WO2021261912A1 - 난연수지 및 난연복합플라스틱 제조방법과 이를 이용한 난연제품 제조방법 - Google Patents

난연수지 및 난연복합플라스틱 제조방법과 이를 이용한 난연제품 제조방법 Download PDF

Info

Publication number
WO2021261912A1
WO2021261912A1 PCT/KR2021/007889 KR2021007889W WO2021261912A1 WO 2021261912 A1 WO2021261912 A1 WO 2021261912A1 KR 2021007889 W KR2021007889 W KR 2021007889W WO 2021261912 A1 WO2021261912 A1 WO 2021261912A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
flame
flame retardant
composite plastic
retardant
Prior art date
Application number
PCT/KR2021/007889
Other languages
English (en)
French (fr)
Inventor
공석태
Original Assignee
공석태
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 공석태 filed Critical 공석태
Publication of WO2021261912A1 publication Critical patent/WO2021261912A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters

Definitions

  • the present invention relates to a method for manufacturing a flame-retardant resin and a flame-retardant composite plastic and a method for manufacturing a flame-retardant product using the same, and more particularly, water glass (main component) + unsaturated polyester + curing agent (MDI, TDI, TPO....), etc. It relates to a method for manufacturing a flame-retardant resin and flame-retardant composite plastic that is resistant to fire by mixing and impregnating and laminating glass fibers, and a method for manufacturing a flame-retardant product using the same. There is a non-woven form made by cutting, spraying, and applying adhesive.
  • Fiber is generally made of glass, but various materials such as carbon and cotton are used as needed.
  • vinyl ester resin In case of acid and corrosion resistance, vinyl ester resin is used. In general, low-cost unsaturated ester resin is used. Vinyl ester resin and unsaturated ester resin burn easily. There is a problem of drinking toxic gas and suffocating by the gas in a short time rather than being burned to death, so the need for non-combustible and flame-retardant technology that does not burn well and reduces the generation of toxic gas is emerging.
  • Vinyl ester resin and unsaturated ester resin burn well, and toxic gas is generated when burned. and unsaturated ester resins need to be flame-retardant.
  • Existing phosphorus-based flame retardants and halogen-based flame retardants are expensive and costly when applied, and the ignition temperature rises, but toxic gases are generated more than the desired performance.
  • Due to the problem that is difficult to apply to the environment, flame-retardant composite plastics are being manufactured using phenolic resin, which is harmful to the environment. In order to prevent this, the workability is very bad, such as wearing a gas mask and working.
  • the present invention has been devised to solve the above problems, and as in the examples, water glass (main component) + unsaturated polyester + curing agent (MDI, TDI, TPO....
  • An object of the present invention is to provide a flame-retardant resin and flame-retardant composite plastic that does not burn well, and a method for manufacturing a flame-retardant product using the same.
  • the method for manufacturing a flame-retardant resin and a flame-retardant composite plastic according to the present invention and a method for manufacturing a flame-retardant product using the same are a method of using a mixture of water glass as a flame retardant as a flame retardant in a thermosetting resin as a main component.
  • thermosetting resin it is a method of using a mixture of water glass as a curing agent and a flame retardant as a main ingredient.
  • the curing agent is TPO as a photoinitiator, Benzoylperoxide (BPO) as a medium temperature curing agent, or Cyclohexanone peroxide as a room temperature curing agent.
  • thermosetting resin a vinyl ester resin or an epoxy resin or a melamine resin or a phenol resin or a urea resin or a polyurethane resin may be used.
  • the unsaturated polyester resin after mixing 0.1% to 2.5% of TPO as a photoinitiator, 30 to 70% or 50 to 85% of water glass may be added in a weight ratio.
  • BPO which is a thermal initiator
  • TPO which is a photoinitiator
  • vinyl ester resin may be applied instead of an unsaturated polyester resin.
  • the water glass addition ratio is 10-20%, 20-30%, 70-100%, 100-150%, 150-200%, 200-250%, 250-300%, 300-400%, 400 It can be ⁇ 500%.
  • TPO or BPO 0.1 to 2.5%
  • unsaturated polyester 5 to 30% by weight relative to water glass is mixed, stirred, and applied to the application area, and then applied as a curing agent by applying light or heat.
  • the unsaturated polyester may be a vinyl ester.
  • the water glass addition ratio can be applied by mixing water glass with a weight ratio of 1 to 5%, 30 to 50%, 50 to 75%, and 75 to 90%.
  • the curing agent may be isocyanate.
  • the water glass in the water glass curing method, can be cured by mixing an unsaturated polyester resin and an isocyanate.
  • the amount of the unsaturated polyester resin is within 0.5 of polyester with respect to water glass 1 by weight
  • the amount of isocyanate is within 0.5 of polyester with respect to water glass 1 by weight.
  • the amount of the unsaturated polyester resin may be between 0.5 and 0.7 of polyester with respect to 1 water glass in weight ratio.
  • the isocyanate in the embodiment of the present invention uses MDI, TDI, APM, HDI.
  • the present invention provides a polymer material containing 30% to 60% or 60% to 90% of SIO2, SIO3, SIO4, and SIO5 as a main component.
  • H2O water
  • NA2 sodium
  • the fiber may be carbon fiber or glass fiber.
  • the present invention provides self-extinguishing properties when mixing water glass (based on No. 1) with vinyl ester resin and unsaturated ester resin and water glass (based on No. 1) with respect to ester resin 1 (based on No. 1) 0.3 (weight ratio), and water glass (based on No. 1) ) Even when mixing up to 2.5 (weight ratio), there was no problem in curing, and the higher the water glass mixing ratio, the better the flame retardancy. It works.
  • FIG. 1 is a diagram showing a graph of a material developed by FT/IR.
  • FIG. 2 is a view showing a graph comparing FT/IR analogs.
  • thermosetting resin proposes a method of using a mixture of water glass as a flame retardant in the main material.
  • thermosetting resin a method of using a mixture of water glass as a curing agent and a flame retardant as a base material is presented.
  • Water glass is an inorganic material that is inexpensive and has excellent non-combustible and flame retardant properties. Under the circumstances, I didn't even think of an attempt to add water glass.
  • the present applicant used ice as a mold, mixed TPO with unsaturated polyester, and had experience in curing it by irradiating UV light, so he inferred that curing would be possible if water glass was mixed with unsaturated polyester and then irradiated with UV light.
  • Soluble silicates are compounds in which silica (SiO2) and alkali metals (M2O) are combined in various molar ratios. It is one of the oldest and most familiar inorganic compounds. It usually contains some water in its structure, so it is represented by the molecular formula M2O-nSiO2-xH2O. Because of its solubility in water, it is also called ‘water glass’. Depending on the type of alkali metal, there are sodium silicate (sodium silicate), potassium silicate (potassium silicate), and lithium silicate. Although sodium silicate has industrial beginnings in 1818, the origins of products similar to sodium silicate date back to ancient Phoenician times. Soluble silicates were developed early because they are relatively simple to manufacture.
  • Sodium silicate or potassium silicate is made by melting silica sand (SiO2) with Na2CO3 or K2CO3 at 1100 ⁇ 1200°C. The resulting glass dissolves in water with high-pressure steam to form a clear, slightly viscous liquid known as “water glass”.
  • Water glass dissolved in water exhibits various properties depending on the molar ratio of silica to alkali metal and the concentration of the solution, and is used for various purposes.
  • the key to successful application of silicate is to optimize the properties of the product for its purpose.
  • the properties of soluble silicate are determined by the molar ratio of silica to alkali metal, the type of alkali metal, and the concentration of the solution.
  • soluble silicate water glass
  • liquid sodium silicate liquid sodium silicate
  • liquid potassium silicate liquid potassium silicate
  • lithium silicate water glass
  • Water glass developed specifically for the purpose of use is a modified silicate-based inorganic binder system, silica and silicate. It is a generic term for compounds containing
  • Silicates can be naturally occurring or synthetic. Naturally occurring silicate minerals make up more than 90% of the Earth's crust. Dissolved silica is a ubiquitous component of the Earth's hydrosphere, although in small amounts. Commercially available synthetic soluble silicate has a higher degree of polymerization than naturally dissolved silica because it has a high concentration, but when it is diluted with water and depolymerized, it becomes indistinguishable from natural silica.
  • liquid silicate The most important properties of liquid silicate are the molar ratio of silica to alkali metal and the concentration of the solution.
  • silicate solution silicate ion monomer, polysilicate ion and colloidal silicate ion micelles exist together in various forms. Its form is known to depend on the molar ratio of silica to alkali metal and the concentration of the solution. As a result, the properties of liquid silicate in application are different. Therefore, when selecting a liquid silicate according to the application, an appropriate molar ratio and concentration must be selected.
  • liquid silicate The chemical properties of liquid silicate are described with a focus on sodium silicate, the most representative liquid silicate.
  • Liquid silicate provides alkali and has excellent alkali buffering capacity. Most alkalis are neutralized by acids, while sodium silicate maintains about the same pH when diluted.
  • Silicates in aqueous solution provide a strong negative charge on SiO44-, which is easily absorbed by the surface of minerals and metal oxides in solution. This action occurs even at fairly low concentrations in solution of minerals and metal oxides. This surface adsorption action is effective in preventing aggregation and dispersing, so it is used in the detergent industry, paper industry, and ceramic industry.
  • the gelation/polymerization reaction occurs quickly when the pH of liquid sodium silicate drops below 10.7.
  • Various combinations of silicate ion monomers of silicate, polysilicate ions and colloidal silicate ion micelles crosslink each other to form a polymer. Bonds formed by polymerization of silicate are not as strong as bonds formed by dehydration, but are more water resistant. This reaction occurs when the surface of the agglomerated material is acidic or when the agglomerated material is exposed to high concentrations of CO2.
  • a hardener can be used on the silicate to cause gelation/polymerization. Examples of the use of silicates and hardeners together can be found in the grouting and foundry industries.
  • Liquid sodium silicate reacts with metal ions such as Ca, Mg, Al, and Ba to form insoluble silicate metal hydrate, silicate metal hydroxide, silicic acid, etc. at the same time and gel.
  • metal ions such as Ca, Mg, Al, and Ba
  • the silicic acid compound produced by such a reaction depends on the amount of metal ions and silicate ions present.
  • Polyhydric alcohols such as glyoxal and ethylene glycol diacetate and acetic acid esters both produce glycolic acid or acetic acid in the presence of alkali and gel sodium silicate by neutralization. Even if organic solvents such as methyl alcohol, ethyl alcohol, and acetone are added, they will gel, but these are simply dehydration and dissolve again when water is added.
  • thermosetting resin or thermosetting plastic is the same term, and thermosetting plastic (English: thermosetting plastic, thermosetting polymer, thermoset) is a plastic that does not melt like thermoplastic plastics when heated, but burns to powder or generates gas. Therefore, once hardened, it will not melt again.
  • Types of this plastic include epoxy resins, amino resins, phenol resins, polyester resins, and the like.
  • Polyester resin is the most widely used resin system, especially in the shipbuilding and offshore industry. The majority of small ships and yachts made of composite materials use this resin system.
  • the polyester resin is an unsaturated type.
  • Unsaturated polyester resins are thermosetting resins and can be cured in a liquid or solid state under normal conditions.
  • unsaturated polyester resin is called 'polyester resin' or simply 'polyester'.
  • Polyesters made of acids, glycols, and monomers have different properties depending on the type of their constituents.
  • Orthophthalic polyester resin is an economical and basic resin used by many people. Isophthalic polyester resin is a material that is starting to attract attention in the shipbuilding and offshore industry, where excellent water resistance is required.
  • polyester resins are viscous, light-colored liquids that consist of a solution of polyester in a monomer, usually styrene.
  • Styrene additives up to 50%, reduce the viscosity and make the resin easier to handle.
  • styrene plays a very important role in curing the resin from liquid to solid by crosslinking the polyester molecular chains, without producing any by-products. So these resins can be molded without the use of pressure and are therefore called 'contact' or 'low pressure' resins.
  • Polyester resins have limited storage times because they harden or “gel” themselves over a long period of time. Small amounts of inhibitors are often added to slow the gelation of the resin during fabrication.
  • polyester resins For use in molds, polyester resins require some ancillary additives. These are usually:
  • Catalyst/Accelerator/Additive Thixotropic; pigment; fillers; Chemical/Fire-Resistant
  • the manufacturer may provide the resin in a basic form or in a form including the above additives.
  • the resin can be prepared by simply adding a catalyst at the request of the mold maker prior to being molded into a mold. As mentioned so far, if the unsaturated polyester resin is left for a sufficient time, it will harden on its own. Because this polymerization rate is substantially too slow, catalysts and accelerators are used to effect polymerization of the resin within a substantial period of time. Catalyst is added to the resin system just before polymerization takes place. Catalysts do not participate in a chemical reaction, but simply activate the reaction. Accelerators are added to the catalyzed resin to allow the reaction to occur at a high rate at room temperature. Since accelerators have little effect on the resin in the absence of a catalyst, polyester manufacturers sometimes produce them in the form of pre-packaged accelerators.
  • the cross-linked state of the polyester resin is said to be “cured”. It is now a chemically resistant hard solid.
  • the cross-linking or curing process is called “polymerization” and is an irreversible chemical reaction.
  • the side-by-side cross-linked nature of the molecular chains tends to brittle fracture when the polyester layer is subjected to an impact load.
  • the toning of the mixed resin is carried out by means of a pigment.
  • pigments only account for 3% of the resin weight, the choice of pigment material should be carefully considered as it easily affects the curing reaction and degrades the final laminate when inappropriate pigments are used.
  • filler material affects the flexural or tensile strength of the laminate, it is usually added in an amount of up to 50% of the resin weight.
  • the use of fillers can be advantageous in laminates or castings of thick parts where in the absence of fillers, significant heat generation can occur. It also contributes to improving the fire resistance of the laminate.
  • the resin for making FRP is a thermosetting resin, which is generally used as a two-component type. It is used by mixing 0.3 to 1% of a curing agent with vinyl ester resin and unsaturated ester resin, and adding accelerators or retarders as needed.
  • a curing accelerator An agent that accelerates curing or changes a heat curing reaction to a room temperature curing reaction is called a curing accelerator.
  • a typical example is a tertiary amine used together with an organic peroxide to cure unsaturated polyester.
  • compounding agents to prevent flow by mixing with unvulcanized rubber, bridge bonding agents to bridge molecules, and curing accelerators added to cement and gypsum to accelerate curing. have.
  • alcohol Since alcohol is the main type of curing agent, it volatilizes, so the concentration is lowered and water is generated, so first-in-first-out is desired.
  • thermosetting agent 80-120°C
  • item 1 is opposite to water for vinyl ester or unsaturated polyester.
  • MEKPO is used as a curing agent, curing does not occur, and after mixing 0.5% of TPO, a photoinitiator, with unsaturated polyester, 30 ⁇ 70% of water glass No. 1 is mixed and the primary reaction is shown during stirring. It is confirmed that curing occurs when exposed to ultraviolet rays UV light can be applied only during external reaction, so after mixing 0.5% of BPO powder with unsaturated polyester, 30 ⁇ 70% of water glass No. 1 was mixed and the first reaction was shown during stirring. Put it in a chamber above 80°C and take it out after 10 minutes Curing was completed, and when the mass before and after curing was measured, there was no change in mass.
  • Curing System Features / Remark Hardener Accelerator MEK Peroxide(s) Cobalt Solution AAPO for room temperature curing - Rapid curing, cold press molding, low temperature rapid curing CHPO - Rapid curing 50% BPO DMA paste, room temperature curing, cold press molding
  • Curing System Characteristics / Remark Hardener Accelerator TBPO For high temperature mold molding such as MMD, SMC, BMC, etc.
  • TBPB For high temperature mold molding such as MMD, SMC, BMC, etc., together with TBPO
  • Polyether polyol and polyester polyol are mainly used for PUF production.
  • Polymer Polyol It is an abbreviation of Polymer Polyol and is also called Copolymerp Polyol CPP. It is a kind of polyol produced by dispersing and polymerizing acrylic monomer in polyether polyol. Mainly used for the purpose of increasing hardness and breathability (applied to soft and semi-rigid foam).
  • MDI isocyanate group
  • a substance that accelerates or delays a chemical reaction and does not participate in the reaction itself A tertiary amine-based catalyst and an organometal-based catalyst are generally used in the manufacture of polyurethane.
  • An organometallic (tin compound, lead compound, etc.) or some tertiary amine (TEDA) is used as a catalyst that promotes the polyol and isocyanate reaction (resinization reaction).
  • PMDETA, BDMEE tertiary amines
  • DMCHAs tertiary amines
  • a catalyst that promotes the reaction of three isocyanates to form isocyanurate (trimerization reaction). Some tertiary amines, but some organometallic catalysts are used.
  • the cell structure in the foam by the effect of surfactant effect, and functions such as mixing properties of raw materials, stability, foaming, and foam stability.
  • a chain extender refers to a substance that extends the main chain of a polymer
  • a crosslinker refers to a substance that makes a polymer chain into a branched chain or a mesh structure.
  • These are polyhydric alcohols or amines in a low amount, dihydric alcohols or amines are often used as chain extenders, and trihydric or higher alcohols or amines are mainly used as crosslinking agents.
  • a material used to manufacture foam it refers to a material that forms bubbles during a polymer reaction.
  • a substance that causes the formation of bubbles by a polymer reaction water reacts with isocyanate to generate CO2).
  • Substances added to raw materials to increase the size, weight, or strength of a product or to lower the unit price Generally, Carbon Black, CaCO3 (Calcuim Carbonate), Glass Fiber, etc. are used.
  • a material used to prevent adhesion between the foam surface and the mold surface is used in the form of spraying on the mold surface before injecting the PU stock solution into the mold.
  • MC Abbreviation for Methylene Chloride, used as a cleaning agent for raw materials when working with polyurethane.
  • DOP Used as a head cleaner or lubricant for the foaming machine of Dioctyl Phthalate.
  • Resin Premix also called Resin, it is a liquid raw material in which various additives (crosslinking agent, catalyst, foam stabilizer, foaming agent) are mixed with polyol. Actually, this resin premix and MDI react to form polyurethane.
  • Glass fiber has a thread form, a mat form made by weaving a glass thread, and a nonwoven fabric form made by cutting and spraying glass threads and applying an adhesive.
  • Glass fiber has a thread form, a mat form made by weaving a glass thread, and a nonwoven fabric form made by cutting and spraying glass threads and applying an adhesive.
  • UV rays can be applied only during external reaction, so after mixing 0.5% of BPO powder with unsaturated polyester, 30 ⁇ 70% of water glass No. 1 was mixed, and the first reaction was shown during stirring, and placed in a chamber above the temperature of 80°C 10 When it was taken out after a minute, curing was completed, and when the mass before and after curing was measured, there was no change in mass.
  • Glass fiber has a thread form, a mat form made by weaving a glass thread, and a nonwoven fabric form made by cutting and spraying glass threads and applying an adhesive.
  • Example 1 As in Example 1), Example 2), Example 3), Example 4), and Example 5), when a mixed resin is put into glass fiber and cured, a flame retardant resin and flame retardant Since it is made of composite plastic, it has a wide range of uses, such as building panels, and when applied to a flammable wall, the flame-retardant resin becomes a fire-resistant wall, and the industrial application range is limitless.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

본 발명은 난연수지 및 난연복합플라스틱 제조방법과 이를 이용한 난연제품 제조방법에 관한 것으로, 보다 상세하게는 물유리(주성분) + 불포화 폴리에스테르 +경화제(MDI,TDI,TPO....등)등을 혼합하여 유리섬유에 함침 적층하여 불에 잘 안타는 난연수지 및 난연복합플라스틱 제조방법과 이를 이용한 난연제품 제조방법에 관한 것으로, 유리섬유는 실형태,유리실을 직조하여만든 매트형태,유리실을 잘라 뿌리고 접착제를 도포하여 만든 부직포 형태가 있다.

Description

난연수지 및 난연복합플라스틱 제조방법과 이를 이용한 난연제품 제조방법
본 발명은 난연수지 및 난연복합플라스틱 제조방법과 이를 이용한 난연제품 제조방법에 관한 것으로, 보다 상세하게는 물유리(주성분) + 불포화 폴리에스테르 +경화제(MDI,TDI,TPO....등)등을 혼합하여 유리섬유에 함침 적층하여 불에 잘 안타는 난연수지 및 난연복합플라스틱 제조방법과 이를 이용한 난연제품 제조방법에 관한 것으로, 유리섬유는 실형태,유리실을 직조하여만든 매트형태,유리실을 잘라 뿌리고 접착제를 도포하여 만든 부직포 형태가 있다.
복합플라스틱을 일반적으로 FRP라 부르며 섬유와 수지를 결합해 제작하며 섬유는 일반적으로 유리로 된것을 사용하나 필요에 따라 카본, 면직류 등 다양한 소재를 이용한다.
수지는 내산,내식 일 경우 비닐에스테르 수지를 사용하며 일반적으로는 저가의 불포화 에스테르 수지를 사용하는데 비닐에스테르 수지와 불포화 에스테르 수지는 불에 잘 타며 불에 탈 때 유독성 가스가 발생 되어 화재시 사람이 불에 타 죽는것이 아니라 유독성 가스를 마시고 가스에 의해 짧은 시간에 질식사하는 문제가 있어 불에 잘 타지 않고 유독한 가스발생을 줄이는 불연,난연화 기술의 필요성이 대두 되고 있다.
비닐에스테르 수지와 불포화 에스테르 수지는 불에 잘 타며 불에 탈 때 유독성 가스가 발생 되어 화재시 사람이 불에 타 죽는것이 아니라 유독성 가스를 마시고 가스에 의해 짧은 시간에 질식사하는 문제가 있으나 기존 비닐에스테르 수지와 불포화 에스테르 수지를 난연화 시켜야 되는데 기존 인계난연제,할로겐족 난연제는 가격이 비싸고 적용시 원가가 많이 올라가며 불이 붙는 착화온도는 올라가는데 비하여 유독가스는 더 많이 발생하는 문제 등 원하는 성능이 나오지 않아 산업현장에서 적용하기 어려운 문제점으로 인하여 환경에 해로운 페놀수지를 이용하여 난연성 복합플라스틱을 제조하고 있는 실정이며 페놀원료중 포름알데히드 성분이 들어가 발암물질이며 작업시 최루가스가 발생되어 최루가스에 노출시 눈물, 콧물이 나오며 이를 예방하기위해 방독면을 착용하고 작업 하는 등 작업성이 많이 나쁘다.
본 발명은 전술한 문제점을 해결하고자 안출한 것으로, 실시예와 같이 물유리(주성분) + 불포화 폴리에스테르 +경화제(MDI,TDI,TPO....등)등을 혼합하여 유리섬유에 함침 적층하여 불에 잘 안타는 난연수지 및 난연복합플라스틱과 이를 이용한 난연제품을 제조하는 방법을 제공하는 것을 그 목적으로 한다.
상기와 같은 목적을 달성하기 위해 본 발명에 따른 난연수지 및 난연복합플라스틱 제조방법과 이를 이용한 난연제품 제조방법은, 열경화성 수지에 있어서 주제에 난연재로 물유리를 혼합하여 사용하는 방법이다.
그리고, 열경화성 수지에 있어서 주제에 경화제와 난연재로 물유리를 혼합하여 사용하는 방법이다. 이때, 경화제는 광개시제인 TPO 또는 중온경화제인 BPO(Benzoylperoxide) 또는 상온경화제인 Cyclohexanone peroxide 이다.
열경화성 수지로 비닐에스테르 수지 또는 에폭시 수지 또는 멜라민 수지 또는 페놀 수지 또는 우레아 수지 또는 폴리우레탄 수지를 사용할 수 있다.
본 발명은, 불포화 폴리에스테르 수지에 있어서, 광개시제인 TPO를 0.1%~2.5% 혼합 후, 물유리를 중량비 30~70% 또는 50~85%를 첨가할 수 있다.
광개시제인 TPO 대신 열개시제인 BPO를 적용할 수 있고, 불포화 폴리에스테르 수지 대신 비닐 에스테르수지를 적용할 수 있다.
또한, 물유리 첨가비율은 물유리를 중량비 10~20%, 20~30%, 70~100%, 100~150%, 150~200%, 200~250%, 250~300%, 300~400%, 400~500%일 수 있다.
본 발명은, 불포화폴리에스테르에 TPO또는 BPO을 0.1~2.5% 혼합하여 물유리에 대한 중량비 5~30% 를 혼합하여 교반하여 적용처에 적용후 빛이나 열을가해 경화제로 적용하는 방법이다.
이때, 불포화폴리에스테르는 비닐에스테르일 수 있다.
또한, 물유리 첨가비율은 물유리를 중량비 1~5%, 30~50%, 50~75%, 75~90% 를 혼합하여 적용할 수 있다.
한편, 본 발명의 실시예에서 경화제는 이소시아네이트일 수 있다.
그리고, 물유리 경화방법에 있어서, 물유리에 불포화 폴리에스테르수지 와 이소시아네이트 혼합하여 경화할 수 있다. 이때, 불포화 폴리에스테르 수지량은 중량비로 물유리 1에 대하여 폴리에스테르 0.5이내이고, 이소시아네이트 량은 중량비로 물유리 1에 대하여 폴리에스테르 0.5이내이다.
한편, 불포화 폴리에스테르 수지량은 중량비로 물유리 1에 대하여 폴리에스테르 0.5~ 0.7 사이일 수 있다.
한편, 본 발명의 실시예에서 이소시아네이트는 MDI, TDI, APM, HDI를 사용한다.
한편, 본 발명은 SIO2,SIO3,SIO4,SIO5 를 주성분을 30% ~60% 또는 60% ~90% 함유한 고분자물질을 제시한다.
이때, 물(H2O)를 10% ~40% 함유할 수 있다.
또한, 나트륨(NA2)를 3% ~30% 함유할 수 있다.
한편, 섬유(면직류)와 상술에서 제조한 난연수지를 함침하여 난연 판넬 또는 난연 파이프의 난연제품을 제조할 수 있다. 또한, 섬유(면직류)와 상술에서 제조한 난연수지를 함침하여 몰드에 넣어 압축성형을 통해 난연제품을 제조할 수 있다.
이때, 섬유는 카본섬유 또는 유리섬유를 사용할 수 있다.
이와 같이 본 발명은, 비닐에스테르 수지와 불포화 에스테르 수지에 물유리(1호기준)를 에스테르 수지 1에 대한 물유리(1호기준) 0.3(무게비)이상 을 혼합하면 자기소화성이 주어지며 물유리(1호기준) 2.5(무게비)까지 혼합하여도 경화에는 지장이 없었고 물유리 혼합비가 많을수록 난연화 정도가 좋았으며, 물유리 가격이 기존 인계난연제나 할로겐족 난연제의 10%정도 이하의 가격으로 아주 저렴한 상품을 난연제품으로 만드는 효과가 있다.
도 1은 FT/IR 개발한 물질 그래프를 보여주는 도면이다.
도 2는 FT/IR 유사물질과 비교그래프를 보여주는 도면이다.
도 3 내지 도 8은 본 발명의 시험성적서이다.
도 9는 폴리에스테르의 이상적 화학 구조이다.
본 발명은 최선의 형태로, 열경화성 수지에 있어서, 주제에 난연재로 물유리를 혼합하여 사용하는 방법을 제시한다.
또한, 열경화성 수지에 있어서, 주제에 경화제와 난연재로 물유리를 혼합하여 사용하는 방법을 제시한다.
이하에는 첨부한 도면을 참조하여 본 발명에 따른 난연수지 및 난연복합플라스틱 제조방법과 이를 이용한 난연제품 제조방법의 바람직한 실시예에 대해 상세하게 설명한다.
물유리는 무기물 소재로서 가격이 싸며 불연,난연성이 우수한 성질을 가지고 있는 성분으로 산업상 많이 사용하고 있으나 물유리 성분중 40~70%의 물성분을 포함하고 있다 보니 기존 frp수지 경화제인 상온경화제(MEKPO) 상황에서는 물유리를 첨가하는 시도를 생각조차 할 수 없었다.
본 출원인은 얼음을 몰드로 삼아 불포화 폴리에스테르에 TPO를 혼합후 UV빛을 조사하여 경화시킨 실험 경험이 있어 불포화 폴리에스테르에 물유리를 혼합후 UV빛을 조사하면 경화가 가능할 것이라는 추론을 하였고 이에 따라 불포화폴리에스테르에 물유리를 혼합하여 저렴한 난연성 복합수지 폴리머 소재를 만들고자 한다.
우선 첨가제로 사용하려는 물유리에 대한 기본지식이 필요하며 기본설명을 하면 액체로 된 유리 또는 물에 녹는(녹은) 유리. 대표적 규산염인 규산나트륨(Na2SiO3)의 수용액. 또는 하얀 고체 가루인 규산나트륨 자체를 가용성 규산염 또는 물유리 라고 부르기도 한다.
가용성규산염이란?
가용성규산염(Soluble silicates)은 실리카(SiO2)와 알칼리금속(M2O)이 다양한 몰비(molar ratio)로 결합하고 있는 화합물로서, 가장 오래되고 친근한 무기질화합물 중의 하나입니다. 일반적으로 구조 내에 일부 물을 함유하고 있어서 M2O-nSiO2-xH2O의 분자식으로 표현됩니다. 물에 대한 용해성이 있기 때문에 ‘물유리(water glass)’라고도 합니다. 알칼리금속의 종류에 따라 규산나트륨(규산소다), 규산칼륨(규산가리), 리튬실리케이트가 있습니다. 규산나트륨의 산업적 시작은 1818년이지만 규산나트륨과 유사한 제품의 기원은 고대 페니키아시대까지 거슬러 올라갑니다. 가용성규산염이 일찍이 개발된 이유는 제조가 비교적 간단하기 때문입니다. 규산나트륨 또는 규산칼륨은 규사(SiO2)를 Na2CO3 또는 K2CO3과 함께 1100~1200℃에서 용융시킴으로써 만들어집니다. 이렇게 만들어진 유리는 고압 스팀과 함께 물에 녹아 “물유리”라고 알려진 투명하고 약간의 점성이 있는 액체가 됩니다.
물에 용해된 물유리는 실리카 대 알칼리금속의 몰비와 용액의 농도에 따라 다양한 특성을 나타내며 다양한 용도로 사용되고 있습니다. 접착 및 결합, 분산, 완충작용, 필름형성, 내부식성 등의 장점뿐만 아니라, 규산염의 환경적 안전성과 강하고 견고한 결합력, 사용취급상의 용이성, 내열성, 난연성 등은 규산염을 더욱 가치 있는 독특한 재료로서 주목을 받게 하고 있습니다. 규산염을 성공적으로 활용하는 관건은 목적에 맞게 제품의 특성을 최적화시키는 것입니다. 가용성규산염의 특성은 실리카 대 알칼리금속의 몰비, 알칼리금속의 종류, 용액의 농도 등에 의해서 결정됩니다.
가용성 규산염(물유리)을 세부적으로 분류하면 액상규산나트륨,액상규산칼륨,리튬실리케이트 로 나뉘나 일반적으로 물유리로 불리며 사용용도에따라 일정비율로 혼합하여 사용하기도 합니다.
용도 지향적으로 특별히 개발된 물유리로는 변성실리케이트 베이스의 무기질바인더시스템 실리카(silica)와 규산염(silicate) "실리카“는 무기합성물 이산화규소(SiO2)를 일컬으며 ”규산염“은 규소, 산소 그리고 하나 이상의 금속을 함유한 합성물을 일컫는 총칭입니다.
규산염은 자연적으로 발생되거나 합성될 수 있습니다. 자연적으로 발생된 규산염 광물은 지각의 90% 이상을 차지하고 있습니다. 용해된 실리카는 적은 양을 차지하지만 지구 수권(水圈)의 어디나 존재하는 성분입니다. 상용되고 있는 합성된 가용성규산염은 높은 농도를 갖기 때문에 자연 상태로 녹아 있는 실리카보다 높은 중합도를 갖지만, 물에 희석되어 탈중합화하면 자연 상태의 실리카와 구별할 수 없게 됩니다.
액상규산염의 물리적 특성 에 대해 설명하면
액상규산염의 가장 중요한 성질은 실리카 대 알칼리금속의 몰비와 용액의 농도입니다. 규산염 용액에는 규산이온모노머, 폴리규산이온 및 콜로이드상의 규산이온미셀(micells)이 다양한 형태로 함께 존재합니다. 그 형태는 실리카 대 알칼리금속의 몰비와 용액의 농도에 따라 다른 것으로 알려져 있습니다. 이에 따라 액상규산염의 응용상의 성질이 다르게 나타나기 때문에 용도에 따라 액상규산염을 선택할 때는 적정한 몰비와 농도가 선택되어야 합니다.
일반적으로 같은 용액 농도에서 몰비가 높아지면 분자량이 큰 폴리규산이나 콜로이드상의 미셀이 증가하기 때문에 점도가 상승합니다. 규산나트륨과 규산칼륨, 리튬실리케이트를 비교할 때, 규산칼륨이 규산나트륨보다, 리튬실리케이트가 규산칼륨보다 높은 몰비에서도 유동성이 좋습니다.
액상규산염의 화학적 특성으로
가장 대표적인 액상규산염인 규산나트륨을 중심으로 액상규산염의 화학적 특성을 기술합니다.
알칼리 완충작용
액상규산염은 알칼리를 제공하며, 훌륭한 알칼리 완충능력이 있습니다. 대개의 알칼리는 산성 물질에 중화되는 반면, 규산나트륨은 희석이 되어도 거의 같은 pH를 유지합니다.
표면 흡착작용
수용액 중의 규산염은 SiO44-의 강력한 음전하를 제공하여 용액 중의 미네랄과 금속산화물 표면에 쉽게 흡수됩니다. 미네랄 및 금속산화물의 용액 중 농도가 상당히 낮은 경우에도 이 작용은 일어납니다. 이러한 표면 흡착작용은 응집방지 및 분산에 효과가 좋아 세제산업, 제지산업, 세라믹산업 등에 활용되고 있습니다.
수화/탈수
규산염에서 물을 제거하면 점차적으로 끈적거리고 점성이 높아집니다. 비교적 적은 양의 물이 제거되어도 물유리는 매끈한 필름을 형성합니다. 3.3보다 높은 몰비를 갖는 규산나트륨은 필름형 바인더로서 적합합니다. 액상규산염의 몰비가 높을수록 건조가 더욱 빠릅니다. 내수성을 높이려면 어느 정도의 열 건조나 화학적 경화가 필요합니다.
겔화/폴리머화
겔화/폴리머화 반응은 액상규산나트륨의 pH가 10.7 아래로 떨어질 때 빨리 일어납니다. 규산염의 규산이온모노머, 폴리규산이온 및 콜로이드상의 규산이온미셀(micells)의 다양한 결합체들이 서로 교차결합(crosslinking)하여 폴리머를 형성합니다. 규산염의 폴리머화로 형성된 결합은 탈수에 의해 형성된 결합만큼 강하지는 않지만 내수성은 더 높습니다. 응집되는 재료 표면이 산성이거나 응집되는 재료가 고농도 CO2에 노출될 때 이 반응이 일어납니다. 겔화/폴리머화를 일으키기 위해 규산염에 경화제를 사용할 수 있습니다. 규산염과 경화제를 함께 사용하는 예는 그라우팅과 주조산업에서 찾아볼 수 있습니다.
산과의 반응
액상규산나트륨에 산을 첨가하면 중화반응에 의해 pH가 낮아지고, 규산이온 또는 폴리규산이온 끼리의 중합(실록산 결합)이 진행되어 점도가 상승합니다. 더욱 진행하면 겔(gel)이 됩니다. 점도의 상승 및 겔화 속도는 산의 종류, 산의 첨가량, 용액의 농도, 온도 등에 따라 다릅니다.
금속이온과의 반응
액상 규산나트륨은 Ca, Mg, Al, Ba 등의 금속이온들과 반응하여 불용성의 규산염 금속수화물 및 규산염 금속수산화물, 규산 등을 동시에 생성하여 겔화 됩니다. 이와 같은 반응으로 생성되는 규산화합물은 금속이온과 규산이온의 존재량에 의존합니다.
유기화합물과의 반응
글리옥살이나 에칠렌글리콜디아세테이트 등의 다가 알코올과 초산에스테르는 모두 알칼리 존재 하에서 글리콜산이나 초산을 생성하고 중화작용에 의해 규산나트륨을 겔화시킵니다. 메칠알코올, 에칠알코올, 아세톤 등의 유기용매를 가해도 겔화합니다만 이들은 단순히 탈수에 의한 것으로 물을 가하면 다시 용해됩니다.
액상규산염의 혼합 및 희석
점도가 다른 두 액상규산염을 혼합하거나 액상규산염을 물에 희석할 때, 혼합액의 점도는 몇 시간 때로는 며칠 동안이 지나야 안정화되는 것이 관찰됩니다. 이것은 올리고머의 평형 분포로 이어지는 분자의 재배열이 서서히 진행된다는 것을 나타냅니다. 또한 올리고머의 적어도 일부는 상당히 안정적인 기하학적 형태를 갖고 있기 때문에 형태의 전환, 즉 분자적 재배열이 다소 어렵다는 것을 의미합니다.
여기 설명에서 열경화성 수지또는 열경화성 플라스틱은 같은용어이며 열경화성 플라스틱(영어: thermosetting plastic, thermosetting polymer, thermoset)은 열을 가하면 열가소성 플라스틱처럼 녹지 않고, 타서 가루가 되거나 기체를 발생시키는 플라스틱이다. 따라서 한번 굳어지면 다시 녹지 않는다.
이 플라스틱의 종류로는 에폭시수지, 아미노 수지, 페놀 수지, 폴리에스테르 수지 등이 있으며 청구항에서 "주제"라 함은 에폭시수지, 아미노 수지, 페놀 수지, 폴리에스테르 수지등을 말한다
폴리에스테르 (Polyester) 수지
폴리에스테르 수지는 가장 널리 사용되는 수지 시스템인테 특히 조선해양산업에서 많이 사용된다. 복합재료로 만들어진 소형 선박, 요트의 대다수는 이 수지 시스템을 사용한다.
폴리에스테르 수지는 불포화 타입이다. 불포화 폴리에스테르 수지는 열경화성 수지이고 정상적인 조건이라면 액체나 고체 상태에서 경화될 수 있다. 보통 불포화 폴리에스테르 수지는 ‘폴리에스테르 수지’ 혹은 단순히 ‘폴리에스테르’라고 불린다. 산, 글리콜, 모노머(monomer)로 만들어진 폴리에스테르는 그 구성요소의 종류에 따라 특성이 다양하다.
복합재료 산업에서 기본적으로 사용되는 두가지 타입의 기본적인 폴리에스테르 수지가 있다. Orthophthalic 폴리에스테르 수지는 많은 사람들이 사용하는 경제적이고 기본적인 수지이다. Isophthalic 폴리에스테르 수지는 현재 탁월한 내수성이 요구되는 조선해양산업과 같은 곳에서 각광받기 시작하는 재료이다.
도 9은 전형적인 폴리에스테르의 이상적 화학 구조를 보여준다. 분자 사슬 사이의 에스테르 그룹들 (CO - O - C)과 반응기의 (C=C) 위치를 표시 하였다.
대부분의 폴리에스테르 수지는 보통 스티렌인 모노머 안에 있는 폴리에스테르 용액으로 구성된 점성이 있고 연한 색깔의 액체이다. 50%에 달하는 스티렌 첨가물은 점도를 줄여주어 수지를 취급하는데 좀더 쉽게 한다. 게다가 스티렌은 수지를 폴리에스테르 분자 사슬의 교차결합에 의해 액체에서 고체로 경화시키는 아주 중요한 역할을 수행하는데 이때 어떠한 부산물도 생성시키지 않는다. 그래서 이들 수지는 압력의 사용없이 성형될 수 있고 따라서 ‘접촉’ 혹은 ‘저압’ 수지라고 불리운다. 폴리에스테르 수지는 장기간에 걸쳐 스스로 굳거나 ‘겔’화 되기 때문에 제한된 보관 시간을 갖는다. 수지가 제작되는 동안 겔화되는 것을 늦추기 위해 종종 소량의 반응 억제제가 첨가된다.
몰드에서 사용을 위해 폴리에스테르 수지는 몇몇 부수적인 첨가물을 필요로 한다. 이것들은 보통 다음과 같다.
촉매제/촉진제/첨가제 : Thixotropic; 안료; 충진제; 내화학제/내화제
제조사는 기본적인 형태나 혹은 위에서 상기 첨가제들을 포함시킨 형태의 수지를 제공할 수 있다. 수지는 주형에 성형되기 앞서 주형 제작자의 요청에 따라 단순히 촉매제를 첨가함으로서 제작될 수 있다. 지금까지 언급된 것 처럼 불포화 폴리에스테르 수지를 충분한 시간동안 방치하게 되면 그것은 스스로 굳게 된다. 이 중합 속도는 실질적으로 너무 느리기 때문에 실질적인 시간 기간 내에 수지의 중합을 이루기 위해 촉매제와 촉진제가 사용된다. 촉매제는 중합 작용을 일으키기 바로 전 수지 시스템에 첨가된다. 촉매제는 화학 반응에 참여하지는 않지만 단순히 반응을 활성화한다. 촉진제는 반응을 상온에서 높은 속도로 이루어 지도록 촉매 작용을 받은 수지에 첨가된다. 촉진제는 촉매제가 없으면 수지에 영향을 거의 미치지 않기 때문에 폴리에스테르 제조사는 가끔 제조사에서 미리 촉진제를 넣은 형태로 생산하기도 한다.
촉매제의 존재하에 스티렌 ‘S’의 첨가되면 스티렌은 아래 그림과 같이 복잡한 3차원 망상조직을 형성하기 위해 각각의 반응기에서 폴리머 사슬과 교차결합한다.
교차결합된 상태를 폴리에스테르 수지는 ‘경화’되었다고 한다. 그것은 이제 내화학성의 단단한 고체이다. 교차결합 혹은 경화 과정을 ‘중합 반응’이라 하며, 비가역적 화학 반응이다. 분자 사슬의 나란히 교차결합 된 성질은 폴리에스테르 층이 충격 하중을 받았을 때 취성 파괴되게 하는 경향이 있다.
성형 전 수지 혼합을 준비할 때는 세심한 주의가 필요하다. 수지와 첨가제는 촉매제를 넣기 전에 모든 성분들을 고르게 혼합하기 위해 조심스럽게 저어야 한다. 수지에 혼입된 기포는 최종 부품 품질에 영향을 미치기 때문이다. 구조물을 약하게 하는 공기 방물이 적층물에 들어갈 수 있기 때문에 보강재 층을 적층할 때 특히 조심해야 한다. 최적의 재료 물성을 얻도록 중합 반응을 일으키기 위해 알맞은 양으로 촉진제와 촉매제를 첨가하는 것 또한 매우 중요하다. 너무 많은 촉매제는 빠른 겔화 시간을 초래하고 반면에 너무 적은 촉매제는 덜 경화되는 결과를 초래할 것이다.
혼합 수지의 조색은 안료에 의해 수행된다. 안료는 수지 무게의 3%에 불과하지만 경화 반응에 영향을 쉽게 미치고 부적절한 안료를 사용했을 때 최종 적층물의 질을 떨어뜨리기 때문에 안료 재료의 선택은 신중히 고려되어야 한다.
충진재는 다음과 같은 이유에 의해 널리 사용된다
성형물의 가격을 줄이기 위해
성형 공정을 용이하게 하기 위해
성형물에 특별한 특성을 덧붙이기 위해
충진재는 적층물의 굽힘 강도나 인장 강도에 영향을 미치기는 하지만 보통 수지 무게의 50%에 달하는 양이 첨가 된다. 충진재의 사용은 충진재가 없었을 경우 상당한 발열이 발생할 수 있는 두꺼운 부품의 적층물 혹은 주조물에서 유리할 수 있다. 또한 적층물의 내화성을 높이는데도 기여한다.
FRP를 만드는 수지는 열경화성 수지로서 일반적으로 2액형으로 사용되며 비닐에스테르 수지와 불포화 에스테르 수지에 경화제를 0.3~1% 혼합하여 사용하며 필요에따라 촉진제나 지연제를 첨가하여 사용된다
경화를 촉진하거나, 가열경화반응을 상온경화반응으로 바꾸는 약제를 경화촉진제라고 한다. 불포화 폴리에스테르 경화에 유기과산화물과 같이 사용하는 3급 아민 등이 대표적인 예이다. 경화제에는 이 밖에 미가황(未加황) 고무에 배합하여 흐름을 방지하기 위한 배합제(配合劑)나 분자를 다리결합시키기 위한 다리결합제, 시멘트·석고에 첨가하여 경화를 촉진하는 경화촉진제 등이 있다.
경화제는 알콜성분이 주종이므로 휘발되므로 농도가 낮아지고 물이 생겨 선입선출이 요망된다. 저장은 냉암소에 보관하고 직사광선이나 열이 있는곳은 절대 금물이며 사용하는 용기는 스텐레스,PE,유리외에는 피하고 철,동합금된 철재는 절대 않된다. 충격이나 마찰을 주면은 폭발한다.
1. MEKPO-무색액체-상온경화용(일반용)
2. BPO-분말-중온경화제(80-120℃),열경화제
3. TPO-분말-광개시제
등이 있으며 본 발명에서는 2번과 3번 항목에 대해서만 적용되며 1번 항목은 비닐에스테르나 불포화폴리에스테르는 물하고는 상극으로 물이 적은 양만 들어가도 경화불량이 일어나는데 물유리에는 물성분이 50~70%함유하고 있어 MEKPO를 경화제로 사용시 경화가 되지 않으며 불포화 폴리에스테르에 광개시제인 TPO를 0.5%혼합후 물유리1호를 30~70%를 혼합후 교반중 1차반응을 보였고 자외선에 노출하면 경화가 일어나는것을 확인하였으며 자외선은 외부반응시에만 적용할수 있어 다시 불포화 폴리에스테르에 BPO분말 0.5%혼합후 물유리1호를 30~70%를 혼합후 교반중 1차반응을 보였고 80℃ 온도위 챔버에 넣고 10분후 꺼내니 경화가 완료되었으며 경화전과 경화후의 질량을 재어보니 질량의 변화가 없었다.
질량의 변화가 없다는것은 경화제를 첨가후 uv빛이나 열을가해 경화반을을 유도하면 경화반응에 따라 물유리 성분의 30~70%의 물이 비닐에스테르나 불포화폴리에스테르 와 반응하여 새로운 폴리머가 형성되었다고 본다
용어 정리 및 설명을 하면
a. 상온 경화제 (Curing Agent)
경화시스템 특징 / Remark 경화제 촉진제 MEK Peroxide(s) Cobalt Solution 상온경화용 AAPO - 속경화, 콜드프레스성형, 저온속경화 CHPO - 속경화 50% BPO DMA 페이스트, 상온경화, 콜드프레스성형
b. 중온 경화제 (Curing Agent)
경화시스템 특징 / Remark 경화제 촉진제 BPO - 분말, 페이스트 LPO - 액상, 중온 금형 성형용 TBPO Cobalt Solution 중온 금형성형용 (금속염 소량첨가, 0.1-0.2%)
c. 고온 경화제 (Curing Agent)
경화시스템 특징 / Remark 경화제 촉진제 TBPO - MMD, SMC, BMC 등 고온 금형 성형용 TBPB - MMD, SMC, BMC 등 고온 금형 성형용, TBPO와 병용
* 상온경화제는 20℃, 중온경화제는 80~130℃, 고온경화제는 130~160℃ 에서 사용
폴리올(Polyol)
분자말단에 2개이상의 수산기(-OH)를 갖고 있는 유기화합물로 PU제조시 이소시아네이트와 함께 주성분을 이룸.
PUF 제조용으로는 폴리에테르폴리올(Polyether Polyol), 폴리에스테르폴리올(Polyester Polyol) 등이 주로 사용됨.
-> 폴리에테르폴리올 :
분자구조에 에테르기 (Ether, -O-)가 반복적으로 결합되어 있는 폴리올의 한 종류.
-> 폴리에스테르폴리올 :
분자구조에 에스테르기 (Ester, -COO-)가 반복적으로 결합되어 있는 폴리올의 한 종류로 주로 CASE분야에 사용됨.
-> 폴리머폴리올(POP) :
Polymer Polyol의 약칭으로 코폴리머폴리올(Copolymerp Polyol CPP)라고도 하며, 폴리에테르폴리올 중에 아크릴 단량체(Acryl Monomer)를 분산, 중합하여 제조된 폴리올의 일종임. 주로 경도 및 통기성의 증가 목적으로 사용함(연질, 반경질폼에 적용).
이소시아네이트(Isocyanate)
분자에 이소시아네이트기(-NCO)를 함유하고 있는 유기화합물로 PU 제조시 폴리올과 함께 주성분을 이룸. 폴리우레탄 폼 제조용으로는 MDI, TDI 등이 사용됨.
MDI/TDI
상업화되어 가장 많이 사용되는 대표적인 이소시아네이트의 종류들을 일컫는 말.
프리폴리머(Prepolymer)
특수 용도로 사용하기 위해 다량의 이소시아네이트에 소량의 폴리올을 투입한 후 고온에서 반응시켜 얻어진 변성 이소시아네이트.
촉매(Catalyst)
화학반응을 촉진시키거나 지연시키며, 자신은 반응에 참여하지 않는 물질. 폴리우레탄을 제조하는데는 3급 아민(Tertiary Amine)계 촉매, 유기금속(Organometal)계 촉매가 일반적으로 많이 사용된다.
수지화 촉매(Gelling Catalyst)
폴리올과 이소시아네이트 반응(수지화 반응)을 촉진시켜 주는 촉매로서 유기금속계(주석화합물, 납화합물 등)나 일부 3급 아민(TEDA)이 사용됨.
포화촉매(Blowing Catalyst)
이소시아네이트와 물과의 반응(포화반응)을 촉진시켜 주는 촉매로서 일부 3급 아민(PMDETA, BDMEE)들이 많이 사용됨.
밸런스 촉매(Balance Catalyst)
수지화 반응과 포화반응 모두를 적절하게 촉진시켜 주는 촉매로서 일부 3급 아민(DMCHA)들이 많이 사용됨.
삼량화 촉매(Trimerization Catalyst)
이소시아네이트 3개가 반응하여 이소시아누레이트(Isocyanurate)를 형성(삼량화 반응)하는데, 이반응을 촉진시켜주는 촉매. 일부 3급 아민이나, 일부 유기금속계 촉매가 사용됨.
정포제(Surfactant)
참가제 일종으로 계면활성 효과작용으로 폼내의 셀(cell)구조에 영향을 미치며 원료의 혼합성, 안정성, 기포 발생, 기포의 안정성 등의 기능을 한다.
가교제(Cross-Linker)와 사슬연장제(Chain Extender)
사슬연장제는 고분자의 주사슬을 연장시키는 물질을 말하며, 가교제는 고분자사슬을 가지달린 사슬로 만들거나 망사구조를 만드는 물질을 말함. 이것들로 사용되는 것은 저분량의 다가알콜이나 아민이며, 사슬연장제에는 2가의 알콜이나 아민류가 많이 사용되고, 가교제로는 3가 이상의 알콜 또는 아민류가 주로 사용된다.
발포제(Blowing Agent)
폼을 제조하기 위해 사용되는 물질로서 고분자 반응 중 기포를 형성하여 주는 물질을 말함.
-> 화학적 발포제 :
고분자 반응에 의해 기포를 형성하게 하는 물질(물은 이소시아네이트와 반응하여 CO2를 발생시킴).
-> 물리적 발포제 :
반응열에 의해 기화되어 기포를 형성하는 물질로 고분자반응에는 참여하지 않는다.(CFC-11, HCFC-141b, c-Pentane 등)
난연제(Flame Retardant)
최종 폼의 난연효과를 위해 사용되는 물질이며 주로 건자재분야의 경질 폼에 사용됨(TCPP, TCEP).
안료(Toner, Colorant)
최종 폴리우레탄 제품의 색상을 내기 위하여 Resin Premix 원료에 소량 투입되는 첨가제.
충전제(Filler)
제품의 크기, 무게, 강도를 높히거나, 단가를 낮추기 위해 원료에 투입되는 물질. 일반적으로 카본블랙(Carbon Black), CaCO3(Calcuim Carbonate), 유리섬유(Glass Fiber)등이 사용된다..
이형제(Releasing Agent)
폼 표면과 몰드 표면과의 접착되는 현상을 막기 위해 사용되는 물질로 일반적으로 PU원액을 몰드에 주입하기 전에 몰드 표면에 도포(Spray)하는 형태로 사용함.
MC : Methylene Chloride의 약자로 폴리우레탄 작업시 원료의 세척제로 사용됨.
DOP : Dioctyl Phthalate의 발포기의 Head 세척제 또는 윤활제 등으로 사용됨.
레진프리믹스(Resin Premix): Resin이라고도 하며, 폴리올에 각종 첨가제(가교제, 촉매, 정포제, 발포제)가 혼합되어 있는 액상의 원료임.실제로 이 Resin premix와 MDI가 반응하여 폴리우레탄을 형성한다.
실시예 1)
불포화 폴리에스테르 200g
이소시아네이트 MDI 100g
물유리1호를 1000g 을 혼합 교반하면 회색으로 점점변하며 점도가 높아지는 1차반응 을 보였고 10분정도가 지나면 경화가 일어나 딱딱한 형태의 불투명 수지판이 되었으며 이를 토치로 태워보면 불이 붙지 않으며 하얀수증기가 배출되는것을 확인하였으며 물에 담가도 물에 녹지 않는 성질을 보였으며 불포화 에스테르,MDI 양을 늘리게 되면 강도는 세지나 난연화정도가 떨어지는 현상를 보인다.
물유리 1000g 불포화 에스테르 200g MDI 100g을 혼합하여 유리섬유매트에 뿌리고 롤러로 문질러 주면 유리섬유에 수지가 함침되어 불에 타지않는 복합플라스틱이 된다.
유리섬유는 실형태,유리실을 직조하여만든 매트형태,유리실을 잘라 뿌리고 접착제를 도포하여 만든 부직포 형태가 있다.
실시예 2)
불포화 폴리에스테르 200g
이소시아네이트 TDI 100g
물유리1호를 1000g 을 혼합 교반하면 회색으로 점점변하며 점도가 높아지는 1차반응 을 보였고 10분정도가 지나면 경화가 일어나 딱딱한 형태의 불투명 수지판이 되었으며 이를 토치로 태워보면 불이 붙지 않으며 하얀수증기가 배출되는것을 확인하였으며 물에 담가놓으면 물에 녹는 성질을 보였으며 불포화 에스테르,TDI 양을 늘리게 되면 강도는 세지나 난연화정도가 떨어지는 현상를 보인다
물유리 1000g 불포화 에스테르 200g MDI 100g을 혼합하여 유리섬유매트에 뿌리고 롤러로 문질러주면 유리섬유에 수지가 함침되어 불에 타지않는 복합플라스틱이 된다.
유리섬유는 실형태,유리실을 직조하여만든 매트형태,유리실을 잘라 뿌리고 접착제를 도포하여 만든 부직포 형태가 있다.
실시예 3)
불포화 폴리에스테르 200g
광개시제인 TPO 1g(0.5%)
물유리1호를 1000g 을 혼합교반하면 점도가 높아지는 1차반응 을 보였고 자외선에 노출하면 경화가 일어나 딱딱한 형태의 수지판이 되었으며 이를 토치로 태워보면 불이 붙지 않으며 하얀수증기가 배출되는것을 확인하였다.
는것을 확인하였으며 자외선은 외부반응시에만 적용할수 있어 다시 불포화 폴리에스테르에 BPO분말 0.5%혼합후 물유리1호를 30~70%를 혼합후 교반중 1차반응을 보였고 80℃ 온도위 챔버에 넣고 10분후 꺼내니 경화가 완료되었으며 경화전과 경화후의 질량을 재어보니 질량의 변화가 없었다.
물유리 1000g TPO 1g MDI 100g을 혼합하여 유리섬유매트에 뿌리고 롤러로 문질러주면 유리섬유에 수지가 함침되고 그위에 자외선을 가하면 3~5분후 불에 잘 안타는 복합플라스틱이 된다.
유리섬유는 실형태,유리실을 직조하여만든 매트형태,유리실을 잘라 뿌리고 접착제를 도포하여 만든 부직포 형태가 있다.
실시예 4)
불포화 폴리에스테르 200g
이소시아네이트 MDI 100g
물유리1호 1000g 을 혼합 교반하면서 유리실에 함침하여 이형제를 바르거나 이형필름을 원형파이프 몰드에 감은후 그위에 후프와 헬리칼로 감아(공지된 필라멘트와인딩기술) 일정시간이 지나면 경화되고 경화후 탈영하면 속이빈 불투명 복합플라스틱 파이프가 만들어지며 이를 토치로 태워보면 불이 붙지 않으며 하얀수증기가 배출되는것을 확인하였으며 물에 담가도 물에 녹지 않는 성질을 보였고 불포화 에스테르, MDI 양을 늘리게 되면 강도는 세지나 난연화정도가 떨어지는 현상를 보인다.
실시예 5)
불포화 폴리에스테르 200g
이소시아네이트 MDI 100g
물유리1호 1000g 을 혼합 교반하면서 2~50mm 정도로 잘게잘린 유리실(촙)과 함침하여 이형제를 바른 암몰드에 넣은후 수몰드를 가압후 (공지된 프레스 성형기술,사출기술) 일정시간이 지나면 경화되고 경화후 탈영하면 몰드형상의 불투명 복합플라스틱 제품이 만들어지며 이를 토치로 태워보면 불이 붙지 않으며 하얀수증기가 배출되는것을 확인하였으며 물에 담가도 물에 녹지 않는 성질을 보였고 불포화 에스테르,MDI 양을 늘리게 되면 강도는 세지나 난연화정도가 떨어지는 현상를 보인다.
이상에서 설명한 본 발명은 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 한정되는 것은 아니다.
발명의 실시를 위한 형태 실시예1),실시예2),실시예3), 실시예4), 실시예5) 와 같이 유리섬유에 혼합수지를 넣고 경화시키면 불에 잘 안타는 난연수지 및 난연복합플라스틱이 되어 건축판넬 등 사용범위가 많으며 난연수지를 잘타는 벽체등에 바르면 불에 잘안타는 벽체가 되어 산업상 응용범위가 무궁무진하다.

Claims (55)

  1. 열경화성 수지에 있어서,
    주제에 난연재로 물유리를 혼합하여 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  2. 열경화성 수지에 있어서,
    주제에 경화제와 난연재로 물유리를 혼합하여 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  3. 제2항에 있어서,
    경화제는 광개시제인 TPO를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  4. 제2항에 있어서,
    경화제는 중온경화제인 BPO(Benzoylperoxide)를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  5. 제2항에 있어서,
    경화제는 상온경화제인 Cyclohexanone peroxide를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  6. 제2항에 있어서,
    열경화성 수지로 불포화 폴리에스테르 수지를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  7. 제2항에 있어서,
    열경화성 수지로 비닐에스테르 수지를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  8. 제2항에 있어서,
    열경화성 수지로 에폭시 수지를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  9. 제2항에 있어서,
    열경화성 수지로 멜라민 수지를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  10. 제2항에 있어서,
    열경화성 수지로 페놀 수지를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  11. 제2항에 있어서,
    열경화성 수지로 우레아 수지를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  12. 제2항에 있어서,
    열경화성 수지로 폴리우레탄 수지를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  13. 불포화 폴리에스테르 수지에 있어서
    광개시제인 TPO를 0.1%~2.5% 혼합후 물유리를 중량비 30~70%를 혼합하는 난연수지 및 난연복합플라스틱 제조방법.
  14. 불포화 폴리에스테르 수지에 있어서
    광개시제인 TPO를 0.1%~2.5% 혼합후 물유리를 중량비 50~85%를 혼합하는 난연수지 및 난연복합플라스틱 제조방법.
  15. 제13항에 있어서,
    불포화 폴리에스테르 수지를 비닐 에스테르수지를 적용하는 난연수지 및 난연복합플라스틱 제조방법.
  16. 제13항에 있어서,
    광개시제인 TPO 대신에 열개시제인 BPO를 적용하는 난연수지 및 난연복합플라스틱 제조방법.
  17. 불포화 폴리에스테르 수지에 있어서
    광개시제인 TPO를 0.1%~2.5% 혼합후 물유리를 중량비 0.1~10%를 혼합하는 난연수지 및 난연복합플라스틱 제조방법.
  18. 불포화 폴리에스테르 수지에 있어서
    광개시제인 TPO를 0.1%~2.5% 혼합후 물유리를 중량비 10~20%를 혼합하는 난연수지 및 난연복합플라스틱 제조방법.
  19. 불포화 폴리에스테르 수지에 있어서
    광개시제인 TPO를 0.1%~2.5% 혼합후 물유리를 중량비 20~30%를 혼합하는 난연수지 및 난연복합플라스틱 제조방법.
  20. 불포화 폴리에스테르 수지에 있어서
    광개시제인 TPO를 0.1%~2.5% 혼합후 물유리를 중량비 70~100%를 혼합하는 난연수지 및 난연복합플라스틱 제조방법.
  21. 불포화 폴리에스테르 수지에 있어서
    광개시제인 TPO를 0.1%~2.5% 혼합후 물유리를 중량비 100~150%를 혼합하는 난연수지 및 난연복합플라스틱 제조방법.
  22. 불포화 폴리에스테르 수지에 있어서
    광개시제인 TPO를 0.1%~2.5% 혼합후 물유리를 중량비 150~200%를 혼합하는 난연수지 및 난연복합플라스틱 제조방법.
  23. 불포화 폴리에스테르 수지에 있어서
    광개시제인 TPO를 0.1%~2.5% 혼합후 물유리를 중량비 200~250%를 혼합하는 난연수지 및 난연복합플라스틱 제조방법.
  24. 불포화 폴리에스테르 수지에 있어서
    광개시제인 TPO를 0.1%~2.5% 혼합후 물유리를 중량비 250~300%를 혼합하는 난연수지 및 난연복합플라스틱 제조방법.
  25. 불포화 폴리에스테르 수지에 있어서
    광개시제인 TPO를 0.1%~2.5% 혼합후 물유리를 중량비 300~400%를 혼합하는 난연수지 및 난연복합플라스틱 제조방법.
  26. 불포화 폴리에스테르 수지에 있어서
    광개시제인 TPO를 0.1%~2.5% 혼합후 물유리를 중량비 400~500%를 혼합하는 난연수지 및 난연복합플라스틱 제조방법.
  27. 불포화폴리에스테르에 TPO또는 BPO을 0.1~2.5% 혼합하여 물유리에 대한 중량비 5~30% 를 혼합하여 교반하여 적용처에 적용후 빛이나 열을가해 경화제로 적용하는 난연수지 및 난연복합플라스틱 제조방법.
  28. 제27항에 있어서,
    불포화폴리에스테르를 비닐에스테르로 적용하는 난연수지 및 난연복합플라스틱 제조방법.
  29. 불포화폴리에스테르에 TPO또는 BPO을 0.1~2.5% 혼합하여 물유리에 대한 중량비 1~5% 를 혼합하여 교반하여 적용처에 적용후 빛이나 열을가해 경화제로 적용하는 난연수지 및 난연복합플라스틱 제조방법.
  30. 불포화폴리에스테르에 TPO또는 BPO을 0.1~2.5% 혼합하여 물유리에 대한 중량비 30~50% 를 혼합하여 교반하여 적용처에 적용후 빛이나 열을가해 경화제로 적용하는 난연수지 및 난연복합플라스틱 제조방법.
  31. 불포화폴리에스테르에 TPO또는 BPO을 0.1~2.5% 혼합하여 물유리에 대한 중량비 50~75% 를 혼합하여 교반하여 적용처에 적용후 빛이나 열을가해 경화제로 적용하는 난연수지 및 난연복합플라스틱 제조방법.
  32. 불포화폴리에스테르에 TPO또는 BPO을 0.1~2.5% 혼합하여 물유리에 대한 중량비 75~90% 를 혼합하여 교반하여 적용처에 적용후 빛이나 열을가해 경화제로 적용하는 난연수지 및 난연복합플라스틱 제조방법.
  33. 제2항에 있어서,
    경화제는 이소시아네이트를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  34. 물유리 경화방법에 있어서
    물유리에 불포화 폴리에스테르수지와 이소시아네이트 혼합하여 경화시키는 난연수지 및 난연복합플라스틱 제조방법.
  35. 제34항에 있어서,
    불포화 폴리에스테르 수지량은 중량비로 물유리 1에 대하여 폴리에스테르 0.5 이내를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  36. 제34항에 있어서,
    이소시아네이트 량은 중량비로 물유리 1에 대하여 폴리에스테르 0.5이내를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  37. 제34항에 있어서,
    불포화 폴리에스테르 수지량은 중량비로 물유리 1에 대하여 폴리에스테르 0.5~ 0.7 사이을 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  38. 불포화 폴리에스테르 수지에 있어서
    이소시아네이트를 0.1%~20% 혼합 후 물유리를 중량비 30~70%를 혼합하는 난연수지 및 난연복합플라스틱 제조방법.
  39. 제33항에 있어서, 이소시아네이트는 MDI 를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  40. 제33항에 있어서, 이소시아네이트는 TDI 를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  41. 제33항에 있어서, 이소시아네이트는 APM 를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  42. 제33항에 있어서, 이소시아네이트는 HDI 를 사용하는 난연수지 및 난연복합플라스틱 제조방법.
  43. SIO2,SIO3,SIO4,SIO5 를 주성분으로 30% ~60% 함유한 고분자물질.
  44. SIO2,SIO3,SIO4,SIO5 를 주성분으로 60% ~90% 함유한 고분자물질.
  45. 제43항 또는 제44항에 있어서, 물(H2O)을 10% ~40% 함유한 고분자물질.
  46. 제43항 또는 제44항에 있어서, 나트륨(NA2)을 3% ~30% 함유한 고분자물질.
  47. 섬유(면직류)와 제1항 내지 제42항 중 어느 한 항을 통해 제조한 난연수지를 함침하여 난연 판넬 제조방법.
  48. 제47항에 있어서, 섬유는 카본섬유를 사용한 난연 판넬 제조방법.
  49. 제47항에 있어서, 섬유는 유리섬유를 사용한 난연 판넬 제조방법.
  50. 섬유(면직류)와 제1항 내지 제42항 중 어느 한 항을 통해 제조한 난연수지를 함침하여 난연 파이프 제조방법.
  51. 제50항에 있어서, 섬유는 카본섬유를 사용한 난연 파이프 제조방법.
  52. 제50항에 있어서, 섬유는 유리섬유를 사용한 난연 파이프 제조방법.
  53. 섬유(면직류)와 제1항 내지 제42항 중 어느 한 항을 통해 제조한 난연수지를 함침하여 몰드에 넣어 압축성형하는 난연제품 제조방법.
  54. 제53항에 있어서, 섬유는 카본섬유를 사용한 난연 제품 제조방법.
  55. 제53항에 있어서, 섬유는 유리섬유를 사용한 난연 제품 제조방법.
PCT/KR2021/007889 2020-06-24 2021-06-23 난연수지 및 난연복합플라스틱 제조방법과 이를 이용한 난연제품 제조방법 WO2021261912A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0076892 2020-06-24
KR1020200076892A KR20210158504A (ko) 2020-06-24 2020-06-24 Frp 난연첨가제

Publications (1)

Publication Number Publication Date
WO2021261912A1 true WO2021261912A1 (ko) 2021-12-30

Family

ID=79177719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007889 WO2021261912A1 (ko) 2020-06-24 2021-06-23 난연수지 및 난연복합플라스틱 제조방법과 이를 이용한 난연제품 제조방법

Country Status (2)

Country Link
KR (1) KR20210158504A (ko)
WO (1) WO2021261912A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102508014B1 (ko) * 2022-11-11 2023-03-08 박상철 감염폐수 처리 탱크 frp 코팅구조 및 그 코팅방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926905A (en) * 1973-06-13 1975-12-16 Osaka Soda Co Ltd Flame retardant hardenable composition of water glass and decorative products made by using the same
US4011195A (en) * 1974-04-12 1977-03-08 H. H. Robertson Company Polymerizable compositions containing unsaturated polyester resins and aqueous alkali metal silicate, method of preparing shaped articles from such compositions and thermoset products thereof
KR20080070485A (ko) * 2007-01-25 2008-07-30 정맥산업개발(주) 난연 코팅제 조성물의 제조방법
KR20110065590A (ko) * 2009-12-10 2011-06-16 (주)엘지하우시스 난연성 및 경제성이 우수한 합성 목재 및 이의 제조방법
CN102300916A (zh) * 2008-12-08 2011-12-28 3M创新有限公司 用于环氧树脂体系的无卤素阻燃剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926905A (en) * 1973-06-13 1975-12-16 Osaka Soda Co Ltd Flame retardant hardenable composition of water glass and decorative products made by using the same
US4011195A (en) * 1974-04-12 1977-03-08 H. H. Robertson Company Polymerizable compositions containing unsaturated polyester resins and aqueous alkali metal silicate, method of preparing shaped articles from such compositions and thermoset products thereof
KR20080070485A (ko) * 2007-01-25 2008-07-30 정맥산업개발(주) 난연 코팅제 조성물의 제조방법
CN102300916A (zh) * 2008-12-08 2011-12-28 3M创新有限公司 用于环氧树脂体系的无卤素阻燃剂
KR20110065590A (ko) * 2009-12-10 2011-06-16 (주)엘지하우시스 난연성 및 경제성이 우수한 합성 목재 및 이의 제조방법

Also Published As

Publication number Publication date
KR20210158504A (ko) 2021-12-31

Similar Documents

Publication Publication Date Title
AU713023B2 (en) Polymeric material, method for its manufacture, and its utilisation
US5225464A (en) Intumescent coating and method of manufacture
WO2021261912A1 (ko) 난연수지 및 난연복합플라스틱 제조방법과 이를 이용한 난연제품 제조방법
KR101825115B1 (ko) 화재방지 및 발포 폴리에스터의 물성변경 방법
WO2019054795A1 (ko) 페놀 발포체 및 그 제조방법
US3909484A (en) Flame retardant reinforced bonded articles and bonding compositions therefor
KR20210134140A (ko) 준불연 발포 폴리스티렌 단열재 및 그 제조방법
CN108587127A (zh) 一种无卤阻燃型高韧性团状模塑料及其制备方法
WO2010128797A2 (ko) 불연 발포성 폴리스티렌 입자 및 그 제조방법, 그리고 이 입자로 제조된 불연성 스티로폴
US6114007A (en) Flame resistant reinforced composites
JPH10204276A (ja) 難燃性不飽和ポリエステル樹脂
KR101724670B1 (ko) 난연성 플라스틱 및 그 제조 방법
CN101888995A (zh) 过氧化物组合物
US3663463A (en) Noncombustible and fireproofing polymer compositions and process
WO2016140459A1 (ko) 인계 에폭시 화합물 및 이의 제조방법, 이를 포함하는 에폭시 조성물
KR100919652B1 (ko) 유기용제에 의해 표면 개질된 발포폴리스티렌 성형체 및 그제조방법
KR101555612B1 (ko) 건축 외장재용 드라이비트 준불연 발포폴리스티렌 입자 조성물의 제조방법
KR20110017794A (ko) 난연제 조성물과 난연 발포성 폴리스티렌 비드 제조방법
KR101729384B1 (ko) 난연성 조성물 및 이를 포함하는 난연성 성형물
KR102032391B1 (ko) 시트 몰딩 컴파운드 성형용 난연성 시트 및 이를 포함하는 난연성 성형품
WO2020117029A1 (ko) 열경화성 발포체, 이의 제조방법 및 이를 포함하는 단열재
KR20060002643A (ko) 접착성이 우수한 소각재 분진 조성물
CN111978505A (zh) 一种水基轻质发泡料及其生产方法
JP3220741B2 (ja) 耐火シート用材料並びに耐火シート及びそれを用いる耐火被覆方法
KR20210130555A (ko) 팽창 기능을 갖는 불연수지 및 그 불연수지의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828945

Country of ref document: EP

Kind code of ref document: A1