WO2016028104A1 - 화재 억제용 무기 난연 내화 복합체 및 그 제조 방법 - Google Patents

화재 억제용 무기 난연 내화 복합체 및 그 제조 방법 Download PDF

Info

Publication number
WO2016028104A1
WO2016028104A1 PCT/KR2015/008713 KR2015008713W WO2016028104A1 WO 2016028104 A1 WO2016028104 A1 WO 2016028104A1 KR 2015008713 W KR2015008713 W KR 2015008713W WO 2016028104 A1 WO2016028104 A1 WO 2016028104A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
flame retardant
refractory
composite
inorganic flame
Prior art date
Application number
PCT/KR2015/008713
Other languages
English (en)
French (fr)
Inventor
송인혁
하장훈
아마드리즈완
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2016028104A1 publication Critical patent/WO2016028104A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • C04B35/657Processes involving a melting step for manufacturing refractories
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay

Definitions

  • the present invention relates to an inorganic flame retardant refractory composite and a method for manufacturing the same, and more particularly, to an inorganic flame retardant refractory composite for fire suppression, which can be cured and solidified by itself without external heating by mixing an internally solidified inorganic material with an inorganic refractory agent.
  • the manufacturing method is related.
  • flame retardant materials help us to minimize the effects of such fires.
  • An object of the present invention is to solve the problem of the flame retardant material used by mixing the conventional ceramic powder to the polymer, it is possible to be fired without heating the inorganic refractories such as Al (OH) 3 , Mg (OH) 2 from the outside
  • the self-solidifying inorganic material which is a cement material
  • it is manufactured in a porous form in the form of foam in order to improve the flame retardant properties, thereby increasing the specific surface area through porosity to promote the flame retardant reaction, and further improving the weight and thermal insulation properties. It is to provide an inorganic flame retardant refractory composite for suppressing a fire and a method for producing the same.
  • the fire retardant inorganic flame retardant composite according to an embodiment of the present invention for achieving the above object is composed of an inorganic refractories and self-solidifying inorganic material, it is characterized in that the solidified by curing at room temperature.
  • the fire retardant inorganic flame retardant composite according to another embodiment of the present invention for achieving the above object is composed of an inorganic refractory agent and its own solidified inorganic material, characterized in that solidified by a crosslinking reaction.
  • the fire retardant inorganic flame retardant refractory composite according to the present invention and a method for manufacturing the same are self solidifying inorganic materials which are calcinable cement materials without heating inorganic refractory agents such as Al (OH) 3 and Mg (OH) 2 from the outside.
  • inorganic refractory agents such as Al (OH) 3 and Mg (OH) 2 from the outside.
  • inorganic refractory agents such as Al (OH) 3 and Mg (OH) 2 from the outside.
  • in order to improve the flame retardant properties by forming in the form of a porous form, it is possible to obtain additional effects such as insulation when applied as a building material, and due to being manufactured in the form of foam, it is possible to increase the economics by reducing raw materials. have.
  • the inorganic flame retardant refractory composite for fire suppression according to the present invention and a method for manufacturing the same increase the specific surface area and increase the reaction rate to prevent flame as it is manufactured in a porous manner, and is injected by drying in a state where a foam is formed in a predetermined mold If used, it can be used as an inorganic insulating material that can replace the sandwich panels of building materials.
  • the fire retardant inorganic flame retardant refractory composite according to the present invention and a method for producing the same are produced from a flame retardant material made of inorganic materials, whereas the polymer material in the sandwich panel, which has been a problem in recent years, generates toxic gases. It is possible to obtain an effect that does not occur, it is possible to suppress and delay the fire due to the generation of moisture during the endothermic reaction.
  • FIG. 1 is a photograph showing an inorganic flame retardant refractory composite for fire suppression according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the process of forming the ATH composite foam before and after cement addition.
  • FIG. 3 is a process flowchart showing a method for manufacturing an inorganic flame retardant refractory composite for fire suppression according to an embodiment of the present invention.
  • FIG. 4 is a process flowchart showing a method for manufacturing an inorganic flame retardant refractory composite for fire suppression according to another embodiment of the present invention.
  • 5 is a graph showing the zeta potential potential value against the pH of ATH powder.
  • Figure 6 is a photograph showing the microstructure for Examples 1 to 4 and Comparative Examples 1 and 2.
  • Figure 7 shows the microstructure change for the specimen according to Example 4.
  • Example 8 is a view showing the XRD measurement results for the specimen according to Example 2.
  • Figure 9 shows the results of measuring the compressive strength for Examples 1 to 4 and Comparative Examples 1 and 2.
  • FIG. 1 is a photograph showing an inorganic flame retardant refractory composite for fire suppression according to an embodiment of the present invention.
  • the inorganic flame retardant refractory composite 100 for fire suppression is composed of an inorganic refractory agent and a self-solidifying inorganic material, and is cured at room temperature to solidify.
  • the room temperature may be 0 to 40 °C, but is not necessarily limited thereto.
  • the fire retardant inorganic flame retardant refractory composite 100 is preferably composed of inorganic refractory: 20 to 60% by weight and self-solidifying inorganic material: 40 to 80% by weight. If the content of the inorganic refractory material is less than 20% by weight of the total weight of the inorganic flame retardant refractory composite, the mechanical properties increase with increasing cement content, but the content of the inorganic refractory agent decreases, which makes it difficult to properly exhibit a flame suppression effect. Can follow. On the contrary, when the content of the inorganic refractory agent exceeds 60% by weight of the total weight of the inorganic flame retardant refractory composite, it may be difficult to secure a uniform pore structure by increasing the viscosity.
  • Inorganic fireproofing agents are Al (OH) 3 (Aluminum trihydroxide, hereinafter abbreviated as ATH), Mg (OH) 2 (Magnesium dihydroxide, MDH) and the like can be selected.
  • inorganic refractory agents are flame retardants used in combination with polymers. At this time, the inorganic refractory agents such as Al (OH) 3 , Mg (OH) 2 can reduce the combustion reaction rate by delaying the generation of flame.
  • Equation 1 the principle of delaying the flame generation of the ATH powder is shown in Equation 1 below.
  • Equation 1 2Al (OH) 3 (s) ⁇ Al 2 O 3 (s) + 3H 2 O (g)
  • ATH powder is a substance decomposed into water and alumina in the vicinity of 200 ° C.
  • the ATH powder absorbs heat by an endothermic reaction, and water is generated by itself to generate a fire. Delay or enable evolution.
  • An endothermic loss of about 35% is caused by the moisture formed due to the thermal decomposition of the ATH powder, wherein the endothermic amount is about 1170 ⁇ 1300J / g.
  • ATH since ATH is changed to a more stable alumina form at high temperature, it may serve as a barrier to suppress the progress of fire.
  • the generated water vaporized by the surrounding heat can also show the effect of suppressing the generation of smoke in the event of fire.
  • Table 1 shows the physical properties of ATH.
  • ATH was used as a refractory salt material to generally be used in admixture with a polymer to compensate for the disadvantages of the polymer. Therefore, it is known that at least 60% of the content of the refractory flame material should be included in order to maximize the characteristics.
  • the polymer flame material containing a high content of ATH, etc. does not have a high mechanical properties, and research for solving this problem is being conducted.
  • the inorganic material is essentially required a heat treatment process called firing in order to maintain mechanical strength.
  • firing a heat treatment process
  • the ATH begins to decompose at 220 ° C. or higher and changes into a bohemite phase, and at a temperature of 600 ° C. or higher, it changes to an alumina phase.
  • the calcined material no longer exhibits flame retardant properties as the original ATH phase is decomposed and removed.
  • this problem is solved by mixing the self-setting solidified inorganic material which is self-setting, which does not require firing, such as cement, with the inorganic refractory agent.
  • the self-coagulated inorganic material may be used to induce a pozzolanic reaction, and concrete examples of cement include portland cement, but are not limited thereto.
  • the inorganic flame retardant refractory composite 100 for fire suppression according to the present invention has a foam structure having spherical pores, the inorganic flame retardant refractory composite 100 may have a porosity of 70% or more.
  • the coarse powder is advantageous so as not to participate in the cement reaction during the solidification process, and the inorganic refractory agent has an average diameter of 0.5 to 20 ⁇ m, more preferably. It is appropriate to have an average diameter of 5 ⁇ 10 ⁇ m.
  • porous material when the porous material is introduced by introducing a foaming process in manufacturing a mixed material of ATH powder and cement powder, it is possible to reduce the cost of raw materials, and in particular, maximize the insulation effect when used as a building material.
  • the slurry in which the foaming process is performed when the slurry in which the foaming process is performed is charged into a slurry form of a foam in a structure of a certain shape before a cement reaction occurs, it can effectively maximize the flame retardant effect after solidification.
  • the cement reaction is solidified in accordance with the shape of the panel, and thus the compatibility with the composite material is very high. Not only does it occur, it can also demonstrate the potential of intelligent materials to show the smart function of digesting fires by generating moisture as ATH powder decomposes.
  • the present invention was not modified with a strong acid solution or a strong base solution, because ATH is capable of reacting with any acid solution and degrading the flame-proof property when decomposed into many reactions.
  • the cement material is also a mixture of various materials capable of various complex reactions. Therefore, when preparing a powder stabilized porous foam using a surfactant, the formed foam immediately solidifies in response to a cement reaction, whereby the ATH particles are decomposed to minimize the flame retardation deterioration.
  • FIG. 2 is a schematic diagram for explaining the process of forming the ATH composite foam before and after cement addition.
  • (a) of Figure 2 shows the state before the addition of cement
  • Figure 2 (b) shows the state after the addition of cement.
  • the foams are all composed of ATH powder, and in particular, it is understood that the fine powder forms the outer membrane layer.
  • the fire retardant inorganic flame retardant composite 100 is not complexed by mixing the inorganic refractory self-solidified inorganic material that does not require heat treatment, such as cement, the decomposition temperature of the inorganic refractory In the following it is mixed by mixing the self-solidifying inorganic material which can be solidified by heating.
  • the fire retardant inorganic flame retardant composite 100 is composed of an inorganic refractory agent and a self-solidifying inorganic material, and solidified by a crosslinking reaction.
  • the inorganic refractory agent may be selected from hydrates including Al (OH) 3 and Mg (OH) 2 .
  • self-coagulating minerals may be inorganic polymers.
  • the inorganic polymer may be selected from polysiloxane, polysilane, polycarbosilane, polysilazane, and the like.
  • the fire retardant inorganic flame retardant composite 100 according to another embodiment of the present invention is mixed with a flame retardant such as ATH powder using inorganic polymers, and crosslinked at a low temperature at which ATH does not cause decomposition. -linking) can take advantage of the advantages of inorganic flame retardant materials.
  • the fire retardant inorganic flame retardant composite uses hydrates such as Al (OH) 3 and Mg (OH) 3 as inorganic refractories, and cements as a solidifying inorganic material.
  • Portland cement which refers to the material, it hardens itself and solidifies itself at room temperature, or uses a preceramic polymer as a self-solidifying inorganic material in an inorganic refractory, and almost cross-linked in a crosslinking reaction at a temperature below the decomposition temperature. Thermal stability such as can be secured.
  • the inorganic flame retardant refractory composite for fire suppression in order to maximize the fire retardant effect of the inorganic flame retardant refractory composite for fire suppression according to the embodiments of the present invention, it is important to widen the reaction area.
  • a pore structure By having a pore structure, it can not only have the effect of improving the flame retardancy characteristics by increasing the specific surface area, but also can reduce the raw material cost through weight reduction, and improve the heat insulating properties due to the pore structure, and at the slurry stage It can be applied to various shapes by being solidified by pouring into a mold of a shape.
  • FIG. 3 is a process flowchart showing a method for manufacturing an inorganic flame retardant refractory composite for fire suppression according to an embodiment of the present invention.
  • the fire retardant inorganic flame retardant composite manufacturing method is a slurry forming step (S110), surfactant addition step (S120), self-solidifying inorganic addition step (S130) And a refractory complex forming step (S140).
  • an inorganic refractory agent is added to the solvent to form a slurry.
  • the solvent may be one or more selected from water, ethanol, methanol, propanol and the like.
  • the inorganic refractory is preferably selected from hydrates containing Al (OH) 3 and Mg (OH) 2 .
  • the inorganic refractory material has an average diameter of 0.5 to 20 ⁇ m, more preferably 5 to 10 ⁇ m, which is used in the solidification process in order to utilize the inorganic fire retardant as an inorganic flame retardant refractory composite for fire suppression. This is because the coarser powder is advantageous in order not to participate in the cement reaction.
  • surfactant addition step (S120) after the surfactant is added to the slurry, ultrasonication is performed for 0.5 to 2 hours to disperse and stir to form a foam.
  • anionic surfactant As surfactant, it is preferable to use anionic surfactant.
  • anionic surfactant it is preferable to use sodium dodecyl sulfate (SDS) as the anionic surfactant, but is not limited thereto.
  • the ultrasonic treatment preferably applies high-intensity ultrasound having a frequency of 15 to 30 KHz and an output power of 80 to 150 W for 0.5 to 2 hours. If the ultrasonic output power is less than 80W or the ultrasonication time is less than 0.5 hours, there is a fear that the dispersion is not performed smoothly. On the contrary, when the ultrasonic output power exceeds 150 W or when the ultrasonication time exceeds 2 hours, the reduction of the specific surface area of the ATH powder is not preferable.
  • the self-solidifying inorganic material is added to the foam, followed by stirring for 10 to 60 minutes to form a foam.
  • the self-coagulated inorganic material may be used to induce a pozzolanic reaction
  • concrete examples of cement include portland cement, but are not limited thereto.
  • the foam is poured into a mold, and then dried and cured at room temperature to form a refractory composite.
  • the room temperature may be 0 to 40 °C, but is not necessarily limited thereto.
  • Figure 4 is a process flow chart showing a method for producing an inorganic flame retardant refractory composite for fire suppression according to another embodiment of the present invention.
  • the fire retardant inorganic flame retardant composite manufacturing method is a slurry forming step (S210), a molded article forming step (S220) and a molded article crosslinking refractory composite forming step (S230) It includes.
  • the inorganic refractory agent and the self-coagulating inorganic substance are mixed and stirred in a solvent to form a slurry.
  • the solvent may be one or more selected from water, ethanol, methanol, propanol and the like.
  • the inorganic refractory is preferably selected from hydrates containing Al (OH) 3 and Mg (OH) 2 .
  • the inorganic refractory material has an average diameter of 0.5 to 20 ⁇ m, more preferably 5 to 10 ⁇ m, which is used in the solidification process in order to utilize the inorganic fire retardant as an inorganic flame retardant refractory composite for fire suppression. This is because the coarser powder is advantageous in order not to participate in the cement reaction.
  • Self-solidifying minerals may be used as inorganic polymers.
  • any one selected from polysiloxane, polysilane, polycarbosilane, polysilazane, and the like may be used as the inorganic polymer.
  • the forming body forming step (S220) after the slurry is put into the mold, it is dried to form a molded body. That is, it is appropriate that the prepared slurry is immediately poured into a mold to have a desired shape.
  • the molded body is crosslinked at a softening temperature or less to form a refractory composite.
  • polysiloxane which is an inorganic polymer, is a material that can be solidified by cross linking at 105 ° C. which is less than the decomposition temperature of ATH powder.
  • the molded body in order to thermoset the inorganic polymer, it is preferable to keep the molded body at a maximum temperature heated to 100 to 180 ° C. under atmospheric pressure for 24 to 48 hours, and if the holding time at the maximum temperature exceeds 48 hours, Since curing does not occur, the holding time at the highest temperature is preferably limited to within 48 hours. At this time, if the heating rate is too high, there is a fear that the curing of the inorganic polymer may not be sufficient, so the heating rate is preferably controlled at 2 ° C / min or less.
  • the method for preparing an inorganic flame retardant refractory composite for fire suppression uses hydrates such as Al (OH) 3 and Mg (OH) 3 as inorganic refractory agents, Can be cured and solidified at room temperature by mixing Portland cement, which refers to a cement material, or by using a preceramic polymer as a self-solidifying inorganic material in an inorganic refractory agent, and using a crosslinking reaction at a temperature below the decomposition temperature. It is possible to secure almost the same thermal stability as ceramic.
  • the method for producing an inorganic flame retardant refractory composite for fire suppression is important to widen the reaction area in order to maximize the fire retardant effect, and accordingly, by introducing a foaming process using a surfactant to increase the surface area.
  • a foaming process using a surfactant to increase the surface area.
  • ATH powder having an average diameter of 5.17 ⁇ m was added, followed by stirring to prepare a slurry.
  • sodium dodecyl sulfate (SDS), an anionic surfactant was added to the slurry, followed by sonication for 1 hour to disperse and stir.
  • SDS sodium dodecyl sulfate
  • the slurry was formed into a foam while stirring the slurry at 1000 rpm for 15 minutes using a stirrer, and then stirred for 10 minutes while mixing cement powder having a weighted average diameter of 12.1 ⁇ m to form a foamed foam, and immediately into the mold. It was poured to have a solid shape, and the inorganic flame retardant refractory composite was prepared by inducing spontaneous drying and curing at room temperature for curing.
  • An inorganic flame retardant refractory composite was prepared in the same manner as in Example 1, except that 50 wt% of ATH powder and 50 wt% of cement powder were added.
  • An inorganic flame retardant refractory composite was prepared in the same manner as in Example 1, except that 40 wt% ATH powder and 60 wt% cement powder were added.
  • An inorganic flame retardant refractory composite was prepared in the same manner as in Example 1, except that 30 wt% of ATH powder and 70 wt% of cement powder were added.
  • An inorganic flame retardant refractory composite was prepared in the same manner as in Example 1, except that 80 wt% of ATH powder and 20 wt% of cement powder were added.
  • An inorganic flame retardant refractory composite was prepared in the same manner as in Example 1 except that 100 g of ATH powder was added to a container containing 100 mL of distilled water, followed by stirring.
  • Table 2 shows the physical property evaluation results of the inorganic flame retardant refractory composites according to Examples 1 to 4 and Comparative Examples 1 to 2.
  • Figure 5 is a graph showing the zeta potential potential value for the pH of the ATH powder
  • Figure 6 is a photograph showing the microstructure for Examples 1 to 4 and Comparative Examples 1 and 2.
  • (a) to (b) of Figure 6 is a photograph showing the microstructure for Comparative Examples 1 to 2
  • Figure 6 (c) to (f) is a photograph showing the microstructure for Examples 1 to 4 to be.
  • the zeta potential potential of the ATH powder has an isoelectric point (IEP) of 9.8, and shows positive (+) polarity at the surface of the particle in a region having a pH lower than 9.8.
  • IEP isoelectric point
  • the pH of the slurry solution according to Examples 1 to 4 was found to be 8.8. This allows the SDS used as a surfactant to adsorb onto the [Al (OH)] +2 surface of the ATH particles where the ends of the anion (CH 3- (CH 2 ) 11 -OSO -3 ) in the SDS show the anode as an anionic surfactant. Partially hydrophobic.
  • the surfactant SDS is a long chain surfactant and has a low adsorption energy. However, due to this it is possible to lower the surface energy of the liquid phase and stabilize the bubbles by stirring by the powder.
  • the adsorption energy of the surfactant having a long chain structure is not high and bubbles are coarsened. Therefore, it is very important to use a curing agent such as cement to maintain the pore structure even in the final state.
  • foams having a well-developed cell structure could be manufactured by using cement as a curing agent.
  • the viscosity of the slurry increases due to the mixing of the cement and the volume of the foam can be observed because of this, but nevertheless showed a high porosity of approximately 86 ⁇ 93%.
  • the cement components were able to immediately immobilize the bubbles to suppress the coarsening of bubbles by coalescing and finally maintain a fine pore structure.
  • the average pore size of the microstructure of Comparative Example 1 was 141 ⁇ m, and a uniform pore structure could not be obtained due to a relatively high viscosity.
  • Comparative Example 2 also did not show a uniform pore structure, the average pore size was 116 ⁇ m.
  • Figure 7 shows the microstructure change for Example 4.
  • Figure 7 (a) is a macroscopic view of the appearance of the porous body
  • Figure 7 (b) shows a uniform pore structure
  • Figure 7 (c) is a high magnification in detail showing a fine structure
  • (D) of FIG. 7 shows the porous particles distributed in a lamellar form in a thin film layer forming a cell at high magnification.
  • the thickness of the thin film layer was about 1 ⁇ m.
  • the film layer is formed of very small powders, and it is determined that the powder is composed of small powder or pulverized powder from ATH and cement powder.
  • EDS analysis point A is a point where the cement powder is located because a large amount of calcium components are detected
  • point B is a mixture of ATH and cement powder.
  • point C is determined to be mainly composed of ATH powder and some cement powder.
  • Example 8 is a view showing the XRD measurement results for the specimen according to Example 2.
  • Example 2 X-ray diffraction analysis showed that the amount of ATH powder was still present in Example 2, which indicates that the ATH component reacted with the cement powder even after the coarse ATH powder solidified by the cement reaction. It is shown that it remains without, and consequently, that ATH powder has the ability to suppress the occurrence of fire.
  • Figure 9 shows the results of measuring the compressive strength for Examples 1 to 4 and Comparative Examples 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Building Environments (AREA)

Abstract

무기 내화제에 자체 응고형 무기물을 혼합함으로써, 외부 가열 없이 자체적으로 경화되어 고형화될 수 있는 화재 억제용 무기 난연 내화 복합체 및 그 제조 방법에 대하여 개시한다. 본 발명에 따른 화재 억제용 무기 난연 내화 복합체는 무기 내화제와 자체 응고형 무기물로 조성되며, 실온에서 경화되어 고형화된 것을 특징으로 한다.

Description

화재 억제용 무기 난연 내화 복합체 및 그 제조 방법
본 발명은 무기 난연 내화 복합체 및 그 제조 방법에 관한 것으로, 보다 상세하게는 무기 내화제에 자체 응고형 무기물을 혼합함으로써, 외부 가열 없이 자체적으로 경화되어 고형화될 수 있는 화재 억제용 무기 난연 내화 복합체 및 그 제조 방법에 관한 것이다.
최근, 화재 발생시 안전을 고려한 난연화의 필요성과 더불어, 발생되는 유해가스 등 유해물질 규제 강화가 증대되고 있다. 따라서, 기존에 사용했던 할로겐계 난연 소재에서 환경 친화적인 무기계 비할로겐계 난연 소재로의 전환이 점차적으로 중요해지고 있는 시점이다.
또한, 현재 우리는 일상 생활 속에서 가구, 카페트, 종이 등과 같은 실내외의 잠재적 인화 물질 속에서 살고 있으므로 화염 지연 물질은 이와 같은 화재 발생 시의 피해를 최소화하는데 많은 도움이 된다.
관련 선행 문헌으로는 대한민국 등록특허공보 제10-0755234호(2007.09.04. 공고)가 있으며, 상기 문헌에는 난연성 합성수지발포체 및 이의 제조방법이 기재되어 있다.
본 발명의 목적은 기존의 세라믹 분말을 고분자에 혼합하여 사용하던 난연 소재의 문제점을 해결하고자, Al(OH)3, Mg(OH)2 등의 무기 내화제를 외부에서 가열하는 것 없이 소성이 가능한 시멘트 소재인 자체 응고형 무기물과 혼합함과 더불어 난연 특성의 향상을 높이기 위하여 폼 형태의 다공성 형태로 제조함으로써, 다공질화를 통하여 비표면적을 증대시켜 난연 반응을 촉진하고, 추가적인 경량화, 단열 특성 향상을 도모할 수 있는 화제 억제용 무기 난연 내화 복합체 및 그 제조 방법을 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 화재 억제용 무기 난연 내화 복합체는 무기 내화제와 자체 응고형 무기물로 조성되며, 실온에서 경화되어 고형화된 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 화재 억제용 무기 난연 내화 복합체 제조 방법은 (a) 용매에 무기 내화제를 첨가하여 슬러리를 형성하는 단계; (b) 상기 슬러리에 계면활성제를 첨가한 후, 0.5 ~ 2시간 동안 초음파 처리하여 분산 및 교반하여 폼을 형성하는 단계; (c) 상기 폼에 자체 응고형 무기물을 첨가한 후, 10 ~ 60분 동안 교반하여 발포 폼을 형성하는 단계; 및 (d) 상기 발포 폼을 몰드에 부은 후, 실온에서 건조 및 경화하여 내화 복합체를 형성하는 단계;를 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 화재 억제용 무기 난연 내화 복합체는 무기 내화제와 자체 응고형 무기물로 조성되며, 가교 반응에 의해 고형화된 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 화재 억제용 무기 난연 내화 복합체 제조 방법은 (a) 무기 내화제 및 자체 응고형 무기물을 용매에 혼합 및 교반하여 슬러리를 형성하는 단계; (b) 상기 슬러리를 몰드에 투입한 후, 건조하여 성형체를 형성하는 단계; 및 (c) 상기 성형체를 연화온도 이하에서 가교하여 내화 복합체를 형성하는 단계;를 포함하는 것을 특징으로 한다.
본 발명에 따른 화재 억제용 무기 난연 내화 복합체 및 그 제조 방법은 Al(OH)3, Mg(OH)2 등의 무기 내화제를 외부에서 가열하는 것 없이 소성이 가능한 시멘트 소재인 자체 응고형 무기물과 혼합함과 더불어 난연 특성의 향상을 높이기 위하여 폼 형태의 다공성 형태로 제조함으로써, 추가적으로 건축소재로 응용 시 단열 등의 효과도 얻을 수 있으며, 폼 형태로 제조되는데 기인하여 원료의 절감으로 경제성을 높일 수 있다.
또한, 본 발명에 따른 화재 억제용 무기 난연 내화 복합체 및 그 제조 방법은 다공성으로 제조됨에 따라 비표면적이 증가하여 화염을 방지시키는 반응속도도 증가되며, 정해진 몰드에 폼이 형성된 상태에서 주입하여, 건조시킨다면 건축 소재의 샌드위치 패널을 대체할 수 있는 무기 단열 소재로 활용될 수 있다.
특히, 본 발명에 따른 화재 억제용 무기 난연 내화 복합체 및 그 제조 방법은 최근에 화재시 문제가 되고 있는 샌드위치 패널 내의 고분자 물질이 독성 가스를 발생시키는데 반하여, 무기물로 이루어진 난연 소재로 이루어지므로 독성가스를 발생시키지 않는 효과를 얻을 수 있으며, 흡열 반응시 수분 발생 등으로 인하여 화재를 억제 및 지연시킬 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 화재 억제용 무기 난연 내화 복합체를 나타낸 사진이다.
도 2는 시멘트 첨가 전과 후의 ATH 복합 폼의 형성 과정을 설명하기 위한 모식도이다.
도 3은 본 발명의 일 실시예에 따른 화재 억제용 무기 난연 내화 복합체 제조 방법을 나타낸 공정 순서도이다.
도 4는 본 발명의 다른 실시예에 따른 화재 억제용 무기 난연 내화 복합체 제조 방법을 나타낸 공정 순서도이다.
도 5는 ATH 분말의 pH에 대한 제타 포텐셜 전위 값을 나타낸 그래프이다.
도 6은 실시예 1 ~ 4 및 비교예 1 ~ 2에 대한 미세조직을 나타낸 사진이다.
도 7은 실시예 4에 따른 시편에 대한 미세조직 변화를 나타낸 것이다.
도 8은 실시예 2에 따른 시편에 대한 XRD 측정 결과를 나타낸 도면이다.
도 9는 실시예 1 ~ 4 및 비교예 1 ~ 2에 대한 압축강도를 측정한 결과를 나타낸 것이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 화재 억제용 무기 난연 내화 복합체 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.
도 1은 본 발명의 일 실시예에 따른 화재 억제용 무기 난연 내화 복합체를 나타낸 사진이다.
도 1을 참조하면, 도시된 본 발명의 일 실시예에 따른 화재 억제용 무기 난연 내화 복합체(100)는 무기 내화제와 자체 응고형 무기물로 조성되며, 실온에서 경화되어 고형화된다. 이때, 실온은 0 ~ 40℃일 수 있으나, 반드시 이에 제한되는 것은 아니다.
이러한 화재 억제용 무기 난연 내화 복합체(100)는 무기 내화제 : 20 ~ 60 중량% 및 자체 응고형 무기물 : 40 ~ 80 중량%로 조성되는 것이 바람직하다. 무기 내화제의 함량이 무기 난연 내화 복합체 전체 중량의 20 중량% 미만일 경우에는 시멘트 함량이 증가함에 따라 기계적 특성이 증가하나, 상대적으로 무기 내화제의 함량이 감소하여 화염 억제 효과를 제대로 발휘하는데 어려움이 따를 수 있다. 반대로, 무기 내화제의 함량이 무기 난연 내화 복합체 전체 중량의 60 중량%를 초과할 경우에는 점도의 증가로 균일한 기공 구조를 확보하는데 어려움이 따를 수 있다.
무기 내화제는 Al(OH)3 (Aluminum trihydroxide, 이하 ATH로 약칭함.), Mg(OH)2 (Magnesium dihydroxide, MDH) 등에서 선택될 수 있다. 일반적으로, 무기 내화제는 고분자와 복합화하여 사용되는 화염 발생 지연물질이다. 이때, Al(OH)3, Mg(OH)2 등의 무기 내화제는 화염의 발생을 지연함으로써 연소반응 속도를 감소시킬 수 있다.
일 예로, ATH 분말의 화염 발생을 지연시키는 원리는 하기의 식 1과 같다.
식 1 : 2Al(OH)3(s) → Al2O3(s) + 3H2O(g)
위의 식 1에서와 같이, ATH 분말은 200℃ 부근에서 물과 알루미나로 분해되는 물질로서, 화재 발생 등을 통하여 열이 가해지면, 흡열 반응으로 열을 흡수하며, 자체적으로 물이 발생되어 화재 발생을 지연시키거나, 진화를 가능하게 한다. 이러한 ATH 분말의 열분해로 인하여 형성된 수분에 의하여 약 35% 정도의 흡열 손실이 생기며, 이때, 흡열량 은 대략 1170 ~ 1300J/g 정도이다.
이때, ATH는 고온에서 더 안정한 알루미나 형태로 바뀌므로 화재 진행을 억제하는 장벽으로도 역할이 가능하다. 또한, 이때 발생된 물이 주변의 열에 의해 기화되어 형성된 수증기는 화재 발생시 연기 발생을 억제하는 효과도 보여 줄 수 있다.
표 1은 ATH의 물리적 특성을 나타낸 것이다.
[표 1]
Figure PCTKR2015008713-appb-I000001
표 1에 도시된 바와 같이, ATH는 내화염 소재로서 일반적으로 고분자와 혼합하여 사용함으로써 고분자가 가지는 단점을 보완하는데 사용되었다. 그러므로, 특성의 극대화를 위해서는 적어도 내화염 소재의 함량이 60% 정도는 포함돼야 하는 것으로 알려져 있다. 그러나, 높은 함량의 ATH 등이 포함된 고분자 화염재는 높은 기계적 성질을 가지지 못함으로 이에 대한 해결을 위한 연구가 진행되고 있다.
이를 근본적으로 해결하기 위해서는 내화염 소재가 모두 무기물 소재로 이루어진다면 이상적인 조건이 될 것이다. 그러나, 일반적으로 무기물 소재는 기계적 강도를 유지하기 위하여 소성이라는 열처리 공정이 필수적으로 요구된다. 이때, 높은 온도의 소성 공정을 실시할 경우, ATH는 220℃ 이상에서 분해되기 시작하여 보헤마이트(bohemite) 상으로 변화하며, 600℃ 이상의 온도에서는 알루미나(alumina) 상으로 변화하게 된다.
이와 같이, 소성된 물질은 애초의 ATH 상이 분해 제거됨으로 더 이상 내화염 특성을 나타낼 수 없게 된다.
따라서, 본 발명에서는 무기 내화제에 시멘트 등과 같이 소성이 필요 없는 자체적으로 고형화(self-setting)되는 자체 응고형 무기물을 혼합함으로써, 이러한 문제를 해결하였다. 이때, 자체 응고형 무기물은 포졸란 반응을 유도하는 시멘트가 이용될 수 있으며, 시멘트의 구체적인 예로는 포틀랜드 시멘트가 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명에 따른 화재 억제용 무기 난연 내화 복합체(100)는 구형의 기공을 구비하는 발포 폼 구조를 가짐으로써, 무기 난연 내화 복합체(100)는 70% 이상의 기공율을 가질 수 있다.
특히, ATH 분말을 화재 억제용 무기 난연 내화 복합체(100)로 활용하기 위해서는 고형화 공정시 시멘트 반응에 참여하지 않도록 조대한 분말일수록 유리한바, 무기 내화제는 0.5 ~ 20㎛의 평균직경, 보다 바람직하게는 5 ~ 10㎛의 평균직경을 갖는 것이 적절하다.
또한, ATH 분말과 시멘트 분말의 혼합 소재를 제조시 발포 공정을 도입함으로 다공질화시킬 경우, 원재료의 원가 절감이 가능하며, 특히 건축소재로 활용 시 단열 효과를 극대화시킬 수 있다. 또한, 발포공정이 이루어진 슬러리가 시멘트 반응이 발생하기 전에 일정한 형태의 구조물 안에 폼(foam)의 슬러리 상태로 장입하면 고형화된 후 효과적으로 난연 효과를 극대화시킬 수 있다.
최근, 샌드위치 패널 사이에 장입된 고분자 물질은 화재 발생시 쉽게 녹을 뿐만 아니라 유독 가스를 발생시켜 무기물로의 대체가 시급한 실정이다.
따라서, 본 발명에서와 같이, 샌드위치 패널 사이에 발포된 다공성의 슬러리를 장입하면 패널의 모양에 맞추어서 고형화되는 시멘트 반응이 이루어져서 복합재로의 상용성이 매우 높으며, 특히 화재 반응 시 고분자와 같은 유독가스가 발생하지 않을 뿐만 아니라 ATH 분말이 분해하면서 수분을 발생시켜서 화재를 소화시키는 스마트 기능까지 보여줄 수 있는 지능형 소재로의 가능성을 보여 줄 수 있다.
이때, 본 발명에서는 강산용액이나 강염기용액으로 개질하지 않았는데, 이는 ATH는 산염기 어느 용액하고도 반응이 가능하고 많은 반응으로 분해될 경우 화염 방진 특성이 저하될 수 있기 때문이다. 또한, 시멘트 소재 역시 다양한 물질의 혼합물로서 다양한 복잡한 반응이 가능하다. 그러므로, 계면활성제를 이용한 분말 안정화 다공성 폼을 제조 시에는 형성된 폼이 시멘트 반응에 응하여 즉각적으로 고형화됨으로써, ATH 입자들이 분해되어 화염방지 억제력 저하를 최소화할 수 있게 된다.
도 2는 시멘트 첨가 전과 후의 ATH 복합 폼의 형성 과정을 설명하기 위한 모식도이다. 이때, 도 2의 (a)는 시멘트 첨가 전 상태를 나타낸 것이고, 도 2의 (b)는 시멘트 첨가 후 상태를 나타낸 것이다.
도 2의 (a)에 도시된 바와 같이, 시멘트 분말이 첨가되기 전의 경우에는 폼이 모두 ATH 분말로 이루어져 있으며, 특히 미세한 분말이 바깥 막층을 형성하는 것으로 파악된다.
반면, 도 2의 (b)에 도시된 바와 같이, 시멘트 분말이 첨가된 후의 경우에는 시멘트 분말과 ATH 분말이 고르게 형성되며, 미세한 ATH 분말과 시멘트 분말로 얇은 막층을 형성하고 내부에 조대한 혼합층이 존재하는 것을 알 수 있다.
한편, 본 발명의 다른 실시예에 따른 화재 억제용 무기 난연 내화 복합체(100)는 무기 내화제에 시멘트 등과 같이 열처리가 필요 없는 자체 응고형 무기물을 혼합하여 복합화시키는 것이 아니라, 무기 내화제의 분해 온도 이하에서 가열을 통하여 고형화될 수 있는 자체 응고형 무기물을 혼합하여 복합화시킨다.
따라서, 본 발명의 다른 실시예에 따른 화재 억제용 무기 난연 내화 복합체(100)는 무기 내화제 및 자체 응고형 무기물로 조성되며, 가교 반응에 의해 고형화된다.
이때, 무기 내화제는 Al(OH)3 및 Mg(OH)2를 포함하는 수화물 중에서 선택될 수 있다. 또한, 자체 응고형 무기물은 무기고분자가 이용될 수 있다. 이때, 무기고분자는 폴리실록산(Polysiloxane), 폴리실란(Polysilane), 폴리카보실레인(Polycarbosilane), 폴리실라잔(Polysilazane) 등에서 선택될 수 있다.
따라서, 본 발명의 다른 실시예에 따른 화재 억제용 무기 난연 내화 복합체(100)는 무기고분자를 활용하여 ATH 분말 등의 화염 지연 물질과 혼합하여, ATH 등이 분해를 일으키지 않는 낮은 온도로 가교(cross-linking)하여 사용함으로써 무기 난연 소재로의 장점을 활용할 수 있다.
지금까지 살펴본 바와 같이, 본 발명의 실시예들에 따른 화재 억제용 무기 난연 내화 복합체는 무기 내화제로 Al(OH)3, Mg(OH)3 등의 수화물을 이용하고, 자체 응고형 무기물로는 시멘트 소재를 지칭하는 포틀랜드 시멘트를 혼합함으로써, 실온에서 자체적으로 경화되어 고형화되거나, 또는 무기 내화제에 자체 응고형 무기물로 무기 고분자(preceramic polymer)를 이용하고, 분해온도 이하의 온도에서 가교 반응으로 거의 세라믹과 같은 열적 안정성을 확보할 수 있다.
또한, 본 발명의 실시예들에 따른 화재 억제용 무기 난연 내화 복합체는 내화 난연 효과를 극대화하기 위해서는 반응 면적을 넓히는 것이 중요하며, 이에 따라 표면적을 넓히기 위하여 계면활성제를 이용한 발포 공정의 도입으로 구형의 기공 구조를 갖도록 하여, 비표면적 증대에 의한 난연 특성의 향상 효과를 가질 수 있을 뿐만 아니라, 경량화를 통한 원료 비용의 감소, 기공 구조로 인한 단열 특성의 향상 효과를 도모할 수 있으며, 슬러리 단계에서 일정한 형태의 몰드에 부어서 고형화시킴으로싸 다양한 형상으로의 응용이 가능해질 수 있다.
도 3은 본 발명의 일 실시예에 따른 화재 억제용 무기 난연 내화 복합체 제조 방법을 나타낸 공정 순서도이다.
도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 화재 억제용 무기 난연 내화 복합체 제조 방법은 슬러리 형성 단계(S110), 계면활성제 첨가 단계(S120), 자체 응고형 무기물 첨가 단계(S130) 및 내화 복합체 형성 단계(S140)를 포함한다.
슬러리 형성
슬러리 형성 단계(S110)에서는 용매에 무기 내화제를 첨가하여 슬러리를 형성한다. 이때, 용매는 물, 에탄올, 메탄올, 프로판올 등에서 선택된 1종 이상이 이용될 수 있다.
무기 내화제로는 Al(OH)3 및 Mg(OH)2를 포함하는 수화물 중에서 선택되는 것이 바람직하다. 특히, 무기 내화제는 0.5 ~ 20㎛의 평균직경, 보다 바람직하게는 5 ~ 10㎛의 평균직경을 갖는 것을 적절한데, 이는 무기 내화제를 화재 억제용 무기 난연 내화 복합체로 활용하기 위해서는 고형화 공정시 시멘트 반응에 참여하지 않도록 조대한 분말일수록 유리하기 때문이다.
계면활성제 첨가
계면활성제 첨가 단계(S120)에서는 슬러리에 계면활성제를 첨가한 후, 0.5 ~ 2시간 동안 초음파 처리하여 분산 및 교반하여 폼을 형성한다.
이때, 계면활성제는 음이온 계면활성제를 이용하는 것이 바람직하다. 특히, 음이온 계면활성제로는 도데실황산나트륨(sodium dodecyl sulfate : SDS)를 이용하는 것이 바람직하나, 이에 제한되는 것은 아니다.
초음파 처리는 15 ~ 30KHz의 주파수 및 80 ~ 150W의 출력 전력을 갖는 고밀도 초음파(high-intensity ultrasound)를 0.5 ~ 2 시간 동안 인가하는 것이 바람직하다. 초음파 출력 전력이 80W 미만이거나, 초음파 처리 시간이 0.5 시간 미만일 경우에는 분산이 원활히 이루어지지 않을 우려가 있다. 반대로, 초음파 출력 전력이 150W를 초과하거나, 초음파 처리 시간이 2시간을 초과할 경우에는 ATH 분말의 비표면적의 감소가 발생하기 때문에 바람직하지 않다.
자체 응고형 무기물 첨가
자체 응고형 무기물 첨가 단계(S130)에서는 폼에 자체 응고형 무기물을 첨가한 후, 10 ~ 60분 동안 교반하여 발포 폼을 형성한다.
이때, 자체 응고형 무기물은 포졸란 반응을 유도하는 시멘트가 이용될 수 있으며, 시멘트의 구체적인 예로는 포틀랜드 시멘트가 있으나, 이에 제한되는 것은 아니다.
내화 복합체 형성
내화 복합체 형성 단계(S140)에서는 발포 폼을 몰드에 부은 후, 실온에서 건조 및 경화하여 내화 복합체를 형성한다. 이때, 실온은 0 ~ 40℃일 수 있으나, 반드시 이에 제한되는 것은 아니다.
한편, 도 4는 본 발명의 다른 실시예에 따른 화재 억제용 무기 난연 내화 복합체 제조 방법을 나타낸 공정 순서도이다.
도 4에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 화재 억제용 무기 난연 내화 복합체 제조 방법은 슬러리 형성 단계(S210), 성형체 형성 단계(S220) 및 성형체 가교로 내화 복합체 형성 단계(S230)를 포함한다.
슬러리 형성
슬러리 형성 단계(S210)에서는 무기 내화제 및 자체 응고형 무기물을 용매에 혼합 및 교반하여 슬러리를 형성한다.
이때, 용매는 물, 에탄올, 메탄올, 프로판올 등에서 선택된 1종 이상이 이용될 수 있다.
무기 내화제로는 Al(OH)3 및 Mg(OH)2를 포함하는 수화물 중에서 선택되는 것이 바람직하다. 특히, 무기 내화제는 0.5 ~ 20㎛의 평균직경, 보다 바람직하게는 5 ~ 10㎛의 평균직경을 갖는 것을 적절한데, 이는 무기 내화제를 화재 억제용 무기 난연 내화 복합체로 활용하기 위해서는 고형화 공정시 시멘트 반응에 참여하지 않도록 조대한 분말일수록 유리하기 때문이다.
자체 응고형 무기물은 무기고분자가 이용될 수 있다. 이때, 무기고분자로는 폴리실록산(Polysiloxane), 폴리실란(Polysilane), 폴리카보실레인(Polycarbosilane), 폴리실라잔(Polysilazane) 등에서 선택된 어느 하나가 이용될 수 있다.
성형체 형성
성형체 형성 단계(S220)에서는 슬러리를 몰드에 투입한 후, 건조하여 성형체를 형성한다. 즉, 제조된 슬러리는 즉시 몰드에 부어서 원하는 형상을 가지도록 하는 것이 적절하다.
성형체 가교로 내화 복합체 형성
성형체 가교로 내화 복합체 형성 단계(S230)에서는 성형체를 연화온도 이하에서 가교하여 내화 복합체를 형성한다.
이때, 가교는 2℃/min 이하의 가열속도로 100 ~ 180℃까지 가열한 후, 100 ~ 180℃에서 24 ~ 48시간 동안 유지하는 것이 바람직하다. 일 예로, 무기고분자인 폴리실록산은 ATH 분말의 분해 온도에 못 미치는 105℃에서 가교(cross linking)에 의해 고형화가 가능한 물질이다.
즉, 무기고분자를 열 경화하기 위하여, 성형체를 대기압 하에서 100 ~ 180℃로 가열한 최고 온도에서 24 ~ 48시간 동안 유지하는 것이 바람직하며, 최고 온도에서 유지 시간이 48시간을 초과할 경우, 더 이상의 경화가 일어나지 않으므로 최고 온도에서 유지 시간은 48시간 이내로 제한하는 것이 바람직하다. 이때, 가열속도가 지나치게 빠르면 무기고분자의 경화가 충분치 못할 염려가 있으므로, 가열속도는 2℃/min 이하로 제어하는 것이 바람직하다.
지금까지 살펴본 바와 같이, 본 발명의 실시예들에 따른 화재 억제용 무기 난연 내화 복합체 제조 방법은 무기 내화제로 Al(OH)3, Mg(OH)3 등의 수화물을 이용하고, 자체 응고형 무기물로는 시멘트 소재를 지칭하는 포틀랜드 시멘트를 혼합함으로써, 실온에서 자체적으로 경화되어 고형화되거나, 또는 무기 내화제에 자체 응고형 무기물로 무기 고분자(preceramic polymer)를 이용하고, 분해온도 이하의 온도에서 가교 반응으로 거의 세라믹과 같은 열적 안정성을 확보할 수 있다.
또한, 본 발명의 실시예들에 따른 화재 억제용 무기 난연 내화 복합체 제조 방법은 내화 난연 효과를 극대화하기 위해서는 반응 면적을 넓히는 것이 중요하며, 이에 따라 표면적을 넓히기 위하여 계면활성제를 이용한 발포 공정의 도입으로 구형의 기공 구조를 갖도록 하여, 비표면적 증대에 의한 난연 특성의 향상 효과를 가질 수 있을 뿐만 아니라, 경량화를 통한 원료 비용의 감소, 기공 구조로 인한 단열 특성의 향상 효과를 도모할 수 있으며, 슬러리 단계에서 일정한 형태의 몰드에 부어서 고형화시킴으로싸 다양한 형상으로의 응용이 가능해질 수 있다.
실시예
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
1. 무기 난연 내화 복합체 제조
실시예 1
150mL의 증류수를 수용하는 용기 내에 5.17㎛의 평균 직경을 갖는 ATH 분말 100g을 투입한 후, 교반하여 슬러리를 제조하였다. 다음으로, 슬러리에 음이온 계면활성제인 도데실황산나트륨(sodium dodecyl sulfate : SDS)를 첨가한 후 1시간 동안 초음파 처리를 실시하여 분산 및 교반하였다. 다음으로, 슬러리를 교반자를 이용하여 1000rpm으로 15분 동안 교반하면서 폼을 형성한 후, 칙량된 12.1㎛의 평균 직경을 갖는 시멘트 분말을 혼합하면서 10분 동안 교반하여 발포 폼을 형성한 다음 즉시 몰드에 부어서 실형상을 가지도록 하였으며, 경화를 위하여 실온에서 건조 및 경화가 자발적으로 일어나도록 유도하여 무기 난연 내화 복합체를 제조하였다.
이때, ATH 분말 60 중량% 및 시멘트 분말 40 중량%의 비율로 첨가하였으며, 시멘트 성분과 ATH 분말의 균일한 혼합을 위하여 볼 밀링을 4시간 동안 실시하였다.
실시예 2
ATH 분말 50 중량% 및 시멘트 분말 50 중량%의 비율로 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 무기 난연 내화 복합체를 제조하였다.
실시예 3
ATH 분말 40 중량% 및 시멘트 분말 60 중량%의 비율로 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 무기 난연 내화 복합체를 제조하였다.
실시예 4
ATH 분말 30 중량% 및 시멘트 분말 70 중량%의 비율로 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 무기 난연 내화 복합체를 제조하였다.
비교예 1
ATH 분말 80 중량% 및 시멘트 분말 20 중량%의 비율로 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 무기 난연 내화 복합체를 제조하였다.
비교예 2
100mL의 증류수를 수용하는 용기 내에 ATH 분말 100g을 투입한 후, 교반하여 슬러리를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 무기 난연 내화 복합체를 제조하였다.
2. 물성 평가
표 2는 실시예 1 ~ 4 및 비교예 1 ~ 2에 따른 무기 난연 내화 복합체의 물성 평가 결과를 나타낸 것이다. 또한, 도 5는 ATH 분말의 pH에 대한 제타 포텐셜 전위 값을 나타낸 그래프이고, 도 6은 실시예 1 ~ 4 및 비교예 1 ~ 2에 대한 미세조직을 나타낸 사진이다. 이때, 도 6의 (a) ~ (b)는 비교예 1 ~ 2에 대한 미세조직을 나타낸 사진이고, 도 6의 (c) ~ (f)는 실시예 1 ~ 4에 대한 미세조직을 나타낸 사진이다.
[표 2]
Figure PCTKR2015008713-appb-I000002
표 2 및 도 5를 참조하면, ATH 분말의 제타포텐셜 전위는 등전점(IEP)이 9.8로서, pH가 9.8보다 낮은 영역에서는 입자의 표면에서 포지티브(+) 극성의 특성을 보이게 된다.
또한, 실시예 1 ~ 4에 따른 슬러리 용액의 pH를 측정해 본 결과 8.8로 나타났다. 이는 계면활성제로 사용된 SDS가 음이온 계면활성제로서 SDS에서 음이온 (CH3-(CH2)11-OSO-3)의 끝단이 양극을 보여주는 ATH 입자의 [Al(OH)]+2 표면에 흡착하게 되어 부분적으로 소수성을 보여 준다.
비록, ATH 입자가 폼 형태 버블의 기체/액체 계면에서 안정화 되더라도 계면활성제인 SDS는 긴 사슬을 가진 계면 활성제로서 흡착에너지가 적다. 그러나, 이로 인하여 액상의 표면에너지를 낮추어 주고 교반에 의한 기포를 분말에 의하여 안정화시킬 수 있다.
그러나, 긴 사슬 구조를 가진 계면활성제에 의한 흡착에너지가 높지 않아서 기포들이 조대화되는 현상이 나타난다. 그러므로, 시멘트와 같은 경화제를 사용하여 최종 상태에서도 기공 구조를 유지할 수 있도록 조절하는 것이 매우 중요하다.
실시예 1 ~ 4와 같이, 시멘트를 경화제로 사용함으로써 셀 구조가 잘 발달된 폼을 제조할 수 있었다. 물론, 시멘트의 혼합으로 인하여 슬러리의 점도가 증가하고 이로 인하여 폼의 부피가 줄어드는 현상을 관찰할 수 있었으나, 그럼에도 불구하고 대략 86 ~ 93%의 높은 기공율을 나타내었다. 또한, 시멘트 성분들은 즉각적으로 기포들을 고정화시켜서 기포가 합체화하여 조대화되는 현상을 억제하고 최종적으로 미세한 기공 구조를 유지할 수 있었다.
도 6의 (a)에 도시된 바와 같이, 비교예 1의 미세 구조의 경우 평균 기공 크기는 141 ㎛이며, 비교적 높은 점도로 인하여 균일한 기공 구조를 얻을 수 없었다. 또한, 도 6의 (b)에 도시된 바와 같이, 비교예 2의 경우도 균일한 기공 구조를 보여 주지 못하였으며, 이때 평균 기공 크기는 116㎛를 나타내었다.
반면, 도 6의 (c)에 도시된 바와 같이, 물의 양을 100㎖에서 150㎖로 증가시킨 실시예 1의 경우에는 기포가 잘 형성되었으며, 평균 기공 크기도 98㎛로 감소하였다. 다만, 수분양이 증가함에 따라 상대적인 용질 양의 비가 감소함에 따른 개 기공(open pore) 구조를 보여주고 있다.
특히, 도 6의 (d), (e), (f)에 도시된 바와 같이, 실시예 2 ~ 4의 경우에는 시멘트의 함량이 증가함에 따라 기공 크기는 89㎛, 74㎛, 69㎛로 감소하면서 건전한 기공을 형성하는 것을 관찰할 수 있었다.
한편, 도 7은 실시예 4에 대한 미세조직 변화를 나타낸 것이다. 이때, 도 7의 (a)는 다공체의 모습을 거시적으로 나타낸 것이고, 도 7의 (b)는 균일한 기공 구조를 갖는 것을 나타낸 것이며, 도 7의 (c)는 고배율로서 자세하게 미세구조를 나타낸 것이고, 도 7의 (d)는 고배율로서 셀을 형성하는 얇은 막층 안에 다공질 입자들이 라멜라 형태로 분포하는 모습을 나타낸 것이다.
도 7의 (a) ~ (d)에 도시된 바와 같이, 얇은 막층의 두께가 1㎛ 정도 되는 것을 관찰할 수 있었다. 이때, 막층은 매우 작은 분말들로 형성되어 있으며, 이 분말은 ATH와 시멘트 분말에서 작은 분말이나 또는 분쇄된 분말로 이루어진 것으로 판단된다.
그리고, 서브마이크론 분말이 조대한 분말에 비하여 폼 형성시 기체/액체 계면으로 이동하여 안정화되기에 유리하다. 또한, EDS 분석결과 A 지점(point A)은 칼슘성분이 다량 검출되는 것으로 보아 시멘트 분말이 위치한 지점이며, B 지점(point B)은 ATH와 시멘트 분말이 혼합된 부분이다. 또한, C 지점(point C)은 주로 ATH 분말과 일부 시멘트 분말로 이루어진 것으로 판단된다.
도 8은 실시예 2에 따른 시편에 대한 XRD 측정 결과를 나타낸 도면이다.
도 8에 도시된 바와 같이, X선 회절 분석결과 실시예 2의 경우 ATH 분말이 여전히 많은 양이 존재하는 것을 관찰하였으며, 이는 조대한 ATH 분말이 시멘트 반응으로 고형화된 후에도 ATH 성분이 시멘트 분말과 반응을 하지 않고 잔류한다는 것을 보여 주는 것이며, 이는 결론적으로 ATH 분말이 화재 발생을 억제할 수 있는 능력을 갖고 있다는 것을 보여주는 것이다.
도 9는 실시예 1 ~ 4 및 비교예 1 ~ 2에 대한 압축강도를 측정한 결과를 나타낸 것이다.
도 9에 도시된 바와 같이, 시멘트 함량이 증가함에 따라 기계적 특성이 증가하는 것을 관찰할 수 있다. 즉, 시멘트 함량이 증가함에 따라 강도 증가에 따라 상용화에 용이하나, 상대적으로 ATH 함량이 억제되어 화염 억제 효과는 감소할 것으로 예상된다.
또한, 실시예 1 ~ 4에 대하여 TGA 실험을 실시한 결과, 온도가 증가됨에 따라 질량 감소가 나타났으며, 감소량은 잔류하는 ATH가 분해에 의하여 수분을 발생시킨 양으로 고려하면 질량 감소량이 증가함에 따라 화염 방지 효과를 극대화 시킬 수 있을 것으로 판단된다. ATH 분말의 경우 질량 감소량이 33% 임에 반하여, 시멘트가 첨가된 경우 실시예 2 및 실시예 4 모두 질량 감소량이 감소하기는 하였지만 22%, 18%로서 화염방지 효과가 있는 것을 확인하였다.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.
[부호의 설명]
S110 : 슬러리 형성 단계
S120 : 계면활성제 첨가 단계
S130 : 자체 응고형 무기물 첨가 단계
S140 : 내화 복합체 형성 단계
S210 : 슬러리 형성 단계
S220 : 성형체 형성 단계
S230 : 성형체 가교로 내화 복합체 형성 단계

Claims (20)

  1. 무기 내화제와 자체 응고형 무기물로 조성되며, 실온에서 경화되어 고형화된 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체.
  2. 제1항에 있어서,
    상기 무기 내화제 : 20 ~ 60 중량% 및 자체 응고형 무기물 : 40 ~ 80 중량%로 조성되는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체.
  3. 제1항에 있어서,
    상기 무기 내화제는
    Al(OH)3 및 Mg(OH)2를 포함하는 수화물 중에서 선택되는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체.
  4. 제1항에 있어서,
    상기 무기 내화제는
    0.5 ~ 20㎛의 평균직경을 갖는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체.
  5. 제1항에 있어서,
    상기 자체 응고형 무기물은
    포졸란 반응을 유도하는 시멘트를 포함하되,
    상기 시멘트는 포틀랜드 시멘트를 포함하는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체.
  6. 제1항에 있어서,
    상기 무기 난연 내화 복합체는
    70% 이상의 기공율을 갖는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체.
  7. 제1항에 있어서,
    상기 무기 난연 내화 복합체는
    구형의 기공을 구비하는 발포 폼 구조를 갖는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체.
  8. 무기 내화제와 자체 응고형 무기물로 조성되며, 가교 반응에 의해 고형화된 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체.
  9. 제8항에 있어서,
    상기 무기 내화제는
    Al(OH)3 및 Mg(OH)2를 포함하는 수화물 중에서 선택되는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체.
  10. 제8항에 있어서,
    상기 자체 응고형 무기물은
    무기고분자인 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체.
  11. 제10항에 있어서,
    상기 무기고분자는
    폴리실록산(Polysiloxane), 폴리실란(Polysilane), 폴리카보실레인(Polycarbosilane) 및 폴리실라잔(Polysilazane) 중에서 선택되는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체.
  12. (a) 용매에 무기 내화제를 첨가하여 슬러리를 형성하는 단계;
    (b) 상기 슬러리에 계면활성제를 첨가한 후, 0.5 ~ 2시간 동안 초음파 처리하여 분산 및 교반하여 폼을 형성하는 단계;
    (c) 상기 폼에 자체 응고형 무기물을 첨가한 후, 10 ~ 60분 동안 교반하여 발포 폼을 형성하는 단계; 및
    (d) 상기 발포 폼을 몰드에 부은 후, 실온에서 건조 및 경화하여 내화 복합체를 형성하는 단계;를 포함하는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체 제조 방법.
  13. 제12항에 있어서,
    상기 용매는
    물, 에탄올, 메탄올 및 프로판올 중 1종 이상을 포함하는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체 제조 방법.
  14. 제12항에 있어서,
    상기 계면활성제는
    음이온 계면활성제를 이용하되,
    상기 음이온 계면활성제는 도데실황산나트륨(sodium dodecyl sulfate : SDS)를 포함하는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체 제조 방법.
  15. 제12항에 있어서,
    상기 무기 내화제는
    Al(OH)3 및 Mg(OH)2를 포함하는 수화물 중에서 선택되는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체 제조 방법.
  16. 제15항에 있어서,
    상기 무기 내화제는
    0.5 ~ 20㎛의 평균직경을 갖는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체 제조 방법.
  17. 제12항에 있어서,
    상기 자체 응고형 무기물은
    포졸란 반응을 유도하는 시멘트를 포함하되,
    상기 시멘트는 포틀랜드 시멘트인 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체 제조 방법.
  18. (a) 무기 내화제 및 자체 응고형 무기물을 용매에 혼합 및 교반하여 슬러리를 형성하는 단계;
    (b) 상기 슬러리를 몰드에 투입한 후, 건조하여 성형체를 형성하는 단계; 및
    (c) 상기 성형체를 연화온도 이하에서 가교하여 내화 복합체를 형성하는 단계;를 포함하는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체 제조 방법.
  19. 제18항에 있어서,
    상기 (c) 단계에서,
    상기 가교는
    2℃/min 이하의 가열속도로 100 ~ 180℃까지 가열한 후, 상기 100 ~ 180℃에서 24 ~ 48 시간 동안 유지하는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체 제조 방법.
  20. 제18항에 있어서,
    상기 자체 응고형 무기물은
    무기고분자을 이용하되,
    상기 무기고분자는 폴리실록산(Polysiloxane), 폴리실란(Polysilane), 폴리카보실레인(Polycarbosilane) 및 폴리실라잔(Polysilazane) 중에서 선택되는 것을 특징으로 하는 화재 억제용 무기 난연 내화 복합체 제조 방법.
PCT/KR2015/008713 2014-08-20 2015-08-20 화재 억제용 무기 난연 내화 복합체 및 그 제조 방법 WO2016028104A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0108372 2014-08-20
KR1020140108372A KR101672490B1 (ko) 2014-08-20 2014-08-20 화재 억제용 무기 난연 내화 복합체 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2016028104A1 true WO2016028104A1 (ko) 2016-02-25

Family

ID=55350974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008713 WO2016028104A1 (ko) 2014-08-20 2015-08-20 화재 억제용 무기 난연 내화 복합체 및 그 제조 방법

Country Status (2)

Country Link
KR (1) KR101672490B1 (ko)
WO (1) WO2016028104A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108342087A (zh) * 2018-03-06 2018-07-31 哈尔滨理工大学 一种高效无机阻燃剂和制备方法及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102062107B1 (ko) * 2017-08-10 2020-01-03 서울시립대학교 산학협력단 내열성 기지에 발생되는 크랙의 치유 및 방염이 가능한 도포제 및 상기 도포제를 이용한 도포방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050071426A (ko) * 2005-06-15 2005-07-07 손진호 무기섬유를 이용한 경질내화 차음보온재의 제작방법 및이에 따라 제작된 경질내화 차음보온재
JP2008247651A (ja) * 2007-03-29 2008-10-16 Kubota Matsushitadenko Exterior Works Ltd セメント板
KR20110108075A (ko) * 2010-03-26 2011-10-05 신강하이텍(주) 내화 피복재 조성물 및 내화피복재 시공방법
KR20110123476A (ko) * 2010-05-07 2011-11-15 동남이엔씨(주) 난연이 가능한 토목구조물용 친환경 실리콘 내화재
KR20140081918A (ko) * 2012-12-05 2014-07-02 주식회사 경동원 무기 팽창성 내화 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050071426A (ko) * 2005-06-15 2005-07-07 손진호 무기섬유를 이용한 경질내화 차음보온재의 제작방법 및이에 따라 제작된 경질내화 차음보온재
JP2008247651A (ja) * 2007-03-29 2008-10-16 Kubota Matsushitadenko Exterior Works Ltd セメント板
KR20110108075A (ko) * 2010-03-26 2011-10-05 신강하이텍(주) 내화 피복재 조성물 및 내화피복재 시공방법
KR20110123476A (ko) * 2010-05-07 2011-11-15 동남이엔씨(주) 난연이 가능한 토목구조물용 친환경 실리콘 내화재
KR20140081918A (ko) * 2012-12-05 2014-07-02 주식회사 경동원 무기 팽창성 내화 조성물

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108342087A (zh) * 2018-03-06 2018-07-31 哈尔滨理工大学 一种高效无机阻燃剂和制备方法及应用
CN108342087B (zh) * 2018-03-06 2021-03-26 哈尔滨理工大学 一种无机阻燃剂和制备方法及应用

Also Published As

Publication number Publication date
KR20160027998A (ko) 2016-03-11
KR101672490B1 (ko) 2016-11-04

Similar Documents

Publication Publication Date Title
JP5490104B2 (ja) 耐久性オキシ塩化マグネシウムセメントおよびそのための方法
KR100781338B1 (ko) 석고 플라스터 베이스 보드 및 이의 제조 방법
BR102014002644A2 (pt) argamassa de proteção contra o fogo
TWI477552B (zh) 防火聚胺酯材料及防火結構
WO2019216518A1 (ko) 준불연 단열 마감재 조성물, 이의 제조방법 및 이를 이용한 시공방법
WO2014112717A1 (ko) 혹한기용 외단열 몰탈 및 이를 이용한 외단열 시스템 시공 방법
WO2019198892A1 (ko) 석탄 바닥재를 이용한 속성 고강도 지오폴리머의 제조 방법
WO2016028104A1 (ko) 화재 억제용 무기 난연 내화 복합체 및 그 제조 방법
KR20030022863A (ko) 석고 플라스터 굽도리판용 조성물, 이를 제조하는 방법 및석고 플라스터 굽도리판을 제조하는 방법
KR100935573B1 (ko) 초경량 무기질 미립경량골재 및 그의 제조방법
WO2022181871A1 (ko) 실리카 퓸을 포함하는 석탄재 기반 지오폴리머 폼의 제조방법
KR101764818B1 (ko) 무기물 발포체를 이용한 난연 eps 폼
KR100863139B1 (ko) 상수원 슬러지를 이용한 방음 건축조성물 및 그 제조방법
WO2020242169A1 (ko) 마감재 조성물, 이의 제조방법 및 이를 이용한 시공방법
JP2017077994A (ja) 組成物及び不燃材
CN112299812A (zh) 一种镁基轻质防火无机胶凝材料及其制备方法
KR101922432B1 (ko) 슬래그 혼합 시멘트계 단열재의 제조방법
Pędzich et al. Ceramizable composites for fire resistant applications
JP2008247651A (ja) セメント板
WO2021066492A1 (ko) 에어로겔 블랭킷
KR101118136B1 (ko) 무기중공입자를 포함하는 내화도료 조성물
KR101019980B1 (ko) 내화 불연성 스티로폼의 제조방법
CN108203260A (zh) 一种含有纳米微粉的发泡保温板
KR101909086B1 (ko) Pp 섬유 혼합형 단열소재 및 이의 제조 방법
RU2162455C1 (ru) Сырьевая смесь для изготовления пенобетона на магнезиальном вяжущем

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833387

Country of ref document: EP

Kind code of ref document: A1