WO2012008418A1 - 可動鉄心型リニアアクチュエータ - Google Patents

可動鉄心型リニアアクチュエータ Download PDF

Info

Publication number
WO2012008418A1
WO2012008418A1 PCT/JP2011/065810 JP2011065810W WO2012008418A1 WO 2012008418 A1 WO2012008418 A1 WO 2012008418A1 JP 2011065810 W JP2011065810 W JP 2011065810W WO 2012008418 A1 WO2012008418 A1 WO 2012008418A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
magnetic
mover
iron core
stator core
Prior art date
Application number
PCT/JP2011/065810
Other languages
English (en)
French (fr)
Inventor
中川 洋
隆良 藤井
崇 福永
Original Assignee
シンフォニアテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シンフォニアテクノロジー株式会社 filed Critical シンフォニアテクノロジー株式会社
Priority to CN201180034488.4A priority Critical patent/CN103004066B/zh
Priority to US13/809,351 priority patent/US9071108B2/en
Priority to EP11806748.7A priority patent/EP2595290B1/en
Publication of WO2012008418A1 publication Critical patent/WO2012008418A1/ja
Priority to HK13110544.5A priority patent/HK1183381A1/xx

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/34Reciprocating, oscillating or vibrating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the present invention relates to a movable iron core type linear actuator that applies the spring force of a magnetic spring to a reciprocating mover, and particularly to a movable iron core type linear actuator that realizes a new aspect of spring characteristics.
  • a movable iron core type linear actuator such as a reciprocating motor mainly includes a magnetic circuit that reciprocates a movable element when energized, as exemplified in Patent Document 1, for example.
  • the magnetic circuit reverses the magnetic core on the surface facing each iron core, which is arranged along the reciprocating direction in the opposing core and the stator core that has the opposing part that opposes the iron core.
  • a pair of permanent magnets and a coil wound around a stator core, and a magnetic flux generated by energization of the coils is positioned in a required direction among the paired permanent magnets.
  • the mover is reciprocated relative to the stator core by weakening the generated magnetic flux and strengthening the magnetic flux generated by the other magnet.
  • the magnetic circuit applies a spring force of a magnetic spring that changes according to the relative position of the mover to the stator core by the magnetic flux generated by the permanent magnet.
  • the spring force of the magnetic spring acts on the mover by superimposing the magnetic driving force generated by energizing the coil.
  • the magnetic spring characteristics which are the relationship between the relative position of the mover relative to the stator core and the spring force of the magnetic spring, are determined by the magnetic flux distribution and the magnetic pole pitch
  • the conventional linear actuator changes these magnetic flux distributions, etc. Therefore, it is difficult to design by adjusting the magnetic spring characteristics.
  • a linear actuator When a linear actuator is used as a power source for a piston pump or the like, it is generally reciprocated in a highly efficient resonance state, but a load is applied to a mechanical spring such as a leaf spring, reducing the life of the mechanical spring. There is a bug.
  • the magnetic spring In addition, in order to obtain the spring constant necessary for the resonance motion, the magnetic spring cannot be adjusted and is fixed, so it is necessary to cope with only the mechanical spring, which increases the cost required for the mechanical spring.
  • the present invention has been made paying attention to such a problem, and its purpose is to provide a new aspect of the spring characteristics including making the magnetic spring characteristics adjustable without increasing the manufacturing cost. It is to provide a movable iron core type linear actuator to be realized.
  • the movable iron core type linear actuator of the present invention is a linear actuator for reciprocating the mover, and includes an iron core constituting the mover, a stator core having a facing portion facing the iron core, and the facing portion. And a magnetic circuit comprising a pair of permanent magnets arranged along the reciprocating direction and having the magnetic poles on the side facing each iron core reversed, and a coil wound around the stator core.
  • the magnetic flux generated by energizing the coil weakens the magnetic flux generated by the magnet located in the required direction among the pair of permanent magnets and reinforces the magnetic flux generated by the other magnet to reciprocate the mover.
  • the spring force of the magnetic spring that changes according to the relative position of the mover with respect to the stator core due to the magnetic flux generated by the permanent magnet is applied to the coil.
  • a magnetic spring adjusting portion is formed to change the magnetic flux distribution by forming a gap portion having a lower magnetic permeability than the stator core, and the relative position of the movable element with respect to the stator core by the magnetic spring adjusting portion.
  • the magnetic spring characteristic which is the relationship between the spring force of the magnetic spring and the magnetic spring, is changed as compared with the case where there is no gap.
  • the magnetic spring characteristic that is the relationship between the relative position of the mover with respect to the stator core and the spring force of the magnetic spring is desired only by forming the gap with the opposed portion of the stator core cut away. Therefore, when the actuator is used as a power source, the life of the mechanical spring is improved by adjusting the magnetic spring characteristic so that the load on the mechanical spring is distributed to the magnetic spring. In addition, in order to obtain the spring constant necessary for the resonance motion, it is possible to reduce the cost required for the mechanical spring by using both the magnetic spring and the mechanical spring. Furthermore, when an actuator is used as a control element, the magnetic spring characteristics are adjusted so that the spring force of the magnetic spring is reduced, and the spring force of the magnetic spring may cause a hindrance to control and a thrust loss. It becomes possible to reduce and improve control accuracy and efficiency. In addition, since the magnetic spring characteristic can be adjusted by the magnetic spring adjustment unit, it is possible to realize a new aspect of the spring characteristic such as reducing or eliminating the spring constant of the mechanical spring and the magnetic spring.
  • the gap portion is cut away from the opposite portion, leaving both ends in the axial direction that is the same as the moving direction of the mover, and notching the portion sandwiched between the both ends. It is preferable that it is formed.
  • the gap is symmetrical about the boundary line between the paired permanent magnets. It is desirable to be formed as follows.
  • the permanent magnets In order to make it possible to adjust the magnetic spring characteristics even when the permanent magnet is configured to have a plurality of pairs in order to increase the electromagnetic driving force for reciprocating the mover by energization, the permanent magnets have a plurality of pairs.
  • the gap is formed between at least one permanent magnet of each pair of permanent magnets and the facing portion facing the permanent magnet.
  • each magnetic spring adjusting portion is configured such that the direction in which the spring force of the magnetic spring acts is opposite to the direction in which the spring force of the other magnetic spring acts.
  • the magnetic spring characteristics can be adjusted only by forming a gap with the opposed portion of the stator core notched as described above, when using an actuator as a power source, By adjusting the spring force of the magnetic spring to a required value, the life of the mechanical spring can be improved and the cost required for the mechanical spring can be reduced. Furthermore, when an actuator is used as a control element, by reducing the spring force of the magnetic spring, it is possible to improve the control accuracy and efficiency by reducing that the spring force becomes a cause of control inhibition and thrust loss. Is possible. In addition, it is possible to realize a new aspect of the spring characteristics, for example, reducing or eliminating the spring constant of the mechanical spring and the magnetic spring. Therefore, it is possible to provide a movable iron core type linear actuator suitable for reducing manufacturing costs, improving control accuracy, and increasing efficiency.
  • the perspective view which shows a partially broken movable iron core type linear actuator which concerns on one Embodiment of this invention.
  • the longitudinal cross-sectional view which shows the linear actuator.
  • Explanatory drawing regarding the magnetic spring characteristic which is the relationship between the relative position of the needle
  • the longitudinal cross-sectional view which shows the linear actuator which concerns on other embodiment of this invention The perspective view which fractures
  • the longitudinal cross-sectional view which shows the linear actuator corresponding to FIG. The longitudinal cross-sectional view which shows the linear actuator which concerns on embodiment other than the above of this invention.
  • the movable iron core type linear actuator of the present embodiment is an outer rotor type linear actuator in which a mover 2 is arranged radially outside the stator 1 as shown in FIGS. 1 and 2 which are longitudinal sectional views passing through the axis.
  • a mover 2 that is substantially cylindrical and can reciprocate along the axial direction (X direction), a stator 1 disposed inside the mover 2, and the mover 2 in the axial direction.
  • a magnetic circuit mc that reciprocates along (reciprocating direction).
  • the radially outer side refers to the direction away from the axis, and the radially inner side refers to the direction approaching the axis.
  • the shape of the mover or stator is a cylinder or cylinder. It is not meant to be limited to.
  • the mover 2 is mainly composed of a substantially cylindrical iron core 20 formed by laminating and fixing a plurality of mover core plates 2s, and has a diameter from the inner wall 20a. A pair of pole portions 20b and 20b extending inward in the direction are formed. Further, the movable element 2 is capable of reciprocating along the axial direction by supporting both sides in the axial direction with mechanical springs such as a leaf spring (not shown).
  • the stator 1 is wound around a stator core 10 formed with a pair of salient pole portions 10b and 10b projecting radially outward from the axial center portion 10a, and the salient pole portions 10b and 10b of the stator core 10.
  • the coil 11 to be rotated and the facing portion 10c (facing surface) facing the pole portion 20b of the iron core 20 are arranged along the axial direction (reciprocating direction) and face each iron core 20. It has a pair of permanent magnets 12 (12a, 12b) in which the magnetic poles on the side surface are reversed.
  • the stator core 10 is configured by stacking and fixing a plurality of stator core plates 10 s in the same manner as the iron core 20 constituting the mover 2.
  • the magnetic circuit mc includes the iron core 20, the stator core 10, a pair of permanent magnets 12 (12 a and 12 b), and a coil 11. 2 is reciprocated.
  • a movable core type actuator is configured by using only the iron core 20 as the component parts constituting the mover 2 among the plurality of element parts constituting the magnetic circuit mc. Specifically, when the coil 11 is not energized, one permanent magnet 12a, the iron core 20, the other permanent magnet 12b are fixed by a pair of permanent magnets 12a and 12b as shown in FIG.
  • a loop-shaped magnetic flux path rt returning to the one permanent magnet 12a through the child core 10 is formed, and magnetic fluxes mf1 and mf2 having different directions are developed on both sides of the reciprocating direction of the mover 2.
  • a magnetic flux mf is generated by energizing the coil 11 as shown in FIGS. 2 and 3B, and the two magnetic fluxes mf1 and mf2 generated by the permanent magnet 12 are generated.
  • the magnetic flux mf1 in the same direction as the magnetic flux mf by the coil 11 is strengthened, the other magnetic flux mf2 is weakened, and the electromagnetic driving force F1 acts on the mover 2 (iron core 20) to make the mover 2 stronger in the magnetic flux (X1 direction). Move to.
  • the electromagnetic driving force F2 acts in the opposite direction (X2 direction) and the mover 2 moves in the X2 direction.
  • the magnetic circuit mc weakens the magnetic flux mf2 (mf1) generated by the magnet 12a (12b) positioned in a required direction among the permanent magnets 12a and 12b paired with the magnetic flux mf generated by energization of the coil 11, and the other
  • an electromagnetic driving force F1 (F2) is applied to the mover 2 to reciprocate the mover 2.
  • the magnetic circuit mc causes the spring 2 of the magnetic spring that changes according to the relative position of the mover 2 with respect to the stator core 10 to act on the mover 2 by the magnetic flux generated by the permanent magnet 12. That is, when the mover 2 is located at a position ps1 where the magnetic flux densities on both sides in the reciprocating direction of the mover 2 are equal, as schematically shown in FIG. For example, as the mover 2 is displaced in the X2 direction, the magnetic flux path on the X2 direction side becomes wider and the magnetic flux path on the X1 direction side becomes narrower, so that the magnetic flux density on the X2 direction side becomes weaker. The magnetic flux density on the X1 direction side becomes stronger.
  • the spring force F3 of the magnetic spring acts on the mover 2 so as to move to the position ps1 where the magnetic flux densities on both sides in the reciprocating direction of the mover 2 become equal.
  • the magnitude and direction of the spring force F3 of the magnetic spring change according to the relative position of the mover 2 with respect to the stator core 10 (the amount of displacement from the center of the movable range of the mover). It is determined by the magnetic flux density, the magnetic flux distribution, the magnetic pole pitch between the iron core and the permanent magnet, and the like.
  • the spring force F3 of the magnetic spring by the permanent magnet 12 acts on the mover 2 by being superimposed on the magnetic driving forces F1 and F2 generated by energizing the coil 11 when the coil 11 is energized. .
  • the magnetic spring characteristic which is the relationship between the spring force of the magnetic spring and the relative position of the mover 2 with respect to the stator core 10
  • the magnetic flux distribution, the magnetic pole pitch, and the like It is difficult to design by adjusting the spring characteristics. In particular, it is difficult to improve the degree of freedom in adjusting the magnetic spring characteristics without increasing the manufacturing cost.
  • a part of the facing portion 10 c is notched between the part of the facing portion 10 c of the stator core 10 that is a magnetic flux path and the permanent magnet 12.
  • the magnetic flux distribution is changed by forming the gap 30 having a lower magnetic permeability than that of the stator core 10.
  • the gap portion 30 is formed in a state in which both ends 10e and 10e in the axial center direction, which is the same as the movable direction of the mover 2, are left out of the facing portion 10c, and the portions sandwiched between the both ends 10e and 10e are cut out.
  • the depth between the permanent magnets 12a and 12b and the facing portion 10c is set to be constant.
  • Both end portions 10e and 10e are in contact with a pair of permanent magnets 12a and 12b, respectively.
  • the boundary line between the pair of permanent magnets 12a and 12b is the center of the movable range of the mover, and the gap 30 is formed to be symmetric about the boundary line between the pair of permanent magnets 12a and 12b. Yes.
  • the both end portions 10e and 10e on both sides in the axial direction have higher magnetic permeability than the gap portion 30 in the central portion in the axial center direction, and a magnetic flux is generated in both end portions 10e and 10e.
  • the magnetic flux at both ends in the axial direction becomes stronger, and the magnetic flux at the central portion in the axial direction sandwiched between both ends becomes weaker.
  • the magnetic force distribution reduces the force with which the mover stays in the central part of the axial direction (reciprocating direction)
  • the amount of change (inclination) of the spring force of the magnetic spring with respect to the displacement of the mover 2 as shown in FIG. ) Is reduced over the entire movable range of the movable element while maintaining the spring force at the center of the movable range of the movable element.
  • the magnetic spring adjustment part 3 which changes magnetic flux distribution is formed by forming the space
  • the magnetic spring characteristic which is the relationship between the relative position and the spring force of the magnetic spring, is changed as compared with the case where there is no gap 30 (see FIG. 6).
  • the magnetic spring characteristics can be adjusted by variously changing the dimension of the gap 30 in the axial direction, the dimension orthogonal to the axial direction, the shape such as the depth, the arrangement position, the number to be formed, and the like. For example, it may be formed such that the bottom surface of the gap portion 30 is inclined with respect to the axis, or formed so that the size and depth of the gap portion 30 change along the axis.
  • the movable iron core type linear actuator is a linear actuator that reciprocates the mover 2, and is a fixed actuator having the iron core 20 constituting the mover 2 and the facing portion 10 c facing the iron core 20.
  • the mover 2 is reciprocated by weakening the magnetic flux mf2 (mf1) generated in (12b) and strengthening the magnetic flux mf1 (mf2) generated in the other magnet 12b (12a).
  • the spring force of the magnetic spring which changes according to the relative position of the mover 2 with respect to the stator core 10 due to the magnetic flux generated by the permanent magnet 12, is generated by energizing the coil 11.
  • a part of the facing part 10c is applied between the part of the facing part 10c of the stator core 10 serving as a magnetic flux path and the permanent magnet 12 so as to be superimposed on the driving force F1 (F2).
  • the magnetic spring adjusting unit 3 is configured to change the magnetic flux distribution by forming a gap 30 having a lower permeability than the stator core 10 in a state in which the stator core 10 is cut out.
  • the magnetic spring characteristic which is the relationship between the relative position of the mover 2 with respect to the core 10 and the spring force of the magnetic spring, is changed as compared with the case where there is no gap 30.
  • the magnetic spring characteristic which is the relationship between the relative position of the mover 2 with respect to the stator core 10 and the spring force of the magnetic spring can be obtained simply by forming the gap with the opposed portion of the stator core cut away. Therefore, when the actuator is used as a power source, the magnetic spring characteristics are adjusted so that the load on the mechanical spring is distributed to the magnetic spring, thereby extending the life of the mechanical spring. In addition to improving the spring constant required for the resonance motion, both the magnetic spring and the mechanical spring can be used to reduce the cost required for the mechanical spring. Furthermore, when an actuator is used as a control element, the magnetic spring characteristics are adjusted so that the spring force of the magnetic spring is reduced, and the spring force of the magnetic spring may cause a hindrance to control and a thrust loss.
  • the magnetic spring characteristic can be adjusted by the magnetic spring adjusting unit 3, it is possible to realize a new aspect of the spring characteristic such as reducing or eliminating the spring constant of the mechanical spring and the magnetic spring. .
  • the gap portion 30 leaves the axial center both ends 10e and 10e that are the same as the movable direction of the mover 2 in the facing portion 10c, and cuts the portion sandwiched between the both ends 10e and 10e. Since it is formed in a lacking state, the both end portions 10e and 10e on both sides in the axial direction have higher magnetic permeability than the gap portion 30 in the central portion in the axial direction, and the both end portions 10e and 10e have a higher magnetic permeability.
  • the magnetic flux concentrates, the magnetic flux at both ends in the axial direction becomes stronger, the magnetic flux at the central part in the axial direction sandwiched between both ends becomes weaker, and the mover stays in the central part in the axial direction (reciprocating direction).
  • the force to be reduced is reduced, the amount of change in the spring force of the magnetic spring with respect to the displacement of the mover 2 (inclination shown in FIG. 6) is reduced, and the movement accuracy of the mover can be facilitated and the control accuracy can be improved.
  • the spring force of the magnetic spring is reduced, the thrust loss caused by the spring force of the magnetic spring is reduced, and the efficiency can be improved.
  • the gap portion 30 is formed so as to be symmetric about the boundary line between the pair of permanent magnets 12a and 12b, so that the magnetic spring at the boundary line between the pair of permanent magnets The effect of improving the control accuracy and efficiency can be achieved without changing the spring force.
  • the gap portion 130 is formed only in the facing portion 110c facing one of the permanent magnets 12a and 12b of the pair, and both end portions 110e in the axial direction of the facing portion 110c.
  • -It may be configured to sandwich the gap 130 with 110e.
  • magnetic flux unbalance occurs on both sides in the axial direction, and the spring force of the magnetic spring is entirely biased in the X2 direction.
  • the spring of the magnetic spring with respect to the displacement of the mover 2 is the same as in the above embodiment. The effect that the amount of change in force (the inclination shown in FIG. 6) decreases can be obtained.
  • the iron core 220 constituting the mover 202, the opposing portion 210c of the stator core 210, and the pair of permanent magnets 212a and 212b are formed as one unit, and one unit is set as the axis.
  • a plurality of permanent magnets 212a and 212b are provided along the direction so as to form a plurality of pairs, and the permanent magnets 212a and 212b that form a pair of each unit and the facing portions that face the permanent magnets 212a and 212b It is mentioned that the space
  • the gap portion 230 is formed so as to be symmetric with respect to the boundary line between each pair of permanent magnets 212a and 212b, and is sandwiched between end portions 210e and 210e that make a pair from both sides in the axial direction.
  • the iron core 320 constituting the mover 302, the opposed portion 310c of the stator core 310, the permanent magnets 312a and 312b and the magnetic spring adjusting portion 303 forming a pair are combined into one unit.
  • a plurality of one unit is provided along the axial direction so that the units form a pair or a plurality of pairs, and the gap portion 330 constituting one unit of the paired units is provided in the permanent magnet 312a on the X2 direction side. It is formed only in the facing portion 310c facing each other, and the gap portion 330 constituting the other unit is formed only in the facing portion 310c facing the permanent magnet 312b on the X1 direction side.
  • each magnetic spring adjustment unit 303 is configured such that the direction in which the spring force of one magnetic spring of the units forming each pair is opposite to the direction in which the spring force of the other magnetic spring is applied. Is configured. With this configuration, even when the magnetic spring characteristics that can be realized by a single unit are limited, such as a limit for reducing the spring force, the directions in which the spring force of each magnetic spring acts are opposite to each other. In some cases, the total magnetic spring characteristics of all units combined with the magnetic spring characteristics can be changed to desired spring characteristics, and the degree of freedom in adjusting the magnetic spring characteristics can be improved. is there.
  • a mechanical spring portion such as a leaf spring (not shown) that supports the above-described movable element 2 so as to be able to reciprocate causes the urging force that changes depending on the relative position of the movable element 2 to the stator core 10 to act on the movable element 2.
  • the gap is formed so that the spring force of the magnetic spring acts in the opposite direction to the direction in which the urging force of the mechanical spring acts.
  • an outer rotor type linear actuator is described as an example.
  • an inner rotor type linear actuator in which the mover 2 is disposed radially inward of the stator 1 with the axis at the center is also applicable to.
  • the magnetic spring characteristics can be adjusted simply by forming a gap with the opposed portion of the stator core cut away.
  • the spring force of the magnetic spring By adjusting the spring force of the magnetic spring to a required value, the life of the mechanical spring can be improved and the cost required for the mechanical spring can be reduced.
  • an actuator when used as a control element, by reducing the spring force of the magnetic spring, it is possible to improve the control accuracy and efficiency by reducing that the spring force becomes a cause of control inhibition and thrust loss. Is possible.
  • it is possible to realize a new aspect of the spring characteristics for example, reducing or eliminating the spring constant of the mechanical spring and the magnetic spring. Therefore, it is possible to provide a movable iron core type linear actuator suitable for reducing manufacturing costs, improving control accuracy, and increasing efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

 製造コストを増大させることなく、磁気バネ特性を調節可能にすることを始めとしてバネ特性の新たな態様を実現する可動鉄心型リニアアクチュエータを提供する。可動鉄心型リニアアクチュエータは、可動子(2)を往復移動させる磁気回路(mc)を有する。磁気回路(mc)は、可動子(2)を構成する鉄心(20)と、この鉄心(20)に対向する対向部(10c)を有する固定子コア(10)と、この対向部(10c)に往復動方向に沿って配列され各々の鉄心に臨む側の面の磁極を反転させた対をなす永久磁石(12a・12b)と、固定子コア(10)に巻回されるコイル(11)とを含んで構成される。コイル(11)への通電により可動子(2)を往復移動させるとともに、コイル(11)への通電がなされている場合において永久磁石(12a・12b)で生じる磁束によって固定子コア(10)に対する可動子(2)の相対位置に応じて変化する磁気バネのバネ力がコイル(11)への通電によって生じる電磁駆動力(F1,F2)に重畳して可動子(2)に作用するものであり、磁束経路である固定子コア(10)の対向部(10c)の一部と永久磁石(12b)との間に、対向部(10c)の一部を切り欠いた状態にして固定子コア(10)に比べて透磁率の低い空隙部(30)を形成することで磁束分布を変更する磁気バネ調節部(3)を構成し、この磁気バネ調節部(3)により、固定子コア(10)に対する可動子(2)の相対位置と磁気バネのバネ力との関係である磁気バネ特性を空隙部(30)がない場合に比べて変化させている。

Description

可動鉄心型リニアアクチュエータ
 本発明は、往復移動する可動子に磁気バネのバネ力を作用させる可動鉄心型リニアアクチュエータに係り、特にバネ特性の新たな態様を実現する可動鉄心型リニアアクチュエータに関するものである。
 レシプロモータ等の可動鉄心型リニアアクチュエータは、例えば特許文献1に例示されるように、通電がなされることにより可動子を往復移動させる磁気回路を主体としている。磁気回路は、可動子を構成する鉄心と、この鉄心に対向する対向部を有する固定子コアと、この対向部に往復動方向に沿って配列され各々の鉄心に臨む側の面の磁極を反転させた対をなす永久磁石と、固定子コアに巻回されるコイルとを含んで構成されており、コイルへの通電により生じる磁束が対をなす永久磁石のうち所要の方向に位置する磁石で生じる磁束を弱め、他方の磁石で生じる磁束を強めることにより可動子を固定子コアに対して相対往復移動させるものである。
 さらに、磁気回路は、永久磁石で生じる磁束によって固定子コアに対する可動子の相対位置に応じて変化する磁気バネのバネ力を可動子に作用させる。コイルへの通電がなされている場合では、磁気バネのバネ力がコイルへの通電により生じる磁気駆動力に重畳して可動子に作用する。
特開2007-135351号公報
 しかしながら、固定子コアに対する可動子の相対位置と磁気バネのバネ力との関係である磁気バネ特性は、磁束分布や磁極ピッチにより決定されるものの、従来のリニアアクチュエータでは、これら磁束分布等を変更して磁気バネ特性を調節して設計することが難しい。
 リニアアクチュエータをピストンポンプ等の動力源として用いる場合は、高効率となる共振状態で往復動させるのが一般的であるものの、板バネ等の機械バネに負荷がかかり、機械バネの寿命が低減する不具合がある。しかも、共振運動に必要なバネ定数を得るにあたり、磁気バネは調整できずに固定であるので機械バネだけで対応する必要があり、機械バネに要するコストが増大する問題がある。
 また、リニアアクチュエータを位置決め装置や加振装置、リニアサーボモータ等の位置制御や力制御等の制御要素として用いる場合は、磁気バネのバネ力が制御の阻害要因や推力損失の原因となる。
 さらに上記に加えて、例えば機械バネ及び磁気バネを合わせたバネ定数を低減又は無くする等のバネ特性の新たな態様を実現するためには、機械バネ特性だけでなく磁気バネ特性の設計自由度が要求されるものの、上記のように磁気バネ特性を調節することが難しいので、その実現が難しいものである。
 本発明は、このような課題に着目してなされたものであって、その目的は、製造コストを増大させることなく、磁気バネ特性を調節可能にすることを始めとしてバネ特性の新たな態様を実現する可動鉄心型リニアアクチュエータを提供することである。
 本発明は、かかる目的を達成するために、次のような手段を講じたものである。
 すなわち、本発明の可動鉄心型リニアアクチュエータは、可動子を往復移動させるリニアアクチュエータであって、前記可動子を構成する鉄心と、この鉄心に対向する対向部を有する固定子コアと、この対向部に往復動方向に沿って配列され各々の鉄心に臨む側の面の磁極を反転させた対をなす永久磁石と、固定子コアに巻回されるコイルとを含んで構成される磁気回路を備え、コイルへの通電により生じる磁束が前記対をなす永久磁石のうち所要の方向に位置する磁石で生じる磁束を弱め、他方の磁石で生じる磁束を強めることにより可動子を往復移動させるとともに、コイルへの通電がなされている場合において永久磁石で生じる磁束によって固定子コアに対する可動子の相対位置に応じて変化する磁気バネのバネ力が前記コイルへの通電によって生じる電磁駆動力に重畳して可動子に作用するものであり、磁束経路である固定子コアの対向部の一部と永久磁石との間に、対向部の一部を切り欠いた状態にして固定子コアに比べて透磁率の低い空隙部を形成することで磁束分布を変更する磁気バネ調節部を構成し、この磁気バネ調節部により、前記固定子コアに対する前記可動子の相対位置と磁気バネのバネ力との関係である磁気バネ特性を空隙部がない場合に比べて変化させていることを特徴とする。
 このように、固定子コアの対向部を切り欠いた状態にして空隙部を形成するだけで、固定子コアに対する可動子の相対位置と磁気バネのバネ力との関係である磁気バネ特性が所望の特性となるように調節可能であるので、アクチュエータを動力源として用いる場合には、機械バネにかかる負担を磁気バネに分散するように磁気バネ特性を調節して、機械バネの寿命を向上させることが可能となるうえ、共振運動に必要なバネ定数を得るにあたり、磁気バネ及び機械バネの双方のバネで対応して機械バネに要するコストを低減させることが可能となる。さらに、アクチュエータを制御要素としても用いる場合には、磁気バネのバネ力が低減するように磁気バネ特性を調節して、磁気バネのバネ力が制御の阻害要因や推力損失の原因となることを低減して制御精度や効率を向上させることが可能となる。しかも、磁気バネ調節部により磁気バネ特性を調節可能であるので、例えば機械バネ及び磁気バネを合わせたバネ定数を低減又は無くする等のバネ特性の新たな態様を実現することが可能となる。
 制御精度や効率を向上させるためには、前記空隙部は、前記対向部のうち前記可動子の可動方向と同一である軸心方向両端部を残し、両端部に挟まれる部位を切り欠いた状態にして形成されていることを好ましい。
 対をなす永久磁石の境界線における磁気バネのバネ力を変更することなく、制御精度や効率を向上させるためには、前記空隙部は、前記対をなす永久磁石の境界線を中心として対称となるように形成されていることが望ましい。
 通電により可動子を往復動させる電磁駆動力を増大させるために永久磁石が複数対をなす構成にした場合であっても磁気バネ特性を調節可能とするためには、前記永久磁石は複数対をなしていて、各々の対をなす永久磁石のうち少なくとも一方の永久磁石と当該永久磁石に対向している対向部との間に前記空隙部が形成されていることが挙げられる。
 鉄心、対向部、対をなす永久磁石及び磁気バネ調節部から構成される単一のユニットで実現できる磁気バネ特性に制約がある場合であっても、磁気バネ特性の調節自由度を向上させるためには、前記鉄心、前記対向部、前記対をなす永久磁石及び前記磁気バネ調節部を一つのユニットとし、ユニットが一対又は複数対をなしている場合に、各々の対をなすユニットのうち一方の磁気バネのバネ力が作用する方向と、他方の磁気バネのバネ力が作用する方向とが互いに逆方向になるように各々の磁気バネ調節部が構成されていることが挙げられる。
 本発明は、以上説明したように、固定子コアの対向部を切り欠いた状態にして空隙部を形成するだけで磁気バネ特性が調節可能となるので、アクチュエータを動力源として用いる場合には、磁気バネのバネ力を所要の値に調節することで機械バネの寿命の向上や機械バネに要するコストを低減させることが可能となる。さらに、アクチュエータを制御要素として用いる場合には、磁気バネのバネ力を低減させることで、バネ力が制御の阻害要因や推力損失の原因となることを低減して制御精度や効率を向上させることが可能となる。しかも、例えば機械バネ及び磁気バネを合わせたバネ定数を低減又は無くするといったバネ特性の新たな態様を実現することが可能となる。したがって、製造コストの削減や制御精度の向上、高効率化等に適した可動鉄心型リニアアクチュエータを提供することが可能となる。
本発明の一実施形態に係る可動鉄心型リニアアクチュエータを一部破断して示す斜視図。 同リニアアクチュエータを示す縦断面図。 コイルへの通電により可動子を往復移動させる動作に関する説明図。 永久磁石の磁束により生ずる磁気バネのバネ力に関する説明図。 固定子コアに対する可動子の相対位置と磁気バネのバネ力との関係である磁気バネ特性に関する説明図。 空隙部を形成する場合の磁気バネ特性と空隙部がない場合の磁気バネ特性とを比較して示す説明図。 本発明の他の実施形態に係るリニアアクチュエータを示す縦断面図。 本発明の上記以外の実施形態に係るリニアアクチュエータを一部破断して示す斜視図。 図8に対応するリニアアクチュエータを示す縦断面図。 本発明の上記以外の実施形態に係るリニアアクチュエータを示す縦断面図。
 以下、本発明の一実施形態を、図面を参照して説明する。
 本実施形態の可動鉄心型リニアアクチュエータは、軸心を通る縦断面図である図1及び図2に示すように、固定子1の径方向外側に可動子2を配置するアウターロータ型のリニアアクチュエータであり、略筒状をなし軸心方向(X方向)に沿って往復移動可能な可動子2と、この可動子2の内部に配置される固定子1と、この可動子2を軸心方向(往復動方向)に沿って往復移動させる磁気回路mcとを有している。なお、径方向外側は、軸心から遠ざかる方向をいい、径方向内側は、軸心に近づく方向をいうのであって、図に示されているように可動子や固定子の形状が円柱や円筒に限られることを意味するものではない。
 可動子2は、図1で一部分詳細に示すように、複数の可動子コア板2sを積層して固定することで略筒状をなす鉄心20を主体として構成されており、その内壁20aから径方向内側に向けて延出する一対の極部20b・20bが形成されている。また、可動子2は、その軸心方向両側を図示しない板バネ等の機械バネ部に支持させることにより、軸心方向に沿った往復移動を可能としている。
 固定子1は、軸心部10aから径方向外側に向けて突出する一対の突極部10b・10bが形成される固定子コア10と、この固定子コア10の突極部10b・10bに巻回されるコイル11と、突極部10bのうち上記鉄心20の極部20bに対向する対向部10c(対向面)に軸心方向(往復動方向)に沿って配列され各々の鉄心20に臨む側の面の磁極を反転させた一対の永久磁石12(12a,12b)とを有している。固定子コア10は、図1で一部詳細に示すように、上記可動子2を構成する鉄心20と同様に複数の固定子コア板10sを積層配置して固定することで構成されている。
 磁気回路mcは、上記の鉄心20と、固定子コア10と、対をなす永久磁石12(12a・12b)と、コイル11とを含んで構成されるもので、コイル11への通電によって可動子2を往復移動させるものである。本実施形態では、磁気回路mcを構成する複数の要素部品のうち可動子2を構成する要素部品を鉄心20のみとして可動鉄心型のアクチュエータを構成している。具体的には、コイル11に通電されていない場合は、図3(a)に示すように、対をなす永久磁石12a・12bにより一方の永久磁石12a、鉄心20、他方の永久磁石12b、固定子コア10を経て一方の永久磁石12aに戻るループ状の磁束経路rtが形成され、可動子2の往復動方向両側に互いに向きの異なる磁束mf1・mf2が発現する。この場合、コイル11へ正方向に通電を行うと、図2及び図3(b)に示すように、コイル11への通電により磁束mfが生じ、永久磁石12で生じる二つの磁束mf1・mf2のうちコイル11による磁束mfと同方向である磁束mf1が強まり他方の磁束mf2が弱まり、電磁駆動力F1が可動子2(鉄心20)に作用して可動子2が磁束の強まる方向(X1方向)へ移動する。一方、コイル11へ逆方向に通電した場合には、図3(c)に示すように、その逆の方向(X2方向)に電磁駆動力F2が作用してX2方向に可動子2が移動する。すなわち、磁気回路mcは、コイル11への通電により生じる磁束mfが対をなす永久磁石12a・12bのうち所要の方向に位置する磁石12a(12b)で生じる磁束mf2(mf1)を弱め、他方の磁石12b(12a)で生じる磁束mf1を強めることにより可動子2に電磁駆動力F1(F2)を作用させて可動子2を往復移動させるものである。
 さらに、磁気回路mcは、永久磁石12で生じる磁束によって固定子コア10に対する可動子2の相対位置に応じて変化する磁気バネのバネ力を可動子2に作用させる。すなわち、図4(a)において磁束密度を線の間隔で模式的に示すように、可動子2の往復動方向両側の磁束密度が等しい位置ps1に可動子2がある場合に、図4(b)に示すように、例えば可動子2をX2方向に変位させるほど、X2方向側の磁束経路が広くなる一方で、X1方向側の磁束経路が狭くなることから、X2方向側の磁束密度が弱まり、X1方向側の磁束密度が強くなる。この場合、可動子2の往復動方向両側の磁束密度が等しくなる位置ps1へ移動するように可動子2に対して磁気バネのバネ力F3が作用する。この磁気バネのバネ力F3は、図5に示すように固定子コア10に対する可動子2の相対位置(可動子の可動範囲の中心からの変位量)に応じて大きさ及びその向きが変化するものであり、磁束密度や磁束分布、鉄心と永久磁石との間の磁極ピッチ等により決定される。なお、この永久磁石12による磁気バネのバネ力F3は、コイル11への通電がなされている場合では、コイル11への通電により生じる磁気駆動力F1,F2に重畳して可動子2に作用する。
 ところが、磁気バネのバネ力と固定子コア10に対する可動子2の相対位置との関係である磁気バネ特性は、磁束分布や磁極ピッチ等により決定されるものの、これら磁束分布等を変更して磁気バネ特性を調整して設計することが難しいものである。特に製造コストの増大を伴わずに磁気バネ特性の調整自由度を向上させることは困難である。
 そこで、本実施形態では、図1及び図2に示すように、磁束経路である固定子コア10の対向部10cの一部と永久磁石12との間に、対向部10cの一部を切り欠いた状態にして固定子コア10に比べて透磁率の低い空隙部30を形成することで磁束分布を変更している。この空隙部30は、対向部10cのうち可動子2の可動方向と同一である軸心方向両端部10e・10eを残し、両端部10e・10eに挟まれる部位を切り欠いた状態にして形成されて、永久磁石12a・12bと対向部10cとの間の深さが一定になるように設定されている。両端部10e・10eは、対をなす永久磁石12a・12bにそれぞれ接触している。対をなす永久磁石12a・12bの境界線は、可動子の可動範囲の中心であり、空隙部30は、対をなす永久磁石12a・12bの境界線を中心として対称になるように形成されている。
 このような空隙部30を形成すると、軸心方向中央部にある空隙部30に比べて軸心方向両側にある両端部10e・10eの方が高い透磁率であり、両端部10e・10eに磁束が集中して、軸心方向両端側での磁束が強くなり、両端部に挟まれる軸心方向中央部での磁束が弱くなる。この磁束分布によって可動子が軸心方向(往復動方向)中央部にとどまろうとする力が低減するので、図6に示すように、可動子2の変位に対する磁気バネのバネ力の変化量(傾き)が、可動子の可動範囲の中心でのバネ力を維持した状態で可動子の可動範囲全域に亘って低減する。
 このように、空隙部30を形成することで磁束分布を変更する磁気バネ調節部3を構成し、この磁気バネ調節部3により、図6に示すように、固定子コア10に対する可動子2の相対位置と磁気バネのバネ力との関係である磁気バネ特性を空隙部30がない場合に比べて変化させている(図6参照)。磁気バネ特性は、空隙部30の軸心方向の寸法や軸心方向に直交する寸法、深さ等の形状や、配置位置、形成する個数等を種々変更することで調節可能である。例えば、空隙部30の底面が軸心に対して傾斜するように形成することや、空隙部30の寸法や深さが軸心に沿って変化するように形成することが挙げられる。
 以上のように本実施形態の可動鉄心型リニアアクチュエータは、可動子2を往復移動させるリニアアクチュエータであって、可動子2を構成する鉄心20と、この鉄心20に対向する対向部10cを有する固定子コア10と、この対向部10cに往復動方向に沿って配列され各々の鉄心に臨む側の面の磁極を反転させた磁極が異なる対をなす永久磁石12(12a・12b)と、固定子コア10に巻回されるコイル11とを含んで構成される磁気回路mcを備え、コイル11への通電により生じる磁束mfが対をなす永久磁石12a・12bのうち所要の方向に位置する磁石12a(12b)で生じる磁束mf2(mf1)を弱め、他方の磁石12b(12a)で生じる磁束mf1(mf2)を強めることにより可動子2を往復移動させるとともに、コイル11への通電がなされている場合において永久磁石12で生じる磁束によって固定子コア10に対する可動子2の相対位置に応じて変化する磁気バネのバネ力がコイル11への通電によって生じる電磁駆動力F1(F2)に重畳して可動子2に作用するものであり、磁束経路である固定子コア10の対向部10cの一部と永久磁石12との間に、対向部10cの一部を切り欠いた状態にして固定子コア10に比べて透磁率の低い空隙部30を形成することで磁束分布を変更する磁気バネ調節部3を構成し、この磁気バネ調節部3により、固定子コア10に対する可動子2の相対位置と磁気バネのバネ力との関係である磁気バネ特性を空隙部30がない場合に比べて変化させている。
 このように、固定子コアの対向部を切り欠いた状態にして空隙部を形成するだけで、固定子コア10に対する可動子2の相対位置と磁気バネのバネ力との関係である磁気バネ特性が所望の特性となるように調節可能であるので、アクチュエータを動力源として用いる場合には、機械バネにかかる負担を磁気バネに分散するように磁気バネ特性を調節して、機械バネの寿命を向上させることが可能となるうえ、共振運動に必要なバネ定数を得るにあたり、磁気バネ及び機械バネの双方のバネで対応して機械バネに要するコストを低減させることが可能となる。さらに、アクチュエータを制御要素としても用いる場合には、磁気バネのバネ力が低減するように磁気バネ特性を調節して、磁気バネのバネ力が制御の阻害要因や推力損失の原因となることを低減して制御精度や効率を向上させることが可能となる。しかも、磁気バネ調節部3により磁気バネ特性を調節可能であるので、例えば機械バネ及び磁気バネを合わせたバネ定数を低減又は無くする等のバネ特性の新たな態様を実現することが可能となる。
 さらに、本実施形態では、空隙部30は、対向部10cのうち可動子2の可動方向と同一である軸心方向両端部10e・10eを残し、これら両端部10e・10eに挟まれる部位を切り欠いた状態にして形成されているので、軸心方向中央部にある空隙部30に比べて軸心方向両側にある両端部10e・10eの方が高い透磁率であり、両端部10e・10eに磁束が集中して、軸心方向両端側での磁束が強くなり、両端部に挟まれる軸心方向中央部での磁束が弱くなり、可動子が軸心方向(往復動方向)中央部にとどまろうとする力が低減するので、可動子2の変位に対する磁気バネのバネ力の変化量(図6で示す傾き)が低減し、可動子の移動制御を容易として制御精度を向上させることができる。しかも、磁気バネのバネ力が減少するので、磁気バネのバネ力で生じる推力損失が低減し、効率を向上させることが可能となる。
 加えて、本実施形態では、空隙部30は、対をなす永久磁石12a・12bの境界線を中心として対称となるように形成されているので、対をなす永久磁石の境界線における磁気バネのバネ力を変更することなく、上記の制御精度や効率の向上の効果を奏することが可能となる。
 以上、本発明の一実施形態について説明したが、各部の具体的な構成は、上述した実施形態のみに限定されるものではない。
 例えば、図7に示すように、空隙部130を、対をなす永久磁石12a・12bのうち一方の永久磁石12bに対向する対向部110cにのみ形成し、対向部110cの軸心方向両端部110e・110eで空隙部130を挟み込むように構成することが挙げられる。このように構成すると、軸心方向両側で磁束のアンバランスが生じ、磁気バネのバネ力がX2方向に全体的に偏るものの、上記の実施形態と同様に可動子2の変位に対する磁気バネのバネ力の変化量(図6で示す傾き)が低減するという効果を得られる。
 さらに、図8及び図9に示すように、可動子202を構成する鉄心220、固定子コア210の対向部210c及び対をなす永久磁石212a・212bを一つのユニットとし、一つのユニットを軸心方向に沿って複数設けて永久磁石212a・212bが複数対をなすように構成し、各々のユニットを構成する対をなす永久磁石212a・212bとこれら永久磁石212a・212bに対向している対向部210cとの間に空隙部230が形成されていることが挙げられる。空隙部230は、各々の対をなす永久磁石212a・212bの境界線を中心に対称となるように形成され、軸心方向両側から対をなす端部210e・210eで挟み込まれている。このように構成すると、通電により可動子2を往復動させる電磁駆動力を増大させるために永久磁石212a・212bが複数対をなす構成にした場合であっても、可動子2の変位に対する磁気バネのバネ力の変化量(図6で示す傾き)を低減させるように磁気バネ特性を調整することが可能である。
 加えて、図10に示すように、可動子302を構成する鉄心320、固定子コア310の対向部310c、各々の対をなす永久磁石312a・312b及び磁気バネ調節部303を一つのユニットとし、一つのユニットを軸心方向に沿って複数設けてユニットが一対又は複数対をなすように構成し、対をなすユニットのうち一方のユニットを構成する空隙部330がX2方向側の永久磁石312aに対向する対向部310cにのみ形成され、他方のユニットを構成する空隙部330がX1方向側の永久磁石312bに対向する対向部310cにのみ形成されている。すなわち、各々の対をなすユニットのうち一方の磁気バネのバネ力が作用する方向と、他方の磁気バネのバネ力が作用する方向とが互いに逆方向になるように各々の磁気バネ調節部303が構成されている。このように構成すると、単一のユニットで実現できる磁気バネ特性に例えばバネ力を低減させる限界等の制約がある場合であっても、各々の磁気バネのバネ力が作用する方向を互いに逆方向にすることで、全てのユニットの磁気バネ特性を合わせた全体での磁気バネ特性を所望のバネ特性にすることができる場合があり、磁気バネ特性の調整自由度を向上させることができる場合がある。
 また、上述した可動子2を往復動可能に支持する図示しない板バネ等の機械バネ部は、固定子コア10に対する可動子2の相対位置に応じて変化する付勢力を可動子2に作用させるものであり、可動子2の可動範囲において機械バネの付勢力が作用する方向に対し逆方向に磁気バネのバネ力が作用するように空隙部を形成する構成が挙げられる。このように構成すると、機械バネの付勢力が磁気バネのバネ力により弱まり又は打ち消され、機械バネ及び磁気バネを合わせたバネ定数を低減又は無くした新たなバネ特性を備えたリニアアクチュエータを提供することが可能となる。
 加えて、本実施形態では、アウターロータ型のリニアアクチュエータを例として説明しているが、勿論、軸心を中心として固定子1の径方向内側に可動子2を配置するインナーロータ型のリニアアクチュエータにも適用可能である。
 その他、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
 以上に詳述した本発明によれば、固定子コアの対向部を切り欠いた状態にして空隙部を形成するだけで磁気バネ特性が調節可能となるので、アクチュエータを動力源として用いる場合には、磁気バネのバネ力を所要の値に調節することで機械バネの寿命の向上や機械バネに要するコストを低減させることが可能となる。さらに、アクチュエータを制御要素として用いる場合には、磁気バネのバネ力を低減させることで、バネ力が制御の阻害要因や推力損失の原因となることを低減して制御精度や効率を向上させることが可能となる。しかも、例えば機械バネ及び磁気バネを合わせたバネ定数を低減又は無くするといったバネ特性の新たな態様を実現することが可能となる。したがって、製造コストの削減や制御精度の向上、高効率化等に適した可動鉄心型リニアアクチュエータを提供することが可能である。

Claims (5)

  1.  可動子を往復移動させる可動鉄心型リニアアクチュエータであって、
     前記可動子を構成する鉄心と、この鉄心に対向する対向部を有する固定子コアと、この対向部に往復動方向に沿って配列され各々の鉄心に臨む側の面の磁極を反転させた対をなす永久磁石と、固定子コアに巻回されるコイルとを含んで構成される磁気回路を備え、コイルへの通電により生じる磁束が前記対をなす永久磁石のうち所要の方向に位置する磁石で生じる磁束を弱め、他方の磁石で生じる磁束を強めることにより可動子を往復移動させるとともに、コイルへの通電がなされている場合において永久磁石で生じる磁束によって固定子コアに対する可動子の相対位置に応じて変化する磁気バネのバネ力が前記コイルへの通電によって生じる電磁駆動力に重畳して可動子に作用するものであり、
     磁束経路である固定子コアの対向部の一部と永久磁石との間に、対向部の一部を切り欠いた状態にして固定子コアに比べて透磁率の低い空隙部を形成することで磁束分布を変更する磁気バネ調節部を構成し、この磁気バネ調節部により、前記固定子コアに対する前記可動子の相対位置と磁気バネのバネ力との関係である磁気バネ特性を空隙部がない場合に比べて変化させていることを特徴とする可動鉄心型リニアアクチュエータ。
  2.  前記空隙部は、前記対向部のうち前記可動子の可動方向と同一である軸心方向両端部を残し、両端部に挟まれる部位を切り欠いた状態にして形成されている請求項1に記載の可動鉄心型リニアアクチュエータ。
  3.  前記空隙部は、前記対をなす永久磁石の境界線を中心として対称となるように形成されている請求項1又は2に記載の可動鉄心型リニアアクチュエータ。
  4.  前記永久磁石は複数対をなしていて、各々の対をなす永久磁石のうち少なくとも一方の永久磁石と当該永久磁石に対向している対向部との間に前記空隙部が形成されている請求項1~3のいずれかに記載の可動鉄心型リニアアクチュエータ。
  5.  前記鉄心、前記対向部、前記対をなす永久磁石及び前記磁気バネ調節部を一つのユニットとし、ユニットが一対又は複数対をなしている場合に、各々の対をなすユニットのうち一方の磁気バネのバネ力が作用する方向と、他方の磁気バネのバネ力が作用する方向とが互いに逆方向になるように各々の磁気バネ調節部が構成されている請求項1~4のいずれかに記載の可動鉄心型リニアアクチュエータ。
     
PCT/JP2011/065810 2010-07-12 2011-07-11 可動鉄心型リニアアクチュエータ WO2012008418A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180034488.4A CN103004066B (zh) 2010-07-12 2011-07-11 可动铁芯型线性运动驱动器
US13/809,351 US9071108B2 (en) 2010-07-12 2011-07-11 Movable iron core linear actuator
EP11806748.7A EP2595290B1 (en) 2010-07-12 2011-07-11 Movable iron core type linear actuator
HK13110544.5A HK1183381A1 (en) 2010-07-12 2013-09-12 Movable iron core type linear actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010157507A JP5724233B2 (ja) 2010-07-12 2010-07-12 可動鉄心型リニアアクチュエータ
JP2010-157507 2010-07-12

Publications (1)

Publication Number Publication Date
WO2012008418A1 true WO2012008418A1 (ja) 2012-01-19

Family

ID=45469416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065810 WO2012008418A1 (ja) 2010-07-12 2011-07-11 可動鉄心型リニアアクチュエータ

Country Status (6)

Country Link
US (1) US9071108B2 (ja)
EP (1) EP2595290B1 (ja)
JP (1) JP5724233B2 (ja)
CN (1) CN103004066B (ja)
HK (1) HK1183381A1 (ja)
WO (1) WO2012008418A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328587B1 (ko) * 2013-04-30 2013-11-13 재단법인차세대융합기술연구원 영구자석 조작기
DE102016003599A1 (de) * 2016-03-27 2017-09-28 Eto Magnetic Gmbh Elektrischer linearer repetitiver Impulsantrieb
WO2020170927A1 (ja) * 2019-02-19 2020-08-27 株式会社村田製作所 リニア振動モータ及びリニア振動システム
JP7533871B2 (ja) * 2020-01-15 2024-08-14 ミネベアミツミ株式会社 振動アクチュエーター及び電子機器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078252A (ja) * 2000-08-31 2002-03-15 Asmo Co Ltd 直流機及びその製造方法
JP2004360747A (ja) * 2003-06-03 2004-12-24 Canon Inc ばね定数可変式磁気ばね装置
JP2005328655A (ja) * 2004-05-14 2005-11-24 Shinko Electric Co Ltd リニアアクチュエータ
JP2006014464A (ja) * 2004-06-24 2006-01-12 Shinko Electric Co Ltd リニアアクチュエータ
JP2007135351A (ja) 2005-11-11 2007-05-31 Shinko Electric Co Ltd アウタ可動型リニアアクチュエータ
WO2009081295A2 (en) * 2007-12-19 2009-07-02 Koninklijke Philips Electronics, N.V. Magnetic spring system for use in a resonant motor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785210A (en) * 1987-05-18 1988-11-15 Sony Corporation Linear motor
JPH0522920A (ja) * 1990-09-28 1993-01-29 Aisin Seiki Co Ltd リニアアクチユエータ
JP3291045B2 (ja) * 1992-12-18 2002-06-10 フオスター電機株式会社 リニアモータ
US5896076A (en) * 1997-12-29 1999-04-20 Motran Ind Inc Force actuator with dual magnetic operation
JP2002064967A (ja) * 2000-08-17 2002-02-28 Mikuni Adec Corp 電磁リニアアクチュエータ
JP3863429B2 (ja) * 2002-01-04 2006-12-27 学校法人東京電機大学 リニア振動アクチュエータ
DE102008042701A1 (de) * 2008-10-09 2010-04-15 How To Organize Gmbh Linearmotor für optische Systeme
JP5618171B2 (ja) * 2008-10-22 2014-11-05 シンフォニアテクノロジー株式会社 リニアアクチュエータ
CN102187554B (zh) * 2008-10-22 2015-03-11 昕芙旎雅有限公司 线性驱动器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078252A (ja) * 2000-08-31 2002-03-15 Asmo Co Ltd 直流機及びその製造方法
JP2004360747A (ja) * 2003-06-03 2004-12-24 Canon Inc ばね定数可変式磁気ばね装置
JP2005328655A (ja) * 2004-05-14 2005-11-24 Shinko Electric Co Ltd リニアアクチュエータ
JP2006014464A (ja) * 2004-06-24 2006-01-12 Shinko Electric Co Ltd リニアアクチュエータ
JP2007135351A (ja) 2005-11-11 2007-05-31 Shinko Electric Co Ltd アウタ可動型リニアアクチュエータ
WO2009081295A2 (en) * 2007-12-19 2009-07-02 Koninklijke Philips Electronics, N.V. Magnetic spring system for use in a resonant motor

Also Published As

Publication number Publication date
US9071108B2 (en) 2015-06-30
CN103004066B (zh) 2015-06-17
EP2595290A4 (en) 2018-03-14
US20130119788A1 (en) 2013-05-16
EP2595290B1 (en) 2019-12-04
JP5724233B2 (ja) 2015-05-27
HK1183381A1 (en) 2013-12-20
CN103004066A (zh) 2013-03-27
EP2595290A1 (en) 2013-05-22
JP2012023793A (ja) 2012-02-02

Similar Documents

Publication Publication Date Title
US9077219B2 (en) Electromechanical limited rotation rotary actuator
KR100918507B1 (ko) 리니어 액튜에이터
JP6385670B2 (ja) ポンプ用リニアドライブ
JP2009060785A (ja) 反対位相の2個の可動部品を備えた電磁アクチュエータ
JP3873836B2 (ja) リニアアクチュエータ
JP5724233B2 (ja) 可動鉄心型リニアアクチュエータ
JP2010035315A (ja) アクチュエータ
JP5082241B2 (ja) リニアモータ及びこれに含まれる固定子の製造方法
MX2011004709A (es) Motor lineal/alternador de multiples armaduras que tiene muelle magnetico sin campos marginales y salida de energia incrementada.
WO2012008417A1 (ja) 可動鉄心型リニアアクチュエータ
JP3371041B2 (ja) 磁石可動形リニアアクチュエータ
JP5527066B2 (ja) 可動磁石型リニアアクチュエータ
JP2011188546A (ja) ボイスコイルモータ
JP4692713B2 (ja) リニアアクチュエータ
JP7417077B2 (ja) リニアアクチュエータ
JP2003235234A (ja) リニアアクチュエータ
JP4556930B2 (ja) リニアアクチュエータ
JP2009027921A (ja) リニアアクチュエータ
JP2015119631A (ja) ポンプのためのリニア駆動装置
JP2010158166A (ja) リニアアクチュエータ
JP5237784B2 (ja) アクチュエータ
JP2016010269A (ja) 可動磁石形リニア直流モータおよび推力分布の平坦化方法
KR100378809B1 (ko) 멀티형 리니어 모터
JP6664146B2 (ja) リニアモータ用電機子
KR100332807B1 (ko) 리니어 모터의 가동자 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011806748

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13809351

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE