WO2012008206A1 - 負極材料の製造方法、負極材料、リチウム二次電池の製造方法、リチウム二次電池 - Google Patents

負極材料の製造方法、負極材料、リチウム二次電池の製造方法、リチウム二次電池 Download PDF

Info

Publication number
WO2012008206A1
WO2012008206A1 PCT/JP2011/060455 JP2011060455W WO2012008206A1 WO 2012008206 A1 WO2012008206 A1 WO 2012008206A1 JP 2011060455 W JP2011060455 W JP 2011060455W WO 2012008206 A1 WO2012008206 A1 WO 2012008206A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
mgh
secondary battery
lithium secondary
electrode material
Prior art date
Application number
PCT/JP2011/060455
Other languages
English (en)
French (fr)
Inventor
松永 朋也
中山 英樹
真紀雄 近
葵 高野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012524476A priority Critical patent/JP5534010B2/ja
Priority to CN2011800344013A priority patent/CN103003988A/zh
Priority to US13/809,558 priority patent/US20130202969A1/en
Publication of WO2012008206A1 publication Critical patent/WO2012008206A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a method for producing a negative electrode material using a conversion reaction.
  • Patent Document 1 As a negative electrode active material used for a lithium battery, a conversion-type negative electrode active material which is a metal hydride (MHx) is known. As a conversion-type negative electrode active material, for example, Patent Document 1 describes MgH 2 . Patent Document 1 discloses a method of synthesizing MgH 2 by using Mg as a starting material, refining by a ball mill method, and hydrogenating Mg in a high-pressure hydrogen atmosphere. Non-Patent Document 1 also discloses the use of MgH 2 as an active material for a lithium battery. The electrochemical behavior when MgH 2 is used as the active material is as follows.
  • MgH 2 has a problem that the reversibility of the conversion reaction is low. Specifically, the reaction formula 2 is less likely to occur than the reaction formula 1. In addition, MgH 2 has a problem of poor cycle characteristics.
  • the present invention has been made in view of the above circumstances, and has as its main object to provide a method for producing a negative electrode material that improves the reversibility and cycle characteristics of the conversion reaction of a lithium secondary battery.
  • the present invention is a method for producing a negative electrode material used for a lithium secondary battery, and includes a mechanical milling step of refining a raw material composition containing MgH 2 by mechanical milling.
  • a negative electrode material manufacturing method is provided.
  • the particle size of MgH 2 can be reduced and the reversibility of the conversion reaction can be improved. .
  • the charge / discharge efficiency of the lithium secondary battery can be improved.
  • by reducing the particle size of MgH 2 it is possible to suppress the disconnection of the conductive path (Li ion conduction path, electron conduction path) due to fine pulverization by charging and discharging, and the lithium secondary battery Cycle characteristics can be improved.
  • the particles can be further miniaturized by performing miniaturization (chemical miniaturization) by occlusion and release of hydrogen after miniaturization by mechanical milling (mechanical miniaturization).
  • a method for producing a negative electrode material used for a lithium secondary battery which is obtained by a mechanical milling process in which a raw material composition containing Mg is refined by mechanical milling, and the mechanical milling process. And a hydrogen storage / release step in which the material is refined by the storage and release of hydrogen in the gas phase.
  • MgH 2 having a small particle size can be obtained by refining the raw material composition containing Mg by mechanical milling, and then refining by occlusion and release of hydrogen, thereby reducing the reversibility of the conversion reaction. Can be improved. As a result, the charge / discharge efficiency of the lithium secondary battery can be improved.
  • by reducing the particle size of MgH 2 it is possible to suppress the disconnection of the conductive path (Li ion conduction path, electron conduction path) due to fine pulverization by charging and discharging, and the lithium secondary battery Cycle characteristics can be improved.
  • a method for producing a negative electrode material used for a lithium secondary battery wherein the material containing Mg or MgH 2 is refined by occlusion and release of hydrogen in the gas phase.
  • the manufacturing method of the negative electrode material characterized by having is provided.
  • the present invention relative to the material containing Mg or MgH 2, by performing the storage and release of hydrogen, can be obtained having a small particle size MgH 2, it is possible to improve the reversibility of the conversion reaction. As a result, the charge / discharge efficiency of the lithium secondary battery can be improved.
  • the particle size of MgH 2 by reducing the particle size of MgH 2 , it is possible to suppress the disconnection of the conductive path (Li ion conduction path, electron conduction path) due to fine pulverization by charging and discharging, and the lithium secondary battery Cycle characteristics can be improved.
  • the average particle diameter of the MgH 2 -containing particles after the hydrogen storage / release step is preferably in the range of 50 nm to 150 nm.
  • the raw material composition, or a material containing the Mg or MgH 2 is, conductive material, and preferably further contains at least one of the metal catalyst to enhance the reversibility of the conversion reaction.
  • a conductive material can provide a negative electrode material with good electronic conductivity, and the addition of a metal catalyst can further improve the reversibility of the conversion reaction.
  • a negative electrode material for use in lithium secondary batteries comprising the MgH 2 containing particles, and wherein the average particle size of the MgH 2 containing particles is in the range of 50 nm ⁇ 150 nm A negative electrode material is provided.
  • the average particle diameter of the MgH 2 -containing particles is within the above range, the reversibility of the conversion reaction can be improved. As a result, the charge / discharge efficiency of the lithium secondary battery can be improved. Moreover, when the average particle diameter of the MgH 2 -containing particles is within the above range, it is possible to effectively suppress the disconnection of the conductive path due to pulverization by charging and discharging, and to improve the cycle characteristics of the lithium secondary battery. be able to.
  • a method for producing a lithium secondary battery having a positive electrode layer, a negative electrode layer, and the electrolyte layer formed between the positive electrode layer and the negative electrode layer.
  • a method for producing a lithium secondary battery comprising a negative electrode layer forming step of forming the negative electrode layer using a negative electrode material obtained by the method.
  • the present invention by using the negative electrode material obtained by the above-described manufacturing method, a lithium secondary battery with good reversibility of conversion reaction and cycle characteristics can be obtained.
  • the lithium secondary battery includes a positive electrode layer, a negative electrode layer, and an electrolyte layer formed between the positive electrode layer and the negative electrode layer, wherein the negative electrode layer includes MgH 2 -containing particles.
  • the negative electrode material contains hydrogen and occludes and releases hydrogen in a gas phase.
  • a rechargeable lithium battery having excellent reversibility of conversion reaction and cycle characteristics can be obtained.
  • Mechanical Milling method for producing a negative electrode material of the first embodiment is a method of manufacturing a negative electrode material for use in lithium secondary batteries, a raw material composition containing a MgH 2, miniaturized by mechanical milling It has the process, It is characterized by the above-mentioned.
  • the particle size of MgH 2 can be reduced, and the reversibility of the conversion reaction can be improved. Can do. As a result, the charge / discharge efficiency of the lithium secondary battery can be improved.
  • particle size of MgH 2 becomes smaller, why reversibility of the conversion reaction is improved, the particle size of MgH 2 is decreased, the specific surface area is increased, probably because the above reaction formula 2 tends to occur It is done.
  • the particle size of MgH 2 is reduced, Li diffusion paths are shortened, believed to improve reactivity.
  • the particle size of MgH 2 is reduced, there is an advantage that the overvoltage in the Li insertion reaction (the above reaction formula 1) is reduced.
  • the cycle characteristics of the secondary battery can be improved.
  • the conduction path Li ion conduction path, electron conduction path
  • the cycle characteristics of the secondary battery can be improved.
  • FIG. 1 is a flowchart illustrating a method for manufacturing a negative electrode material according to the first embodiment.
  • MgH 2 powder as an active material is used as a raw material composition.
  • the raw material composition is ball milled to refine the raw material composition.
  • a negative electrode material can be obtained.
  • an MgH 2 powder that is an active material and a carbon powder that is a conductive material are prepared and mixed at a predetermined ratio to obtain a raw material composition.
  • the raw material composition is ball milled to refine the raw material composition.
  • a negative electrode material can be obtained.
  • FIG. 2 is a flowchart for explaining a conventional method for producing MgH 2 .
  • the Mg powder was ball milled to refine the Mg powder, and then the refined Mg powder was hydrogenated under a hydrogen atmosphere and high pressure to obtain MgH 2 .
  • MgH 2 obtained by such a method has a large particle size and poor reversibility of the conversion reaction.
  • reversibility of the conversion reaction can be improved by further miniaturizing MgH 2 .
  • the manufacturing method of the negative electrode material of the first embodiment will be described step by step.
  • the mechanical milling process in the first embodiment is a process of refining a raw material composition containing MgH 2 by mechanical milling.
  • the raw material composition in the first embodiment contains at least MgH 2 , and may further contain at least one of a conductive material and a metal catalyst that improves the reversibility of the conversion reaction.
  • MgH 2 in the first embodiment normally functions as an active material, and reacts with Li ions to produce LiH and Mg. Further, Mg (zero-valent) generated by the reaction with Li ions further causes an alloying reaction with Li ions and occludes Li until it becomes Li 3 Mg 7 .
  • MgH 2 has an extremely large Li storage capacity, but its reverse reaction (particularly, the above reaction formula 2) hardly occurs, and thus there is a problem that the charge / discharge efficiency is lowered. In the first embodiment, this problem is solved by refining the raw material composition containing MgH 2 .
  • the content of MgH 2 in the raw material composition is not particularly limited, but is preferably 40% by weight or more, for example, and more preferably in the range of 60% by weight to 98% by weight.
  • the raw material composition in the first embodiment may further contain a conductive material.
  • a conductive material is not particularly limited, and examples thereof include carbon materials such as mesocarbon microbeads (MCMB), acetylene black, ketjen black, carbon black, coke, carbon fiber, and graphite.
  • the content of the conductive material in the raw material composition is not particularly limited, but is preferably in the range of 1% by weight to 60% by weight, for example, and in the range of 2% by weight to 40% by weight. It is more preferable. If the proportion of the conductive material is too small, there is a possibility that the electron conductivity cannot be sufficiently improved. If the proportion of the conductive material is too large, the proportion of MgH 2 becomes relatively small, resulting in a decrease in capacity. This is because it may become large.
  • the raw material composition in the first embodiment may further contain a metal catalyst that improves the reversibility of the conversion reaction.
  • a metal catalyst that improves the reversibility of the conversion reaction.
  • the reaction formula 2 can be promoted, and the reversibility of the conversion reaction can be improved.
  • a hydrogen elimination reaction from LiH a LiH dissociation reaction
  • a hydrogen addition reaction to Mg are important, and a metal catalyst performs one or both of these reactions. It is thought that it is promoting.
  • the metal catalyst is not particularly limited as long as it can improve the reversibility of the conversion reaction.
  • the metal catalyst is a catalyst capable of dissociating LiH or a catalyst capable of dissociating and adsorbing H 2 gas. Is preferred.
  • the “catalyst capable of dissociating and adsorbing H 2 gas” means both a catalyst that dissociates and adsorbs H 2 gas and a catalyst that adsorbs hydrogen before hydrogen desorbed from LiH becomes hydrogen gas. .
  • the metal catalyst in the first embodiment preferably has a transition metal element. This is because 3d orbitals, 4d orbitals, 4f orbitals and the like in transition metal elements are considered to improve the reversibility of the conversion reaction. In addition, it is considered that these orbits may greatly contribute to LiH dissociation and H 2 gas dissociative adsorption.
  • the transition metal element is not particularly limited as long as it is classified as a transition metal element in the periodic table, but among them, Ti, V, Cr, Mn, Co, Ni, Zr, Nb, Pd It is preferably at least one selected from the group consisting of La, Ce and Pt. This is because the reversibility of the conversion reaction can be greatly improved.
  • a metal simple substance, an alloy, a metal oxide, etc. can be mentioned, for example.
  • the metal catalyst in the first embodiment is preferably Ni simple substance or Ni alloy.
  • the ratio of the metal catalyst to MgH 2 is not particularly limited, but it is preferably a ratio that can improve the reversibility of the conversion reaction of the lithium secondary battery as compared with the case where no metal catalyst is used.
  • the ratio of the metal catalyst to MgH 2 is preferably in the range of 0.1 at% to 10 at%, for example, and more preferably in the range of 0.5 at% to 6 at%. If the proportion of the metal catalyst is too small, the reversibility of the conversion reaction may not be sufficiently improved. If the proportion of the metal catalyst is too large, the proportion of MgH 2 is relatively small, and the capacity is reduced. This is because it may become large. Note that the ratio of the metal catalyst to MgH 2 can be determined by SEM-EDX.
  • the raw material composition is refined by mechanical milling.
  • Mechanical milling is a method of crushing a sample while applying mechanical energy.
  • grains of each material contained in a raw material composition contact vigorously by refine
  • miniaturization for example, refinement
  • the conductive material and the metal catalyst can be uniformly dispersed on the surface of the MgH 2 particles.
  • the mechanical milling in the first embodiment include a ball mill, a vibration mill, a turbo mill, and a disk mill. Among these, a ball mill is preferable, and a planetary ball mill is particularly preferable.
  • various conditions of mechanical milling are set so that a desired negative electrode material can be obtained.
  • a raw material composition and a ball for pulverization are added to a pot, and the treatment is performed at a predetermined rotation speed and time.
  • the rotation speed of the base plate when performing the planetary ball mill is, for example, preferably in the range of 100 rpm to 1000 rpm, and more preferably in the range of 200 rpm to 600 rpm.
  • the treatment time when performing the planetary ball mill is preferably in the range of, for example, 1 hour to 100 hours, and more preferably in the range of 2 hours to 10 hours.
  • the MgH 2 -containing particles obtained by the mechanical milling process are preferably further refined. This is because the reversibility of the conversion reaction can be further improved by reducing the particle size of the MgH 2 -containing particles.
  • the MgH 2 -containing particles are MgH 2 particles or particles in which other materials (conductive material, metal catalyst, etc.) are dispersed on the surface of the MgH 2 particles.
  • the average particle diameter of the MgH 2 -containing particles is preferably 2 ⁇ m or less, for example, and more preferably in the range of 0.1 ⁇ m to 1 ⁇ m.
  • the conductive material obtained by the mechanical milling process is further refined. This is because it can further contribute to the improvement of electron conductivity.
  • the average particle diameter of the conductive material is preferably 2 ⁇ m or less, for example, and more preferably in the range of 0.1 ⁇ m to 1 ⁇ m.
  • the average particle diameter of the conductive material can be determined by SEM observation and particle size distribution measurement in the same manner as described above.
  • the metal catalyst obtained by the mechanical milling process is preferably further refined. This is because the reversibility of the conversion reaction can be further improved by reducing the particle size of the metal catalyst.
  • the average particle diameter of the metal catalyst is preferably 1 ⁇ m or less, for example, and more preferably in the range of 10 nm to 500 nm.
  • the average particle diameter of a metal catalyst can be determined by SEM observation and a particle size distribution measurement similarly to the above.
  • the MgH 2 -containing particles can be further miniaturized by performing miniaturization (chemical miniaturization) by occlusion and release of hydrogen after miniaturization by mechanical milling (mechanical miniaturization).
  • miniaturization chemical miniaturization
  • mechanical milling mechanical miniaturization
  • hydrogen it is preferable that hydrogen be occluded in magnesium by the hydrogen occlusion / release step (that is, a state capable of expressing a function as an active material).
  • FIG. 3 is a flowchart illustrating the method for manufacturing the negative electrode material according to the first embodiment.
  • MgH 2 powder as an active material is used as a raw material composition.
  • the raw material composition is ball milled to refine the raw material composition.
  • hydrogen is occluded and released from the refined raw material composition in the gas phase. Thereby, a negative electrode material can be obtained.
  • the hydrogen absorption-desorption process the MgH 2 in MgH 2 containing particles, by releasing occlude hydrogen through the gas phase, achieving finer particles.
  • the treatment is usually performed in the order of hydrogen release and hydrogen storage.
  • the method for releasing hydrogen is not particularly limited, and examples thereof include a method for reducing the pressure.
  • it is preferable to reduce the pressure and further heat.
  • the pressure at the time of pressure reduction will not be specifically limited if it is a pressure lower than atmospheric pressure, For example, it is preferable that it is 1 kPa or less, and it is more preferable that it is 0.1 kPa or less.
  • it is preferable to release hydrogen in a vacuum state (state of 1 Pa or less).
  • the heating temperature at the time of hydrogen release is preferably in the range of 200 ° C. to 400 ° C., for example, and more preferably in the range of 250 ° C. to 350 ° C.
  • the treatment time for hydrogen release is, for example, preferably within a range of 1 minute to 300 minutes, and more preferably within a range of 5 minutes to 120 minutes.
  • the method of occluding hydrogen is not particularly limited, and examples thereof include a method of pressurizing in a hydrogen gas atmosphere. In the first embodiment, it is preferable to pressurize and further heat.
  • the pressure at the time of pressurization is not particularly limited as long as it is higher than the Mg—MgH 2 equilibrium pressure at the temperature at which hydrogen is occluded.
  • the pressure is preferably 0.01 MPa or more, more preferably in the range of 0.01 MPa to 10 MPa, and in the range of 0.1 MPa to 1 MPa. More preferably.
  • the preferable range of the heating temperature at the time of hydrogen occlusion and the processing time of hydrogen occlusion is the same as that in the case of hydrogen release.
  • the number of times of occlusion and release of hydrogen is not particularly limited as long as it is 1 or more, but it is preferably in the range of 2 to 100 times, for example, in the range of 2 to 30 times. More preferably.
  • the average particle diameter of the MgH 2 -containing particles after the hydrogen storage / release process is not particularly limited as long as it is smaller than the average particle diameter of the MgH 2 -containing particles after the mechanical milling process, but for example within a range of 50 nm to 150 nm It is preferably in the range of 50 nm to 100 nm, more preferably in the range of 50 nm to 85 nm, and particularly preferably in the range of 50 nm to 70 nm.
  • the average particle size of MgH 2 containing particles after the hydrogen absorption-desorption process can be determined by gas adsorption test. Specifically, measurement is performed by a nitrogen gas adsorption method using AUTOSORB-1 manufactured by Yuasa Ionics. The specific surface area is calculated by the BET method, and the average particle diameter is determined using the obtained specific surface area. Note that the MgH 2 -containing particles are assumed to be spheres. In the measurement by the nitrogen gas adsorption method, for example, vacuum deaeration treatment is performed at 60 ° C. for 12 hours before measurement, and measurement is performed at 77K.
  • the method for producing a negative electrode material of the second embodiment is a method for producing a negative electrode material used for a lithium secondary battery, wherein the raw material composition containing Mg is refined by mechanical milling, and the mechanical And a hydrogen storage / release process in which the material obtained by the milling process is refined by storing and releasing hydrogen in the gas phase.
  • MgH 2 having a small particle diameter can be obtained by refining the raw material composition containing Mg by mechanical milling, and then by refining by occlusion and release of hydrogen, and reversible conversion reaction. Can be improved. As a result, the charge / discharge efficiency of the lithium secondary battery can be improved.
  • by reducing the particle size of MgH 2 it is possible to prevent the conduction path (Li ion conduction path, electron conduction path) from being cut off as the powder is pulverized by charging and discharging. The cycle characteristics of the secondary battery can be improved.
  • FIG. 4 is a flowchart illustrating a method for manufacturing a negative electrode material according to the second embodiment.
  • Mg powder is used as a raw material composition.
  • the raw material composition is ball milled to refine the raw material composition.
  • hydrogen is occluded and released from the refined raw material composition in the gas phase.
  • the manufacturing method of the negative electrode material of a 2nd embodiment is demonstrated for every process.
  • the mechanical milling process in a 2nd embodiment is a process of refining the raw material composition containing Mg by mechanical milling.
  • the content of Mg in the raw material composition is not particularly limited, but is preferably 40% by weight or more, for example, and more preferably in the range of 60% by weight to 98% by weight.
  • the raw material composition in the second embodiment may further contain a conductive material and a metal catalyst that improves the reversibility of the conversion reaction. Since these descriptions, mechanical milling conditions, and other matters are the same as those described in the first embodiment, descriptions thereof are omitted here.
  • the Mg-containing particles obtained by the mechanical milling process are further refined. This is because the reversibility of the conversion reaction can be further improved by reducing the particle size of the Mg-containing particles.
  • the Mg-containing particles are Mg particles or particles in which other materials (conductive material, metal catalyst, etc.) are dispersed on the surface of the Mg particles.
  • the average particle diameter of the Mg-containing particles is preferably 2 ⁇ m or less, for example, and more preferably in the range of 0.1 ⁇ m to 1 ⁇ m.
  • the hydrogen storage / release process in the second embodiment is a process of refining the material obtained by the mechanical milling process by storing and releasing hydrogen in the gas phase.
  • the particles can be made finer and the reversibility of the conversion reaction can be improved.
  • the charge / discharge efficiency of the lithium secondary battery can be improved.
  • by making the particles finer it is possible to suppress the disconnection of the conductive path (Li ion conduction path, electron conduction path) accompanying the pulverization by charging / discharging, and the cycle characteristics of the lithium secondary battery can be improved. .
  • Mg-containing particles can be further miniaturized by performing miniaturization (chemical miniaturization) by occlusion and release of hydrogen after miniaturization by mechanical milling (mechanical miniaturization).
  • Mg in the Mg-containing particles is stored and released through the gas phase to further refine the particles.
  • the treatment is usually performed in the order of hydrogen storage and hydrogen release.
  • the method for storing and releasing hydrogen, the average particle diameter of the MgH 2 -containing particles after the hydrogen storing and releasing step, and other matters are the same as the contents described in the first embodiment, and the description is omitted here. To do.
  • a method for producing a negative electrode material according to a third embodiment is a method for producing a negative electrode material used for a lithium secondary battery, wherein a material containing Mg or MgH 2 is refined by occlusion and release of hydrogen in a gas phase. And a hydrogen storage / release process.
  • a third embodiment with respect to material containing Mg or MgH 2, by performing the storage and release of hydrogen, can be obtained particle sizes smaller MgH 2, to improve the reversibility of the conversion reaction it can. As a result, the charge / discharge efficiency of the lithium secondary battery can be improved.
  • the conduction path Li ion conduction path, electron conduction path
  • FIG. 5 is a flowchart illustrating a method for manufacturing a negative electrode material according to the third embodiment.
  • Mg powder or MgH 2 powder is used.
  • hydrogen is occluded and released from these powders in the gas phase. Thereby, a negative electrode material can be obtained.
  • the hydrogen storage / release step in the third embodiment is a step of refining a material containing Mg or MgH 2 by storing and releasing hydrogen in the gas phase.
  • the particles can be made finer and the reversibility of the conversion reaction can be improved.
  • the charge / discharge efficiency of the lithium secondary battery can be improved.
  • by making the particles finer it is possible to suppress the disconnection of the conductive path (Li ion conduction path, electron conduction path) accompanying the pulverization by charging / discharging, and the cycle characteristics of the lithium secondary battery can be improved. .
  • material containing Mg or MgH 2 may be a material composed of only Mg particles, MgH 2 particles It may be a material composed only of Mg, or may be a material in which other materials (conductive material, metal catalyst, etc.) are dispersed on the surface of Mg particles or MgH 2 particles.
  • at least one of a conductive material and a metal catalyst may be further included.
  • the material containing Mg or MgH 2 is refined by any method. This is because the reversibility of the conversion reaction can be further improved.
  • hydrogen be occluded in magnesium by the hydrogen occlusion / release step (that is, a state capable of expressing a function as an active material).
  • Mg or MgH 2 stores or releases hydrogen through the gas phase or stores and releases it, thereby further miniaturizing the particles.
  • the method for storing and releasing hydrogen, the average particle diameter of the MgH 2 -containing particles after the hydrogen storing and releasing step, and other matters are the same as the contents described in the first embodiment, and the description is omitted here. To do.
  • Negative electrode material of the present invention is a negative electrode material for use in lithium secondary batteries, comprising the MgH 2 containing particles, and wherein the average particle size of the MgH 2 containing particles is in the range of 50 nm ⁇ 150 nm To do.
  • the average particle diameter of the MgH 2 -containing particles is within the above range, the reversibility of the conversion reaction can be improved. As a result, the charge / discharge efficiency of the lithium secondary battery can be improved. Moreover, when the average particle diameter of the MgH 2 -containing particles is within the above range, it is possible to effectively suppress the disconnection of the conductive path due to pulverization by charging and discharging, and to improve the cycle characteristics of the lithium secondary battery. be able to.
  • the MgH 2 -containing particles in the present invention are preferably those in which at least one of a conductive material and a metal catalyst is dispersed on the surface of the MgH 2 particles (composite material).
  • the conductive material and the metal catalyst are the same as the contents described in the above-mentioned “A. Method for producing negative electrode material”, and thus description thereof is omitted here.
  • the preferable average particle diameter of the MgH 2 -containing particles and other matters are also the same as the contents described in the above “A. Method for producing negative electrode material”.
  • the method for producing a lithium secondary battery according to the present invention is a method for producing a lithium secondary battery having a positive electrode layer, a negative electrode layer, and an electrolyte layer formed between the positive electrode layer and the negative electrode layer.
  • a negative electrode layer forming step of forming the negative electrode layer using the negative electrode material obtained by the method for producing a negative electrode material is provided.
  • the negative electrode material obtained by the above-described manufacturing method by using the negative electrode material obtained by the above-described manufacturing method, a lithium secondary battery with good reversibility of conversion reaction and cycle characteristics can be obtained.
  • the manufacturing method of the negative electrode material used for this invention it is the same as the content described in the said "A. manufacturing method of negative electrode material”.
  • the negative electrode material used in the present invention is preferably obtained by performing at least a hydrogen storage / release process. Before charging / discharging as a battery, hydrogen can be stored and released in the gas phase in the negative electrode material, so that the conduction path can be prevented from being cut off due to pulverization by charging / discharging, and cycle characteristics can be improved. is there.
  • Examples of the method of forming the negative electrode layer include a method of applying a negative electrode layer forming composition containing at least a negative electrode material. Moreover, since the formation method of another layer is the same as the formation method in the manufacturing method of a general lithium secondary battery, description here is abbreviate
  • the lithium secondary battery of the present invention is a lithium secondary battery having a positive electrode layer, a negative electrode layer, and an electrolyte layer formed between the positive electrode layer and the negative electrode layer, wherein the negative electrode layer is MgH 2. It has a negative electrode material containing contained particles, and the negative electrode material is one in which hydrogen is occluded and released in a gas phase.
  • a rechargeable lithium battery having excellent reversibility of conversion reaction and cycle characteristics can be obtained.
  • hydrogen is occluded / released in the gas phase by the negative electrode material. Can be improved.
  • FIG. 6 is a schematic cross-sectional view showing an example of the lithium secondary battery of the present invention.
  • a lithium secondary battery 10 in FIG. 6 includes a positive electrode layer 1, a negative electrode layer 2, an electrolyte layer 3 formed between the positive electrode layer 1 and the negative electrode layer 2, and a positive electrode current collector that collects current from the positive electrode layer 1. 4 and a negative electrode current collector 5 that collects current of the negative electrode layer 2.
  • the negative electrode layer 2 has a negative electrode material containing MgH 2 -containing particles, and the negative electrode material is characterized in that hydrogen is occluded and released in a gas phase.
  • the lithium secondary battery of this invention is demonstrated for every structure.
  • the negative electrode layer in the present invention is a layer having at least a negative electrode material containing MgH 2 -containing particles. Further, this negative electrode material is usually one in which hydrogen is occluded and released in the gas phase.
  • the hydrogen storage / release process for storing and releasing hydrogen in the gas phase is the same as that described in “A. Method for producing negative electrode material” above, so description thereof is omitted here.
  • the preferable average particle diameter of the MgH 2 -containing particles in the negative electrode material and other matters are also the same as the contents described in the above “A. Method for manufacturing negative electrode material”.
  • the content of the negative electrode material in the negative electrode layer is not particularly limited, but is preferably 20% by weight or more, for example, and more preferably in the range of 40% by weight to 80% by weight.
  • the negative electrode layer may further contain at least one of a conductive material and a binder.
  • the negative electrode material itself may contain a conductive material.
  • the conductive material contained in the negative electrode material and the newly added conductive material may be the same material. Different materials may be used.
  • a specific example of the conductive material is as described above.
  • the binder include a fluorine-containing binder such as polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • the thickness of the negative electrode layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the positive electrode layer in the present invention is a layer containing at least a positive electrode active material.
  • a layered positive electrode active material such as LiCoO 2 , LiNiO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiVO 2 , LiCrO 2 , LiMn 2 O 4 , Li (Ni 0.25 Examples thereof include spinel-type positive electrode active materials such as Mn 0.75 ) 2 O 4 , LiCoMnO 4 and Li 2 NiMn 3 O 8 , and olivine-type positive electrode active materials such as LiCoPO 4 , LiMnPO 4 and LiFePO 4 .
  • the content of the positive electrode active material in the positive electrode layer is not particularly limited, but is preferably in the range of 40 wt% to 99 wt%, for example.
  • the positive electrode layer in the present invention may further contain at least one of a conductive material and a binder.
  • the conductive material and the binder are the same as those described in the above “1. Negative electrode layer”, and thus description thereof is omitted here.
  • the thickness of the positive electrode layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the electrolyte layer in the present invention is a layer formed between the positive electrode layer and the negative electrode layer. Li ion conduction between the positive electrode active material and the negative electrode active material is performed via the electrolyte contained in the electrolyte layer.
  • the form of the electrolyte layer is not particularly limited, and examples thereof include a liquid electrolyte layer, a gel electrolyte layer, and a solid electrolyte layer.
  • the liquid electrolyte layer is usually a layer using a non-aqueous electrolyte.
  • the non-aqueous electrolyte usually contains a metal salt and a non-aqueous solvent.
  • Metal salts include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 ; and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC ( An organic lithium salt such as CF 3 SO 2 ) 3 can be used.
  • non-aqueous solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), butylene carbonate (BC), ⁇ -butyrolactone, sulfolane, Acetonitrile, 1,2-dimethoxymethane, 1,3-dimethoxypropane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran and mixtures thereof can be exemplified.
  • concentration of the metal salt in the non-aqueous electrolyte is, for example, in the range of 0.5 mol / L to 3 mol / L.
  • a low volatile liquid such as an ionic liquid may be used as the nonaqueous electrolytic solution.
  • a separator may be disposed between the positive electrode layer and the negative electrode layer.
  • the thickness of the electrolyte layer varies greatly depending on the type of electrolyte and the configuration of the battery.
  • the thickness is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and more preferably in the range of 0.1 ⁇ m to 300 ⁇ m.
  • the lithium secondary battery of the present invention may further include a positive electrode current collector that collects current from the positive electrode layer and a negative electrode current collector that collects current from the negative electrode layer.
  • Examples of the material for the positive electrode current collector include SUS, aluminum, nickel, iron, titanium, and carbon.
  • examples of the material for the negative electrode current collector include SUS, copper, nickel, and carbon.
  • the battery case of a general lithium secondary battery can be used for the battery case used for this invention. Examples of the battery case include a SUS battery case.
  • the lithium secondary battery of this invention is used, for example as a vehicle-mounted battery.
  • Examples of the shape of the lithium secondary battery of the present invention include a coin type, a laminate type, a cylindrical type, and a square type.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • FIG. 7A is a flowchart for explaining the operation of the second embodiment.
  • carbon powder MCMB, average particle size 1 ⁇ m
  • This carbon powder was obtained by subjecting commercially available MCMB (average particle size 20 ⁇ m) to planetary ball mill treatment (400 rpm ⁇ 5 hours).
  • a negative electrode material was obtained in the same manner as in Example 1 except that the obtained raw material composition was used. In the obtained negative electrode material, the average particle diameter of the MgH 2 powder was 0.5 ⁇ m, and the average particle diameter of the carbon powder was 0.1 ⁇ m.
  • FIG. 7B is a flowchart for explaining the operation of the first comparative example.
  • Mg powder average particle size 30 ⁇ m
  • carbon powder used in Example 2 were prepared.
  • the container was attached to a planetary ball mill apparatus, and miniaturization was performed under conditions of a base plate rotation speed of 400 rpm and a processing time of 5 hours. Thereafter, hydrogenation was performed under conditions of 0.9 MPa hydrogen pressure, 350 ° C., and 3 hours to obtain a negative electrode material.
  • Example 2 An evaluation battery was produced using the negative electrode materials obtained in Example 2 and Comparative Example 1.
  • a negative electrode material acetylene black 60 wt% + VGCF 40 wt%), and a binder (polyvinylidene fluoride, PVDF)
  • the obtained paste was coated on a copper foil with a doctor blade, dried, and pressed to obtain a test electrode having a thickness of 10 ⁇ m.
  • a CR2032-type coin cell was used, the test electrode was used as a working electrode, Li metal was used as a counter electrode, and a porous separator of polyethylene / polypropylene / polyethylene was used as a separator.
  • the LiPF 6 salts was used dissolved at a concentration 1 mol / L. The battery for evaluation was obtained using these.
  • the obtained evaluation battery was charged and discharged at a battery evaluation environmental temperature of 25 ° C. and a current rate of C / 50.
  • the voltage range was 0.01V to 3.0V. The results are shown in Table 1 and FIG.
  • FIG. 11A is a flowchart for explaining the operation of the third embodiment.
  • MgH 2 powder average particle size 10 ⁇ m
  • Ni powder average particle size 100 nm
  • carbon powder MCMB, average particle size 1 ⁇ m
  • This carbon powder was obtained by subjecting commercially available MCMB (average particle size 20 ⁇ m) to planetary ball mill treatment (400 rpm ⁇ 5 hours).
  • 3 at% of Ni powder was added to the MgH 2 powder.
  • 2 powder and Ni powder MgH, the carbon powder, (MgH 2 powder + Ni powder): carbon powder 90: were mixed in a 10 weight ratio to obtain a raw material composition.
  • the hydrogen storage / release treatment was started as a hydrogen release start. -Hydrogen release conditions: 300 ° C, vacuum, 1 hour-Hydrogen storage conditions: 300 ° C, hydrogen pressure 0.88 MPa, 0.5 hours In this way, a negative electrode material was obtained.
  • Example 4 A negative electrode material was obtained in the same manner as in Example 3 except that the hydrogen storage / release treatment was changed from 2 cycles to 5 cycles.
  • FIG. 11B is a flowchart for explaining the operations of Reference Examples 1 to 4.
  • negative electrode materials were obtained in the same manner as in Example 3 except that the treatment time of the ball mill was changed and the hydrogen storage / release treatment was not performed.
  • the ball mill treatment times were 0 minutes, 10 minutes, 60 minutes, and 300 minutes, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、リチウム二次電池のコンバージョン反応の可逆性およびサイクル特性を向上させる負極材料の製造方法を提供することを主目的とする。 本発明は、リチウム二次電池に用いられる負極材料の製造方法であって、MgHを含有する原料組成物を、メカニカルミリングにより微細化するメカニカルミリング工程を有することを特徴とする負極材料の製造方法を提供することにより、上記課題を解決する。

Description

負極材料の製造方法、負極材料、リチウム二次電池の製造方法、リチウム二次電池
 本発明は、コンバージョン反応を利用した負極材料の製造方法に関する。
 近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を浴びている。
 リチウム電池に用いられる負極活物質として、金属水素化物(MHx)であるコンバージョン系の負極活物質が知られている。コンバージョン系の負極活物質として、例えば特許文献1にはMgHが記載されている。また、特許文献1においては、Mgを出発原料とし、ボールミル法により微細化し、高圧の水素雰囲気中でMgを水素化処理することで、MgHを合成する方法が開示されている。また、非特許文献1にも、MgHをリチウム電池の活物質として用いることが開示されている。MgHを活物質として用いた場合の電気化学的な挙動は、以下の通りである。
 充電時:MgH+2Li+2e → Mg+2LiH (反応式1)
 放電時:Mg+2LiH → MgH+2Li+2e (反応式2)
米国特許出願公報第2008/0286652号明細書
Oumellal, Y et al., "Metal hydrides for lithium-ion batteries", Nature Materials, vol. 7, 916-921 (2008)
 MgHは、コンバージョン反応の可逆性が低いという問題がある。具体的には、上記反応式1に比べて、上記反応式2が生じにくいという問題がある。また、MgHは、サイクル特性が悪いという問題がある。本発明は、上記実情に鑑みてなされたものであり、リチウム二次電池のコンバージョン反応の可逆性およびサイクル特性を向上させる負極材料の製造方法を提供することを主目的とする。
 上記課題を解決するために、本発明においては、リチウム二次電池に用いられる負極材料の製造方法であって、MgHを含有する原料組成物を、メカニカルミリングにより微細化するメカニカルミリング工程を有することを特徴とする負極材料の製造方法を提供する。
 本発明によれば、活物質であるMgHを含む原料組成物をメカニカルミリングで微細化することにより、MgHの粒径を小さくすることができ、コンバージョン反応の可逆性を向上させることができる。その結果、リチウム二次電池の充放電効率を向上させることができる。また、本発明によれば、MgHの粒径を小さくすることで、充放電による微粉化に伴って導電パス(Liイオン伝導パス、電子伝導パス)が切れることを抑制でき、リチウム二次電池のサイクル特性を向上させることができる。
 上記発明においては、上記メカニカルミリング工程により得られた材料を、気相中での水素の吸蔵放出により微細化する水素吸蔵放出工程を有することが好ましい。メカニカルミリングによる微細化(機械的な微細化)後に、水素の吸蔵放出による微細化(化学的な微細化)を行うことで、粒子をさらに微細化できるからである。
 また、本発明においては、リチウム二次電池に用いられる負極材料の製造方法であって、Mgを含有する原料組成物を、メカニカルミリングにより微細化するメカニカルミリング工程と、上記メカニカルミリング工程により得られた材料を、気相中での水素の吸蔵放出により微細化する水素吸蔵放出工程と、を有することを特徴とする負極材料の製造方法を提供する。
 本発明によれば、Mgを含む原料組成物をメカニカルミリングで微細化し、その後、水素の吸蔵放出により微細化することで、粒径の小さいMgHを得ることができ、コンバージョン反応の可逆性を向上させることができる。その結果、リチウム二次電池の充放電効率を向上させることができる。また、本発明によれば、MgHの粒径を小さくすることで、充放電による微粉化に伴って導電パス(Liイオン伝導パス、電子伝導パス)が切れることを抑制でき、リチウム二次電池のサイクル特性を向上させることができる。
 また、本発明においては、リチウム二次電池に用いられる負極材料の製造方法であって、MgまたはMgHを含有する材料を、気相中での水素の吸蔵放出により微細化する水素吸蔵放出工程を有することを特徴とする負極材料の製造方法を提供する。
 本発明によれば、MgまたはMgHを含む材料に対して、水素の吸蔵放出を行うことにより、粒径の小さいMgHを得ることができ、コンバージョン反応の可逆性を向上させることができる。その結果、リチウム二次電池の充放電効率を向上させることができる。また、本発明によれば、MgHの粒径を小さくすることで、充放電による微粉化に伴って導電パス(Liイオン伝導パス、電子伝導パス)が切れることを抑制でき、リチウム二次電池のサイクル特性を向上させることができる。
 上記発明においては、上記水素吸蔵放出工程後のMgH含有粒子の平均粒径が、50nm~150nmの範囲内であることが好ましい。水素吸蔵放出工程後のMgH含有粒子の平均粒径を上記範囲内とすることで、充放電による微粉化に伴って導電パスが切れることを効果的に抑制でき、リチウム二次電池のサイクル特性の向上を図ることができるからである。
 上記発明においては、上記原料組成物、または、上記MgまたはMgHを含有する材料が、導電化材、および、コンバージョン反応の可逆性を向上させる金属触媒の少なくとも一方をさらに含有することが好ましい。導電化材の添加により、電子伝導性が良好な負極材料とすることができ、金属触媒の添加により、コンバージョン反応の可逆性をより向上させることができるからである。
 また、本発明においては、リチウム二次電池に用いられる負極材料であって、MgH含有粒子を含み、上記MgH含有粒子の平均粒径が、50nm~150nmの範囲内であることを特徴とする負極材料を提供する。
 本発明によれば、MgH含有粒子の平均粒径が上記範囲内にあることにより、コンバージョン反応の可逆性を向上させることができる。その結果、リチウム二次電池の充放電効率を向上させることができる。また、MgH含有粒子の平均粒径が上記範囲内にあることにより、充放電による微粉化に伴って導電パスが切れることを効果的に抑制でき、リチウム二次電池のサイクル特性の向上を図ることができる。
 また、本発明においては、正極層と、負極層と、上記正極層および上記負極層の間に形成された電解質層とを有するリチウム二次電池の製造方法であって、上述した負極材料の製造方法により得られた負極材料を用いて、上記負極層を形成する負極層形成工程を有することを特徴とするリチウム二次電池の製造方法を提供する。
 本発明によれば、上述した製造方法により得られた負極材料を用いることにより、コンバージョン反応の可逆性およびサイクル特性が良好なリチウム二次電池を得ることができる。
 また、本発明においては、正極層と、負極層と、上記正極層および上記負極層の間に形成された電解質層とを有するリチウム二次電池であって、上記負極層は、MgH含有粒子を含む負極材料を有し、上記負極材料は、気相中で水素を吸蔵放出させたものであることを特徴とするリチウム二次電池を提供する。
 本発明によれば、MgH含有粒子を含み、気相中で水素を吸蔵放出させた負極材料を用いることにより、コンバージョン反応の可逆性およびサイクル特性が良好なリチウム二次電池とすることができる。
 本発明においては、リチウム二次電池のコンバージョン反応の可逆性およびサイクル特性を向上させる負極材料を得ることができるという効果を奏する。
本発明の負極材料の製造方法を例示するフローチャートである。 従来のMgHの製造方法を説明するフローチャートである。 本発明の負極材料の製造方法を例示するフローチャートである。 本発明の負極材料の製造方法を例示するフローチャートである。 本発明の負極材料の製造方法を例示するフローチャートである。 本発明のリチウム二次電池の一例を示す概略断面図である。 実施例2および比較例1の操作を説明するフローチャートである。 実施例2で得られた負極材料のSEM写真である。 比較例1で得られた負極材料のSEM写真である。 実施例2および比較例1で得られた負極材料を用いた評価用電池の充放電特性評価の結果である。 実施例3、4および参考例1~4の操作を説明するフローチャートである。 実施例3、4および参考例1~4で得られた負極材料に対する平均粒径測定の結果である。 実施例3、4および参考例4で得られた負極材料を用いた評価用電池のサイクル特性評価の結果である。
 以下、本発明の負極材料の製造方法、負極材料、リチウム二次電池の製造方法、リチウム二次電池について、詳細に説明する。
A.負極材料の製造方法
 まず、本発明の負極材料の製造方法について説明する。本発明の負極材料の製造方法は、3つの実施態様に分けることができる。本発明の負極材料の製造方法について、第一実施態様~第三実施態様に分けて説明する。
1.第一実施態様
 第一実施態様の負極材料の製造方法は、リチウム二次電池に用いられる負極材料の製造方法であって、MgHを含有する原料組成物を、メカニカルミリングにより微細化するメカニカルミリング工程を有することを特徴とするものである。
 第一実施態様によれば、活物質であるMgHを含む原料組成物をメカニカルミリングで微細化することにより、MgHの粒径を小さくすることができ、コンバージョン反応の可逆性を向上させることができる。その結果、リチウム二次電池の充放電効率を向上させることができる。従来、MgHの粒径が、コンバージョン反応の可逆性にどのような影響を与えるかについては全く知られていなかった。本発明者等は、MgHの粒径を小さくすることが、コンバージョン反応の可逆性の向上に非常に有効であることを見出し、本発明を完成させるに至った。MgHの粒径が小さくなることで、コンバージョン反応の可逆性が向上する理由は、MgHの粒径が小さくなると、比表面積が大きくなり、上記反応式2が生じやすくなるためであると考えられる。また、MgHの粒径が小さくなることで、Li拡散パスが短くなり、反応性が向上すると考えられる。また、MgHの粒径が小さくなることにより、Li挿入反応(上記反応式1)における過電圧が小さくなるという利点もある。
 また、第一実施態様によれば、MgHの粒径を小さくすることで、充放電による微粉化に伴って導電パス(Liイオン伝導パス、電子伝導パス)が切れることを抑制でき、リチウム二次電池のサイクル特性を向上させることができる。ここで、MgHを含有する負極材料を用いてリチウム二次電池を作製した場合、電池の充放電に伴って、負極層内に含まれるMgHの微粉化が進行し、導電パスが切れ、サイクル劣化が生じる場合がある。これに対して、MgHを十分に微細化することで、充放電による微粉化に伴って導電パスが切れることを効果的に抑制できる。その結果、リチウム二次電池のサイクル特性を向上させることができる。
 図1は、第一実施態様の負極材料の製造方法を例示するフローチャートである。図1(a)においては、まず、活物質であるMgH粉末を原料組成物とする。次に、原料組成物にボールミルを行い、原料組成物を微細化する。これにより、負極材料を得ることができる。一方、図1(b)においては、まず、活物質であるMgH粉末と、導電化材であるカーボン粉末とを準備し、これらを所定の割合で混合することにより、原料組成物を得る。次に、原料組成物にボールミルを行い、原料組成物を微細化する。これにより、負極材料を得ることができる。
 図2は、従来のMgHの製造方法を説明するフローチャートである。図2に示すように、従来は、Mg粉末にボールミルを行ってMg粉末を微細化し、その後、微細化したMg粉末を、水素雰囲気、高圧下で水素化処理し、MgHを得ていた。このような方法で得られたMgHは、粒径が大きく、コンバージョン反応の可逆性が悪い。これに対して、第一実施態様では、MgHに、さらなる微細化を行うことにより、コンバージョン反応の可逆性を向上させることができる。
 以下、第一実施態様の負極材料の製造方法について、工程ごとに説明する。
(1)メカニカルミリング工程
 第一実施態様におけるメカニカルミリング工程は、MgHを含有する原料組成物を、メカニカルミリングにより微細化する工程である。
 第一実施態様における原料組成物は、少なくともMgHを含有するものであり、さらに、導電化材、および、コンバージョン反応の可逆性を向上させる金属触媒の少なくとも一方を含有していても良い。第一実施態様におけるMgHは、通常、活物質として機能するものであり、Liイオンと反応することにより、LiHおよびMgが生じる。また、Liイオンとの反応で生じたMg(0価)は、さらにLiイオンと合金化反応を起こし、LiMgとなるまでLiを吸蔵する。このように、MgHは極めて大きなLi吸蔵容量が得られるものの、その逆反応(特に上記反応式2)が生じにくいため、充放電効率が低くなるという問題がある。第一実施態様においては、この問題を、MgHを含有する原料組成物を微細化することにより解決する。
 原料組成物におけるMgHの含有量は、特に限定されるものではないが、例えば40重量%以上であることが好ましく、60重量%~98重量%の範囲内であることがより好ましい。
 また、第一実施態様における原料組成物は、導電化材をさらに含有するものであっても良い。電子伝導性が良好な負極材料とすることができるからである。導電化材としては、特に限定されるものではないが、例えばメソカーボンマイクロビーズ(MCMB)、アセチレンブラック、ケッチェンブラック、カーボンブラック、コークス、炭素繊維、黒鉛等の炭素材料を挙げることができる。
 原料組成物における導電化材の含有量は、特に限定されるものではないが、例えば1重量%~60重量%の範囲内であることが好ましく、2重量%~40重量%の範囲内であることがより好ましい。導電化材の割合が少なすぎると、電子伝導性を十分に向上させることができない可能性があり、導電化材の割合が多すぎると、相対的にMgHの割合が少なくなり、容量低下が大きくなる可能性があるからである。
 また、第一実施態様における原料組成物は、コンバージョン反応の可逆性を向上させる金属触媒をさらに含有するものであっても良い。上記金属触媒を添加することにより、例えば上記反応式2を促進することができ、コンバージョン反応の可逆性を向上させることができる。また、例えば上記反応式2を促進させるためには、LiHからの水素脱離反応(LiHの解離反応)およびMgへの水素付加反応が重要になり、金属触媒は、その一方または両方の反応を促進しているものと考えられる。
 上記金属触媒は、コンバージョン反応の可逆性を向上させることができるものであれば特に限定されるものではないが、例えば、LiHを解離させる触媒、または、Hガスを解離吸着できる触媒であることが好ましい。なお、「Hガスを解離吸着できる触媒」とは、Hガスを解離吸着する触媒、および、LiHから脱離した水素が水素ガスになる前に、水素を吸着する触媒の両方を意味する。
 また、第一実施態様における金属触媒は、遷移金属元素を有することが好ましい。遷移金属元素における3d軌道、4d軌道、4f軌道等が、コンバージョン反応の可逆性を向上させると考えられるからである。また、これらの軌道が、LiHの解離、Hガスの解離吸着に大きく寄与している可能性も考えられる。上記遷移金属元素としては、周期律表において遷移金属元素に分類されるものであれば特に限定されるものではないが、中でも、Ti、V、Cr、Mn、Co、Ni、Zr、Nb、Pd、La、CeおよびPtからなる群から選択される少なくとも一種であることが好ましい。コンバージョン反応の可逆性を大幅に向上させることができるからである。また、第一実施態様における金属触媒の種類としては、例えば、金属単体、合金および金属酸化物等を挙げることができる。特に、第一実施態様における金属触媒は、Ni単体またはNi合金であることが好ましい。
 MgHに対する金属触媒の割合は、特に限定されるものではないが、金属触媒を用いない場合に比べてリチウム二次電池のコンバージョン反応の可逆性を向上できる割合であることが好ましい。MgHに対する金属触媒の割合は、例えば0.1at%~10at%の範囲内であることが好ましく、0.5at%~6at%の範囲内であることがより好ましい。金属触媒の割合が少なすぎると、コンバージョン反応の可逆性を十分に向上させることができない可能性があり、金属触媒の割合が多すぎると、相対的にMgHの割合が少なくなり、容量低下が大きくなる可能性があるからである。なお、MgHに対する金属触媒の割合は、SEM-EDXにより決定することができる。
 第一実施態様におけるメカニカルミリング工程では、メカニカルミリングにより原料組成物の微細化を行う。メカニカルミリングは、試料を、機械的エネルギーを付与しながら粉砕する方法である。また、メカニカルミリングで微細化することにより、原料組成物に含まれる各材料の粒子が激しく接触する。これにより、原料組成物に含まれる各材料は、単なる微細化(例えば乳鉢を用いた微細化)よりも、格段に微細化される。また、メカニカルミリングで微細化することにより、導電化材および金属触媒を、MgH粒子の表面に均一に分散させることができる。第一実施態様におけるメカニカルミリングとしては、例えば、ボールミル、振動ミル、ターボミル、ディスクミル等を挙げることができ、中でもボールミルが好ましく、特に遊星型ボールミルが好ましい。
 また、メカニカルミリングの各種条件は、所望の負極材料を得ることができるように設定する。例えば、遊星型ボールミルにより負極材料を作製する場合、ポット内に、原料組成物および粉砕用ボールを加え、所定の回転数および時間で処理を行う。遊星型ボールミルを行う際の台盤回転数としては、例えば100rpm~1000rpmの範囲内、中でも200rpm~600rpmの範囲内であることが好ましい。また、遊星型ボールミルを行う際の処理時間は、例えば1時間~100時間の範囲内、中でも2時間~10時間の範囲内であることが好ましい。また、第一実施態様においては、原料組成物に含まれる各材料が、所定の平均粒径となるようにメカニカルミリングを行うことが好ましい。
 メカニカルミリング工程により得られるMgH含有粒子は、より微細化されたものであることが好ましい。MgH含有粒子の粒径を小さくすることで、コンバージョン反応の可逆性をさらに向上させることができるからである。MgH含有粒子とは、MgH粒子、または、MgH粒子の表面に他の材料(導電化材、金属触媒等)が分散した粒子をいう。MgH含有粒子の平均粒径は、例えば2μm以下であることが好ましく、0.1μm~1μmの範囲内であることがより好ましい。なお、MgH含有粒子の平均粒径は、SEM(走査型電子顕微鏡)観察により、MgH含有粒子(n=100)の粒径を測定し、その平均を求めることで算出することができる。また、MgH含有粒子の平均粒径と、その他の材料の平均粒径とが、大きく異なる場合には、粒度分布測定により、MgH含有粒子の平均粒径(d50)を求めても良い。また、後述するように、ガス吸着試験によって、MgH含有粒子の平均粒径を求めることもできる。
 メカニカルミリング工程により得られる導電化材は、より微細化されたものであることが好ましい。電子伝導性の向上にさらに寄与できるからである。導電化材の平均粒径は、例えば2μm以下であることが好ましく、0.1μm~1μmの範囲内であることがより好ましい。なお、導電化材の平均粒径は、上記と同様に、SEM観察、粒度分布測定により決定することができる。
 メカニカルミリング工程により得られる金属触媒は、より微細化されたものであることが好ましい。金属触媒の粒径を小さくすることで、コンバージョン反応の可逆性をさらに向上させることができるからである。金属触媒の平均粒径は、例えば1μm以下であることが好ましく、10nm~500nmの範囲内であることがより好ましい。なお、金属触媒の平均粒径は、上記と同様に、SEM観察、粒度分布測定により決定することができる。
(2)水素吸蔵放出工程
 第一実施態様においては、上記メカニカルミリング工程により得られた材料を、気相中での水素の吸蔵放出により微細化する水素吸蔵放出工程を有することが好ましい。水素の吸蔵放出を行うことで、粒子を微細化でき、コンバージョン反応の可逆性を向上させることができるからである。その結果、リチウム二次電池の充放電効率を向上させることができる。また、粒子を微細化することで、充放電による微粉化に伴って導電パス(Liイオン伝導パス、電子伝導パス)が切れることを抑制でき、リチウム二次電池のサイクル特性を向上させることができる。また、メカニカルミリングによる微細化(機械的な微細化)後に、水素の吸蔵放出による微細化(化学的な微細化)を行うことで、MgH含有粒子をさらに微細化できる。第一実施態様においては、水素吸蔵放出工程により、マグネシウムに水素が吸蔵された状態とする(すなわち、活物質としての機能を発現し得る状態とする)ことが好ましい。
 図3は、第一実施態様の負極材料の製造方法を例示するフローチャートである。図3においては、まず、活物質であるMgH粉末を原料組成物とする。次に、原料組成物にボールミルを行い、原料組成物を微細化する。次に、微細化した原料組成物に対して、気相中で水素を吸蔵放出させる。これにより、負極材料を得ることができる。
 水素吸蔵放出工程では、MgH含有粒子におけるMgHに、気相を介して水素を放出吸蔵させることで、粒子のさらなる微細化を図る。また、第一実施態様においては、原料組成物がMgHを含有するため、通常は、水素放出および水素吸蔵の順番で処理する。
 水素を放出させる方法は、特に限定されるものではないが、例えば減圧する方法を挙げることができる。第一実施態様においては、減圧し、さらに加熱することが好ましい。減圧時の圧力は、大気圧よりも低い圧力であれば特に限定されるものではないが、例えば1kPa以下であることが好ましく、0.1kPa以下であることがより好ましい。特に、第一実施態様においては、真空状態(1Pa以下の状態)で水素を放出することが好ましい。また、水素放出時の加熱温度としては、例えば200℃~400℃の範囲内であることが好ましく、250℃~350℃の範囲内であることがより好ましい。また、水素放出の処理時間は、例えば1分間~300分間の範囲内であることが好ましく、5分間~120分間の範囲内であることがより好ましい。一方、水素を吸蔵させる方法は、特に限定されるものではないが、例えば、水素ガス雰囲気で加圧する方法を挙げることができる。第一実施態様においては、加圧し、さらに加熱することが好ましい。加圧時の圧力は、水素を吸蔵させる温度におけるMg-MgH平衡圧力よりも高い圧力であれば特に限定されるものではない。例えば水素を吸蔵させる温度が300℃である場合、上記圧力は、0.01MPa以上であることが好ましく、0.01MPa~10MPaの範囲内であることがより好ましく、0.1MPa~1MPaの範囲内であることがさらに好ましい。なお、水素吸蔵時の加熱温度、および、水素吸蔵の処理時間の好ましい範囲は、水素放出における場合と同様である。また、水素の吸蔵放出を行う回数は、1回以上であれば特に限定されるものではないが、例えば2回~100回の範囲内であることが好ましく、2回~30回の範囲内であることがより好ましい。
 また、水素吸蔵放出工程後のMgH含有粒子の平均粒径は、メカニカルミリング工程後のMgH含有粒子の平均粒径より小さければ特に限定されるものではないが、例えば50nm~150nmの範囲内であることが好ましく、50nm~100nmの範囲内であることがより好ましく、50nm~85nmの範囲内であることがさらに好ましく、50nm~70nmの範囲内であることが特に好ましい。水素吸蔵放出工程後のMgH含有粒子の平均粒径を上記範囲内とすることで、充放電による微粉化に伴って導電パスが切れることを効果的に抑制でき、サイクル特性の向上を図ることができるからである。
 水素吸蔵放出工程後のMgH含有粒子の平均粒径は、ガス吸着試験によって求めることができる。具体的には、ユアサアイオニクス社製のAUTOSORB-1を用いて、窒素ガス吸着法で測定する。比表面積をBET法にて算出し、得られた比表面積を用いて平均粒径を求める。なお、MgH含有粒子は球体であると仮定する。窒素ガス吸着法による測定では、例えば、測定前に60℃で真空脱気処理を12時間行い、77Kで測定を行う。
2.第二実施態様
 次に、第二実施態様の負極材料の製造方法について説明する。第二実施態様の負極材料の製造方法は、リチウム二次電池に用いられる負極材料の製造方法であって、Mgを含有する原料組成物を、メカニカルミリングにより微細化するメカニカルミリング工程と、上記メカニカルミリング工程により得られた材料を、気相中での水素の吸蔵放出により微細化する水素吸蔵放出工程と、を有することを特徴とするものである。
 第二実施態様によれば、Mgを含む原料組成物をメカニカルミリングで微細化し、その後、水素の吸蔵放出により微細化することで、粒径の小さいMgHを得ることができ、コンバージョン反応の可逆性を向上させることができる。その結果、リチウム二次電池の充放電効率を向上させることができる。また、第二実施態様によれば、MgHの粒径を小さくすることで、充放電による微粉化に伴って導電パス(Liイオン伝導パス、電子伝導パス)が切れることを抑制でき、リチウム二次電池のサイクル特性を向上させることができる。
 図4は、第二実施態様の負極材料の製造方法を例示するフローチャートである。図4においては、まず、Mg粉末を原料組成物とする。次に、原料組成物にボールミルを行い、原料組成物を微細化する。次に、微細化した原料組成物に対して、気相中で水素を吸蔵放出させる。これにより、負極材料を得ることができる。
 以下、第二実施態様の負極材料の製造方法について、工程ごとに説明する。
(1)メカニカルミリング工程
 第二実施態様におけるメカニカルミリング工程は、Mgを含有する原料組成物を、メカニカルミリングにより微細化する工程である。
 原料組成物におけるMgの含有量は、特に限定されるものではないが、例えば40重量%以上であることが好ましく、60重量%~98重量%の範囲内であることがより好ましい。また、第二実施態様における原料組成物は、導電化材、および、コンバージョン反応の可逆性を向上させる金属触媒をさらに含有するものであっても良い。これらの記載、メカニカルミリングの条件、その他の事項については、上述した第一実施態様に記載した内容と同様であるので、ここでの記載は省略する。
 メカニカルミリング工程により得られるMg含有粒子は、より微細化されたものであることが好ましい。Mg含有粒子の粒径を小さくすることで、コンバージョン反応の可逆性をさらに向上させることができるからである。Mg含有粒子とは、Mg粒子、または、Mg粒子の表面に他の材料(導電化材、金属触媒等)が分散した粒子をいう。Mg含有粒子の平均粒径は、例えば2μm以下であることが好ましく、0.1μm~1μmの範囲内であることがより好ましい。なお、Mg含有粒子の平均粒径の測定方法については、上述したMgH含有粒子における場合と同様である。また、メカニカルミリング工程により得られる導電化材および金属触媒の平均粒径についても、上述した第一実施態様に記載した内容と同様である。
(2)水素吸蔵放出工程
 第二実施態様における水素吸蔵放出工程は、上記メカニカルミリング工程により得られた材料を、気相中での水素の吸蔵放出により微細化する工程である。水素の吸蔵放出を行うことで、粒子を微細化でき、コンバージョン反応の可逆性を向上させることができる。その結果、リチウム二次電池の充放電効率を向上させることができる。また、粒子を微細化することで、充放電による微粉化に伴って導電パス(Liイオン伝導パス、電子伝導パス)が切れることを抑制でき、リチウム二次電池のサイクル特性を向上させることができる。また、メカニカルミリングによる微細化(機械的な微細化)後に、水素の吸蔵放出による微細化(化学的な微細化)を行うことで、Mg含有粒子をさらに微細化できる。第二実施態様においては、水素吸蔵放出工程により、マグネシウムに水素が吸蔵された状態とする(すなわち、活物質としての機能を発現し得る状態とする)ことが好ましい。
 水素吸蔵放出工程では、Mg含有粒子におけるMgに、気相を介して水素を吸蔵放出させることで、粒子のさらなる微細化を図る。また、第二実施態様においては、原料組成物がMgを含有するため、通常は、水素吸蔵および水素放出の順番で処理する。水素吸蔵放出の方法、水素吸蔵放出工程後のMgH含有粒子の平均粒径、およびその他の事項については、上述した第一実施態様に記載した内容と同様であるので、ここでの記載は省略する。
3.第三実施態様
 次に、第三実施態様の負極材料の製造方法について説明する。第三実施態様の負極材料の製造方法は、リチウム二次電池に用いられる負極材料の製造方法であって、MgまたはMgHを含有する材料を、気相中での水素の吸蔵放出により微細化する水素吸蔵放出工程を有することを特徴とするものである。
 第三実施態様によれば、MgまたはMgHを含む材料に対して、水素の吸蔵放出を行うことにより、粒径の小さいMgHを得ることができ、コンバージョン反応の可逆性を向上させることができる。その結果、リチウム二次電池の充放電効率を向上させることができる。また、第三実施態様によれば、MgHの粒径を小さくすることで、充放電による微粉化に伴って導電パス(Liイオン伝導パス、電子伝導パス)が切れることを抑制でき、サイクル特性を向上させることができる。
 図5は、第三実施態様の負極材料の製造方法を例示するフローチャートである。図5においては、まず、Mg粉末またはMgH粉末を用いる。次に、これらの粉末に対して、気相中で水素を吸蔵放出させる。これにより、負極材料を得ることができる。
 第三実施態様における水素吸蔵放出工程は、MgまたはMgHを含有する材料を、気相中での水素の吸蔵放出により微細化する工程である。水素の吸蔵放出を行うことで、粒子を微細化でき、コンバージョン反応の可逆性を向上させることができる。その結果、リチウム二次電池の充放電効率を向上させることができる。また、粒子を微細化することで、充放電による微粉化に伴って導電パス(Liイオン伝導パス、電子伝導パス)が切れることを抑制でき、リチウム二次電池のサイクル特性を向上させることができる。「MgまたはMgHを含有する材料」とは、少なくともMgまたはMgHを含有するものであれば特に限定されるものではなく、Mg粒子のみから構成される材料であっても良く、MgH粒子のみから構成される材料であっても良く、Mg粒子またはMgH粒子の表面に他の材料(導電化材、金属触媒等)が分散した材料であっても良い。また、MgまたはMgHの他に、導電化材および金属触媒の少なくとも一方をさらに有していても良い。特に、第三実施態様においては、MgまたはMgHを含有する材料が、任意の方法により微細化されたものであることが好ましい。コンバージョン反応の可逆性をより向上させることができるからである。また、第三実施態様においては、水素吸蔵放出工程により、マグネシウムに水素が吸蔵された状態とする(すなわち、活物質としての機能を発現し得る状態とする)ことが好ましい。
 水素吸蔵放出工程では、MgまたはMgHに、気相を介して水素を吸蔵放出または放出吸蔵させることで、粒子のさらなる微細化を図る。水素吸蔵放出の方法、水素吸蔵放出工程後のMgH含有粒子の平均粒径、およびその他の事項については、上述した第一実施態様に記載した内容と同様であるので、ここでの記載は省略する。
B.負極材料
 次に、本発明の負極材料について説明する。本発明の負極材料は、リチウム二次電池に用いられる負極材料であって、MgH含有粒子を含み、上記MgH含有粒子の平均粒径が、50nm~150nmの範囲内であることを特徴とするものである。
 本発明によれば、MgH含有粒子の平均粒径が上記範囲内にあることにより、コンバージョン反応の可逆性を向上させることができる。その結果、リチウム二次電池の充放電効率を向上させることができる。また、MgH含有粒子の平均粒径が上記範囲内にあることにより、充放電による微粉化に伴って導電パスが切れることを効果的に抑制でき、リチウム二次電池のサイクル特性の向上を図ることができる。
 また、本発明におけるMgH含有粒子は、MgH粒子の表面に、導電化材および金属触媒の少なくとも一方が分散されたもの(複合材料)であることが好ましい。導電化材および金属触媒については、上記「A.負極材料の製造方法」に記載した内容と同様であるので、ここでの記載は省略する。また、MgH含有粒子の好ましい平均粒径やその他の事項についても、上記「A.負極材料の製造方法」に記載した内容と同様である。また、本発明においては、上記の負極材料を負極層に含有することを特徴とするリチウム二次電池を提供することもできる。
C.リチウム二次電池の製造方法
 次に、本発明のリチウム二次電池の製造方法について説明する。本発明のリチウム二次電池の製造方法は、正極層と、負極層と、上記正極層および上記負極層の間に形成された電解質層とを有するリチウム二次電池の製造方法であって、上述した負極材料の製造方法により得られた負極材料を用いて、上記負極層を形成する負極層形成工程を有することを特徴とするものである。
 本発明によれば、上述した製造方法により得られた負極材料を用いることにより、コンバージョン反応の可逆性およびサイクル特性が良好なリチウム二次電池を得ることができる。なお、本発明に用いられる負極材料の製造方法については、上記「A.負極材料の製造方法」に記載した内容と同様である。また、本発明に用いられる負極材料は、少なくとも水素吸蔵放出工程を行うことにより、得られたものであることが好ましい。電池として充放電させる前に、負極材料に気相中で水素を吸蔵放出させることで、充放電による微粉化に伴って導電パスが切れることを抑制でき、サイクル特性を向上させることができるからである。
 負極層を形成する方法としては、例えば、少なくとも負極材料を含有する負極層形成用組成物を塗工する方法を挙げることができる。また、その他の層の形成方法は、一般的なリチウム二次電池の製造方法における形成方法と同様であるので、ここでの記載は省略する。
D.リチウム二次電池
 次に、本発明のリチウム二次電池について説明する。本発明のリチウム二次電池は、正極層と、負極層と、上記正極層および上記負極層の間に形成された電解質層とを有するリチウム二次電池であって、上記負極層は、MgH含有粒子を含む負極材料を有し、上記負極材料は、気相中で水素を吸蔵放出させたものであることを特徴とするものである。
 本発明によれば、MgH含有粒子を含み、気相中で水素を吸蔵放出させた負極材料を用いることにより、コンバージョン反応の可逆性およびサイクル特性が良好なリチウム二次電池とすることができる。また、本発明によれば、電池として充放電させる前に、負極材料に気相中で水素を吸蔵放出させることから、充放電による微粉化に伴って導電パスが切れることを抑制でき、サイクル特性を向上させることができる。
 図6は、本発明のリチウム二次電池の一例を示す概略断面図である。図6におけるリチウム二次電池10は、正極層1と、負極層2と、正極層1および負極層2の間に形成された電解質層3と、正極層1の集電を行う正極集電体4と、負極層2の集電を行う負極集電体5と、を有するものである。本発明においては、負極層2が、MgH含有粒子を含む負極材料を有し、その負極材料が、気相中で水素を吸蔵放出させたものであることを大きな特徴とする。
 以下、本発明のリチウム二次電池について、構成ごとに説明する。
1.負極層
 まず、本発明における負極層について説明する。本発明における負極層は、少なくとも、MgH含有粒子を含む負極材料を有する層である。さらに、この負極材料は、通常、気相中で水素を吸蔵放出させたものである。気相中で水素を吸蔵放出させる水素吸蔵放出工程については、上記「A.負極材料の製造方法」に記載した内容と同様であるので、ここでの記載は省略する。また、負極材料におけるMgH含有粒子の好ましい平均粒径やその他の事項についても、上記「A.負極材料の製造方法」に記載した内容と同様である。負極層における負極材料の含有量は、特に限定されるものではないが、例えば20重量%以上であることが好ましく、40重量%~80重量%の範囲内であることがより好ましい。
 負極層は、導電化材および結着材の少なくとも一方をさらに含有していても良い。上述したように、負極材料自体が導電化材を含有している場合があるが、負極材料に含まれる導電化材と、新たに添加する導電化材とは、同一の材料であっても良く、異なる材料であっても良い。なお、導電化材の具体例については、上述した通りである。また、結着材としては、例えば、ポリフッ化ビニリデン(PVDF)等のフッ素含有結着材等を挙げることができる。負極層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。
2.正極層
 次に、本発明における正極層について説明する。本発明における正極層は、少なくとも正極活物質を含有する層である。正極活物質としては、LiCoO、LiNiO、LiCo1/3Ni1/3Mn1/3、LiVO、LiCrO等の層状正極活物質、LiMn、Li(Ni0.25Mn0.75、LiCoMnO、LiNiMn等のスピネル型正極活物質、LiCoPO、LiMnPO、LiFePO等のオリビン型正極活物質等を挙げることができる。正極層における正極活物質の含有量は、特に限定されるものではないが、例えば40重量%~99重量%の範囲内であることが好ましい。
 本発明における正極層は、さらに導電化材および結着材の少なくとも一方を含有していても良い。導電化材および結着材については、上記「1.負極層」に記載した内容と同様であるので、ここでの記載は省略する。正極層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。
3.電解質層
 次に、本発明における電解質層について説明する。本発明における電解質層は、上記正極層および上記負極層の間に形成される層である。電解質層に含まれる電解質を介して、正極活物質と負極活物質との間のLiイオン伝導を行う。電解質層の形態は、特に限定されるものではなく、液体電解質層、ゲル電解質層、固体電解質層等を挙げることができる。
 液体電解質層は、通常、非水電解液を用いてなる層である。非水電解液は、通常、金属塩および非水溶媒を含有する。金属塩としては、LiPF、LiBF、LiClOおよびLiAsF等の無機リチウム塩;およびLiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機リチウム塩等を挙げることができる。非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート(BC)、γ-ブチロラクトン、スルホラン、アセトニトリル、1,2-ジメトキシメタン、1,3-ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランおよびこれらの混合物等を挙げることができる。非水電解液における金属塩の濃度は、例えば0.5mol/L~3mol/Lの範囲内である。なお、本発明においては、非水電解液として、例えばイオン性液体等の低揮発性液体を用いても良い。また、正極層および負極層の間には、セパレータが配置されていても良い。
 電解質層の厚さは、電解質の種類および電池の構成によって大きく異なるものであるが、例えば0.1μm~1000μmの範囲内、中でも0.1μm~300μmの範囲内であることが好ましい。
4.その他の構成
 本発明のリチウム二次電池は、さらに、正極層の集電を行う正極集電体、および負極層の集電を行う負極集電体を有していても良い。正極集電体の材料としては、例えばSUS、アルミニウム、ニッケル、鉄、チタンおよびカーボン等を挙げることができる。一方、負極集電体の材料としては、例えばSUS、銅、ニッケルおよびカーボン等を挙げることができる。また、本発明に用いられる電池ケースには、一般的なリチウム二次電池の電池ケースを用いることができる。電池ケースとしては、例えばSUS製電池ケース等を挙げることができる。また、本発明のリチウム二次電池は、例えば車載用電池として用いられることが好ましい。本発明のリチウム二次電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例を示して本発明をさらに具体的に説明する。
[実施例1]
 MgH粉末(平均粒径30μm)を用意し、原料組成物とした。次に、Ar雰囲気中で、原料組成物と、破砕用ジルコニアボール(φ=10mm)とを、原料組成物:破砕用ジルコニアボール=1:40の重量比となるように、遊星型ボールミル用の容器に入れ、密封した。その後、容器を遊星型ボールミル装置に取り付け、台盤回転数400rpm、処理時間5時間の条件で、微細化を行った。これにより、負極材料を得た。得られた負極材料において、MgH粉末の平均粒径は0.5μmであった。
[実施例2]
 図7(a)は、実施例2の操作を説明するフローチャートである。まず、実施例1で使用したMgH粉末に加えて、カーボン粉末(MCMB、平均粒径1μm)を用意した。なお、このカーボン粉末は、市販のMCMB(平均粒径20μm)に対して、遊星型ボールミル処理(400rpm×5時間)を行うことにより、得られたものである。次に、MgH粉末と、カーボン粉末とを、MgH粉末:カーボン粉末=90:10の重量比となるように混合し、原料組成物を得た。得られた原料組成物を用いたこと以外は、実施例1と同様にして、負極材料を得た。得られた負極材料において、MgH粉末の平均粒径は0.5μmであり、カーボン粉末の平均粒径は0.1μmであった。
[比較例1]
 図7(b)は、比較例1の操作を説明するフローチャートである。まず、Mg粉末(平均粒径30μm)と、実施例2で使用したカーボン粉末とを用意した。次に、Mg粉末と、カーボン粉末とを、Mg粉末:カーボン粉末=90:10の重量比となるように混合し、原料組成物を得た。次に、Ar雰囲気中で、原料組成物と、破砕用ジルコニアボール(φ=10mm)とを、原料組成物:破砕用ジルコニアボール=1:40の重量比となるように、遊星型ボールミル用の容器に入れ、密封した。その後、容器を遊星型ボールミル装置に取り付け、台盤回転数400rpm、処理時間5時間の条件で、微細化を行った。その後、0.9MPa水素加圧、350℃、3時間の条件で水素化を行い、負極材料を得た。
[評価1]
(SEM観察)
 実施例2および比較例1で得られた負極材料のSEM観察を行った。その結果を図8および図9に示す。図8に示されるように、実施例2の負極材料は、MgH粉末およびカーボン粉末の粒径が小さいことが確認できた。これに対して、図9に示されるように、比較例1の負極材料は、MgH粉末およびカーボン粉末の粒径は大きかった。
(電池評価)
 実施例2および比較例1で得られた負極材料を用いて評価用電池を作製した。まず、上記の方法で得られた負極材料と、導電化材(アセチレンブラック60wt%+VGCF40wt%)と、結着材(ポリフッ化ビニリデン、PVDF)とを、負極材料:導電化材:結着材=45:40:15の重量比で混合し、混練することにより、ペーストを得た。次に、得られたペーストを、銅箔上にドクターブレードにて塗工し、乾燥し、プレスすることにより、厚さ10μmの試験電極を得た。
 その後、CR2032型コインセルを用い、作用極として上記試験電極を用い、対極としてLi金属を用い、セパレータとしてポリエチレン/ポリプロピレン/ポリエチレンの多孔質セパレータを用いた。また、電解液として、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)とを、EC:DMC:EMC=3:3:4の体積比で混合した溶媒に、支持塩であるLiPFを濃度1mol/Lで溶解させたものを用いた。これらを用いて評価用電池を得た。
 得られた評価用電池を、電池評価環境温度25℃、電流レートC/50にて、充放電した。電圧範囲は、0.01V~3.0Vとした。その結果を表1および図10に示す。
Figure JPOXMLDOC01-appb-T000001
 表1および図10に示されるように、メカニカルミリングによる微細化を行うことにより、充放電効率が向上することが確認された。
[実施例3]
 図11(a)は、実施例3の操作を説明するフローチャートである。まず、MgH粉末(平均粒径10μm)、金属触媒としてNi粉末(平均粒径100nm)、カーボン粉末(MCMB、平均粒径1μm)を用意した。なお、このカーボン粉末は、市販のMCMB(平均粒径20μm)に対して、遊星型ボールミル処理(400rpm×5時間)を行うことにより、得られたものである。次に、Ni粉末を、MgH粉末に対して3at%添加した。その後、MgH粉末およびNi粉末と、カーボン粉末とを、(MgH粉末+Ni粉末):カーボン粉末=90:10の重量比となるように混合し、原料組成物を得た。次に、Ar雰囲気中で、原料組成物と、破砕用ジルコニアボール(φ=10mm)とを、原料組成物:破砕用ジルコニアボール=1:40の重量比となるように、遊星型ボールミル用の容器に入れ、密封した。その後、容器を遊星型ボールミル装置に取り付け、台盤回転数400rpm、処理時間5時間の条件で、微細化を行った。
 その後、得られた材料に、水素吸蔵放出処理を2サイクル行った。水素吸蔵放出処理の条件は、以下の通りである。なお、水素吸蔵放出処理は、水素放出スタートとした。
・水素放出条件:300℃、真空、1時間
・水素吸蔵条件:300℃、水素圧0.88MPa、0.5時間
 このようにして、負極材料を得た。
[実施例4]
 水素吸蔵放出処理を、2サイクルから5サイクルに変更したこと以外は、実施例3と同様にして、負極材料を得た。
[参考例1~4]
 図11(b)は、参考例1~4の操作を説明するフローチャートである。参考例1~4では、ボールミルの処理時間を変え、水素吸蔵放出処理を行わなかったこと以外は、実施例3と同様にして、負極材料を得た。なお、参考例1~4では、ボールミルの処理時間を、それぞれ0分、10分、60分、300分とした。
[評価2]
(平均粒径の測定評価)
 実施例3、4および参考例1~4で得られた負極材料に対して、それぞれオートソーブを用いて比表面積を測定し、その値からMgH含有粒子の平均粒径を求めた。なお、平均粒径の求め方は、上述した通りである。その結果を図12に示す。図12に示されるように、ボールミル処理では、平均粒径が300nm程度であるのに対して、水素吸蔵放出処理により、平均粒径を100nm程度以下とすることができ、更なる微細化を行うことができることが分かった。
(電池評価)
 実施例3、4および参考例4で得られた負極材料を用いて、評価1に記載した方法と同様の方法で評価用電池を得た。得られた評価用電池を、電池評価環境温度25℃、電流レートC/50にて、充放電(電圧範囲0.01V~3.0V)を行い、初期充放電容量を求めた。その後、電流レートをC/10に設定し、充放電(電圧範囲0.01V~3.0V)を繰り返し、サイクル毎の充放電容量を求めた。初期充電容量に対する充電容量の結果を図13に示す。図13に示されるように、実施例3、4は、参考例4よりもサイクル特性が良好であった。これは、気相中で水素を吸蔵放出させ、負極材料を予め微細化することによって、充放電による微粉化に伴って導電パスが切れることを抑制できたためであると考えられる。
 1…正極層
 2…負極層
 3…電解質層
 4…正極集電体
 5…負極集電体
 10…リチウム二次電池

Claims (9)

  1.  リチウム二次電池に用いられる負極材料の製造方法であって、
     MgHを含有する原料組成物を、メカニカルミリングにより微細化するメカニカルミリング工程を有することを特徴とする負極材料の製造方法。
  2.  前記メカニカルミリング工程により得られた材料を、気相中での水素の吸蔵放出により微細化する水素吸蔵放出工程を有することを特徴とする請求項1に記載の負極材料の製造方法。
  3.  リチウム二次電池に用いられる負極材料の製造方法であって、
     Mgを含有する原料組成物を、メカニカルミリングにより微細化するメカニカルミリング工程と、
     前記メカニカルミリング工程により得られた材料を、気相中での水素の吸蔵放出により微細化する水素吸蔵放出工程と、
     を有することを特徴とする負極材料の製造方法。
  4.  リチウム二次電池に用いられる負極材料の製造方法であって、
     MgまたはMgHを含有する材料を、気相中での水素の吸蔵放出により微細化する水素吸蔵放出工程を有することを特徴とする負極材料の製造方法。
  5.  前記水素吸蔵放出工程後のMgH含有粒子の平均粒径が、50nm~150nmの範囲内であることを特徴とする請求項2から請求項4までのいずれかの請求項に記載の負極材料の製造方法。
  6.  前記原料組成物、または、前記MgまたはMgHを含有する材料が、導電化材、および、コンバージョン反応の可逆性を向上させる金属触媒の少なくとも一方をさらに含有することを特徴とする請求項1から請求項5までのいずれかの請求項に記載の負極材料の製造方法。
  7.  リチウム二次電池に用いられる負極材料であって、
     MgH含有粒子を含み、
     前記MgH含有粒子の平均粒径が、50nm~150nmの範囲内であることを特徴とする負極材料。
  8.  正極層と、負極層と、前記正極層および前記負極層の間に形成された電解質層とを有するリチウム二次電池の製造方法であって、
     請求項1から請求項6までのいずれかの請求項に記載の負極材料の製造方法により得られた負極材料を用いて、前記負極層を形成する負極層形成工程を有することを特徴とするリチウム二次電池の製造方法。
  9.  正極層と、負極層と、前記正極層および前記負極層の間に形成された電解質層とを有するリチウム二次電池であって、
     前記負極層は、MgH含有粒子を含む負極材料を有し、
     前記負極材料は、気相中で水素を吸蔵放出させたものであることを特徴とするリチウム二次電池。
PCT/JP2011/060455 2010-07-15 2011-04-28 負極材料の製造方法、負極材料、リチウム二次電池の製造方法、リチウム二次電池 WO2012008206A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012524476A JP5534010B2 (ja) 2010-07-15 2011-04-28 負極材料の製造方法、負極材料、リチウム二次電池の製造方法、リチウム二次電池
CN2011800344013A CN103003988A (zh) 2010-07-15 2011-04-28 负极材料的制造方法、负极材料、锂二次电池的制造方法、锂二次电池
US13/809,558 US20130202969A1 (en) 2010-07-15 2011-04-28 Method for producing anode material, anode material, method for producing lithium secondary battery, and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-160400 2010-07-15
JP2010160400 2010-07-15

Publications (1)

Publication Number Publication Date
WO2012008206A1 true WO2012008206A1 (ja) 2012-01-19

Family

ID=45469218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060455 WO2012008206A1 (ja) 2010-07-15 2011-04-28 負極材料の製造方法、負極材料、リチウム二次電池の製造方法、リチウム二次電池

Country Status (4)

Country Link
US (1) US20130202969A1 (ja)
JP (1) JP5534010B2 (ja)
CN (1) CN103003988A (ja)
WO (1) WO2012008206A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028248A (ja) * 2010-07-27 2012-02-09 Toyota Motor Corp 二次電池負極およびそれを用いた二次電池
JP2016128447A (ja) * 2015-01-09 2016-07-14 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド ゼロ価元素と水素化物とニトリルとを含む試薬錯体およびその形成方法
US10505220B2 (en) 2017-06-29 2019-12-10 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material for rechargeable battery using conversion reaction, and battery including the same
WO2020012136A1 (fr) 2018-07-13 2020-01-16 Gifrer Barbezat Liniment oléo alcalin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070661B2 (ja) * 2014-09-10 2017-02-01 トヨタ自動車株式会社 正極合剤、正極、固体電池及びそれらの製造方法
WO2016094493A1 (en) * 2014-12-10 2016-06-16 Basf Corporation Metal hydride compositions and lithium ion batteries
US20160172676A1 (en) 2014-12-10 2016-06-16 Basf Corporation Metal Hydride Compositions and Lithium Ion Batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003727A (ja) * 1998-06-12 2000-01-07 Fuji Photo Film Co Ltd 非水二次電池
JP2004095469A (ja) * 2002-09-03 2004-03-25 Sumitomo Metal Ind Ltd 非水電解質二次電池用負極材料およびその製造方法
JP2006164960A (ja) * 2004-11-15 2006-06-22 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2006216277A (ja) * 2005-02-01 2006-08-17 Canon Inc リチウム二次電池用電極材料の製造方法、電極構造体および二次電池
US20080286652A1 (en) * 2007-05-16 2008-11-20 Gm Global Technology Operations, Inc. Lithium hydride negative electrode for rechargeable lithium batteries

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691981B1 (fr) * 1992-06-03 1995-02-10 Alsthom Cge Alcatel Matériau hydrurable pour électrode négative d'accumulateur nickel-hydrure et son procédé de préparation.
CA2217095A1 (fr) * 1997-10-22 1999-04-22 Hydro-Quebec Nanocomposites a interfaces activees prepares par broyage mecanique d'hydrures de magnesium et usage de ceux-ci pour le stockage d'hydrogene
US6235427B1 (en) * 1998-05-13 2001-05-22 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery containing silicic material
JP2000082461A (ja) * 1998-07-06 2000-03-21 Canon Inc Mg系負極活物質、その製造法、水素吸蔵合金電極およびアルカリ二次電池
US6613213B1 (en) * 2000-03-27 2003-09-02 Brookhaven Science Associates, Llc Method for producing electrodes using microscale or nanoscale materials obtained from hydrogendriven metallurgical reactions
US7211541B2 (en) * 2003-12-11 2007-05-01 Ovonic Hydrogen Systems Llc Mg—Ni hydrogen storage composite having high storage capacity and excellent room temperature kinetics
EP1796188A1 (en) * 2004-08-26 2007-06-13 GS Yuasa Corporation Hydrogen storage electrode and nickel hydrogen battery
CN101027802A (zh) * 2004-08-26 2007-08-29 株式会社杰士汤浅 储氢电极及镍氢电池
US20090191458A1 (en) * 2007-07-23 2009-07-30 Matsushita Electric Industrial Co., Ltd. Porous network negative electrodes for non-aqueous electrolyte secondary battery
US7901491B2 (en) * 2008-03-31 2011-03-08 General Electric Company Hydrogen storage material and related system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003727A (ja) * 1998-06-12 2000-01-07 Fuji Photo Film Co Ltd 非水二次電池
JP2004095469A (ja) * 2002-09-03 2004-03-25 Sumitomo Metal Ind Ltd 非水電解質二次電池用負極材料およびその製造方法
JP2006164960A (ja) * 2004-11-15 2006-06-22 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2006216277A (ja) * 2005-02-01 2006-08-17 Canon Inc リチウム二次電池用電極材料の製造方法、電極構造体および二次電池
US20080286652A1 (en) * 2007-05-16 2008-11-20 Gm Global Technology Operations, Inc. Lithium hydride negative electrode for rechargeable lithium batteries

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028248A (ja) * 2010-07-27 2012-02-09 Toyota Motor Corp 二次電池負極およびそれを用いた二次電池
JP2016128447A (ja) * 2015-01-09 2016-07-14 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド ゼロ価元素と水素化物とニトリルとを含む試薬錯体およびその形成方法
US10505220B2 (en) 2017-06-29 2019-12-10 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material for rechargeable battery using conversion reaction, and battery including the same
WO2020012136A1 (fr) 2018-07-13 2020-01-16 Gifrer Barbezat Liniment oléo alcalin

Also Published As

Publication number Publication date
CN103003988A (zh) 2013-03-27
US20130202969A1 (en) 2013-08-08
JPWO2012008206A1 (ja) 2013-09-05
JP5534010B2 (ja) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5206758B2 (ja) 負極材料、金属二次電池、および負極材料の製造方法
JP5251401B2 (ja) 非水系電解質二次電池用正極活物質及びその製造方法、並びに非水系電解質二次電池
JP5534010B2 (ja) 負極材料の製造方法、負極材料、リチウム二次電池の製造方法、リチウム二次電池
Zhang et al. A new lithium-ion battery: CuO nanorod array anode versus spinel LiNi0. 5Mn1. 5O4 cathode
CN114902450B (zh) 二次电池、含有该二次电池的电池模块、电池包及装置
JP5521976B2 (ja) 負極材料の製造方法、当該製造方法により製造される負極材料、及び当該負極材料を含む金属二次電池
JP6427312B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極材料、リチウムイオン電池用正極、リチウムイオン電池およびリチウムイオン電池用正極活物質の製造方法
EP4184616A1 (en) Silicon-carbon negative electrode material, negative electrode plate, secondary battery, battery module, battery pack, and electrical apparatus
JP5621732B2 (ja) 金属二次電池
CN111540894B (zh) 锂离子电池用负极活性材料、锂离子电池用负极和锂离子电池
JP2014167909A (ja) 蓄電デバイス用負極活物質およびその製造方法
JP2012114027A (ja) 金属二次電池用負極材料、金属二次電池用負極、及び金属二次電池
JP2014099367A (ja) 非水電解質二次電池用正極活物質およびその製造方法
JP2013051065A (ja) 金属二次電池
JP2013131373A (ja) 金属電池用負極材料の製造方法、及び当該製造方法により製造される金属電池用負極材料を含む金属電池
JP5716685B2 (ja) リチウム電池用負極材料、当該リチウム電池用負極材料を含むリチウム電池、及び、当該リチウム電池用負極材料の製造方法
EP4075548A1 (en) Silicon-based material, preparation method therefor and secondary battery, battery module, battery pack and apparatus related thereto
JP2013110007A (ja) 負極材料の製造方法、および負極材料
CN114402460A (zh) 球状化碳质负极活性材料、其制造方法、以及包含其的负极和锂二次电池
JP2013149488A (ja) 負極活物質、電気化学デバイスおよび負極活物質の製造方法
JP2013149444A (ja) 金属電池用負極材料、当該金属電池用負極材料を含む金属電池、及び、当該金属電池用負極材料の製造方法
JP2013073838A (ja) 負極材料および電池
JP2013062170A (ja) 負極材料および金属二次電池
JP2020061245A (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP2005281098A (ja) 炭素材料の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524476

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13809558

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11806538

Country of ref document: EP

Kind code of ref document: A1