 32 mN/m 내지 37 mN/m 또는 30 mN/m 내지 35 mN/m일 수 있다. 이와 같이, 발포시트가 적절한 표면장력을 가짐으로써, 인쇄 적성 등을 향상시킬 수 있다. 표면장력은 표면장력 시험 잉크펜 등을 이용하여 측정할 수 있다. 표면장력의 측정 표면은 스킨층 표면일 수 있다.
스킨층은 표면 평활도가 우수할 뿐만 아니라, 표면적 및 표면 에너지가 최적화되어 인쇄 적성이 우수할 수 있다. 구체적으로, 인쇄 적성은 인쇄층이 형성되는 소재 표면의 평활도, 표면적 및 표면 에너지 등에 영향을 받으며, 평활도, 표면적 및 표면 에너지가 클수록 인쇄 적성이 우수할 수 있다. 여기서, 소재의 평활도와 표면적은 표면 거칠기에 영향을 받을 수 있는데, 표면 거칠기 값에 따라 평활도와 표면적이 트레이드-오프(trade-off) 관계이고, 발포시트의 경우 표면 평활도나 표면 에너지의 제어가 용이하지 않으므로 인쇄 적성을 개선하는데 어려움이 있다. 그러나, 본 발명에서는 폴리에스테르 발포시트 최외각에 구비되는 스킨층의 중심선 표면 거칠기(R a)와 표면 장력을 최적화시킴으로써 용기의 인쇄 적성을 현저히 향상시킬 수 있다.
발포층의 결정화도는 1% 내지 20%일 수 있고, 구체적으로 1% 내지 18%, 1% 내지 15%, 1% 내지 12%, 1% 내지 10%, 1% 내지 8%, 1% 내지 6%, 1% 내지 4%, 1% 내지 2%, 2% 내지 20%, 4% 내지 20%, 6% 내지 20%, 8% 내지 20%, 10% 내지 20%, 12% 내지 20%, 15% 내지 20%일 수 있다.
결정화도는 시차 주사 열량계(DSC)를 이용하여 용융 온도에서의 용융 엔탈피와 냉각 결정화 온도에서의 결정화 엔탈피를 측정한 후, 하기 식에 따라 계산할 수 있다.
[수학식 1]
결정화도 = (ΔHm - ΔHc) / ΔHm
ΔHm는 용융 엔탈피를 의미하고, ΔHc는 결정화 엔탈피를 의미하며, ΔHm는 표준 용융 엔탈피(140 J/g)을 의미한다.
하나의 예로서, 발포층은 용기를 냉온 음료를 담는 용도로 사용할 경우 10% 이하의 낮은 결정화도를 가질 수 있고, 고온 음료를 담는 용도로 사용할 경우 10% 초과, 구체적으로는 15% 이상의 결정화도를 가질 수 있다.
발포층의 평균 셀 밀도는 100 cells/㎠ 내지 25,000 cells/㎠일 수 있고, 구체적으로는 100 내지 20,000 cells/㎠, 100 내지 15,000 cells/㎠, 100 내지 10,000 cells/㎠, 100 내지 5,000 cells/㎠, 100 내지 1,000 cells/㎠, 100 내지 500 cells/㎠, 100 내지 400 cells/㎠, 100 내지 350 cells/㎠, 100 내지 300 cells/㎠, 100 내지 250 cells/㎠, 100 내지 200 cells/㎠ 또는 160 내지 350 cells/㎠일 수 있다. 셀 밀도는 주사전자현미경(SEM)의 이미지를 통해 일정 단위 면적 내에서 셀의 개수를 세고 이를 ㎤로 환산하여 개수를 결정할 수 있다.
발포층의 평균 두께는 0.5 내지 3 ㎜, 0.6 내지 2 ㎜, 0.7 내지 1.5 ㎜, 0.8 내지 1.2 ㎜, 0.9 내지 1.1 ㎜ 또는 1 내지 1.5 ㎜일 수 있다. 스킨층의 평균 두께는 0.01 내지 1 ㎜, 0.02 내지 0.8 ㎜, 0.03 내지 0.6 ㎜, 0.04 내지 0.4 ㎜, 0.05 내지 0.3 ㎜, 0.06 내지 0.2 ㎜, 0.07 내지 0.15 ㎜, 0.08 내지 0.12 ㎜ 또는 0.05 내지 0.1 ㎜일 수 있다.
스킨층은 용기 외측에 배치될 수 있고, 발포층은 용기 내측에 배치될 수 있다. 폴리에스테르 발포시트는 스킨층 상에 인쇄층을 더 포함할 수 있다. 인쇄층은 스킨층 표면 전체 또는 일부분에 형성될 수 있다. 인쇄층은 통상의 잉크 조성물을 인쇄하여 형성될 수 있고, 또한 시트 형태의 인쇄층을 스킨층에 부착할 수도 있다. 인쇄층의 평균 두께는 0.01 내지 5 ㎛일 수 있고, 구체적으로는 0.01 내지 4.5 ㎛, 0.01 내지 3 ㎛, 0.01 내지 2 ㎛, 0.1 내지 1 ㎛, 0.1 내지 0.5 ㎛, 1 내지 5 ㎛, 1 내지 3 ㎛, 2 내지 4 ㎛ 또는 0.1 내지 0.2 ㎛일 수 있다.
종래 용기들은 인쇄 적성이 낮고, 용기의 성형 시 수행되는 프레스 성형 등의 열 공정으로 인해 색상의 변색이 발생되므로 서로 다른 4가지 이상의 잉크를 사용하는 것이 어려웠으나, 본 발명의 용기는 외측면(스킨층)의 인쇄 적성이 개선될 뿐만 아니라, 이미 인쇄된 발포시트의 재단 및 접합을 통해 제조되어 인쇄층의 열 노출이 최소화되므로 4가지 이상, 구체적으로는 5가지 이상의 색상을 사용하여 원하는 이미지로 인쇄가 가능하다는 이점이 있다.
본 발명의 제2실시형태에 따르면, 폴리에스테르 발포시트는 단일 층으로 구성될 수 있고, 폴리에스테르 발포시트는 열처리된 발포시트일 수 있다. 발포시트를 제조한 후, 발포시트를 재단하기 전에, 발포시트를 열처리함으로써, 발포시트의 결정화도를 증가시킬 수 있고, 결정화도가 증가함에 따라 단열성뿐만 아니라 내열성(치수변화율)을 개선할 수 있다.
열처리된 폴리에스테르 발포시트는 고결정성을 가질 수 있고, 구체적으로 열처리된 폴리에스테르 발포시트의 결정화도는 10% 내지 30%, 12% 내지 30%, 15% 내지 30%, 18% 내지 30%, 21% 내지 30%, 12% 내지 21%, 15% 내지 21% 또는 18% 내지 21%일 수 있다. 결정화도가 너무 낮을 경우, 단열성은 어느 정도 확보할 수 있으나, 내열성(치수변화율)이 저하될 수 있다.
제2실시형태에 따른 폴리에스테르 발포시트의 평균 셀 밀도는 100 cells/㎠ 내지 25,000 cells/㎠일 수 있고, 구체적으로는 150 내지 20,000 cells/㎠, 200 내지 15,000 cells/㎠, 250 내지 10,000 cells/㎠, 300 내지 5,000 cells/㎠, 310 내지 1,000 cells/㎠, 320 내지 800 cells/㎠, 330 내지 600 cells/㎠, 340 내지 500 cells/㎠ 또는 350 내지 460 cells/㎠일 수 있다. 셀 밀도가 증가할수록 결정화도가 증가할 수 있다.
제1실시형태의 구성 및 제2실시형태의 구성을 조합하는 것도 가능하다. 즉, 발포시트를 발포층과 스킨층의 복층구조로 구성함과 동시에, 복층구조의 발포시트를 열처리할 수도 있다.
본 발명은 이와 같은 구성을 가짐으로써 적층 하중 및/또는 외부 충격으로부터 용기의 변형을 방지할 수 있을 뿐만 아니라, 온도 변화에 따른 용기의 변형을 억제할 수 있고, 용기의 내열성 및 단열효과를 증가시킬 수 있다.
그 예로서, 용기는 온도 변화에 따른 용기의 변형이 적어 하기 수학식 2의 조건을 만족할 수 있다:
[수학식 2]
(V 1 - V 0) / V 0 × 100 ≤ 5%
수학식 2에서,
V 0은 -10℃에서 3시간 동안 노출시킨 후 용기의 체적(mm 3)이고,
V 1은 110℃에서 3시간 동안 노출 후 용기의 체적(mm 3)이다.
구체적으로, 수학식 2는 용기를 -10℃에서 3시간 동안 노출시켰을 때와 110℃에서 3시간 동안 노출시켰을 때의 치수 변화율을 의미할 수 있다. 체적은 용기를 구성하는 바닥부 넓이와 몸체의 측면 길이를 곱하여 계산된 값을 의미할 수 있다. 본 발명의 용기는 수학식 2에 따른 치수 변화율((V 1 - V 0) / V 0 × 100)이 0.01 내지 5%, 0.01 내지 3% 또는 0.01 내지 1% 범위일 수 있다. 용기의 고온과 냉온간 치수 변화율이 5% 이하라 함은 급격한 온도 변화에도 용기의 내열성이 우수하여 용기의 형태 변형이 거의 없음을 의미한다.
다른 하나의 예로서, 용기는 온도 변화에 따른 용기의 변형이 적어 100℃ 오븐에 3분 동안 방치시키기 전후의 체적 변화를 평가하는 경우, 체적 변화율이 5% 이하일 수 있다. 특히, 제2실시형태에 따른 용기를 100℃ 오븐에 3분간 방치한 후, 용기의 체적 변화율은 5% 이하일 수 있다. 여기서, "체적"이란 용기를 구성하는 바닥부 넓이와 몸체의 측면 길이를 곱하여 계산된 값으로서, 용기는 0.01% 내지 5%, 0.5% 내지 5%, 0.5% 내지 4%, 0.5% 내지 3%, 0.5% 내지 2%, 0.5% 내지 1%, 1% 내지 4%, 2% 내지 4%, 3% 내지 5% 또는 3.5% 내지 5%의 체적 변화율을 가질 수 있다. 고온에서의 용기 체적 변화율이 5% 이하라 함은 용기의 내열성이 우수하여 고온에서도 용기의 형태 변형이 거의 없음을 의미한다.
본 발명에 따른 용기는 경제적이고, 친환경적이며, 인체에 무해할 뿐만 아니라, 깊은 깊이의 용기 제작이 가능하다. 또한, 본 발명에 따른 용기는 외측면에 인쇄가 용이하여 공정성이 뛰어나다. 또한, 본 발명에 따른 용기는 내열성, 단열성 등이 우수하여 고온 및/또는 냉온의 내용물들을 장시간 온도 변화 없이 담을 수 있으므로, 식음료용 용기로 유용하게 사용될 수 있다.
본 발명의 용기는 일회용 컵과 같이 몸체와 바닥부를 각각 개별 재단하여 접합시킨 것이므로, 결정화도가 높은 발포시트로도 용이하게 제조할 수 있으며, 종래 프레스 성형 등과 같이 고온 및/또는 가압 조건에서 제조되는 용기들과 비교하여 발포시트의 연신이 발생되지 않아 몸체와 바닥부의 평균 두께 비율이 높으므로, 고온 및/또는 냉온의 음료를 담는 용기로 유용하게 사용될 수 있다.
[용기의 제조방법]
본 발명에 따른 용기 제조방법은 폴리에스테르 발포시트를 몸체 및 바닥부 형상으로 분리하여 제작하거나 재단하는 단계; 몸체와 바닥부를 접합하는 단계를 포함할 수 있다.
폴리에스테르 발포시트는 폴리에스테르 수지 조성물을 이용하여 제조될 수 있다. 구체적으로, 폴리에스테르 수지는 디카르복실산 성분과 글리콜 성분을 반응시키거나 히드록시카르복실산 성분을 반응시켜 얻을 수 있다. 디카르복실산 성분으로는 테레프탈산, 나프탈렌 디카르복실산 및 아디프산으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다. 글리콜 성분으로는 에틸렌 글리콜, 부틸렌 글리콜 및 2-메틸-1,3-프로판디올로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다. 아울러, 히드록시카르복실산 성분은 락트산 및 글리콜산으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다. 바람직하게는, 테레프탈산과 에틸렌 글리콜을 반응시킨 폴리에틸렌 테레프탈레이트(PET)를 사용할 수 있다.
폴리에스테르 수지는 펠렛, 그래뉼, 비드, 칩, 분말 등의 형태로 도입될 수 있고, 경우에 따라서는 용융된 상태로 도입될 수 있다. 예를 들어, 폴리에스테르 수지는 칩 형태로 압출기에 도입되어 압출 발포될 수 있고, 이 경우 수지 칩의 용융을 위하여 260 내지 300℃의 온도에서 수지 칩을 용융하는 과정을 거칠 수 있다.
또한, 발포시트의 기능화를 위하여, 폴리에스테르 수지의 압출기 도입 시 다양한 형태의 첨가제를 필요에 따라 유체 연결 라인 중에 투입하거나, 혹은 발포 공정 중에 투입할 수 있다. 구체적으로, 첨가제들은 배리어 성능, 친수화 기능, 방수 기능 등을 발포시트에 부여할 수 있고, 증점제, 계면활성제, 친수화제, 열안정제, 방수제, 셀 크기 확대제, 적외선 감쇠제, 가소제, 방화 화학 약품, 안료, 탄성폴리머, 압출 보조제, 산화방지제, 기핵제, 공전 방지제 및 UV 흡수제로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다.
예를 들어, 본 발명의 발포시트는 폴리에스테르 수지 이외에, 증점제, 기핵제, 열안정제 및 발포제 중 1종 이상을 사용하여 제조될 수 있고, 또한 앞서 열거된 기능성 첨가제들 중 1종 이상을 더 사용할 수 있다.
증점제는 발포 조성물의 용융 점도를 제어하기 위해 참가되는 것으로, 예를 들어 피로멜리틱 디언하이드리드(PMDA) 등을 사용할 수 있다. 증점제의 함량은 수지 100 중량부를 기준으로 0.1 내지 5 중량부, 0.3 내지 3 중량부 또는 0.5 내지 2 중량부일 수 있다.
기핵제는 셀 밀도를 제어하기 위해 참가되는 것으로, 예를 들어 탈크, 마이카, 실리카, 규조토, 알루미나, 산화티탄, 산화 아연, 산화 마그네슘, 수산화 마그네슘, 수산화 알루미늄, 수산화 칼슘, 탄산칼륨, 탄산칼슘, 탄산마그네슘, 황산칼륨, 황산바륨, 탄산수소나트륨, 유리 비드 등을 사용할 수 있다. 기핵제의 함량은 수지 100 중량부를 기준으로 0.1 내지 5 중량부, 0.3 내지 3 중량부 또는 0.5 내지 2 중량부일 수 있다.
열안정제로는 유기 또는 무기 인 화합물을 사용할 수 있고, 구체적으로 인산, 알킬 포스페이트, 아릴 포스페이트, 예를 들어 트리페닐 포스페이트 등을 사용할 수 있다. 열안정제의 함량은 수지 100 중량부를 기준으로 0.01 내지 5 중량부, 0.03 내지 3 중량부 또는 0.05 내지 1 중량부일 수 있다.
발포제는 조성물을 발포시키고, 발포 시트의 밀도를 제어하기 위해 첨가되는 것으로, 예를 들어 N 2, CO 2, 프레온 등의 가스; 부탄, 펜탄, 네오펜탄, 헥산, 이소헥산, 헵탄, 이소헵탄, 메틸클로라이드 등의 물리적 발포제; 아조디카르본아마이드계 화합물, P,P'-옥시비스(벤젠술포닐하이드라지드)계 화합물, N,N'-디니트로소펜타메틸렌테트라아민계 화합물 등의 화학적 발포제를 사용할 수 있다. 발포제의 함량은 수지 100 중량부를 기준으로 0.1 내지 10 중량부, 1 내지 8 중량부 또는 3 내지 7 중량부일 수 있다.
압출은 다양한 형태의 압출기를 이용하여 수행 가능하다. 발포 공정은 통상적으로 비드 발포 또는 압출 발포를 통해 수행될 수 있으나, 본 발명에서는 압출 발포가 바람직하다. 압출 발포는 수지 혼합물을 연속적으로 압출 및 발포시키므로 공정 단계를 단순화할 수 있고, 대량 생산이 가능하며, 비드 발포 시 비드 사이에서 균열과 입상 파괴 현상 등을 방지할 수 있으므로 보다 우수한 굴곡강도 및 압축강도를 구현할 수 있다.
몸체의 경우, 발포시트를 직접 몸체 형상으로 제작할 수 있고, 예를 들어 몸체가 원기둥 모양의 관형인 경우 폴리에스테르 발포시트의 제조 시 환형 노즐을 이용함으로써 직접 원기둥 몸체를 제조할 수 있다. 또한, 발포시트를 제조한 후, 몸체 형성용 부재로 재단한 다음, 몸체 형성용 부재의 양단부를 접합하여 몸체를 형성할 수 있다. 구체적으로, 폴리에스테르 발포시트를 사각형 또는 부채꼴 등의 형상으로 재단한 후, 양 말단부를 접합하여 몸체를 제조할 수 있다. 발포시트의 재단은 통상적인 재단기를 이용하여 수행될 수 있다. 발포시트의 접합은 열 또는 초음파를 가하거나, 저융점 폴리에스테르 수지 접착제 또는 접착시트를 사용하여 수행될 수 있다.
바닥부는 이렇게 제조된 몸체 하단부 내측과 동일한 모양을 가지도록 제작되거나 재단될 수 있다. 예를 들어, 몸체가 원통형 또는 원뿔대 형상으로 제작될 경우, 바닥부는 원형(원판)으로 제조되거나 재단될 수 있다. 바닥부의 크기는 몸체 하단부 내측과 동일하거나 작을 수 있다.
몸체와 바닥부를 접합할 때에는, 몸체의 내측 하단부에 바닥부를 밀어 올려 삽입한 후 접합할 수 있다. 이때, 삽입된 바닥부와 몸체의 내측이 접하는 부위에 열 또는 초음파를 가하거나, 저융점 폴리에스테르 수지 접착제 또는 접착시트를 사용하여 몸체 하단부에 바닥부를 접합시킬 수 있다. 구체적으로, 몸체가 닿는 바닥부의 두께 방향 측면 및/또는 바닥부가 닿는 몸체 하단부 내측면 사이 영역에, 직접 열을 가하거나 초음파를 조사하여 접합시키거나, 해당 영역에 저융점 폴리에스테르 수지를 포함하는 접착제를 도포하거나 또는 접착시트를 적층한 후 열을 가하여 접합시킬 수 있다.
접합 시에 가해지는 열의 온도는 100 내지 400℃일 수 있으며, 구체적으로는 100 내지 350℃, 100 내지 300℃, 100 내지 250℃, 100 내지 200℃, 100 내지 150℃, 100 내지 130℃ 또는 120 내지 140℃일 수 있다. 예를 들어, 접착제 또는 접착시트를 사용하지 않는 경우 200 내지 330℃의 열을 가할 수 있고, 접착제 또는 접착시트를 사용하는 경우에는 저융점 폴리에스테르 수지가 접착성을 나타낼 수 있도록 100 내지 200℃의 열을 가할 수 있다.
본 발명의 제1실시형태에 따르면, 폴리에스테르 발포시트를 제조할 때, 발포층을 형성한 후, 발포층의 표면을 냉각하여 스킨층을 형성할 수 있다. 구체적으로, 발포시트의 제조 시에, 냉각 장치인 맨드렐(mandrel)의 온도를 조절하여 발포층 표면을 급속 냉각시킴으로써 스킨층을 형성할 수 있다. 맨드렐의 온도는 -30 내지 0℃, -25 내지 -5℃, -20 내지 -10℃일 수 있다.
본 발명의 제1실시형태에 따르면, 스킨층에 상에 인쇄층을 형성할 수 있다. 예를 들어, 잉크 조성물을 이용하여 통상적인 인쇄방법에 따라 인쇄층을 형성할 수 있다. 인쇄층은 발포시트 제조 시에, 재단 전 또는 후에, 또는 접합 전 또는 후에 형성될 수 있다. 예를 들어, 서로 다른 색상을 갖는 4 이상의 잉크를 사용하여 통상적인 인쇄 방식으로 무늬 및/또는 패턴을 부여할 수 있다. 인쇄방법으로는 잉크젯 인쇄, 그라비어 인쇄, 스크린 인쇄, 오프셋 인쇄, 로터리 인쇄, 플렉소 인쇄 등을 이용할 수 있다.
본 발명의 제2실시형태에 따르면, 재단 전에, 폴리에스테르 발포시트를 열처리하는 단계를 추가로 포함할 수 있다. 열처리 온도는 150 내지 300℃, 160 내지 270℃, 170 내지 250℃, 180 내지 230℃ 또는 190 내지 210℃일 수 있다. 열처리 시간은 10 내지 100초, 15 내지 80초 또는 20 내지 60초일 수 있다. 열처리 온도 및 열처리 시간이 증가할수록 발포시트의 결정화도가 증가할 수 있다.
이하, 본 발명을 실시예, 비교예 및 실험예에 의해 보다 상세히 설명한다.
[실시예 1-1 내지 1-5]
폴리에틸렌 테레프탈레이트(PET) 수지 100 중량부를 130℃에서 건조하여 수분을 제거한 후, 압출기에 수분이 제거된 PET 수지 및 이 PET 수지 100 중량부를 기준으로, 피로멜리틱 디언하이드리드 1 중량부, 탈크 1 중량부 및 Irganox (IRG 1010) 0.1 중량부를 혼합하고, 280℃로 가열하여 수지 용융물을 제조하였다. 그런 다음, 압출기에 발포제로서 부탄가스를 PET 수지 100 중량부를 기준으로 5 중량부 투입하고 압출 발포하여 PET 발포시트를 제조하였으며, 이때 냉각 장치인 원통형의 맨드렐의 온도를 하기 표 1과 같이 조절하여 발포층 표면이 급속 냉각된 스킨층을 형성하였다. 이와 같이 제조된 발포시트의 셀 밀도, 셀 크기 및 평균 두께는 하기 표 1에 나타내었다.
그런 다음, 제조된 PET 발포시트를 부채꼴(큰 원호: 22.2 ㎝, 작은 원호: 15.7 ㎝, 측면 길이: 7.5 ㎝) 및 원(지름: 5 ㎝)으로 재단하였다. 그 후, 부채꼴로 재단된 발포시트의 한쪽 말단 외측과 나머지 말단 내측에 저융점 폴리에스테르 접착시트를 약 5 ㎜ 두께로 붙이고, 양 말단을 말아 겹치도록 한 후 130℃의 열을 가하여 몸체를 만들었다. 만들어진 몸체 하단(작은 원호 쪽) 내측에 저융점 폴리에스테르 접착제를 약 2±0.1 ㎜ 두께로 도포하고, 앞서 재단된 원형의 발포시트를 밀어 넣어 위치시킨 후, 130℃의 열을 가하여 몸체에 바닥부를 접합시킴으로써 일회용 컵 형태의 용기를 제조하였다. 이때, 용기의 측면 높이(H)는 7 ㎝, 바닥면 직경(D)은 5 ㎝이었다(H/D=1.4).
실시예 1-1 실시예 1-2 실시예 1-3 실시예 1-4 실시예 1-5
발포층 셀 밀도 [cell/㎠] 350 350 350 200 160
발포층 평균 두께 [㎜] 1 1 1 1.5 1.5
스킨층 셀 크기 [㎛] 40~90 50~100 약 0 40~90 40~90
스킨층 평균 두께 [㎜] 0.1 0.1 0.05 0.1 0.1
맨드렐 온도 [℃] -20 -10 -20 -20 -20
[비교예 1-1]
시판되고 있는 종이컵을 구입하였다. 이때, 종이컵의 측면 높이(H)와 바닥면 직경(D)은 실시예 1-1의 용기와 동일하고, 종이컵의 평균 두께는 1±0.1 ㎜이었다.
[비교예 1-2]
PET 발포시트 대신에, 시중에서 폴리프로필렌 필름(PP rigid film, 평균 두께: 1.0±0.05 ㎜)을 구입하여 사용한 것을 제외하고, 실시예 1-1과 동일한 방법으로 수행하여 용기를 제조하였다. 이때, 폴리프로필렌 필름의 셀 밀도는 900 cell/㎠이었다.
[비교예 1-3]
PET 발포시트에 구비된 발포층의 셀 밀도와 평균 두께, 스킨층의 셀 크기와 평균 두께 및 맨드렐 온도를 하기 표 2와 같이 제어한 것을 제외하고, 실시예 1-1과 동일한 방법으로 수행하여 용기를 제조하였다.
비교예 1-3
발포층 셀 밀도 [cell/㎠] 350
발포층 평균 두께 [㎜] 1
스킨층 셀 크기 [㎛] >150
스킨층 평균 두께 [㎜] 0.1
맨드렐 온도 [℃] 25
[비교예 1-4]
실시예 1-1과 동일한 방법으로 발포시트를 제조한 후, 재단과 접합 및 열처리 없이, PET 발포시트를 프레스 성형기에 도입하여 발포시트의 표면온도가 160℃가 되도록 한 후, 수형 금형(Plug) 온도를 60℃, 암형 금형(Mold) 온도를 120℃로 하고 10초간 프레스 성형하여 용기를 제조하였다.
[실험예 1]
본 발명에 따른 용기의 성능을 확인하기 위하여 실시예 1-1 내지 1-5 및 비교예 1-1 내지 1-4에서 제조된 용기들을 대상으로 하기와 같은 실험을 수행하였으며, 그 결과를 하기 표 3에 나타내었다.
중심선 표면 거칠기 측정
실시예 및 비교예에서 제조된 용기들을 대상으로, KS B 0161에 따른 중심선 표면 거칠기를 측정하였다.
표면장력 측정
실시예 및 비교예에서 제조된 용기들을 대상으로, 표면장력 시험 잉크펜(Dyne pen, Arotes 사)을 이용하여 용기 외측면의 표면 장력을 측정하였다. 이때, 잉크펜은 30~60 mN/m의 표면장력을 나타내는 제품을 사용하였고, 잉크펜을 용기 외측면에 칠한 후 표면에 얼룩이 생기지 않는 경우의 잉크펜의 다인(dyne)을 외측면의 표면장력으로 결정하였다.
단열성 평가
실시예 및 비교예에서 준비된 각 용기에 100℃의 물을 용기 수용부의 70 부피%가 되도록 담고, 상온(20℃) 및 상압(1 atm) 조건에서 3분 동안 방치하였다. 이후, 수용부에 담긴 물의 온도와 용기 몸체의 외측면 온도를 측정하고, 측정된 온도의 편차를 산출하였다.
중심선 표면 거칠기(㎛) 표면장력 [mN/m] 단열성 [℃]
실시예 1-1 1 33 10
실시예 1-2 2 30 10
실시예 1-3 0.5 35 12
실시예 1-4 1 33 15
실시예 1-5 1 30 18
비교예 1-1 1 40 5
비교예 1-2 0.5 28 0
비교예 1-3 3 25 13
비교예 1-4 1 28 8
표 3에 나타낸 바와 같이 본 발명에 따른 용기는 인쇄 적성이 우수하고, 내열성 및/또는 보온성이 우수한 것을 알 수 있다.
구체적으로, 실시예에서 제조된 용기들은 2.5 ㎛ 미만의 낮은 중심선 표면 거칠기(R a)와 28 mN/m를 초과하는 높은 표면장력을 갖는데 반해, 비교예의 음료용 용기들은 낮은 표면 거칠기(R a)와 높은 표면장력을 모두 만족하지 않는 것으로 확인되었다.
아울러, 실시예에서 제조된 음료용 용기들은 100℃의 물을 담을 경우 용기의 내부와 외부의 온도 편차가 10℃ 이상인 반면, 비교예에서 제조된 음료용 용기들은 이보다 낮은 온도 편차를 나타냈다. 이는 실시예에서 제조된 용기들의 열 차단성이 우수하여 용기 내부와 외부의 온도 차이가 비교적 크게 유지됨을 의미하는 것이다.
실시예에 따르면, 발포층의 셀 밀도가 감소할수록 단열성은 증가하였고, 스킨층의 셀 크기가 작을수록 표면 거칠기가 작아지면서 표면장력이 커졌다.
비교예 1-1의 경우, 표면장력이 큰 편이었고, 단열성이 저하되었다. 비교예 1-2의 경우, 표면장력이 작은 편이었고, 단열성이 매우 낮았다. 비교예 1-3의 경우, 스킨층의 셀 크기가 너무 커서, 표면 거칠기가 너무 컸고, 표면장력은 너무 작았다. 비교예 1-4의 경우, 프레스 성형에 의해, 표면장력이 작은 편이었고, 단열성이 저하되었다.
이러한 결과로부터, 본 발명에 따른 용기들은 단열성 등의 열적 물성이 우수할 뿐만 아니라 인쇄 적성이 뛰어난 것을 알 수 있다.
[실시예 2-1 내지 2-6]
폴리에틸렌 테레프탈레이트(PET) 수지 100 중량부를 130℃에서 건조하여 수분을 제거한 후, 압출기에 수분이 제거된 PET 수지 및 이 PET 수지 100 중량부를 기준으로, 피로멜리틱 디언하이드리드 1 중량부, 탈크 1 중량부 및 Irganox (IRG 1010) 0.1 중량부를 혼합하고, 280℃로 가열하여 수지 용융물을 제조하였다. 그런 다음, 압출기에 발포제로서 부탄가스를 PET 수지 100 중량부를 기준으로 5 중량부 투입하고 압출 발포하여 PET 발포시트를 제조하였다. 제조된 발포시트의 셀 밀도, 평균 두께, 결정화도, 열처리 시간, 몸체와 바닥부의 두께 비율은 하기 표 4에 나타내었다.
그런 다음, 제조된 PET 발포시트를 200℃ 챔버에서 하기 표 4에 나타낸 시간 동안 열 처리하고, 열 처리된 발포시트를 부채꼴(큰 원호: 22.2 ㎝, 작은 원호: 15.7 ㎝, 측면 길이: 7.5 ㎝) 및 원(지름: 5 ㎝)으로 재단하였다. 그 후, 부채꼴로 재단된 발포시트의 한쪽 말단 외측과 나머지 말단 내측에 저융점 폴리에스테르 접착시트를 약 5 ㎜ 두께로 붙이고, 양 말단을 말아 겹치도록 한 후 130℃의 열을 가하여 몸체를 만들었다. 만들어진 몸체 하단(작은 원호 쪽) 내측에 저융점 폴리에스테르 접착제를 약 2±0.1 ㎜ 두께로 도포하고, 앞서 재단된 원형의 발포시트를 밀어 넣어 위치시킨 후, 130℃의 열을 가하여 몸체에 바닥부를 접합시킴으로써 일회용 컵 형태의 용기를 제조하였다. 이때, 용기의 측면 높이(H)는 7 ㎝, 바닥면 직경(D)은 5 ㎝이었다(H/D=1.4).
실시예 2-1 실시예 2-2 실시예 2-3 실시예 2-4 실시예 2-5 실시예 2-6
셀 밀도[cell/㎠] 350 350 350 460 460 460
평균 두께[㎜] 1.5 1.5 1.5 1 1 1
결정화도[%] 12 15 18 15 18 21
열 처리 시간[초] 20 40 60 20 40 60
몸체와 바닥부의 두께 비율 1.0 1.0 1.0 1.0 1.0 1.0
[비교예 2-1]
시판되고 있는 종이컵을 구입하였다. 이때, 종이컵의 측면 높이(H)와 바닥면 직경(D)은 실시예 2-1의 용기와 동일하고, 종이컵의 평균 두께는 1±0.1 ㎜이었다.
[비교예 2-2]
PET 발포시트 대신에, 시중에서 폴리프로필렌 필름(PP rigid film, 평균 두께: 0.7±0.05 ㎜)을 구입하여 사용한 것을 제외하고, 실시예 2-1과 동일한 방법으로 수행하여 용기를 제조하였다. 이때, 폴리프로필렌 필름의 셀 밀도는 900 cell/㎠이었고, 몸체와 바닥부의 두께 비율은 1.0이었다.
[비교예 2-3]
실시예 2-1과 동일한 조건의 PET 발포시트(셀 밀도: 350 cell/㎠, 평균 두께: 1.5 ㎜, 결정화도: 4%)를 준비하였다. 그런 다음, 준비된 PET 발포시트를 별도의 열처리 없이 프레스 성형기에 도입하여 발포시트의 표면온도가 160℃가 되도록 한 후, 수형 금형(Plug) 온도를 60℃, 암형 금형(Mold) 온도를 120℃로 하고 10초간 프레스하여 용기를 제조하였다. 금형의 H/D는 1.0로서, 수용부의 깊이(H)는 10 cm, 개구부의 직경(D)은 10 cm인 용기 디자인을 적용하였으며, 제조된 용기의 몸체와 바닥부의 두께 비율은 0.5이었다.
[비교예 2-4 및 2-5]
PET 발포시트의 열 처리를 별도로 수행하지 않고, 발포시트의 셀 밀도, 평균 두께 및 결정화도를 하기 표 5에 나타낸 바와 같이 조절한 것을 제외하고, 실시예 2-1과 동일한 방법으로 수행하여 용기를 제조하였다.
비교예 2-4 비교예 2-5
셀 밀도 [cell/㎠] 350 460
평균 두께 [㎜] 1.5 1
결정화도 [%] 4 6
열 처리 시간 [초] 0 0
몸체와 바닥부의 두께 비율 1.0 1.0
[실험예 2]
본 발명에 따른 용기의 열적 성능을 확인하기 위하여 하기와 같은 실험을 수행하였으며, 그 결과를 하기 표 6에 나타내었다.
단열성 평가
실시예와 비교예에서 준비된 각 용기에 100℃의 물을 용기 수용부의 70 부피%가 되도록 담고, 상온(20℃) 및 상압(1 atm) 조건에서 3분 동안 방치하였다. 이후, 수용부에 담긴 물의 온도와 용기 몸체의 외측면 온도를 측정하고, 측정된 온도의 편차를 산출하였다.
내열성 평가
실시예와 비교예에서 준비된 각 용기에 대하여 윗면과 밑면의 직경과 높이를 측정하고, 측정된 직경과 높이로부터 각 용기의 체적을 산출하였다. 그런 다음, 각 용기를 100℃의 오븐에서 3분간 방치하여 열처리하고 상온으로 다시 냉각시킨 후 상술된 방법과 동일한 방법으로 용기의 체적을 산출하고, 열처리 전후 용기의 체적 변화율을 도출하였다.
발포시트열처리시간[초] 결정화도[%] 몸체 및 바닥부의두께 비율 단열성[℃] 내열성[%]
실시예 2-1 20 12 1 15 4
실시예 2-2 40 15 1 15 3
실시예 2-3 60 18 1 15 2
실시예 2-4 20 15 1 10 3
실시예 2-5 40 18 1 10 3
실시예 2-6 60 21 1 10 1
비교예 2-1 0 0 1 5 3
비교예 2-2 0 0 1 0 1
비교예 2-3 0 4 0.5 8 8
비교예 2-4 0 4 1 15 10
비교예 2-5 0 6 1 10 8
표 6에 나타낸 바와 같이 본 발명에 따른 용기는 단열성과 내열성이 우수한 것을 알 수 있다.
구체적으로, 실시예에서 제조된 용기들은 100℃의 물을 담고 3분이 경과된 이후에도 용기 외측면 온도가 물의 온도와 10℃ 이상 차이 나는 것으로 나타난 반면, 종이나 폴리프로필렌 필름으로 제조되거나 열 성형을 통해 제조된 비교예에서 제조된 용기들은 10℃ 미만의 낮은 온도 편차를 나타냈다. 이는 실시예에서 제조된 용기들의 열차단성이 우수하여 용기 내부와 외부의 온도 차이가 비교적 크게 유지됨을 의미하는 것이다.
또한, 실시예에서 제조된 용기들은 100℃의 고온 조건에 방치되어도 체적 변화율이 5% 미만인 것으로 확인되었다. 그러나, 발포시트를 이용하여 제조한 비교예의 용기들은 체적 변화율이 8% 이상인 것으로 확인되었다. 이는 실시예의 용기들이 내열성이 우수하여 급격한 온도 변화에도 용기의 형태 변형이 거의 없음을 의미한다.
실시예에 따르면, 셀 밀도가 증가할수록 결정화도가 증가하였고, 열처리 시간이 증가할수록 결정화도가 증가하였으며, 결정화도가 증가할수록 내열성이 개선되었다.
비교예 2-1 및 2-2의 경우, 결정화도가 0이었고, 내열성은 양호하였으나, 단열성이 낮았다. 비교예 2-3의 경우, 열처리가 없어서 결정화도가 낮았고, 프레스 성형에 의해 단열성도 저하되었으며, 결정화도가 낮아서 내열성이 저하되었다. 비교예 2-4 및 2-5의 경우, 열처리가 없어서 결정화도가 낮았고, 단열성은 양호하였으나, 결정화도가 낮아서 내열성이 저하되었다.
이러한 결과로부터, 본 발명에 따른 용기들은 내열성 및/또는 단열성(즉, 보온성)이 우수한 것을 알 수 있다.

Claims (15)

  1. 폴리에스테르 발포시트를 포함하는 몸체; 및
    몸체의 하단부에 위치하고, 폴리에스테르 발포시트를 포함하는 바닥부를 구비하는 용기로서,
    용기는 발포시트의 프레스 성형에 의해 일체로 제조되지 않고,
    용기는 각각 분리 제작된 몸체와 바닥부가 서로 접합되어 밀폐 구조를 형성하며,
    용기에 100℃ 물을 담고 3분이 경과된 후, 몸체 외측면과 내부 물의 온도 차이가 10℃ 이상인 용기.
  2. 제1항에 있어서,
    몸체와 바닥부는 열 융착, 초음파 접착, 접착제 및 접착시트 중 어느 하나 이상에 의해 접합되는 용기.
  3. 제2항에 있어서,
    접착제 또는 접착시트는 저융점 폴리에스테르 수지를 포함하고,
    저융점 폴리에스테르 수지는 하기 화학식 1 및 화학식 2로 나타내는 반복단위를 포함하며, 연화점이 100℃ 내지 130℃이거나 유리전이온도가 50℃ 내지 80℃인 용기:
    [화학식 1]
    Figure PCTKR2020005731-appb-img-000005
    [화학식 2]
    Figure PCTKR2020005731-appb-img-000006
    화학식 1 및 화학식 2에서,
    m 및 n은 저융점 폴리에스테르 수지에 함유된 반복단위의 몰 분율을 나타내고,
    m+n=1을 기준으로, n은 0.05 내지 0.5이다.
  4. 제1항에 있어서,
    폴리에스테르는 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 폴리트리메틸렌 테레프탈레이트(PTT), 폴리에틸렌 나프탈레이트(PEN), 폴리에틸렌 아디페이트(PEA), 폴리락트산(PLA), 폴리글리콜산(PGA) 중에서 선택되는 1종 이상인 용기.
  5. 제1항에 있어서,
    용기는 음료용 용기이고,
    폴리에스테르 발포시트의 평균 두께는 0.5 ㎜ 내지 3 ㎜이며,
    몸체의 측면 높이(H)는 5 ㎝ 내지 20 ㎝이고,
    몸체의 측면 높이(H)와 바닥부의 직경(D)의 비율(H/D)은 0.5 이상이며,
    몸체와 바닥부의 평균 두께 비율(몸체/바닥부)은 0.8 이상인 용기.
  6. 제1항에 있어서,
    폴리에스테르 발포시트는 발포층 및 스킨층을 포함하고,
    스킨층의 중심선 표면 거칠기(R a)는 0.1 ㎛ 내지 2.5 ㎛이며,
    발포시트의 표면장력은 25 mN/m 이상인 용기.
  7. 제6항에 있어서,
    발포층의 결정화도는 1% 내지 20%이고,
    발포층의 평균 셀 밀도는 100 cells/㎠ 내지 25,000 cells/㎠이며,
    스킨층의 평균 셀 크기는 100 ㎛ 이하인 용기.
  8. 제6항에 있어서,
    폴리에스테르 발포시트는 스킨층 상에 인쇄층을 더 포함하는 용기.
  9. 제1항에 있어서,
    폴리에스테르 발포시트는 단일 층으로 구성되고,
    폴리에스테르 발포시트는 열처리된 발포시트인 용기.
  10. 제9항에 있어서,
    폴리에스테르 발포시트의 평균 셀 밀도는 100 cells/㎠ 내지 25,000 cells/㎠이고,
    열처리된 폴리에스테르 발포시트의 결정화도는 10% 내지 30%이며,
    용기를 100℃ 오븐에 3분간 방치한 후, 용기의 체적 변화율은 5% 이하인 용기.
  11. 제1항에 따른 용기의 제조방법으로서,
    폴리에스테르 발포시트를 몸체 및 바닥부 형상으로 분리하여 제작하거나 재단하는 단계;
    몸체와 바닥부를 접합하는 단계를 포함하는 용기의 제조방법.
  12. 제11항에 있어서,
    몸체 하단부 내측, 바닥부의 두께 방향 측면, 또는 양쪽 모두에, 저융점 폴리에스테르 수지를 포함하는 접착제를 도포하거나 또는 접착시트를 적층한 후,
    몸체의 내측 하단부에 바닥부를 밀어 올려 삽입한 후,
    삽입된 바닥부와 몸체의 접합 부위에 100℃ 내지 400℃의 온도를 가하여 접합하는 용기의 제조방법.
  13. 제11항에 있어서,
    폴리에스테르 발포시트를 제조할 때, 발포층을 형성한 후, 발포층의 표면을 냉각하여 스킨층을 형성하는 용기의 제조방법.
  14. 제13항에 있어서,
    스킨층에 상에 인쇄층을 형성하는 용기의 제조방법.
  15. 제11항에 있어서,
    재단 전에, 폴리에스테르 발포시트를 150℃ 내지 300℃에서 10초 내지 100초 동안 열처리하는 단계를 추가로 포함하는 용기의 제조방법.
PCT/KR2020/005731 2019-04-30 2020-04-29 인쇄 적성 및 단열성이 향상된 용기 및 이의 제조방법 WO2020222550A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021564540A JP7404397B2 (ja) 2019-04-30 2020-04-29 印刷適性及び断熱性が向上した容器及びその製造方法
CN202080029478.0A CN113748072B (zh) 2019-04-30 2020-04-29 增强印刷适性和隔热性的容器及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0050784 2019-04-30
KR1020190050783A KR102319818B1 (ko) 2019-04-30 2019-04-30 단열성이 향상된 폴리에틸렌 테레프탈레이트 발포 용기 및 이의 제조방법
KR1020190050784A KR102175970B1 (ko) 2019-04-30 2019-04-30 인쇄 적성이 향상된 폴리에틸렌 테레프탈레이트 발포 용기 및 이의 제조방법
KR10-2019-0050783 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020222550A1 true WO2020222550A1 (ko) 2020-11-05

Family

ID=73029380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005731 WO2020222550A1 (ko) 2019-04-30 2020-04-29 인쇄 적성 및 단열성이 향상된 용기 및 이의 제조방법

Country Status (3)

Country Link
JP (1) JP7404397B2 (ko)
CN (1) CN113748072B (ko)
WO (1) WO2020222550A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071426A1 (ja) * 2022-09-29 2024-04-04 株式会社レゾナック 発泡成形品、車両用部材及び車両用バックドア

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119345A (ja) * 1994-10-26 1996-05-14 Sekisui Plastics Co Ltd 成形容器
JP2009190756A (ja) * 2008-02-14 2009-08-27 Dainippon Printing Co Ltd 断熱性容器及び断熱性容器の製造方法
JP2011225641A (ja) * 2010-04-15 2011-11-10 Kaneka Corp ポリスチレン系樹脂押出発泡体およびその製造方法
KR20190012349A (ko) * 2017-07-27 2019-02-11 주식회사 휴비스 스킨층을 포함하는 발포시트, 이의 제조방법 및 이를 포함하는 식품 용기
KR20190025339A (ko) * 2017-09-01 2019-03-11 주식회사 휴비스 폴리에스테르 발포시트를 포함하는 웨이퍼 보드 및 이의 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09123291A (ja) * 1995-11-02 1997-05-13 Sekisui Plastics Co Ltd 容器の製造方法
TW201127714A (en) * 2010-02-05 2011-08-16 Shih-Ying Huang Heat insulation container made of foaming sheet material, method and device for manufacturing the heat insulation container
CN102327025A (zh) * 2011-07-01 2012-01-25 顾晓次郎 泡沫冷热阻隔纸容器
JP6578443B2 (ja) 2015-08-13 2019-09-18 ヒューヴィス コーポレーションHuvis Corporation ポリエステル発泡体とポリエステル樹脂層を含む多層構造の複合体及びその用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119345A (ja) * 1994-10-26 1996-05-14 Sekisui Plastics Co Ltd 成形容器
JP2009190756A (ja) * 2008-02-14 2009-08-27 Dainippon Printing Co Ltd 断熱性容器及び断熱性容器の製造方法
JP2011225641A (ja) * 2010-04-15 2011-11-10 Kaneka Corp ポリスチレン系樹脂押出発泡体およびその製造方法
KR20190012349A (ko) * 2017-07-27 2019-02-11 주식회사 휴비스 스킨층을 포함하는 발포시트, 이의 제조방법 및 이를 포함하는 식품 용기
KR20190025339A (ko) * 2017-09-01 2019-03-11 주식회사 휴비스 폴리에스테르 발포시트를 포함하는 웨이퍼 보드 및 이의 제조방법

Also Published As

Publication number Publication date
JP7404397B2 (ja) 2023-12-25
CN113748072A (zh) 2021-12-03
CN113748072B (zh) 2024-03-08
JP2022530266A (ja) 2022-06-28

Similar Documents

Publication Publication Date Title
WO2017026716A1 (ko) 폴리에스테르 발포체와 폴리에스테르 수지층을 포함하는 다층 구조의 복합체 및 이의 용도
WO2020004744A1 (ko) 가스 베리어층을 포함하는 성형체, 이를 포함하는 포장용기 및 성형체의 제조방법
KR102005292B1 (ko) 스킨층을 포함하는 발포시트, 이의 제조방법 및 이를 포함하는 식품 용기
KR102175970B1 (ko) 인쇄 적성이 향상된 폴리에틸렌 테레프탈레이트 발포 용기 및 이의 제조방법
WO2018062623A1 (ko) 유해 물질 용출량이 저감된 식품용기
WO2020222550A1 (ko) 인쇄 적성 및 단열성이 향상된 용기 및 이의 제조방법
WO2015167135A1 (ko) 식품 포장용 발포 트레이 및 이의 제조방법
KR102160456B1 (ko) 성형성이 우수한 발포시트, 이의 제조방법 및 이를 이용한 식품용기
WO2019124948A1 (ko) 내열성 및 가공성이 우수한 식품용기용 복합시트 및 이의 제조방법
WO2020130610A1 (ko) 가공성이 우수한 복합시트 및 이를 포함하는 포장용기의 제조방법
WO2020138643A1 (ko) 리드필름을 포함하는 포장용기 및 이의 제조방법
WO2021210856A1 (ko) 발포용 폴리에스테르 수지 칩, 이를 이용한 폴리에스테르 발포시트 및 이의 제조방법
KR102160454B1 (ko) 내열성이 우수한 발포시트, 이의 제조방법 및 이를 포함하는 식품용기
WO2020130284A1 (ko) 저융점 폴리에스테르 수지를 포함하는 폴리에스테르 복합체 및 이의 제조방법
WO2020138571A1 (ko) 스킨층을 포함하는 발포시트, 이의 제조방법 및 이를 포함하는 식품용기
JP2002347109A (ja) 成形加工用二軸延伸ポリエステルフィルムおよびその製造方法
WO2020130174A1 (ko) 열성형성이 우수한 발포시트 및 이의 제조방법
JP2711205B2 (ja) 複合発泡ポリエステルシート
WO2020138520A1 (ko) 셀 발현 균일도가 우수한 발포시트 및 이의 제조방법
WO2020005000A1 (ko) 식품 포장용기 및 이의 제조방법
KR20210117496A (ko) 폴리에스테르 발포층을 포함하는 디스플레이 화면 보호재
KR102190657B1 (ko) 탄산칼슘을 포함하는 발포시트, 이의 제조방법 및 이를 포함하는 식품용기
WO2021215697A1 (ko) 마스터배치 조성물 및 이를 이용한 발포시트의 제조방법
WO2022039503A1 (ko) 폴리에스테르 다층 필름 및 그의 제조방법
JP2005146112A (ja) 板紙用貼合せフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021564540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798929

Country of ref document: EP

Kind code of ref document: A1