WO2010128797A2 - 불연 발포성 폴리스티렌 입자 및 그 제조방법, 그리고 이 입자로 제조된 불연성 스티로폴 - Google Patents

불연 발포성 폴리스티렌 입자 및 그 제조방법, 그리고 이 입자로 제조된 불연성 스티로폴 Download PDF

Info

Publication number
WO2010128797A2
WO2010128797A2 PCT/KR2010/002849 KR2010002849W WO2010128797A2 WO 2010128797 A2 WO2010128797 A2 WO 2010128797A2 KR 2010002849 W KR2010002849 W KR 2010002849W WO 2010128797 A2 WO2010128797 A2 WO 2010128797A2
Authority
WO
WIPO (PCT)
Prior art keywords
polystyrene particles
combustible
weight
coated
styropol
Prior art date
Application number
PCT/KR2010/002849
Other languages
English (en)
French (fr)
Other versions
WO2010128797A3 (ko
Inventor
김재천
Original Assignee
Kim Jae-Cheon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Jae-Cheon filed Critical Kim Jae-Cheon
Publication of WO2010128797A2 publication Critical patent/WO2010128797A2/ko
Publication of WO2010128797A3 publication Critical patent/WO2010128797A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/05Forming flame retardant coatings or fire resistant coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Definitions

  • the present invention relates to non-combustible expandable polystyrene particles, a method for producing the same, and a non-combustible styropol made from the particles.
  • Polystyrene foam which is a molded polystyrene foamed polystyrene by the bead method, is widely used as a heat insulating material and a packaging material for thermal insulation of buildings.
  • Styropol has the advantages of being more environmentally friendly, more productive, lighter and more insulated than most petrochemicals, but it is very vulnerable to fire.
  • the expandable polystyrene particles contain 4 to 7 wt% of pentane gas therein, and since 2 to 4 wt% of pentane gas remains inside the styropol particles even after molding by a conventional bead method, they easily ignite and burn.
  • a method of adding inorganic powders and a flame retardant in the styrene polymerization process may be considered, but the desired flame retardant effect may be added within 5% by weight as a characteristic of the styrene polymerization process.
  • conventional methods of producing a flame retardant polystyrene by heating and extruding a mixture of pentane gas, a nonflammable powder, a bromine flame retardant, an antimony oxide, a phosphorus compound, and a carbonate flame retardant in a polystyrene resin are also poor in physical properties of the obtained styropol. And the flame retardant performance is very weak.
  • Korean Patent No. 10-0108656 discloses a method of making dry materials by mixing chlorinated paraffin, antimony oxide, and thermally expandable graphite in an appropriate ratio with polystyrene resin at an appropriate ratio and applying heat of 170-220 ° C. to melt and extrude.
  • Korean Patent No. 10-0878775 Korean Patent No. 10-0927667 by the present inventors. These techniques consisted of coating a non-flammable inorganic powder, which is harmless to the human body, onto the surface of the polymerized expanded polystyrene particles, which enables the production of styropol with high flame retardancy.
  • Korean Patent No. 10-0878775 consists of coating 0.5 to 50% by weight of zinc on foamable polystyrene particles, and then further coating with silicate, and using water-soluble vinyl acetate resin or acrylic resin as an adhesive to coat powder on particles. Insufficient electrodeposition power between the powder to be coated and the polystyrene particles has a disadvantage in that the powder falls.
  • Korean Patent No. 10-0927667 of the inventor.
  • This patent discloses "One or two or more powders selected from metal oxides, nonmetal oxides, metal hydroxides, dried sodium silicate and diatomaceous earth having a particle size of 1 to 50 ⁇ m as a flame retardant in the presence of a binder containing an organic solvent in a flame retardant expandable polystyrene particle. 10 to 60% by weight coated on the outside of the particles ".
  • the present invention is to solve the problems of the prior art by the improved invention of the Korean Patent No. 10-0927667 (hereinafter referred to as "prior art"), excellent workability, and to produce a non-combustible styropol with a low defective rate It is an object to provide expandable polystyrene particles.
  • the foamable polystyrene particles and 10-60% by weight of a non-flammable material powder having a particle size of 1-70 ⁇ m are mixed and sprayed by spraying a mixture of a solvent and water capable of dissolving polystyrene in the state of stirring and foaming.
  • the polystyrene particle surface layer is softened and the non-combustible powder is allowed to penetrate and coat the surface of the soft foamed polystyrene particles.
  • the coated foamed polystyrene particles may be coated with a water-soluble resin, and may be coated with sodium silicate solution to further improve flame retardancy.
  • Non-combustible materials used in the present invention are all non-burning and can be used if the solvent is not reactive, and include metals, metal oxides, metal hydroxides, non-metal inorganic materials, non-metal oxides, non-metal hydroxides, silicates, borate salts, carbonates and the like.
  • non-combustible powder penetrates and coated on the surface of the polystyrene particles by more than 10% by weight.
  • non-combustible powder is used by 16 weight% or more, more preferably 20 weight% or more.
  • a process of additionally coating the coated polystyrene particles with sodium silicate solution is required to give a desired level of non-combustibility.
  • metals usable in the present invention include zinc, aluminum, magnesium, copper nickel, and the like, and metal oxides include iron oxide, ferric trioxide, triiron tetraoxide, aluminum oxide, zinc oxide, magnesium oxide, and the like.
  • metal hydroxides include magnesium hydroxide and aluminum hydroxide.
  • nonmetal oxide include silica sand, boric acid, borax, feldspar and the like, and nonmetal hydroxide includes calcium hydroxide and the like.
  • Other sodium silicate solutions, sodium silicate dried graphite, calcium vermiculite and the like can also be used.
  • the sodium silicate, borate, zinc and the like melt at a temperature of 800 ° C. or lower at a relatively low temperature to form a non-flammable insulating film, and at the same time, act as a flux to perform metal oxides, metal hydroxides, nonmetal inorganic materials, nonmetal oxides, and nonmetal hydroxides.
  • non-combustible powders such as graphite, vermiculite, talc and calcium carbonate induce the action of melting and foaming together.
  • the appropriate amount of the non-combustible material is 10 to 60% by weight, more preferably 16 to 50% by weight, and even more preferably 20 to 40% by weight. The higher the amount of incombustibles used, the higher the incombustibility, but the inherent advantages of Styropol are reduced.
  • the expanded polystyrene particles and the selected non-combustible material powder are introduced, and a solvent mixed with a solvent capable of dissolving polystyrene and water is sprayed and stirred.
  • a solvent in which polystyrene is dissolved may be additionally sprayed.
  • the solvent in which the polystyrene is dissolved is the same as that described in the prior art, and the dissolved polystyrene serves to increase the electrodeposition of the incombustible powder and the expandable polystyrene particles.
  • the expandable polystyrene particles having completed the permeation coating process of the incombustible powders may be additionally coated with a sodium silicate solution (based on a solid content of 30%).
  • the coated particles are first foamed, and the expanded particles are sodium silicate. It may be further coated with a solution.
  • additional coating with sodium silicate solution can achieve the desired level of flame retardancy.
  • the mechanism in which the non-combustible styropol of the present invention exhibits incombustibility or fire resistance is characterized in that the non-combustible material infiltrated and coated on the styropol particle surface layer melts and foams when the flame heats the surface of the styropol, the final product, and forms an incombustible insulating layer. This is because the heat is prevented from being transferred to the gas and at the same time, the oxygen supply is interrupted to prevent combustion. This mechanism prevents the flame from penetrating inside and protects Styropol from the flame.
  • the material for forming the non-combustible insulating film can be variously combined, but considering the cost increase of the product, a combination of a silicon dioxide-containing material and a fluxing material is preferable.
  • silicon dioxide-containing material examples include silica sand, silica, diatomaceous earth, clay, ocher, kaolin, glass powder, pearl rock, perlite, feldspar, sodium feldspar, and carrie feldspar. You may use it.
  • the fluxing agent examples include sodium silicate, boric acid borax, calcium carbonate and zinc.
  • the use ratio of the silicon dioxide-containing material and the material that acts as a flux is suitably in the weight ratio of about 90:10 to 70:30.
  • An example of another combination of materials for forming a non-combustible insulating film is a combination of a silicon dioxide-containing material and a metal.
  • Melting points of magnesium, zinc, aluminum, copper, and the like are within 800 ° C., so that these and silicon dioxide-containing materials are mixed to form a non-flammable insulating film.
  • a material selected from silver, copper and zinc or a mixture thereof as a nonflammable material anti-flammability and antimicrobial properties may be imparted.
  • Silver, copper, zinc and the like are well known as substances which exhibit antimicrobial effects.
  • the method of penetrating and coating the non-combustible material on the surface of the expandable polystyrene particles includes adding 10 to 60% by weight of the non-combustible material powder to the expandable polystyrene particles, sealing the coater, controlling the temperature inside the coater to 50 ° C. or lower, and a speed of 20 to 500 rpm. It is a method of spraying a solvent while stirring.
  • solvents that can be used include all solvents capable of dissolving styrene. However, in consideration of workability, toluene, ethylbenzene, methyl ethyl ketone, and the like are preferable, and more preferably hydrophilic (MEK) methyl ethyl ketone to be.
  • MEK hydrophilic
  • the solvent finely dissolves the surface of the expandable polystyrene particles to make the particle surface layer soften just before the dissolution so that the non-flammable material penetrates into the particle surface and is coated so that the surface layer of the polystyrene particles is excessively dissolved. Not only can they be entangled, but the shape of the particles is impaired and out of the sphere, so the polystyrene solubility of the solvent needs to be properly adjusted.
  • water is mixed in a solvent having a polystyrene solubility in the range of 2 to 98% by weight, preferably 5 to 50% by weight, more preferably 20 to 30% by weight. Way.
  • a solvent having a polystyrene solubility in the range of 2 to 98% by weight, preferably 5 to 50% by weight, more preferably 20 to 30% by weight.
  • the same effect as adding a solvent-water mixture can be obtained by adding water to a stirrer in which the expandable polystyrene particles and the non-combustible powder are stirred, and then adding a solvent.
  • the same effect can be obtained by spraying only the solvent while stirring.
  • Suitable dosage of the solvent in the present invention is 1 to 10% by weight based on the expandable polystyrene particles, preferably 1 to 7% by weight, more preferably 1 to 5% by weight. Even if the input exceeds this range, no further effect can be expected.
  • Styropol made of the above-mentioned expanded polystyrene particles is excellent incombustibility is formed, but penetrates into the surface of the expandable polystyrene particles, due to the effects of the coating of the non-combustible material powder occurs a problem that the flexural strength and compressive strength is slightly lower than the conventional styropol do.
  • the non-combustible powder may penetrate and coat the coated polystyrene particles coated with a water-soluble resin, and the absorption rate of the final product may be lowered by coating the water-soluble resin.
  • water-soluble resin examples include vinyl acetate-based resins, acrylic resins, polyvinyl alcohol-based resins, EVA-based (ethylene vinyl acetate) resins, and the like, and these may be used alone or in combination of two or more thereof. Suitable amounts of use are from 0.5 to 10% by weight, more preferably from 1 to 5% by weight. If it is less than this range, the effect of increasing the compressive strength and flexural strength is insufficient, and even if it exceeds this range does not exhibit any improved effect, the cost increases and workability is deteriorated.
  • the water-soluble resin may be coated on the expandable polystyrene particles before foaming, or may be coated on the first expanded foamable polystyrene particles, but considering the workability, it is preferable to coat the particles before foaming.
  • the coated foamed polystyrene particles may be coated with sodium silicate solution. Since the coating is completed and penetrates into the surface layer of the dried expanded polystyrene particles, the coated non-combustible powders are absorbent, so that the sodium silicate solution is coated while being absorbed.
  • the amount of one coat is 5 to 15% by weight based on a solution of sodium silicate (based on 30% solids). This process can be repeated, and as the repetition is repeated, the incombustibility increases, but the inherent advantages and physical properties of Styropol decrease.
  • the amount of sodium silicate coating is appropriately 10 to 50% by weight.
  • the previous process which is a water-soluble resin coating process, may be mixed and mixed with sodium silicate solution, and the same result may be obtained.
  • phase separation may occur as time passes after mixing. It is desirable to put it into work immediately.
  • a known organic flame retardant may be mixed with a non-combustible powder to penetrate and coat the surface of the expandable polystyrene particles, or may be mixed with a water-soluble resin and coated on the particles.
  • Flame retardants which can be used are, for example, ammonium polyphosphate, hexabromo cyclododecane, antimony oxide, and the like, and an appropriate amount of flame retardant is 0.1 to 10% by weight, more preferably 1 to 5, based on the expandable polystyrene particles. Weight percent range.
  • the present invention solves the problems of the present inventors Korean Patent No. 10-0878775 and the present inventors Korean Patent No. 10-0927667 (prior art), nonflammability, impact strength, flexural strength is extremely excellent, absorption rate Styropol within 0.7 (g / 100 cm 2) can be obtained.
  • the obtained expanded polystyrene particles were foamed 70 times and molded by the bead method.
  • the produced styropol was silver-colored and flame retardant was formed so that it was hard to catch fire. 2271
  • the flame retardant material standards of ISO 5660-1 combustion performance test were not met.
  • the obtained expandable polystyrene particles were foamed 70 times and molded by the bead method.
  • the color of the molded styropol was silvery and the flame retardancy was formed so that it was hard to catch fire, but the flame retardancy test was carried out by attaching 0.5 mm thick iron plate on both sides, and according to the KSF 2271 ISO 5660-1 fire retardant material standard It was not enough.
  • Example 6 The same procedure as in Example 6 was performed except that the magnesium oxide was changed to aluminum oxide.
  • Styropol made from the expanded foamed polystyrene particles, was light silver in color, and was tested for flame retardancy by attaching a 0.5 mm thick iron plate on both sides, and was in compliance with the semi-combustible material standard of KSF 2271 ISO 5660-1 Combustion Performance Test. Physical properties were similar to those of Example 6.
  • Example 6 The same procedure as in Example 6 was performed except that the magnesium oxide was changed to zinc oxide.
  • Styropol made of the finished foamed polystyrene particles, was silvery in color, and was tested for flame retardancy by attaching a 0.5 mm thick iron plate on both sides, and met the semi-combustible material standard of KSF 2271 ISO 5660-1 combustion performance test. was similar to Example 6.
  • Example 6 The same procedure as in Example 6 was performed except that the magnesium oxide was changed to silica sand.
  • Styropol made of the finished foamed polystyrene particles, was silvery in color, and was tested for flame retardancy by attaching a 0.5 mm thick iron plate on both sides, and met the semi-combustible material standard of KSF 2271 ISO 5660-1 combustion performance test.
  • KSF 2271 ISO 5660-1 combustion performance test was similar to Example 6.
  • Example 6 The same procedure as in Example 6 was performed except that the magnesium oxide was changed to magnesium hydroxide.
  • Styropol made of the finished foamed polystyrene particles, was silvery in color, and was tested for flame retardancy by attaching a 0.5 mm thick iron plate on both sides, and met the semi-combustible material standard of KSF 2271 ISO 5660-1 combustion performance test. was similar to Example 6.
  • Example 6 The same procedure as in Example 6 was performed except that the magnesium oxide was changed to aluminum hydroxide.
  • Styropol made of the finished foamed polystyrene particles, was silvery in color, and was tested for flame retardancy by attaching a 0.5 mm thick iron plate on both sides, and met the semi-combustible material standard of KSF 2271 ISO 5660-1 combustion performance test. was similar to Example 6.
  • Example 6 The same procedure as in Example 6 was performed except that the magnesium oxide was changed to calcium hydroxide.
  • Styropol made from the expanded foamed polystyrene particles, was light silver in color, and was tested for flame retardancy by attaching a 0.5 mm thick iron plate on both sides, and was in compliance with the semi-combustible material standard of KSF 2271 ISO 5660-1 Combustion Performance Test. Physical properties were similar to those of Example 6.
  • Example 6 The same procedure as in Example 6 was performed except that the magnesium oxide was changed to calcium carbonate.
  • Styropol made from the expanded foamed polystyrene particles, was light silver in color, and was tested for flame retardancy by attaching a 0.5 mm thick iron plate on both sides, and was in compliance with the semi-combustible material standard of KSF 2271 ISO 5660-1 Combustion Performance Test. Physical properties were similar to those of Example 6.
  • Example 6 The same procedure as in Example 6 was performed except that the magnesium oxide was changed to talc.
  • the styropol made from the expanded foamed polystyrene particles was silvery in color, and the flame retardancy test was carried out by attaching a 0.5 mm thick iron plate on both sides, and it met the semi-combustible material standard of KSF 2271 ISO 5660-1 combustion performance test.
  • Example 6 The same procedure as in Example 6 was performed except that the magnesium oxide was changed to talc.
  • the styropol made from the expanded foamed polystyrene particles was silvery in color, and the flame retardancy test was carried out by attaching a 0.5 mm thick iron plate on both sides, and it met the semi-combustible material standard of KSF 2271 ISO 5660-1 combustion performance test. was similar to Example 6.
  • Example 6 The same procedure as in Example 6 was performed except that "Magnesium Oxide 60Kg” was changed to "Aluminum Powder 30Kg.”
  • the styropol made of the finished foamed polystyrene particles was light silver in color, and the flame retardancy test was carried out by attaching a 0.5 mm thick iron plate on both sides, and it was suitable for the semi-combustible material standard of KSF 2271 ISO 5660-1 combustion performance test. .
  • Example 6 The same procedure as in Example 6 was carried out, but "Magnesium oxide 60Kg” was changed to "Diatomaceous earth powder 60Kg".
  • Styropol made from the expanded foamed polystyrene particles, was light silver in color, and was tested for flame retardancy by attaching a 0.5 mm thick iron plate on both sides, and was in compliance with the semi-combustible material standard of KSF 2271 ISO 5660-1 Combustion Performance Test. Physical properties were similar to those of Example 6.
  • Example 6 The same procedure as in Example 6 was carried out, but "Magnesium oxide 60Kg” was changed to "Tel vermiculite powder 60Kg".
  • Styropol made from the expanded foamed polystyrene particles, was light silver in color, and was tested for flame retardancy by attaching a 0.5 mm thick iron plate on both sides, and was in compliance with the semi-combustible material standard of KSF 2271 ISO 5660-1 Combustion Performance Test. Physical properties were similar to those of Example 6.
  • Example 6 The same procedure as in Example 6 was carried out, but "Magnesium Oxide 60Kg” was changed to "clay powder 60Kg".
  • Styropol made from the expanded foamed polystyrene particles, was light silver in color, and was tested for flame retardancy by attaching a 0.5 mm thick iron plate on both sides, and was in compliance with the semi-combustible material standard of KSF 2271 ISO 5660-1 Combustion Performance Test. Physical properties were similar to those of Example 6.
  • Example 6 The same procedure as in Example 6 was performed except that "Magnesium Oxide 60Kg” was changed to "Ocher Powder 60Kg.”
  • Styropol made from the expanded foamed polystyrene particles, was light silver in color, and was tested for flame retardancy by attaching a 0.5 mm thick iron plate on both sides, and was in compliance with the semi-combustible material standard of KSF 2271 ISO 5660-1 Combustion Performance Test. Physical properties were similar to those of Example 6.
  • Example 6 The same procedure as in Example 6 was carried out, but "Magnesium Oxide 60Kg” was changed to "Kolin Powder 60Kg".
  • Styropol made from the expanded foamed polystyrene particles, was light silver in color, and was tested for flame retardancy by attaching a 0.5 mm thick iron plate on both sides, and was in compliance with the semi-combustible material standard of KSF 2271 ISO 5660-1 Combustion Performance Test. Physical properties were similar to those of Example 6.
  • Example 6 The same procedure as in Example 6 was performed except that "Magnesium Oxide 60Kg” was changed to "Glass Powder 60Kg.”
  • Styropol made from the expanded foamed polystyrene particles, was light silver in color, and was tested for flame retardancy by attaching a 0.5 mm thick iron plate on both sides, and was in compliance with the semi-combustible material standard of KSF 2271 ISO 5660-1 Combustion Performance Test. Physical properties were similar to those of Example 6.
  • Example 6 The same procedure as in Example 6 was performed except that "Magnesium Oxide 60Kg” was changed to "Pearl Rock Powder 60Kg.”
  • the styropol made from the expanded foamed polystyrene particles was light silver in color, and the flame retardancy test was carried out by attaching a 0.5 mm thick iron plate on both sides, and it met the semi-combustible material standard of KSF 2271 ISO 5660-1 combustion performance test. Physical properties were similar to those of Example 6.
  • Example 6 The same procedure as in Example 6 was performed except that "Magnesium Oxide 60Kg” was changed to "Perlite Powder 60Kg.” Styropol, made from the expanded foamed polystyrene particles, was light silver in color, and was tested for flame retardancy by attaching a 0.5 mm thick iron plate on both sides, and was in compliance with the semi-combustible material standard of KSF 2271 ISO 5660-1 Combustion Performance Test. Physical properties were similar to those of Example 6.
  • EVA ethylene vinyl acetate
  • Styropol prepared from the expanded foamed polystyrene particles significantly increased the adhesion and formability while maintaining the flame retardant performance and thermal insulation performance.
  • the physical properties of the flexural strength of 15 ⁇ 17 (N / cm2), compressive strength of 13 ⁇ 17 (N / cm2) at the density of 15kg / m3 of molded products were found to be the flexural strength of 27 ⁇ 34 (N / cm2) N / cm 2), and the water absorption was also reduced, so that the absorption rate of all the samples was less than 0.6 (g / 100 cm 2).
  • Example 25 The same procedure as in Example 25 was carried out except that the water-soluble resin was selected from one of "vinyl acetate emulsion” and “acrylic emulsion resin” instead of “EVA”, but the physical properties of the styropol obtained in Example 25 were obtained. Similar to
  • Example 25 The same procedure as in Example 25 was carried out, except that EVA (ethylene vinyl acetate) resin "vinyl acetate emulsion resin", “acrylic emulsion resin”, and “PVA (polyvinyl alcohol) resin” were mixed and used in the same ratio. Physical properties were similar to the styropol obtained in Example 25.
  • EVA ethylene vinyl acetate
  • VAV polyvinyl alcohol
  • Example 25 The same procedure as in Example 25 was carried out, except that 0.5 wt% of hexabromocyclododecane was added to the water-soluble resin based on the expandable polystyrene particles.
  • the physical properties of the obtained molded body were similar to those of Example 25, and the self-plasticity was increased.
  • the expandable polystyrene particles obtained in Examples 1 to 32 were coated with 300 Kg of sodium silicate solution (KSM 1415) having a solid content of 30%.
  • KSM 1415 sodium silicate solution
  • the flame retardant performance of the styropol in which the obtained expandable polystyrene particles were molded increased significantly.
  • Example 25 The same procedure as in Example 25 was carried out except that the water-soluble resin was mixed with 300 Kg of sodium silicate solution (KSM 1415) and coated five times.
  • KSM 1415 sodium silicate solution
  • the physical properties of the obtained styropol were similar to those of Example 33.
  • the foamed polystyrene particles obtained in Examples 1 to 32 were foamed 70 times by the bead method, and then the foamed particles were coated with 300 Kg of sodium silicate solution (KSM 1415), dried and cured to form styropol. It was confirmed that it had the same physical properties as the styropol obtained by.
  • KSM 1415 sodium silicate solution
  • Inflammable materials obtained in Comparative Examples 1 and 2 were coated with the infiltrated and coated expandable polystyrene particles with sodium silicate solution in the same manner as in Example 33.
  • Styropol which was foamed and molded 70 times of expanded polystyrene particles, was light silver in color, and was tested for flame retardancy by attaching 0.5 mm thick steel plate on both sides, based on KSF 2271 ISO 5660-1 flame retardant material. Suitable for.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

본 발명은 불연 발포성 폴리스티렌 입자 및 그 제조방법, 그리고 이 입자로 제조된 불연성 스티로폴에 관한 것으로, 본 발명의 발포성 폴리스티렌 입자의 제조방법은, 입경 1~70μm인 불연성 물질 분말 10~60중량%를 발포성 폴리스티렌 입자에 첨가하고 교반하면서, 폴리스티렌의 용해성이 있는 용제와 물의 혼합물을 용제를 기준으로 0.5~10중량% 분사하여 발포성 폴리스티렌 입자의 표면층이 용해직전의 연화상태가 되도록 하여 불연성 물질 분말들이 입자의 표면층에 침투, 코팅되도록 하는 것으로 구성된다. 본 발명에 의해서 불연성, 충격강도, 굴곡강도가 극히 우수하며, 흡수율이 0.7(g/100cm2) 이내인 스티로폴을 얻을 수 있게 되었으며, 또한 불연성 스티로폴의 대량생산이 가능하게 되었다.

Description

불연 발포성 폴리스티렌 입자 및 그 제조방법, 그리고 이 입자로 제조된 불연성 스티로폴
본 발명은 불연 발포성 폴리스티렌 입자 및 그 제조방법, 그리고 이 입자로 제조된 불연성 스티로폴에 관한 것이다.
스티렌을 중합한 발포성 폴리스티렌을 비드법으로 성형한 폴리스티렌 발포체(스티로폴)는 건축물의 단열을 위한 단열재와 포장재로 널리 사용되고 있다.
스티로폴은 대부분의 석유화학 제품과 비교하여 친환경적이며 생산성과 경량성 및 단열성이 우수한 장점이 있지만 화재에 매우 취약한 단점이 있다. 발포성 폴리스티렌 입자는 내부에 펜탄 가스를 4~7중량% 포함하고 있으며 통상의 비드법으로 성형한 후에도 스티로폴 입자 내부에 펜탄가스가 2~4중량% 잔류하고 있으므로 스티렌과 작용하여 쉽게 발화하고 연소한다.
이러한 스티로폴의 연소성을 감소시키기 위한 방법으로 발포성 폴리스티렌 중합과정에서 브롬계 화합물 등과 같은 난연제를 포함시켜 자소성을 유도하는 기술이 상용화되고 있으나 화재 발생시 난연 또는 불연효과는 전혀 발휘할 수가 없다.
난연 성능을 가진 발포성 폴리스티렌 입자를 제조하는 방법으로서 스티렌 중합과정에서 무기질 분말들과 난연제를 첨가하는 방법도 고려될 수 있으나, 스티렌 중합 공정의 특성으로 5중량% 이내로 첨가할 수 있는 정도이므로 원하는 난연 효과를 기대할 수가 없으며, 폴리스티렌 수지에 펜탄 가스와 불연성 분말, 브롬계 난연제, 안티몬산화물, 인계화합물, 탄산계 난연제를 혼합하여 가열 압출해서 난연 발포성 폴리스티렌을 제조하는 종래의 방법들도 얻어진 스티로폴의 물성이 열악하며 난연성능이 매우 미약한 실정이다.
대한민국특허 제10-0108656호는 폴리스티렌계 수지에 염소화 파라핀, 산화안티몬, 열팽창성 흑연을 적정비율로 혼합하고 170~220℃의 열을 가해 용융하고 압출하여 건자재를 만드는 방법을 제시하고 있으나 제품의 난연성능이 부족하며, 대한민국 공개특허 제10-2006-0038862 호에서는 멜라민, 폴리프로필렌수지, 스티렌계 수지에, 브롬계 화합물, 안티몬 산화물, 수산화마그네슘, 탄산칼슘, 발포제를 첨가 혼합해서 170~220℃의 온도로 용융 혼합하며 압출해서 발포한 건자재를 만드는 방법을 제시하고 있으나, 생산성과 얻어진 제품의 난연성능이 부족한 단점이 있다.
이러한 종래기술들의 문제점을 해결한 기술로, 본 발명자에 의한 한국특허 제10-0878775호와 한국특허 제10-0927667호를 들 수 있다. 이 기술들은 인체에 무해한 불연성 무기물질 분말을 중합을 완료한 발포성 폴리스티렌 입자의 표면에 코팅시키는 것으로 구성되며, 이 기술들에 의하여 높은 난연 성능을 가진 스티로폴의 제조가 가능하게 되었다.
한국특허 제10-0878775호는 발포성 폴리스티렌 입자에 아연을 0.5~50중량%, 코팅한 후 규산염으로 추가 코팅하는 것으로 구성되며 입자에 분말을 코팅하는 접착제로서 수용성 초산비닐계 수지 또는 아크릴계 수지를 사용하므로 코팅되는 분말과 폴리스티렌 입자간 전착력이 부족하여 분말이 떨어지는 단점이 있었다.
이러한 문제점을 해결한 것이 본 발명자의 한국특허 제10-0927667호이다. 이 특허는 "난연성 발포성 폴리스티렌 입자에 있어서, 유기용제를 포함한 바인더의 존재 하에, 난연제로 입경 1~50um인 금속산화물, 비금속 산화물, 금속 수산화물, 규산나트륨 건조물 및 규조토 중에서 선택된 1종 또는 2종 이상의 분말이 입자의 외부에 10~ 60중량% 코팅된 것"으로 구성된다.
이 특허에 의하여 상기 한국특허 제10-0878775호의 문제점이 해결됨과 동시에 매우 우수한 불연 성능을 가진 스티로폴이 얻어지게 되었으나, 불연성 분말들의 코팅 공정에서 폴리스티렌 입자 표면이 유기용제에 과도하게 녹아서 훼손되고 폴리스티렌 입자들끼리 달라붙어서 덩어리지는 문제점이 있었다.
이러한 현상이 발생되면 생산성이 저하되고 최종 제품의 품질이 불규칙하게 된다. 또한, 폴리스티렌 입자의 코팅 공정의 교반 과정에서 입자들 간의 마찰로 정전기와 마찰열이 발생하여 분사되는 유기 용제가 폭발할 수 있는 위험성과 함께, 작업환경이 열악하게 된다는 점도 문제점으로 지적할 수 있다. 이 외에 이 특허에 의하여 얻어진 스티로폴의 충격강도와 굴곡강도가 다소 부족하며, 흡수율이 안정적이지 못하다는 문제점도 있었다.
본 발명은 상기 한국 특허 제10-0927667호(이하, "선행기술"로 칭함)의 개량발명으로 선행기술의 문제점을 해결하기 위한 것이며, 작업성이 우수하고, 불량률이 저하된 불연성 스티로폴을 제조할 수 있는 발포성 폴리스티렌 입자를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 충격강도 및 굴곡강도가 우수하고 흡수율이 낮은 불연성 스티로폴을 제공하는 것이다. 본 발명의 또 다른 목적은 경제적이며 물성이 안정적인 불연성 스티로폴을 제공하는 것이다.
본 발명의 불연 발포성 폴리스티렌 입자의 제조방법은, 발포성 폴리스티렌 입자와 입경 1-70μm의 불연성 물질 분말 10~60중량%를 혼합하고 교반하는 상태에서 폴리스티렌을 용해시킬 수 있는 용제와 물의 혼합물을 분사하여 발포성 폴리스티렌 입자표면층을 연화상태로 만들고 불연성 물질 분말이 연화상태의 발포성 폴리스티렌 입자의 표면에 침투, 코팅되도록 하는 것으로 구성된다.
최종 제품인 스티로폴의 충격강도와 굴곡강도를 향상시키고, 흡수율을 안정화시키기 위해서 코팅 완료된 발포성 폴리스티렌 입자에 수용성 수지로 코팅을 할 수 있으며, 난연성을 더욱 향상시키기 위해서는 규산 나트륨 용액으로 코팅할 수도 있다.
이하, 본 발명을 상세히 설명한다.
본 발명에서 사용되는 불연성 물질은 불에 타지 않으며 용매에 반응성이 없으면 모두 사용가능하며, 금속, 금속산화물, 금속 수산화물, 비금속 무기물질, 비금속 산화물, 비금속 수산화물, 규산염, 붕산염, 탄산염 등을 포함한다.
본 발명에서는 브롬계 난연제나 인계 난연제, 탄산계 난연제 등을 5중량% 이내 사용하는 종래의 난연 발포성 폴리스티렌 입자와는 달리 불연성 분말이 10중량% 이상 폴리스티렌 입자의 표면에 침투, 코팅된다. 충분한 불연성이 발휘되도록 하기 위해서는 불연성 분말이 16중량% 이상, 더욱 좋기로는 20중량% 이상 사용되는 것이 바람직하다. 불연성 분말이 10~16중량%의 범위에서 사용된 경우에는 원하는 수준의 불연성을 부여하기 위하여 코팅이 완료된 폴리스티렌 입자를 규산소다 용액으로 추가로 코팅하는 공정이 필요하다.
본 발명에서 사용가능한 금속으로는 아연, 알루미늄, 마그네슘, 동 니켈 등을 들 수 있으며, 금속산화물로는 산화철, 3산화2철, 4산화3철, 산화알루미늄, 산화아연, 산화마그네슘 등을 들 수 있고, 금속수산화물로는 수산화마그네슘, 수산화알루미늄 등을 들 수 있다. 비금속 산화물로는 규사, 붕산, 붕사 ,장석 등을, 비금속 수산화물은 수산화칼슘 등을 들 수 있다. 그 외 규산나트륨 용액과 규산나트륨 건조물 흑연, 질석 탄산칼슘 등도 사용가능하다.
상기 규산나트륨과 붕산염, 아연 등은 비교적 저온인 800℃ 이하의 온도에서 용융하여 불연성 단열막을 형성하는 작용을 함과 동시에, 융제 작용을 하여 금속산화물, 금속 수산화물, 비금속 무기물질, 비금속 산화물, 비금속 수산화물과 흑연, 질석, 탈크, 탄산칼슘 등의 불연성 분말이 함께 용융, 발포하는 작용을 유도한다. 본 발명에서 상기 불연성 물질의 적절한 사용량은 10~60중량%이며, 더욱 바람직한 사용량은 16~50중량%, 더 더욱 바람직한 사용량은 20~40중량%이다. 불연성 물질의 사용량이 많을수록 불연성능은 상승하게 되지만, 스티로폴 고유의 장점은 감소하게 된다.
발포성 폴리스티렌 입자표면층에 선택된 불연성 물질을 침투 코팅하는 공정에서는 발포성 폴리스티렌 입자와 선택된 불연성 물질 분말을 투입하면서 동시에 폴리스티렌을 용해시킬 수 있는 용제와 물이 혼합된 용매를 분사하고 교반한다.
불연성 물질이 10중량% 이상 침투, 코팅되면 발포성 폴리스티렌 입자 표면층이 용제에 직접 접촉하지 않으므로 코팅 효율이 저하하게 되는데, 이 문제점을 해소하기 위하여 폴리스티렌을 용해시킨 용제를 추가적으로 분사할 수도 있다. 폴리스티렌을 용해시킨 용제는 선행기술에 기재된 것과 동일한 것이며, 용해된 폴리스티렌이 불연성 물질 분말과 발포성 폴리스티렌 입자와의 전착을 증가시켜주는 작용을 한다.
본 발명에서는 불연성 물질 분말들의 침투 코팅 공정을 완료한 발포성 폴리스티렌 입자를 규산나트륨 용액(고형분 30% 기준)으로 추가로 코팅할 수도 있으며, 코팅이 완료된 입자를 1차 발포하고, 이 발포입자를 규산나트륨 용액으로 추가 코팅할 수도 있다. 불연성 물질 분말이 10~16중량%의 범위에서 사용된 경우에는 규산나트륨 용액으로 추가 코팅을 하여야만 원하는 수준의 난연성을 얻을 수 있다.
사용된 불연성 물질 분말이 40중량% 이상 사용되는 경우에는 불연성능을 넘어서 내화성이 발휘되기 시작한다.
본 발명의 불연성 스티로폴이 불연성 또는 내화성을 발휘하는 메카니즘은, 화염이 최종 제품인 스티로폴의 표면을 가열할 때 스티로폴 입자표면층에 침투 코팅된 불연성 물질이 용융, 발포하고, 불연성의 단열층을 형성하면서 내부의 스티로폴에 열기가 전달되지 않도록 함과 동시에, 산소 공급을 차단하여 연소를 방해하기 때문이다. 이러한 메커니즘으로 화염이 내부로 침투하지 못하고 스티로폴은 화염으로부터 보호된다.
불연 단열성의 피막을 형성하기 위한 물질은 다양한 조합이 가능하지만 제품의 원가 상승 문제를 고려한다면, 이산화규소 함유 물질과 융제 작용을 하는 물질의 조합이 바람직하다.
이산화규소 함유물질로는, 규사, 규석, 규조토, 점토, 황토, 고령토, 유리분말, 진주암, 퍼라이트, 장석, 나트륨 장석, 카리 장석 등을 대표적으로 들 수 있으며 1종 단독 또는 2종 이상을 혼합하여 사용하여도 무방하다. 융제 작용을 하는 물질로는 예를 들어서 규산나트륨, 붕산 붕사, 탄산칼슘, 아연 등이 있다. 이산화규소 함유물질과 융제 작용을 하는 물질의 사용비율은 무게비로 90 : 10 내지 70 : 30 정도가 적절하다.
불연 단열성 피막을 형성하기 위한 물질의 다른 조합의 예로는 이산화 규소 함유물질과 금속의 조합을 들 수 있다.
마그네슘, 아연, 알루미늄, 구리 등의 용융점은 800℃ 이내이므로 이들과 이산화규소 함유물질이 혼합되어 사용되면 불연 단열성의 피막을 형성할 수 있다. 불연성 물질로 은, 구리, 아연 중 선택된 물질 또는 이들의 혼합물을 포함시키는 경우에는 난연성과 아울러, 항균성을 부여할 수도 있다. 은, 구리, 아연 등은 항균효과를 발휘하는 물질로 잘 알려져 있다.
불연성 물질을 발포성 폴리스티렌 입자의 표면에 침투 및 코팅시키는 방법은, 발포성 폴리스티렌 입자에 불연성 물질 분말을 10~60중량% 가하고 코팅기를 밀폐하고 코팅기 내부 온도를 50℃ 이하로 조절하며, 20~500rpm의 속도로 교반하면서 용제를 분사하는 방법이다.
불연성 물질의 사용량이 상기와 같이 제한되는 이유는, 이 범위 미만의 경우에는 원하는 수준의 불연성을 얻기 어렵고, 이 범위를 초과하여 사용하더라도 더 이상의 불연성 향상 효과는 없기 때문이다.
코팅기의 회전수는 20~500rpm으로 3~30분간 교반하는 것이 적절하며, 용제는 일정량을 연속적으로 분사하여도 가능하고 단속적으로 분사하는 것도 가능하다. 사용가능한 용제는 스티렌을 녹일 수 있는 용매는 모두 사용가능하지만, 작업성 등을 고려하면 톨루엔, 에틸벤젠, 메틸에틸케톤 등의 사용이 바람직하며, 더 바람직하게는 친수성이 좋은 (MEK) 메틸에틸케톤이다.
본 발명에서 용제는 발포성 폴리스티렌 입자의 표면을 미세하게 용해시켜 입자 표면층을 용해 직전의 연화 상태로 만들어 불연성 물질이 입자 표면에 침투하면서 코팅되도록 하는 역할을 하므로 폴리스티렌 입자의 표면층이 과도하게 용해되면 폴리스티렌 입자들이 엉겨붙는 현상이 발생할 수 있을 뿐만 아니라, 입자의 형상이 훼손되고 구형에서 벗어나게 되므로 용제의 폴리스티렌 용해성을 적절히 조절할 필요가 있다.
용제의 폴리스티렌 용해성을 조절하는 방법으로는, 폴리스티렌 용해성이 있는 용제에 물을 2~98중량% 범위에서, 바람직하기로는 5~50중량%, 더 바람직하게는 20~30중량%의 비율로 혼합하는 방법이다. 용제와 물이 혼합되는 비율을 조절함에 따라서 폴리스티렌 용해도를 조절하고 용제의 급격한 기화에 의한 화재의 위험성을 크게 줄일 수 있을 뿐만 아니라, 작업성을 향상시키고 불량률을 줄일 수 있으며 정전기 발생도 감소시킬 수 있다.
발포성 폴리스티렌 입자와 불연성 물질 분말이 교반되고 있는 교반기에 물을 가한 다음 용제를 투입하여도 용제-물의 혼합물을 투입하는 것과 동일한 효과를 얻을 수 있으며, 발포성 폴리스티렌 입자에 물을 먼저 분사한 후 분말을 투입하고 교반하면서 용제만 분사하여도 동일한 효과를 얻을 수 있다. 본 발명에서 용제의 적절한 투입량은 발포성 폴리스티렌 입자를 기준으로 1~10중량%이며, 바람직하게는 1~7중량%, 더 바람직하게는 1~5중량%이다. 이 범위를 초과하여 투입하더라도 더 이상의 효과는 기대할 수 없다.
상기와 같이 제조된 발포성 폴리스티렌 입자로 제조된 스티로폴은 우수한 불연성이 형성되지만 발포성 폴리스티렌 입자 표면에 침투, 코팅된 불연성 물질 분말들의 영향으로 통상의 스티로폴에 비하여 굴곡강도와 압축강도가 다소 저하되는 문제점이 발생한다. 본 발명에서는 이러한 문제점을 해결하기 위한 방법으로 불연성 물질 분말이 침투, 코팅된 발포성 폴리스티렌 입자를 수용성 수지로 코팅할 수 있으며, 수용성 수지의 코팅에 의하여 최종 제품의 흡수율도 낮출 수 있다.
사용 가능한 수용성 수지는 예를 들어서 초산비닐계 수지, 아크릴계 수지, 폴리비닐알콜계 수지, EVA계(에틸렌 비닐 아세테이트) 수지 등을 들 수 있으며, 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다. 적절한 사용량은 0.5~10중량%, 더욱 바람직하기로는 1~5중량%이다. 이 범위 미만의 경우에는 압축강도와 굴곡강도가 상승하는 효과가 부족하며, 이 범위를 초과하더라도 더 이상의 향상된 효과를 발휘하지 않음과 동시에 원가가 상승하고 작업성이 저하되는 문제점이 발생된다.
수용성 수지는 발포 전의 발포성 폴리스티렌 입자에 코팅할 수도 있고, 1차 발포된 발포성 폴리스티렌 입자에 코팅할 수도 있지만 작업성을 고려하면, 발포되기 전의 입자에 코팅하는 것이 바람직하다.
최종제품인 스티로폴에 불연성을 더 부여하기 위해서는 코팅이 완료된 발포성 폴리스티렌 입자를 규산나트륨 용액으로 코팅할 수 있다. 코팅이 완료되고 건조된 발포성 폴리스티렌 입자의 표면층에 침투, 코팅된 불연성 물질 분말들은 흡수성이 있으므로 규산나트륨 용액은 흡수되면서 코팅된다. 1회 코팅량은 규산소다(고형분 30% 기준) 용액을 기준으로 5~15중량%이다. 이러한 과정을 반복할 수 있으며 반복할수록 불연성능은 증가하지만 스티로폴 고유의 장점과 물성은 감소된다. 규산나트륨 코팅량은 10~50중량%가 적절하다.
앞의 공정인 수용성 수지 코팅 공정을 규산나트륨 용액과 혼합하여 동시에 실행 할 수도 있으며, 동일한 결과를 얻을 수 있지만 두 성분은 물성과 비중 차이가 있으므로 혼합 후 시간이 경과할수록 상 분리 현상이 발생 되므로 교반하며 즉시 작업에 투입하는 것이 바람직하다.
최종제품인 스티로폴에 자소성을 더 부여하기 위해서는 공지의 유기 난연제를 불연성 분말과 혼합하여 발포성 폴리스티렌 입자 표면에 침투 코팅할 수 있으며, 수용성 수지와 혼합하여 입자에 코팅시킬 수도 있다. 사용가능한 난연제는 예를 들면, 적인, 암모늄 폴리포스페이트, 헥사브로모 시클로도데칸, 안티몬산화물 등이며, 난연제의 적절한 사용량은 발포성 폴리스티렌 입자를 기준으로 0.1~10중량%, 보다 바람직하기로는 1~5중량% 범위이다.
본 발명에 의해서 본 발명자의 한국특허 제10-0878775호와 본 발명자의 한국특허 제10-0927667호(선행기술)의 제반 문제점들을 해결하였으며, 불연성, 충격강도, 굴곡강도가 극히 우수하며, 흡수율이 0.7(g/100cm2) 이내인 스티로폴을 얻을 수 있게 되었다.
이외에, 본 발명에 의하여 고단열성과 항균성 및 불연성을 동시에 구비한 스티로폴을 얻을 수 있으며, 그동안 불가능의 영역으로 여겨져 왔던 불연성 스티로폴의 대량생산이 가능하게 되었다.
(비교예 1)
발포성 폴리스티렌 입자(SH 에너지화학, SE 2000) 600kg을 진공흡입 방식으로 자동 계량장치가 설치된 호퍼에 이송하여 내부가 발수성 실리콘 고무로 코팅된 수직 원통형 코팅기에 투입하면서 입경 40μm 아연분말 30kg과 붕사 80Kg을 진공 진공흡입 방식으로 자동 계량장치가 설치된 호퍼에 이송하여 코팅기에 투입하였다.
코팅기를 밀폐하고, 코팅기 외부에 냉각수를 순환시켜 코팅기 내부 온도를 50℃도 이하로 유지하면서, 발포성 폴리스티렌을 기준으로 물 20%, MEK(Methyl-ethyl-keton) 80%를 혼합한 용액 4중량%를 분사하면서, 150 rpm의 속도로 5분간 교반하였다. 교반 완료 후, 코팅기의 상단부를 개방하고 수분이 제거된 50℃ 이하의 공기를 분사하면서 건조하였다.
건조과정에서 기화 배출되는 수분과 용제는 회수하였고, 아연과 붕사가 침투, 코팅된 발포성 폴리스티렌 입자를 코팅기에서 배출하여 다시 건조기에 투입하여 50℃ 이하의 온도로 건조, 양생하였다.
얻어진 발포성폴리스티렌 입자를 70배 발포하고 비드법으로 성형하였다 제조된 스티로폴은 색상이 은빛이었고 불이 잘 붙지 않을 정도의 난연성이 형성되었으나 양면에 0.5mm 두께의 철판을 부착하여 난연성을 시험한 결과, KSF 2271 ISO 5660-1 연소성능시험의 난연재료기준에는 미달하였다.
(비교예 2)
발포성 폴리스티렌 입자(SH 에너지화학 SE 2000) 600kg을 진공흡입 방식으로 자동 계량장치가 설치된 호퍼에 이송하여 내부가 발수성 실리콘 고무로 코팅된 수직 원통형 코팅기에 투입하면서 입경 40μm 마그네슘 분말 30kg과 붕사 80Kg을 진공 진공흡입 방식으로 자동 계량장치가 설치된 호퍼에 이송하여 코팅기에 투입하고 코팅기를 밀폐하고 교반하였고 이하 비교예 1과 동일하게 시행하였다.
얻어진 발포성폴리스티렌 입자를 70배 발포하고 비드법으로 성형하였다. 성형된 스티로폴의 색상은 은빛이었고, 불이 잘 붙지 않을 정도의 난연성이 형성되었으나 양면에 0.5mm 두께의 철판을 부착하여 난연성을 시험한 결과, KSF 2271 ISO 5660-1 연소성능시험의 난연재료기준에는 미달하였다.
(실시예 1)
비교예 1과 동일하게 공정을 시행하되 장석 180Kg을 추가 투입하여 침투, 코팅시켰다. 완성된 발포성 폴리스티렌 입자를 70배로 발포하고 성형한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성을 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였다.
(실시예 2)
비교예 1과 동일하게 시행하되, 카리장석 180Kg을 추가하여 침투, 코팅시켰다. 완성된 발포성 폴리스티렌 입자를 70배로 발포하고 성형한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연 재료기준에 적합하였고 기타 물성은 실시예 1과 유사하였다.
(실시예 3)
비교예 1과 동일하게 시행하되 나트륨장석 180Kg을 추가하여 침투, 코팅시켰다. 완성된 발포성 폴리스티렌 입자를 70배로 발포하고 성형한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 (준불연 재료,수정)기준에 적합하였고 기타 물성은 실시예 2와 유사하였다.
(실시예 4)
비교예 1과 동일하게 시행하되 카리장석 120Kg과 규산나트륨 분말 60Kg을 추가하여 침투, 코팅시켰다. 완성된 발포성 폴리스티렌 입자를 70배로 발포하고 성형한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm의 철판을 부착하여 난연성을 시험한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연 재료기준에 적합하였다.
(실시예 5)
실시예 4와 동일하게 시행하되, "카리장석 120Kg"을 "카리장석 60Kg과 산화철 60Kg"으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴 양면에 0.5mm의 철판을 부착하여 난연성을 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연 재료기준에 적합하였고 물성은 실시예 4와 유사하였다.
(실시예 6)
실시예 4와 동일하게 시행하되 "카리장석 120Kg"을 "카리장석 60Kg 및 산화마그네슘 60Kg"으로 변경시켰다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연 재료기준에 적합하였고 기타 물성은 실시예 4와 유사하였다.
(실시예 7)
실시예 6과 동일하게 시행하되 산화마그네슘을 산화알루미늄으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 8)
실시예 6과 동일하게 시행하되 산화마그네슘을 산화아연으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 9)
실시예 6과 동일하게 시행하되 산화마그네슘을 규사로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 10)
실시예 6과 동일하게 시행하되 산화마그네슘을 수산화마그네슘으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 11)
실시예 6과 동일하게 시행하되 산화마그네슘을 수산화알루미늄으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 12)
실시예 6과 동일하게 시행하되 산화마그네슘을 수산화칼슘으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 13)
실시예 6과 동일하게 시행하되 산화마그네슘을 탄산칼슘으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 14)
실시예 6과 동일하게 시행하되 산화마그네슘을 탈크로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연 재료기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 15)
실시예 6과 동일하게 시행하되 "산화마그네슘 60Kg"을 "알루미늄분말 30Kg"으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 연한 은빛이었며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였다.
(실시예 16)
실시예 6과 동일하게 시행하되 "산화마그네슘 60Kg"을 "규조토 분말 60Kg"으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 17)
실시예 6과 동일하게 시행하되 "산화마그네슘 60Kg"을 "질석 분말 60Kg"으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 18)
실시예 6과 동일하게 시행하되 "산화마그네슘 60Kg"을 "점토 분말 60Kg"으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 19)
실시예 6과 동일하게 시행하되 "산화마그네슘 60Kg"을 "황토 분말 60Kg"으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 20)
실시예 6과 동일하게 시행하되 "산화마그네슘 60Kg"을 "고령토 분말 60Kg"으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 21)
실시예 6과 동일하게 시행하되 "산화마그네슘 60Kg"을 "유리 분말 60Kg"으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 22)
실시예 6과 동일하게 시행하되 "산화마그네슘 60Kg"을 "진주암 분말 60Kg"으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(실시예 23)
실시예 6과 동일하게 시행하되 "산화마그네슘 60Kg"을 "퍼라이트 분말 60Kg"으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 준불연재료 기준에 적합하였고 기타 물성은 실시예 6과 유사하였다.
(비교예 3)
비교예 1과 동일하게 시행하되 "붕사 80Kg"을 "붕사 50Kg 및 흑연 30Kg"으로 변경하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 검은색이었고, 융착성 및 성형성이 다소 불량하였다. 양면에 0.5mm 두께의 철판을 부착하여 KSF 2271 ISO 5660-1 연소성능실험의 난연재료기준에 미달하였으나, 단열성은 밀도 16kg/㎥ 를 기준으로 열전도율이 0.033(w/mㆍk)으로 향상되었다.
(실시예 24)
비교예 3과 동일하게 시행하되 카리장석 80Kg을 추가하여 침투, 코팅시켰다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 색상이 회색이었고, 융착성 및 성형성이 다소 불량하였다. 양면에 0.5mm 두께의 철판을 부착하여 KSF 2271 ISO 5660-1 연소성능시험의 난연재료기준에 적합하였으며, 단열성은 밀도 15kg/㎥을 기준으로 열전도율이 0.033(w/mㆍk)이었다.
(실시예 25)
실시예 1~24에 의하여 얻어진 발포성 폴리스티렌 입자에 EVA(에틸렌 비닐 아세테이트) 에멀젼 수지(고형분 50%) 3중량%를 코팅하였다. 완성된 발포성 폴리스티렌 입자로 제조한 스티로폴은 난연성능과 단열성능은 그대로 유지되면서 융착성과 성형성이 현저하게 증가되었다. 이에 따라 성형품의 밀도 15kg/㎥ 에서 굴곡강도 15~17(N/㎠), 압축강도 13~17(N/㎠)였던 물성치가 굴곡강도 27~34(N/㎠), 압축강도 15~22(N/㎠)으로 향상되었으며, 흡수율도 감소되어 시료 모두 흡수율이 0.6(g/100㎠) 미만이었다.
(실시예 26)
실시예 25와 동일하게 시행하되, 수용성 수지를 "EVA" 대신에 "초산비닐에멀젼 수지", "아크릴 에멀젼 수지"중에서 1종을 선택하여 대체하였으나, 얻어진 스티로폴의 물성은 실시예 25에 의하여 얻어진 스티로폴과 유사하였다.
(실시예 27)
실시예 25와 동일하게 시행하되, EVA(에틸렌 비닐 아세데이트) 수지 "초산비닐에멀젼 수지", "아크릴 에멀젼 수지", "PVA(폴리비닐알콜)수지"를 같은 비율로 혼합하여 사용하였으며 얻어진 스티로폴의 물성은 실시예 25에 의하여 얻어진 스티로폴과 유사하였다.
(실시예 28)
실시예 1~24와 동일하게 시행하되, 불연성 물질 분말에 난연제로 헥사브로모시클로도데칸을 발포성 폴리스티렌 입자 중량을 기준으로 0.5%를 혼합하였다. 얻어진 성형체는 물성은 실시예 1~24와 유사하였으나 자소성이 다소 증가하였다.
(실시예 29)
실시예 1~24와 동일하게 시행하되,불연성 물질 분말에 난연제로 적인(인함량 80%)을 발포성 폴리스티렌 입자 중량을 기준으로 2%를 혼합하였다. 얻어진 성형체는 물성은 실시예 1~24와 유사하였으나 자소성이 다소 증가하였다.
(실시예 30)
실시예 1~24와 동일하게 시행하되, 불연성 물질 분말에 난연제로 암모늄폴리포스 페이트(인함량 20%)를 발포성 폴리스티렌 입자 중량을 기준으로 8%를 혼합하였다. 얻어진 성형체는 물성은 실시예 1~24와 유사하였으나 자소성이 다소 증가하였다
(실시예 31)
실시예 1~24와 동일하게 시행하되, 불연성 물질 분말에 난연제로 산화안티몬 을 발포성 폴리스티렌 입자 중량을 기준으로 10%를 혼합하였다. 얻어진 성형체는 물성은 실시예 1~24와 유사하였으나 자소성이 다소 증가하였다.
(실시예 32)
실시예 25와 동일하게 시행하되, 수용성수지에 헥사브로모시클로도데칸을 발포성 폴리스티렌 입자를 기준으로 0.5중량% 첨가하였다. 얻어진 성형체의 물성은 실시예 25와 유사하였고 자소성이 증가하였다.
(실시예 33)
실시예 1~32에 의하여 얻어진 발포성 폴리스티렌 입자를 고형분 30%인 규산나트륨 용액(KSM 1415) 300Kg을 코팅하였다. 얻어진 발포성 폴리스티렌 입자를 성형한 스티로폴의 난연성능은 현저히 증가하였다.
(실시예 34)
실시예 25와 동일하게 시행하되 수용성 수지를 규산나트륨 용액(KSM 1415) 300Kg에 혼합하고 5회에 걸쳐서 코팅하였다. 얻어진 스티로폴의 물성은 실시예 33과 유사하였다.
(실시예 35)
실시예 1~32에 의하여 얻어진 발포성 폴리스티렌 입자를 비드법으로 70배 발포한 다음, 이 발포한 입자를 규산나트륨 용액(KSM 1415) 300Kg으로 코팅하고 건조, 양생하여 성형한 스티로폴은 실시예 1~33에 의하여 얻어진 스티로폴과 동일한 물성을 가졌음을 확인하였다.
(실시예 36)
비교예 1 및 2에 의하여 얻어진 불연성 물질이 침투, 코팅된 발포성 폴리스티렌 입자에 실시예 33과 동일한 방법으로 규산나트륨 용액으로 코팅을 하였다.
완성된 발포성 폴리스티렌 입자들을 70배로 발포하고 성형한 스티로폴은 색상이 연한 은빛이었으며, 양면에 0.5mm 두께의 철판을 부착하여 난연성을 시험을 한 결과, KSF 2271 ISO 5660-1 연소성능시험의 난연재료 기준에 적합하였다.

Claims (14)

  1. 입경 1~70μm인 불연성 물질 분말 10~60중량%를 발포성 폴리스티렌 입자에 첨가하고 교반하면서, 폴리스티렌의 용해성이 있는 용제와 물의 혼합물을 용제를 기준으로 0.5~10중량% 분사하여 발포성 폴리스티렌 입자의 표면층이 용해직전의 연화상태가 되도록 하여 불연성 물질 분말들이 입자의 표면층에 침투, 코팅되도록 하는 불연 발포성 폴리스티렌 입자의 제조방법.
  2. 제1항에 있어서, 용제는 메틸-에틸-케톤(MEK), 톨루엔, 에틸벤젠 중의 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 불연 발포성 폴리스티렌 입자의 제조방법.
  3. 제1항에 있어서, 용제와 물의 혼합물은 용제와 물이 98 : 2 ~ 2 : 98의 무게비로 혼합된 것을 특징으로 하는 불연 발포성 폴리스티렌 입자의 제조방법.
  4. 제1항에 있어서, 불연성 물질은 800℃ 이하의 온도에서 용융하여 피막을 형성시키는 물질인 것을 특징으로 하는 불연 발포성 폴리스티렌 입자의 제조방법.
  5. 제4항에 있어서, 불연성 물질은 금속산화물, 비금속산화물, 금속 수산화물, 이산화규소 함유물질, 흑연 및 질석을 포함하는 것을 특징으로 하는 불연 발포성 폴리스티렌 입자의 제조방법.
  6. 제1항에 있어서, 침투, 코팅 공정에서 브롬계 난연제, 인계 난연제 또는 산화안티몬 중 선택된 1종 또는 2종 이상이 0.1~ 10중량% 첨가되는 것을 특징으로 하는 불연 발포성 폴리스티렌 입자의 제조방법.
  7. 제1항에 있어서, 침투, 코팅이 완료된 발포성 폴리스티렌 입자를 수용성 수지 0.1~ 10중량%를 추가 코팅하는 것을 특징으로 하는 난연성 발포성 폴리스티렌 입자의 제조방법.
  8. 제7항에 있어서, 수용성 수지는 초산비닐계 수지, 아크릴계 수지, 폴리비닐알콜 수지 , EVA계(에틸렌 비닐 아세테이트) 수지를 포함하는 것을 특징으로 하는 난연성 발포성 폴리스티렌 입자의 제조방법.
  9. 제7항에 있어서, 수용성 수지는 브롬계 난연제 또는 인계 난연제 또는 삼산화안티몬 중 선택된 1종 또는 2종 이상을 발포성 폴리스티렌 입자를 기준으로 0.1~10중량% 함유하는 것을 특징으로 하는 난연성 발포성 폴리스티렌 입자의 제조방법.
  10. 제1항에 있어서, 침투, 코팅이 완료된 발포성 폴리스티렌 입자를 10~50중량%(고형분 30% 기준)의 규산나트륨 용액으로 추가 코팅하는 것을 특징으로 하는 불연성 발포성 폴리스티렌 입자의 제조방법.
  11. 제7항에 있어서, 수용성 수지가 코팅된 발포성 폴리스티렌 입자를 10~50중량%(고형분 30% 기준)의 규산나트륨 용액으로 추가 코팅하는 것을 특징으로 하는 난연성 발포성 폴리스티렌 입자의 제조방법.
  12. 제1항 내지 제11항 기재의 어느 한 항 기재의 방법으로 제조되며, 불연성 물질 분말 10~60중량%가 발포성 폴리스티렌 입자 표면에 침투, 코팅된 불연 발포성 폴리스티렌 입자.
  13. 제12항 기재의 발포성 폴리스티렌 입자를 통상의 비드법으로 1차 발포한 입자에 10~50중량%의 규산나트륨 용액으로 추가 코팅한 다음 성형하는 것을 특징으로 하는 불연 스티로폴의 제조방법.
  14. 제12항 기재의 발포성 폴리스티렌 입자를 통상의 비드법으로 성형하여 얻어진 불연 스티로폴.
PCT/KR2010/002849 2009-05-04 2010-05-04 불연 발포성 폴리스티렌 입자 및 그 제조방법, 그리고 이 입자로 제조된 불연성 스티로폴 WO2010128797A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20090038821 2009-05-04
KR10-2009-0038821 2009-05-04
KR10-2009-0041493 2009-05-13
KR20090041493 2009-05-13

Publications (2)

Publication Number Publication Date
WO2010128797A2 true WO2010128797A2 (ko) 2010-11-11
WO2010128797A3 WO2010128797A3 (ko) 2011-03-03

Family

ID=43050622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002849 WO2010128797A2 (ko) 2009-05-04 2010-05-04 불연 발포성 폴리스티렌 입자 및 그 제조방법, 그리고 이 입자로 제조된 불연성 스티로폴

Country Status (2)

Country Link
KR (1) KR20100120088A (ko)
WO (1) WO2010128797A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672059A (zh) * 2022-05-03 2022-06-28 兰州理工大学 一种聚碳酸酯表面耐磨阻燃一体化改性方法
NL2033077B1 (en) * 2022-09-20 2024-03-26 Isobouw Systems Bv Expanded polymer foam particle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481861B1 (ko) * 2012-06-11 2015-01-12 이철희 난연성 스티로폼 보드의 제조 방법
KR101454635B1 (ko) * 2013-02-07 2014-10-27 금호석유화학 주식회사 친수성 첨가제의 도입 효율을 높이는 발포성 폴리스티렌 입자의 제조 방법
KR101489087B1 (ko) * 2013-08-27 2015-02-04 주식회사 에스에이치에너지화학 단열성 발포성 폴리스티렌 입자 및 단열성 발포성 폴리스티렌 입자의 제조방법
KR102197209B1 (ko) * 2018-12-17 2021-01-05 주식회사 나노텍세라믹스 내화보드 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043334A1 (de) * 1996-05-14 1997-11-20 Basf Aktiengesellschaft Expandierbare polystyrolpartikel
WO2006043435A1 (ja) * 2004-10-22 2006-04-27 Takashi Fujimori 発泡体の製造方法
KR20060103296A (ko) * 2005-03-25 2006-09-28 박희섭 내수성 촉진제 및 이를 함유한 규산계 난연제, 그리고 이난연제로 처리된 난연성 스티로폼 및 그 제조방법
JP2008163119A (ja) * 2006-12-27 2008-07-17 Sekisui Plastics Co Ltd 難燃性発泡性ポリスチレン系樹脂粒子の製造方法
KR100886845B1 (ko) * 2008-06-24 2009-03-06 황선담 코팅층을 특징으로 하는 난연성이 향상된 폴리스티렌 비드 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043334A1 (de) * 1996-05-14 1997-11-20 Basf Aktiengesellschaft Expandierbare polystyrolpartikel
WO2006043435A1 (ja) * 2004-10-22 2006-04-27 Takashi Fujimori 発泡体の製造方法
KR20060103296A (ko) * 2005-03-25 2006-09-28 박희섭 내수성 촉진제 및 이를 함유한 규산계 난연제, 그리고 이난연제로 처리된 난연성 스티로폼 및 그 제조방법
JP2008163119A (ja) * 2006-12-27 2008-07-17 Sekisui Plastics Co Ltd 難燃性発泡性ポリスチレン系樹脂粒子の製造方法
KR100886845B1 (ko) * 2008-06-24 2009-03-06 황선담 코팅층을 특징으로 하는 난연성이 향상된 폴리스티렌 비드 및 이의 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672059A (zh) * 2022-05-03 2022-06-28 兰州理工大学 一种聚碳酸酯表面耐磨阻燃一体化改性方法
CN114672059B (zh) * 2022-05-03 2023-04-14 兰州理工大学 一种聚碳酸酯表面耐磨阻燃一体化改性方法
NL2033077B1 (en) * 2022-09-20 2024-03-26 Isobouw Systems Bv Expanded polymer foam particle
WO2024063643A1 (en) 2022-09-20 2024-03-28 Isobouw Systems B.V. Expanded polymer foam particle

Also Published As

Publication number Publication date
KR20100120088A (ko) 2010-11-12
WO2010128797A3 (ko) 2011-03-03

Similar Documents

Publication Publication Date Title
WO2010128797A2 (ko) 불연 발포성 폴리스티렌 입자 및 그 제조방법, 그리고 이 입자로 제조된 불연성 스티로폴
WO2010134736A2 (ko) 고단열성 발포성 폴리스티렌 입자 및 그 제조방법, 그리고 이 입자로부터 제조된 스티로폴
WO2013029382A1 (zh) 一种陶瓷化硅橡胶及其制备方法
KR101300626B1 (ko) 불연성과 단열성 막을 형성시킨 발포성 수지 입자의 제조방법
WO2010128760A2 (ko) 성형성이 우수한 스킨층을 갖는 발포폴리스티렌 입자와 그 제조방법, 이를 이용한 발포폴리스티렌 성형물
TWI477552B (zh) 防火聚胺酯材料及防火結構
WO2012008784A2 (ko) 발포성 전분 비드 및 이의 제조방법
WO2019216518A1 (ko) 준불연 단열 마감재 조성물, 이의 제조방법 및 이를 이용한 시공방법
WO2019054795A1 (ko) 페놀 발포체 및 그 제조방법
WO2018216932A1 (ko) 발포성형체의 제조방법
WO2016056717A1 (ko) 발포 폴리스티렌용 난연성 코팅제 조성물
WO2012091381A2 (ko) 발포 폴리스티렌계 비드 및 그 제조방법
WO2020242169A1 (ko) 마감재 조성물, 이의 제조방법 및 이를 이용한 시공방법
WO2021261912A1 (ko) 난연수지 및 난연복합플라스틱 제조방법과 이를 이용한 난연제품 제조방법
KR20160050402A (ko) 이산화규소를 포함하는 불연성조성물
KR20110017794A (ko) 난연제 조성물과 난연 발포성 폴리스티렌 비드 제조방법
WO2016028104A1 (ko) 화재 억제용 무기 난연 내화 복합체 및 그 제조 방법
WO2019146939A1 (ko) 점착력과 방염성이 우수한 인테리어 필름 및 이의 제조방법
JP2002544321A (ja) 火炎遮断剤
WO2020117029A1 (ko) 열경화성 발포체, 이의 제조방법 및 이를 포함하는 단열재
KR101729384B1 (ko) 난연성 조성물 및 이를 포함하는 난연성 성형물
KR100602196B1 (ko) 불연성을 갖는 난연 폴리스티렌 발포체 수지입자 제조 방법
WO2014104592A1 (ko) 전자선가교 폴리비닐클로라이드계 난연 발포단열재 및 그의 제조방법
WO2019066504A2 (ko) 열경화성 발포체 및 이의 제조방법
WO2020045827A1 (ko) 실리콘 고무 스펀지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10772257

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC; EPO FORM 1205A DATED 08.03.2012

122 Ep: pct application non-entry in european phase

Ref document number: 10772257

Country of ref document: EP

Kind code of ref document: A2