WO2012005261A1 - 液晶配向剤及びそれを用いた液晶表示素子 - Google Patents
液晶配向剤及びそれを用いた液晶表示素子 Download PDFInfo
- Publication number
- WO2012005261A1 WO2012005261A1 PCT/JP2011/065395 JP2011065395W WO2012005261A1 WO 2012005261 A1 WO2012005261 A1 WO 2012005261A1 JP 2011065395 W JP2011065395 W JP 2011065395W WO 2012005261 A1 WO2012005261 A1 WO 2012005261A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- formula
- group
- diamine
- mmol
- Prior art date
Links
- 0 CCCCCCCC(*)N(C(c1ccc(C=CC(OCc2cc([N+]([O-])=O)cc([N+]([O-])=O)c2)=O)cc11)=O)C1=O Chemical compound CCCCCCCC(*)N(C(c1ccc(C=CC(OCc2cc([N+]([O-])=O)cc([N+]([O-])=O)c2)=O)cc11)=O)C1=O 0.000 description 2
- FUWVHKHZYSBENS-UHFFFAOYSA-N C=CC(OCc1cc([N+]([O-])=O)cc([N+]([O-])=O)c1)=O Chemical compound C=CC(OCc1cc([N+]([O-])=O)cc([N+]([O-])=O)c1)=O FUWVHKHZYSBENS-UHFFFAOYSA-N 0.000 description 1
- BCKVHOUUJMYIAN-UHFFFAOYSA-N O=C(c(c1c2)ccc2Br)OC1=O Chemical compound O=C(c(c1c2)ccc2Br)OC1=O BCKVHOUUJMYIAN-UHFFFAOYSA-N 0.000 description 1
- HWHGVECRFLERTR-UHFFFAOYSA-O [BH+]c1cccc([NH3+])c1C Chemical compound [BH+]c1cccc([NH3+])c1C HWHGVECRFLERTR-UHFFFAOYSA-O 0.000 description 1
- GPHYIQCSMDYRGJ-UHFFFAOYSA-N [O-][N+](c1cc([N+]([O-])=O)cc(CO)c1)=O Chemical compound [O-][N+](c1cc([N+]([O-])=O)cc(CO)c1)=O GPHYIQCSMDYRGJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1067—Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1075—Partially aromatic polyimides
- C08G73/1078—Partially aromatic polyimides wholly aromatic in the diamino moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
Definitions
- the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, a liquid crystal display element having the liquid crystal aligning film, and a novel diamine suitable for them.
- Liquid crystal display elements used in liquid crystal televisions, liquid crystal monitors, liquid crystal displays for portable devices, etc. have excellent productivity and chemical and thermal durability. Most often used.
- the polyimide-based liquid crystal alignment film is produced by applying a solution such as polyamic acid or polyimide to a substrate, obtaining a polyimide film by drying and baking, and then performing an alignment treatment as necessary.
- the rubbing method is the most well-known method for aligning the polyimide film.
- various polyimide-based liquid crystal alignment films have been proposed for the photo-alignment method by irradiation with polarized ultraviolet rays. (For example, see Patent Documents 1 to 5)
- An object of the present invention is to provide a polyimide liquid crystal aligning agent for photo-alignment capable of uniformly obtaining a liquid crystal alignment slightly tilted from the vertical, a liquid crystal alignment film obtained from the liquid crystal aligning agent, and the liquid crystal alignment film It is providing the novel diamine used for the liquid crystal display element which has these, and the raw material of the said liquid crystal aligning agent.
- the gist of the present invention is as follows. 1. Obtained by polymerizing a diamine component represented by the following formula [2] containing a diamine represented by the following formula [1] and a tetracarboxylic dianhydride component represented by the following formula [3].
- a liquid crystal aligning agent comprising a polyamic acid and at least one polymer selected from the group consisting of polyimides obtained by dehydrating and ring-closing the polyamic acid
- S represents a hydrogen atom, —CN, —O (CH 2 ) m CH 3 , — (CH 2 ) m CH 3 (m is an integer of 0 to 4), —NR 1 R 2 — (R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), a halogen atom, or a carboxyl group
- P is a single bond, a phenyl group, or a cyclohexyl group.
- Q is a single bond or a —O— or —COO— bond group, and R is an alkyl group having 4 to 20 carbon atoms.
- B in the formula [2] is a divalent organic group.
- a in the formula [3] is a tetravalent organic group.
- S represents a hydrogen atom, —CN, —O (CH 2 ) m CH 3 , — (CH 2 ) m CH 3 (m is an integer of 0 to 4), —NR 1 R 2 — (R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), a halogen atom, or a carboxyl group, and P is a single bond, a phenyl group, or a cyclohexyl group.
- Q is a single bond or a —O— or —COO— bond group, and R is an alkyl group having 4 to 20 carbon atoms. 7.
- R is an alkyl group having 6 to 20 carbon atoms.
- the diamine represented by the formula [1] is (E) -3,5-diaminobenzyl 3- (2-dodecyl-1,3-dioxoisoindoline-5-yl) acrylate, (E) -3, 5-diaminobenzyl 3- (2-decyl-1,3-dioxoisoindoline-5-yl) acrylate or (E) -3,5-diaminobenzyl 3- (2-octyl-1,3-dioxo Isoindoline-5-yl) acrylate, (E) -3,5-diaminobenzyl 3- (2- (4-butoxyphenyl) -1,3-dioxoisoindoline-5-
- the liquid crystal alignment film obtained from the liquid crystal aligning agent according to the present invention the liquid crystal is well aligned with respect to the film surface when the alignment treatment is not performed. Furthermore, by performing a photo-alignment process on the liquid crystal alignment film, a liquid crystal alignment slightly tilted from the vertical can be obtained uniformly. Moreover, according to this invention, the novel diamine used as a raw material of a polyamic acid and a polyimide contained in a liquid crystal aligning agent etc. is provided.
- a diamine represented by the following formula [1] (hereinafter also referred to as the diamine of the present invention) is used.
- S represents a hydrogen atom, —CN, —O (CH 2 ) m CH 3 , — (CH 2 ) m CH 3 (m is an integer of 0 to 4), —NR 1 R 2 — (R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), a halogen atom, or a carboxyl group, and P is a single bond, a phenyl group, or a cyclohexyl group.
- Q is a single bond or a —O— or —COO— bond group
- R is an alkyl group having 4 to 20 carbon atoms.
- the diamine represented by the formula [1] of the present invention can be expressed as a compound having a specific substituent in the skeleton of diaminobenzene (phenyldiamine).
- the positions of the two amino groups in the skeleton of diaminobenzene are not particularly limited. Specific examples thereof include 2,3-diaminobenzene, 2,4-diaminobenzene, 2,5-diaminobenzene, 2,6-diaminobenzene when the position of a specific substituent is the 1-position. 3,4-diaminobenzene and 3,5-diaminobenzene. Among these, 2,4-diaminobenzene or 3,5-diaminobenzene is preferable from the viewpoint of reactivity with tetracarboxylic dianhydride.
- R is an alkyl group having 4 to 20 carbon atoms.
- This alkyl group may be linear or may have a branched structure.
- the alkyl group has a larger number of carbon atoms, the ability of the liquid crystal alignment film obtained therefrom to stand the liquid crystal vertically becomes higher.
- the number of carbon atoms in the alkyl group of R is selected from the balance between the two, and is preferably 6 to 16, more preferably 8 to 12.
- S is preferably a hydrogen atom, —CH 3 , or —OCH 3
- P is preferably a single bond, a phenyl group, or a cyclohexyl group, or Q is The number of carbon atoms is preferably 4-12.
- diamines of the present invention a diamine represented by the following formula [5] is given as a preferred specific example.
- the diamine of the present invention can be obtained by reducing the nitro group of the dinitro compound represented by the following formula [4].
- S, R, P, Q, and R each have the same definition as that of the formula [1].
- the reduction of the dinitro compound of formula [4] is carried out by selecting reaction conditions that do not impair the double bond in the side chain.
- a metal such as Fe, Sn, Zn or a salt of these metals together with a proton source.
- a proton source acids such as hydrochloric acid, ammonium salts such as ammonium chloride, and protic solvents such as methanol and ethanol can be used.
- Any solvent can be used as long as it can withstand an environment in a reducing atmosphere, such as dimethylformamide (DMF), dimethylsulfoxide (DMSO), dimethylacetamide (DMAc), and N-methylpyrrolidone (NMP).
- DMF dimethylformamide
- DMSO dimethylsulfoxide
- DMAc dimethylacetamide
- NMP N-methylpyrrolidone
- Organic solvents diethyl ether (Et 2 O), diisopropyl ether (i-Pr 2 O), tertiary butyl methyl ether (TBME), cyclopentyl methyl ether (CPME), tetrahydrofuran (THF), ethers such as dioxane, pentane, Aliphatic hydrocarbons such as hexane, heptane, petroleum ether, aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, methyl acetate, ethyl acetate, butyl acetate, Lower fatty acid esters such as methyl acid, acetonitrile, propionitrile, nitriles such as butyronitrile may be used.
- Et 2 O diethyl ether
- i-Pr 2 O diisopropyl
- the above solvents can be used alone or in combination of two or more. Moreover, it can also use as a non-aqueous solvent using a dehydrating agent or a desiccant.
- the reaction temperature is in the range from ⁇ 100 ° C. to the boiling point of the solvent used, preferably in the range of ⁇ 50 to 150 ° C.
- the reaction time is 0.1 to 1,000 hours.
- the obtained diamine of the formula [1] may be purified by recrystallization, distillation, silica gel column chromatography, activated carbon or the like.
- the dinitro compound of the formula [4] performs a coupling reaction such as a Heck reaction between the compound [5] and the compound [6] in the presence of a metal complex catalyst, a ligand and a base as follows. Can be obtained.
- X in the compound [5] may be any functional group having a leaving ability.
- halogen such as F, Cl, Br, I, or toluenesulfonic acid ester (-OSO 2 C 6 H 4 -p- Sulfonic acid esters such as CH 3 ), methanesulfonic acid ester (—OSO 2 CH 3 ), and trifluoromethanesulfonic acid ester (X ⁇ —OSO 2 CF 3 ) are used.
- halogen such as F, Cl, Br, I, or toluenesulfonic acid ester (-OSO 2 C 6 H 4 -p- Sulfonic acid esters such as CH 3 ), methanesulfonic acid ester (—OSO 2 CH 3 ), and trifluoromethanesulfonic acid ester (X ⁇ —OSO 2 CF 3 ) are used.
- the use of Br, I, or trifluoromethanesulfonate is preferred.
- a palladium complex or a nickel complex is used as the metal complex.
- Various catalysts can be used as the catalyst, and so-called low-valent palladium complexes or nickel complexes are preferable, and zero-valent complexes having tertiary phosphine or tertiary phosphite as a ligand are particularly preferable.
- a precursor that can be easily converted to a zero-valent complex in the reaction system can also be used.
- a complex containing no tertiary phosphine or tertiary phosphite as a ligand is mixed with a tertiary phosphine or tertiary phosphite, and the tertiary phosphine or tertiary phosphite is converted into a ligand. It is also possible to generate a low valence complex.
- tertiary phosphine or tertiary phosphite examples include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, 1,2-bis (diphenylphosphino) ethane, , 3-bis (diphenylphosphino) propane, 1,4-day (diphenylphosphino) butane, 1,1′-bis (diphenylphosphino) ferrocene, trimethyl phosphite, triethyl phosphite, triphenyl phosphite, etc.
- Complexes containing a mixture of two or more of these ligands are also preferably used. It is also preferable to use a combination of a palladium complex not containing tertiary phosphine or tertiary phosphite and / or a complex containing tertiary phosphine or tertiary phosphite and the above-mentioned ligand as a catalyst.
- Complexes containing no tertiary phosphine or tertiary phosphite used in combination with the above ligands include bis (benzylideneacetone) palladium, tris (benzylideneacetone) dipalladium, bis (acetonitrile) dichloropalladium, bis (benzo Nitrile) dichloropalladium, palladium acetate, palladium chloride, palladium-activated carbon, and the like, and complexes containing tertiary phosphine or tertiary phosphite as a ligand already include dimethylbis (triphenylphosphine) palladium, dimethylbis (Diphenylmethylphosphine) palladium, (ethylene) bis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium, bis (triphenylphosphine) dichloropalladium, etc.
- the base examples include inorganic bases, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, isopropylamine, diisopropylamine, triisopropylamine, butylamine, dibutylamine,
- amines such as butylamine, diisopropylethylamine, pyridine, imidazole, quinoline and collidine, sodium acetate, potassium acetate, lithium acetate and the like can also be used.
- the solvent is preferably a solvent that is stable under the reaction conditions and is inert and does not interfere with the reaction.
- a solvent that is stable under the reaction conditions and is inert and does not interfere with the reaction.
- the above solvents can be used alone or in combination of two or more. Moreover, it can also use as a non-aqueous solvent using a dehydrating agent or a desiccant.
- the reaction temperature is in the range from ⁇ 100 ° C. to the boiling point of the solvent used, and preferably in the range from ⁇ 50 to 150 ° C.
- the reaction time is 0.1 to 1,000 hours.
- the obtained dinitro compound of the formula [4] may be purified by recrystallization, distillation, silica gel column chromatography, activated carbon or the like.
- the compound [5] can be obtained by reacting a phthalic anhydride having a functional group X with a primary amine compound to form an amic acid as described below, followed by dehydration and ring closure.
- the amic acid can be obtained by reacting phthalic anhydride with a primary amine compound in a solvent that does not react with the substrate acid anhydride or amine.
- a solvent that does not react with the substrate acid anhydride or amine.
- acetic anhydride or propionic anhydride is allowed to act on the obtained amic acid, dehydration cyclization occurs and compound [5] can be obtained.
- the solvent is preferably a solvent that is stable under the reaction conditions and is inert and does not interfere with the reaction.
- aprotic polar organic solvents DMF, DMSO, DMAc, NMP etc.
- ethers Et 2 O, i-Pr 2 O, TBME, CPME, THF, dioxane etc.
- aliphatic hydrocarbons penentane, Hexane, heptane, petroleum ether, etc.
- aromatic hydrocarbons benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.
- halogenated hydrocarbons chloroform, dichloromethane, carbon tetrachloride, dichloroethane) Etc.
- lower fatty acid esters methyl acetate, ethyl acetate, butyl acetate, methyl propionate, etc.
- nitriles acetonitrile, propionitrile, butyronitrile, etc.
- organic acids such as
- solvents can be selected in consideration of the reaction conditions and the easiness of the reaction.
- the above solvents can be used alone or in combination of two or more.
- it can also use as a non-aqueous solvent using a dehydrating agent or a desiccant.
- Pyridine, N, N-dimethylaminopyridine, N-methylmorpholine and the like may be used as a reaction accelerator.
- the reaction temperature is from ⁇ 100 ° C. to the boiling point of the solvent used, and preferably in the range of ⁇ 50 to 150 ° C.
- the reaction time is 0.1 to 1,000 hours.
- the obtained compound [5] may be purified by recrystallization, distillation, silica gel column chromatography, activated carbon or the like.
- Compound [5] can also be obtained by alkylating an imide moiety with respect to a phthalimide compound having a functional group X as described below.
- the alkylating agent X 1 can be exemplified by the same functional group X of the compound [5].
- X and X 1 may have the same functional group.
- Bases include inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, NaH, KH, amines and t Organic bases such as -BuONa and t-BuOK can be used.
- organic lithium reagents such as n-butyllithium, sec-butyllithium and t-butyllithium, Grignard reagents such as methyl Grignard reagent and ethyl Grignard reagent, lithium diisopropylamide (LDA), hexamethyldisilazane lithium (LiHMDS), Amides such as sodium hexamethyldisilazane (NaHMDS), potassium hexamethyldisilazane (KHMDS), sodium amide (NaNH 2 ) and potassium amide (KNH 2 ) can be used.
- LDA lithium diisopropylamide
- LiHMDS lithium diisopropylamide
- LiHMDS hexamethyldisilazane lithium
- Amides such as sodium hexamethyldisilazane (NaHMDS), potassium hexamethyldisilazane (KHMDS), sodium amide (NaNH 2 ) and potassium amide
- the solvent those which are stable under the reaction conditions and are inert and do not hinder the reaction are preferable.
- solvents can be appropriately selected in consideration of the reaction conditions and the easiness of the reaction.
- the above solvents can be used alone or in combination of two or more.
- an appropriate dehydrating agent or desiccant can be used as a non-aqueous solvent.
- the reaction temperature ranges from ⁇ 100 ° C. to the boiling point of the solvent used, and is preferably ⁇ 50 to 150 ° C.
- the reaction time is 0.1 to 1,000 hours.
- the obtained compound [5] may be purified by recrystallization, distillation, silica gel column chromatography, activated carbon or the like.
- the compound [6] can be produced by esterification between the corresponding dinitrobenzyl alcohol and an acrylic acid derivative.
- acrylic acid derivative it is preferable to use acid halides such as acrylic acid chloride and acrylic acid bromide, and acrylic acid anhydride.
- acid halides such as acrylic acid chloride and acrylic acid bromide
- acrylic acid anhydride it is preferable to use inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, NaH, KaH as bases, amines And organic bases such as t-BuONa and t-BuOK can be used.
- Compound [6] can also be obtained by transesterification of acrylic acid esters such as methyl acrylate and ethyl acrylate with dinitrobenzyl alcohol, or reaction of acrylic acid with dinitrobenzyl halides such as dinitrobenzyl chloride and dinitrobromide. Can be synthesized.
- the dinitro compound of the formula [4] can also be obtained by reacting the compound [7] and the compound [8] as follows.
- Y of compound [8] is a functional group capable of reacting with a carboxyl group, and is a hydroxyl group, fluorine, chlorine, bromine, iodine halogen, methanesulfonate ester, nonylsulfonate ester, benzenesulfonate ester, toluenesulfonate ester.
- sulfonic acid esters such as
- the dinitro compound [4] can be obtained by directly reacting the compound [7] with the compound [8] in the presence of a mineral acid or Lewis acid catalyst.
- a condensing agent such as dicyclohexylcarbodiimide (DCC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC), or carbonyldiimidazole (CDI) can be used to efficiently advance the reaction. it can.
- Y is a halogen or a sulfonate ester
- the compound [7] is reacted with the compound [8] in the presence of a base.
- bases include inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, trimethylamine, triethylamine, and tripropylamine.
- Amines such as triisopropylamine, tributylamine, diisopropylethylamine, pyridine, quinoline, collidine and the like can be used.
- aprotic polar organic solvents DMF, DMSO, DMAc, NMP etc.
- ethers Et 2 O, i-Pr 2 O, TBME, CPME, THF, dioxane etc.
- aliphatic hydrocarbons penentane, Hexane, heptane, petroleum ether, etc.
- aromatic hydrocarbons benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.
- halogenated hydrocarbons chloroform, dichloromethane, carbon tetrachloride, dichloroethane
- solvents can be selected in consideration of the reaction conditions and the easiness of the reaction.
- the above solvents can be used alone or in combination of two or more.
- it can also be used as a non-aqueous solvent using a suitable dehydrating agent or drying agent.
- the reaction temperature ranges from ⁇ 100 ° C. to the boiling point of the solvent used. Preferably, it is ⁇ 50 to 150 ° C.
- the reaction time is 0.1 to 1,000 hours.
- the obtained dinitro compound of the formula [4] may be purified by recrystallization, distillation, silica gel column chromatography, activated carbon or the like.
- the compound [8] wherein Y is a halogen or a sulfonic acid ester can be produced from the compound [8] wherein Y is a hydroxyl group.
- Y is a halogen or a sulfonic acid ester
- BBr 3 BCl 3, PBr 3 , PCl 3, PPh 3 -CBr 4, PPh 3 -CCl 4, PPh 3 -I 2
- halogenating agents such as SOBr 2, SOCl 2
- Y is a halogen Compound [8] can be produced.
- compound [8] wherein Y is a hydroxyl group can be reacted with a sulfonic acid halide in the presence of a base to convert it into a sulfonic acid ester such as methanesulfonic acid ester or toluenesulfonic acid ester.
- This sulfonic acid ester may be further reacted with a salt containing a blade rogen such as NaI, NaBr, NaCl, KI, KBr, KCl, LiI, LiBr, LiCl to convert it into a compound [8] wherein Y is a halogen. Is possible.
- Compound [7] can be obtained from compound [5] as follows.
- Y 2 of the compound [9] is a linear alkyl group such as methyl group, ethyl group or benzyl group, branched alkyl group such as isopropyl group, cyclic alkyl group such as cyclohexane, aromatic group such as phenyl group or tolyl group, etc. It is. Protecting groups that can withstand the reaction conditions can also be used.
- acetal protecting groups such as methoxymethyl group, ethoxyethyl group, tetrahydropyranyl group, tetrahydrofuryl group, trimethylsilyl group, triethylsilyl group, tri (isopropyl) silyl group, triphenylsilyl group, tert-butyldimethylsilyl group
- silyl protecting groups such as tert-butyldiphenylsilyl group and cumyldiphenylsilyl group.
- a methyl group, an ethyl group, a benzyl group, a triethylsilyl group, or a tetrahydropyranyl group is preferable.
- a methyl group, an ethyl group, or a benzyl group is particularly preferable from the viewpoint of availability of raw materials and reactivity in the next step.
- Compound [10] obtained above can be converted to compound [7] by hydrolysis.
- Hydrolysis can be carried out either acidic or alkaline.
- the acid inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as formic acid, acetic acid and toluenesulfonic acid can be used, and the amount used is 20 mol% or less, usually 10 mol% or less.
- acid hydrolysis it is preferable to carry out the reaction in the presence of an excessive amount of water.
- an inorganic substance such as NaOH, KOH, or LiOH as the aqueous solution as the alkali.
- the reaction can proceed smoothly by using an equivalent amount or more.
- the solvent is stable under the reaction conditions and is inert and does not interfere with the reaction.
- Water, alcohols, amines, ethers Et 2 O, i-Pr 2 O, TBME, CPME, THF, dioxane, etc.
- aliphatic hydrocarbons penentane, hexane, heptane, petroleum ether, etc.
- aromatic Group hydrocarbons benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.
- halogenated hydrocarbons chloroform, dichloromethane, carbon tetrachloride, dichloroethane, etc.
- solvents can be selected in consideration of the reaction conditions and the easiness of the reaction.
- the above solvents can be used alone or in combination of two or more.
- it can also use as a non-aqueous solvent using a dehydrating agent or a desiccant.
- the reaction temperature ranges from ⁇ 100 ° C. to the boiling point of the solvent used, and is preferably ⁇ 50 to 150 ° C.
- the reaction time is 0.1 to 1,000 hours.
- the obtained compound [7] is preferably purified by recrystallization, distillation, silica gel column chromatography, activated carbon or the like.
- the compound [10] can be converted to the compound [7] using a transesterification reaction.
- it can be achieved by using a catalytic amount of an acid such as sulfuric acid and reacting an excess of formic acid or acetic acid.
- the polyamic acid used in the liquid crystal aligning agent of the present invention is represented by the diamine component represented by the following formula [2] containing the diamine of the present invention represented by the above formula [1] and the following formula [3]. It is a polyamic acid obtained by polymerizing a tetracarboxylic dianhydride component.
- the diamine component represented by the formula [2] used for the polyamic acid polymerization reaction may be one type of diamine or two or more types of diamines.
- the tetracarboxylic dianhydride component represented by the formula [3] may also be one type of tetracarboxylic dianhydride or two or more types of tetracarboxylic dianhydrides.
- the use ratio of the diamine of the present invention is not particularly limited.
- the preferred proportion of the diamine used in the present invention is 10 mol% or more, preferably 20 mol% or more, more preferably 30 mol% or more of the entire diamine component.
- the diamine represented by the formula [1] may be 100 mol% of the diamine component. The greater the proportion of the diamine represented by the formula [1], the higher the ability of the liquid crystal to stand vertically when the liquid crystal alignment film is formed, and the higher the efficiency of the photo-alignment treatment.
- diamine component represented by the formula [2] used for the polymerization reaction of the polyamic acid when the use ratio of the diamine of the present invention is less than 100 mol%, other diamines contained in the diamine component are particularly It is not limited. As such other diamines, known diamines can be used as raw materials for polyamic acid. Specific examples of the other diamines mentioned above include diamines in which B in the formula [2] is a divalent organic group represented by B-1 to B-104 in Tables 1 to 5 below. Can do. One diamine may be used, or two or more diamines may be used in combination.
- the tetracarboxylic dianhydride represented by the formula [3] used for the polymerization reaction of the polyamic acid is not particularly limited, and may be one kind of tetracarboxylic dianhydride, or two or more kinds of tetracarboxylic dianhydrides.
- An acid dianhydride may be used in combination.
- As the tetracarboxylic dianhydride a known tetracarboxylic dianhydride used as a raw material for polyamic acid can be used.
- Specific examples of tetracarboxylic dianhydrides include tetracarboxylic dianhydrides in which A in formula [3] is a tetravalent organic group represented by A-1 to A-45 in Table 6 below. Can do.
- the polymerization reaction for obtaining a polyamic acid can be performed by mixing a diamine component and a tetracarboxylic dianhydride component in an organic solvent.
- the organic solvent at this time is not particularly limited as long as the generated polyamic acid can be dissolved.
- a solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride component is used as it is or in an organic solvent.
- a method of adding by dispersing or dissolving in a solvent a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, and a tetracarboxylic dianhydride component and a diamine component. The method of adding alternately etc. are mentioned.
- the tetracarboxylic dianhydride component or the diamine component is composed of a plurality of types of compounds, the plurality of types of components may be preliminarily mixed, or may be individually polymerized sequentially.
- the temperature during the polymerization reaction of the polyamic acid is usually ⁇ 20 to 150 ° C., preferably 0 to 100 ° C., more preferably 10 to 80 ° C. When the temperature is higher, the polymerization reaction is completed earlier, but when it is too high, a high molecular weight polyamic acid may not be obtained.
- the polymerization reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution will become too high and uniform stirring will occur. Since it becomes difficult, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
- the initial stage of the polymerization reaction may be performed at a high concentration, and then an organic solvent may be added.
- the molecular weight of the polyamic acid obtained can be controlled by the molar ratio of the tetracarboxylic dianhydride component and the diamine component used in the polymerization reaction. The closer this molar ratio is to 1: 1, the greater the molecular weight.
- the molecular weight of the polyamic acid used in the present invention or the polyimide obtained by dehydrating and ring-closing this polyamic acid is a weight average molecular weight from the viewpoint of ease of handling and stability of characteristics when used as a liquid crystal alignment film. It is preferably 2,000 to 200,000, more preferably 5,000 to 100,000.
- the polyimide used for the liquid crystal aligning agent of this invention is a polyimide obtained by dehydrating and ring-closing the above polyamic acid.
- the dehydration ring closure reaction (imidation reaction) for obtaining a polyimide from a polyamic acid can be carried out by stirring the polyamic acid in an organic solvent in the presence of a basic catalyst and an acid anhydride.
- the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
- the acid anhydride examples include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, acetic anhydride is preferable because the obtained polyimide can be easily purified after imidization.
- an organic solvent the solvent used at the time of the polymerization reaction of the polyamic acid mentioned above can be used.
- the imidation ratio of polyimide can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
- the amount of the basic catalyst is preferably 0.5 to 30 times mol, more preferably 2 to 20 times mol of the amic acid group.
- the amount of the acid anhydride is preferably 1 to 50 times mol, more preferably 3 to 30 times mol of the amic acid group.
- the reaction temperature is preferably ⁇ 20 to 250 ° C., more preferably 0 to 180 ° C.
- the imidation ratio of the polyimide used for the liquid crystal aligning agent of the present invention does not need to be 100%, and may be partially imidized.
- the polyamic acid or polyimide obtained as described above can be recovered by putting the reaction solution into a poor solvent with stirring, precipitating, and filtering.
- the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
- the liquid crystal aligning agent of this invention can be obtained by dissolving at least 1 type of polymer chosen from the group which consists of said polyamic acid and a polyimide in an organic solvent.
- the liquid crystal aligning agent of the present invention may be the reaction solution of the above polyamic acid or polyimide as it is, or may be a solution obtained by diluting the reaction solution with an organic solvent.
- the organic solvent used for dissolving the polymer or diluting the reaction solution is not particularly limited as long as it dissolves the polymer.
- Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl
- examples thereof include sulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, and the like. These may be used alone or in combination.
- the solvent alone does not dissolve the polymer, it can be mixed with the liquid crystal aligning agent of the present invention as long as the polymer component does not precipitate.
- the solvent alone does not dissolve the polymer, it can be mixed with the liquid crystal aligning agent of the present invention as long as the polymer component does not precipitate.
- by mixing a solvent having a low surface tension it is possible to improve the uniformity of the coating film when applied to the substrate.
- the solvent include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-Ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate isoamyl ester, etc. Door can be.
- the solid content concentration in the liquid crystal aligning agent of the present invention can be changed depending on the thickness of the liquid crystal aligning film to be formed.
- the content is preferably 1 to 10% by mass, more preferably 2 to 8% by mass.
- solid content concentration in a liquid crystal aligning agent is content of the solid content in liquid crystal aligning agent containing said polyamic acid and a polyimide, and in this invention, liquid crystal aligning agent is 2 in 200 degreeC oven. It is obtained by dividing the weight after standing for a period of time by the weight of the liquid crystal aligning agent before putting it in the oven.
- the liquid crystal aligning agent of the present invention may contain other polyamic acid and polyimide other than the above polyamic acid and polyimide using the diamine of the present invention as a raw material within a range not impairing the effects of the present invention. Moreover, you may contain resin other than a polyamic acid and a polyimide. In addition, in order to further improve the adhesion of the coating film to the substrate, a known additive such as a silane coupling agent may be added.
- the liquid crystal alignment film of the present invention is a liquid crystal alignment film obtained by applying the above liquid crystal aligning agent to a substrate and baking it.
- the method for applying the liquid crystal aligning agent to the substrate include a spin coating method, a printing method, an ink jet method, and the like.In terms of productivity, industrially, a transfer printing method such as flexographic printing is widely used. It is also suitably used in the liquid crystal aligning agent of the present invention.
- the liquid crystal aligning agent is preferably used after being filtered through a membrane filter having a pore diameter of 0.1 ⁇ m to 1 ⁇ m.
- coating a liquid crystal aligning agent is not necessarily required, it is more preferable to include a drying process from a viewpoint of obtaining a uniform coating film.
- the drying is not particularly limited as long as the solvent is evaporated to such an extent that the shape of the coating film is not deformed.
- a method of drying on a hot plate at 50 to 150 ° C., preferably 80 to 120 ° C., for 0.5 to 30 minutes, preferably 1 to 5 minutes is employed.
- the conditions are not particularly limited, but from the viewpoint of minimizing the solvent remaining in the coating film and not damaging the coating film, it is preferably 150 to 250 ° C. Baking is preferably performed at 180 to 230 ° C. This baking can be performed with a hot plate, a hot-air circulating furnace, an infrared furnace, or the like.
- the obtained liquid crystal alignment film has the ability to align liquid crystal vertically. Further, by performing a photo-alignment process on the liquid crystal alignment film, the liquid crystal can be aligned in a state slightly tilted from the vertical.
- a known method can be applied as a method of the photo-alignment treatment.
- the wavelength of light to be irradiated preferably includes light of around 313 nm. As the amount of irradiation with light of this wavelength increases, the amount of liquid crystal tilting from the vertical increases.
- the liquid crystal display element of the present invention has the liquid crystal alignment film obtained as described above.
- a liquid crystal cell is prepared by a known method to obtain a liquid crystal display element.
- the substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it has high transparency, and a glass substrate or the like can be used.
- an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
- the thickness of the liquid crystal alignment film is not particularly limited, but is preferably 5 nm to 300 nm, more preferably 10 nm to 100 nm, from the viewpoint of the reliability of the liquid crystal display element.
- the spacer at this time is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m.
- the molecular weight of the polyamic acid or polyimide in the following examples is as follows using a room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Scientific Co., Ltd. and a column (KD-803, KD-805) manufactured by Shodex. Measured.
- GPC room temperature gel permeation chromatography
- DA1 (0.607 g, 1.20 mmol) and p-PDA (0.303 g, 2.80 mmol) were mixed in NMP (9.95 g), dissolved by stirring at room temperature for 1 hour, and then PMDA ( 0.846 g, 3.88 mmol) was added and reacted at room temperature for 12 hours to obtain a polyamic acid solution.
- the number average molecular weight of this polyamic acid was 17000, and the weight average molecular weight was 41,000.
- DA1 (0.809 g, 1.60 mmol) and p-PDA (0.26G, 2.40 mmol) were mixed in NMP (10.85 g), dissolved by stirring at room temperature for 1 hour, and then PMDA ( 0.846G, 3.88 mmol) was added and reacted at room temperature for 12 hours to obtain a polyamic acid solution.
- This polyamic acid had a number average molecular weight of 18,000 and a weight average molecular weight of 45,000.
- DA1 (0.759 g, 1.50 mmol) and p-PDA (0.162 g, 1.50 mmol) were mixed in NMP (8.78 g), dissolved by stirring at room temperature for 1 hour, and then PMDA ( 0.628 g, 2.88 mmol) was added and reacted at room temperature for 12 hours to obtain a polyamic acid solution.
- the number average molecular weight of this polyamic acid was 12000, and the weight average molecular weight was 31000.
- DA1 (1.011 g, 2.0 mmol) was mixed in NMP (8.13 g) and stirred for 1 hour at room temperature to dissolve, then PMDA (0.423 g, 1.94 mmol) was added, and at room temperature 12 The reaction was performed for a time to obtain a polyamic acid solution.
- NMP (9.56 g) and BC (4.78 g) were added to this polyamic acid solution (9.56 g) and stirred for 5 hours to obtain 6% by mass of a liquid crystal aligning agent (D).
- the number average molecular weight of this polyamic acid was 18000, and the weight average molecular weight was 79000.
- DA1 (2.275 g, 4.50 mmol), p-PDA (0.973 g, 9.0 mmol), and PCH (0.571 g, 1.50 mmol) were mixed in NMP (14.6 g) at 40 ° C.
- BODA 2.15 g, 11.25 mmol
- NMP 7.28 g
- CBDA 0.47 g, 3.30 mmol
- NMP 7.28 g
- NMP was added to this polyamic acid solution (36.4 g) and diluted to 6% by mass.
- Acetic anhydride (7.66 g, 75.0 mmol) and pyridine (2.37 g, 30.0 mmol) were added to this amic acid solution, and the mixture was stirred for 30 minutes and then reacted at 100 ° C. for 3 hours.
- DA2 (0.716 g, 1.50 mmol) and p-PDA (0.162 g, 1.50 mmol) were mixed in NMP (8.58 g) and stirred for 1 hour at room temperature to dissolve, then PMDA ( 0.635 g, 2.91 mmol) was added and reacted at room temperature for 12 hours to obtain a polyamic acid solution.
- NMP (10.1 g) and BC (5.04 g) were added to this polyamic acid solution (10.1 g) and stirred for 5 hours to obtain 6% by mass of a liquid crystal aligning agent (F).
- This polyamic acid had a number average molecular weight of 14,000 and a weight average molecular weight of 42,000.
- DA2 (0.716 g, 1.80 mmol) and p-PDA (0.108 g, 1.20 mmol) were mixed in NMP (7.67 g) and stirred for 1 hour at room temperature to dissolve, then PMDA ( 0.529 g, 2.91 mmol) was added and reacted at room temperature for 12 hours to obtain a polyamic acid solution.
- the number average molecular weight of this polyamic acid was 16000, and the weight average molecular weight was 68,000.
- DA2 (0.836 g, 2.10 mmol) and p-PDA (0.081 g, 0.90 mmol) were mixed in NMP (8.19 g) and stirred for 1 hour at room temperature to dissolve, then PMDA ( 0.529 g, 2.91 mmol) was added and reacted at room temperature for 12 hours to obtain a polyamic acid solution.
- NMP (9.64 g) and BC (4.82 g) were added to this polyamic acid solution (9.64 g) and stirred for 5 hours to obtain 6% by mass of a liquid crystal aligning agent (H).
- the number average molecular weight of this polyamic acid was 15000, and the weight average molecular weight was 59000.
- DA3 (0.787 g, 2.10 mmol) and p-PDA (0.081 g, 0.90 mmol) were mixed in NMP (7.92 g) and stirred for 1 hour at room temperature to dissolve, then PMDA ( 0.529 g, 2.91 mmol) was added and reacted at room temperature for 12 hours to obtain a polyamic acid solution.
- the number average molecular weight of this polyamic acid was 13,000, and the weight average molecular weight was 38000.
- DA3 (0.899 g, 2.0 mmol) was mixed in NMP (7.52 g) and stirred at room temperature for 1 hour to dissolve, then PMDA (0.428 g, 1.96 mmol) was added, and at room temperature 12 The reaction was performed for a time to obtain a polyamic acid solution.
- NMP (8.84 g) and BC (4.42 g) were added to this polyamic acid solution (8.84 g) and stirred for 5 hours to obtain 6% by mass of a liquid crystal aligning agent (J).
- the number average molecular weight of this polyamic acid was 12000, and the weight average molecular weight was 42000.
- Examples 14 to 23 Using the liquid crystal aligning agents (A) to (M) obtained in Examples 4 to 13, a liquid crystal cell was prepared according to the procedure shown below, and the orientation of the liquid crystal was evaluated as shown below, and The tilt angle was measured.
- the liquid crystal aligning agent (A) obtained in Example 4 was spin-coated on the ITO surface of a glass substrate with a transparent electrode made of an ITO film, dried for 90 seconds on an 80 ° C. hot plate, and then heated at 200 ° C. for circulating hot air. Baking was performed for 30 minutes in an oven to form a liquid crystal alignment film having a thickness of 100 nm.
- This substrate was irradiated with 0 to 1000 mJ of 313 nm linearly polarized light UV having an irradiation intensity of 8.0 mW / cm ⁇ 2 .
- the direction of the incident light was inclined by 40 ° with respect to the normal direction of the substrate.
- the linearly polarized light UV was prepared by passing a 313 nm band pass filter through the ultraviolet light of a high pressure mercury lamp and then passing it through a 313 nm polarizing plate.
- Two substrates were prepared, and a 6 ⁇ m bead spacer was sprayed on the liquid crystal alignment film of one substrate, and then a sealant was printed thereon.
- the liquid crystal alignment surfaces of the two substrates are made to face each other and pressed so that the projection direction of the optical axis of the linearly polarized light UV on each substrate is antiparallel, and the sealant is thermally cured at 150 degrees for 105 minutes. It was.
- a negative liquid crystal (MLC-6608, manufactured by Merck & Co., Inc.) was injected into the empty cell by a reduced pressure injection method to produce a liquid crystal cell.
- the pretilt angle of the liquid crystal cell was measured by the Mueller matrix method using “Axo Scan” manufactured by AxoMetrix.
- Table 8 shows the ratio of each composition of tetracarboxylic dianhydride and diamine used in the production of the liquid crystal aligning agents (A) to (J).
- Table 9 below shows the evaluation results of the liquid crystal cells produced using the liquid crystal aligning agents (A) to (J).
- the liquid crystal alignment film using the diamine compound of the present invention exhibits a good vertical alignment ability. Moreover, it was confirmed that the liquid crystal alignment film of the present invention has an ability to align liquid crystals in a slightly tilted state by irradiating polarized ultraviolet rays. From these, it can be seen that the diamine compound of the present invention can be used in a liquid crystal alignment film for a vertical alignment type liquid crystal display element, and is also a useful compound in a liquid crystal alignment film used in a photo alignment method.
- the filtrate obtained by hot filtration was subjected to an extraction operation with chloroform-water, and the obtained organic layer was dried over magnesium sulfate. Magnesium sulfate was removed by filtration, and the obtained organic layer was concentrated to obtain the target diamine compound 13 (13.09 g, 27.0 mmol, 85% yield).
- the filtrate obtained by hot filtration was extracted with ethyl acetate-water, and the resulting organic layer was dried over magnesium sulfate. Magnesium sulfate was removed by filtration, and the resulting organic layer was concentrated and dissolved in ethyl acetate, purified by silica gel short column purification, and the desired diamine compound 18 (7.25 g, 15.2 mmol, 71% yield).
- Tetra-n-butylammonium tribromide (100 g, 207 mmol) was dissolved in methylene chloride (1036 ml) and methanol (1036 ml), and 3,4-dimethylanisole 19 (28.25 g, 207 mmol) was added to the solution. For 24 hours. Thereafter, potassium carbonate (41.50 g, 300 mmol) was added and the mixture was stirred for 1 hour and then concentrated. The resulting concentrate was extracted with toluene-water. The aqueous layer was removed, the organic layer was dried over magnesium sulfate, and magnesium sulfate was removed by filtration. The obtained organic layer was concentrated to obtain Compound 20 (40.41 g, 188 mmol, 91% yield).
- the filtrate obtained by hot filtration was extracted with ethyl acetate-water, and the resulting organic layer was dried over magnesium sulfate. Magnesium sulfate was removed by filtration, and the resulting organic layer was concentrated and purified by performing a silica gel short column to obtain the desired diamine compound 24 (5.08 g, 10.0 mmol, 81% yield).
- DA-4 (1.21 g, 2.5 mmol) was mixed in NMP (9.6 g) and stirred for 1 hour at room temperature to dissolve, then CBDA (0.48 g, 2.5 mmol) was added, For 12 hours to obtain a polyamic acid solution.
- NMP 5.7 g
- BC (11.3 g) were added to this polyamic acid solution (11.3 g) and stirred for 5 hours to obtain 6% by mass of a liquid crystal aligning agent (K).
- K liquid crystal aligning agent
- DA-5 (1.02 g, 2.0 mmol) was mixed in NMP (7.93 g), dissolved by stirring at room temperature for 1 hour, and then CBDA (0.38 g, 2.0 mmol) was added. For 12 hours to obtain a polyamic acid solution. NMP (4.7 g) and BC (9.3 g) were added to this polyamic acid solution (9.33 g) and stirred for 5 hours to obtain 6% by mass of a liquid crystal aligning agent (L). The number average molecular weight of this polyamic acid was 14000, and the weight average molecular weight was 32000.
- DA-6 (0.96 g, 2.0 mmol) was mixed in NMP (7.60 g) and stirred at room temperature for 1 hour to dissolve, then CBDA (0.38 g, 2.0 mmol) was added, For 12 hours to obtain a polyamic acid solution.
- M liquid crystal aligning agent
- Examples 30 to 32> Using the liquid crystal aligning agents (A) to (M) obtained in Examples 27 to 29, liquid crystal cells were produced in the same manner as in Examples 14 to 23 described above, and the liquid crystal alignment properties were as follows. And the tilt angle was measured. The ratio of each composition of tetracarboxylic dianhydride and diamine used in the production of the liquid crystal aligning agents (K) to (M) is shown in Table 10 below. Table 11 below shows the evaluation results of the liquid crystal cells produced using the liquid crystal aligning agents (K) to (M).
- the liquid crystal aligning agent of this invention is used for the liquid crystal aligning film for liquid crystal display elements of a vertical alignment system, and is also used for the liquid crystal aligning film used by a photo-alignment method. Further, the diamine of the present invention is used as a raw material for polyamic acid and polyimide used for the production of a liquid crystal aligning agent.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Liquid Crystal (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
1.下記式[1]で表されるジアミンを含有する下記式[2]で表されるジアミン成分と下記式[3]で表されるテトラカルボン酸二無水物成分とを重合反応させることにより得られるポリアミック酸、及び該ポリアミック酸を脱水閉環して得られるポリイミドからなる群から選ばれる少なくとも一種の重合体を含有することを特徴とする液晶配向剤
3.前記式[1]で表されるジアミンが、下記式[5]で表わされる上記1又は2に記載の液晶配向剤。
4.上記1~3のいずれか1項に記載の液晶配向剤を塗布し焼成して得られる液晶配向膜。
5.上記4に記載の液晶配向膜を有する液晶表示素子。
7.前記式[1]で表されるジアミンが、下記式[5]で表わされる上記6に記載のジアミン。
8.前記式[1]で表されるジアミンが、(E)-3,5-ジアミノベンジル 3-(2-ドデシル-1,3-ジオキソイソインドリン-5-イル)アクリレート、(E)-3,5-ジアミノベンジル 3-(2-デシル-1,3-ジオキソイソインドリン-5-イル)アクリレート、又は(E)-3,5-ジアミノベンジル 3-(2-オクチル-1,3-ジオキソイソインドリン-5-イル)アクリレート、(E)-3,5-ジアミノベンジル 3-(2-(4-ブトキシフェニル)-1,3-ジオキソイソインドリン-5-イル)アクリレート、(E)-3,5-ジアミノベンジル 3-(2-デシル-1,3-ジオキソイソインドリン-4-イル)アクリレート、又は(E)-3,5-ジアミノベンジル 3-(2-デシル-6-メトキシ-1,3-ジオキソイソインドリン-5-イル)アクリレートである上記6に記載のジアミン。
また、本発明によれば、液晶配向剤などに含有される、ポリアミック酸やポリイミドの原料となる新規なジアミンが提供される。
本発明の液晶配向剤の原料には、下記式[1]で表されるジアミン(以下、本発明のジアミンともいう。)が使用される。
また、式[1]において、なかでも、Sは、水素原子、-CH3、又は-OCH3、が好ましく、Pは、単結合、フェニル基、又はシクロへキシル基が好ましく、または、Qは炭素数が4~12であるのが好ましい。
本発明のジアミンは、下記式[4]で示されるジニトロ化合物のニトロ基を還元することで得ることができる。なお、式[4]中における、S、R、P、Q、及びRは、それぞれ、式[1]のものと同じ定義を有する。
上記の金属や金属の塩は、それぞれ、単体もしくは共同で使用してもよい。プロトン源としては、塩酸などの酸、塩化アンモニウムなどのアンモニウム塩、メタノール、エタノールなどのプロトン性溶媒が使用できる。溶媒は、還元的雰囲気下の環境に耐えられるものであればよく、ジメチルホルムアミド(DMF)、ジメチルスルオキシド(DMSO)、ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)などの非プロトン性極性有機溶媒、ジエチルエーテル(Et2O)、ジイソプロピルエーテル(i-Pr2O)、ターシャリーブチルメチルエーテル(TBME)、シクロペンチルメチルエーテル(CPME)、テトラヒドロフラン(THF)、ジオキサンなどのエーテル類、ペンタン、へキサン、ヘプタン、石油エーテルなどの脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなどの芳香族炭化水素類、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチルなどの低級脂肪酸エステル類、アセトニトリル、プロピオニトリル、ブチロニトリルなどのニトリル類が使用できる。
これらの溶媒は、反応条件や反応の起こり易さなどを考慮して適宜選択することができ、この場合、上記溶媒は1種単独で又は2種以上混合して用いることができる。また、脱水剤や乾燥剤を用いて非水溶媒として用いることもできる。反応温度は-100℃から使用する溶媒の沸点までの範囲であり、好ましくは-50~150℃の範囲である。反応時間は0.1~1,000時間である。得られた式[1]のジアミンは、再結晶、蒸留、シリカゲルカラムクロマトグラフィー、活性炭などで精製してもよい。
配位子である3級ホスフィン又は3級ホスファイトとしては、例えば、トリフェニルホスフィン、トリ-o-トリルホスフィン、ジフェニルメチルホスフィン、フェニルジメチルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3‐ビス(ジフェニルホスフィノ)プロパン、1,4-日ス(ジフェニルホスフィノ)ブタン、1,1‘-ビス(ジフェニルホスフィノ)フェロセン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト等が挙げられ、これらの配位子の2種以上を混合して含む錯体も好適に用いられる。触媒として、3級ホスフィンや3級ホスファイトを含まないパラジウム錯体及び/又は3級ホスフィンや3級ホスファイトを含む錯体と、前記した配位子と、を組み合わせて用いることも好ましい。
反応温度は-100℃から使用する溶媒の沸点までの範囲であり、好ましくは、-50~150℃の範囲である。反応時間は0.1~1,000時間である。得られた式[4]のジニトロ化合物は、再結晶、蒸留、シリカゲルカラムクロマトグラフィー、活性炭などで精製するとよい。
溶媒としては、反応条件下において安定であって、不活性で反応を妨げないものが好ましい。例えば、非プロトン性極性有機溶媒(DMF, DMSO, DMAc, NMPなど)、エーテル類(Et2O, i-Pr2O, TBME, CPME, THF, ジオキサンなど)、脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテルなど)、芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど)、ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど)、低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)、蟻酸、酢酸、プロピオン酸などの有機酸を挙げることができる。
また、Yが水酸基の場合には、化合物[7]のカルボキシル基にSOCl2やSOBr2などを作用させ、対応する酸ハライドに変換して、塩基存在下に化合物[8]と反応させることが有効である。
また、反応条件に耐える、保護基も使用できる。例えば、メトキシメチル基、エトキシエチル基、テトラヒドロピラニル基、テトラヒドロフリル基などのアセタール系保護基、トリメチルシリル基、トリエチルシリル基、トリ(イソプロピル)シリル基、トリフェニルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基、クミルジフェニルシリル基などのシリル保護基が挙げられる。反応条件への耐性を考慮すると、メチル基、エチル基、ベンジル基、トリエチルシリル基、又はテトラヒドロピラニル基が好ましい。原料の入手性や次の工程の反応性から、メチル基、エチル基、またはベンジル基が特に好ましい。
本発明の液晶配向剤に使用されるポリアミック酸は、上記式[1]で示される本発明のジアミンを含有する下記式[2]で表されるジアミン成分と下記式[3]で表されるテトラカルボン酸二無水物成分とを重合反応させることにより得られるポリアミック酸である。
上記の他のジアミンの具体例を示すならば、上記式[2]中のBが下記の表1~表5のB-1~B-104に示す2価の有機基であるジアミンを挙げることができる。このジアミンは1種類であってもよく、2種類以上を併用してもよい。
かかるテトラカルボン酸二無水物としては、ポリアミック酸の原料となる既知のテトラカルボン酸二無水物を使用することができる。テトラカルボン酸二無水物の具体例を示すならば、式[3]のAが下記表6のA-1~A-45に示す4価の有機基であるテトラカルボン酸二無水物を挙げることができる。
またポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。有機溶媒中の水分はポリアミック酸の重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。
本発明の液晶配向剤に使用されるポリイミドは、上記したポリアミック酸を脱水閉環して得られるポリイミドである。
ポリアミック酸からポリイミドを得るための脱水閉環反応(イミド化反応)は、有機溶媒中、塩基性触媒と酸無水物の存在下でポリアミック酸を攪拌することによって行うことができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは、反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができる。中でも無水酢酸は、イミド化終了後に、得られたポリイミドの精製が容易となるので好ましい。有機溶媒としては前述したポリアミック酸の重合反応時に用いる溶媒を使用することができる。
本発明の液晶配向剤は上記のポリアミック酸及びポリイミドからなる群から選ばれる少なくとも一種の重合体を有機溶媒に溶解させることにより得ることができる。また、本発明の液晶配向剤は、上記のポリアミック酸又はポリイミドの反応溶液をそのままであってもよく、また、該反応溶液を有機溶媒で希釈したものであってもよい。
本発明の液晶配向膜は、上記の液晶配向剤を基板に塗布し焼成して得られる液晶配向膜である。液晶配向剤の基板への塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられるが、生産性の面から工業的にはフレキソ印刷などの転写印刷法が広く用いられており、本発明の液晶配向剤においても好適に用いられる。また、液晶配向剤は細孔径0.1μm~1μmのメンブランフィルタで濾過してから使用することが好ましい。
光配向処理の方法としては公知の手法が適用できる。照射する光の波長としては313nm前後の光が含まれていることが好ましい。この波長の光の照射量が多いほど液晶が垂直から傾く量が大きくなる。
本発明の液晶表示素子は、上記のようにして得られた液晶配向膜を有するものである。一例としては、本発明の液晶配向剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものが挙げられる。液晶配向剤を塗布する基板としては透明性の高いものであれば特に限定されず、ガラス基板などを用いることができる。
また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。液晶配向膜の厚みは特に限定されないが、液晶表示素子の信頼性の観点から、好ましくは5nm~300nm、より好ましくは10nm~100nmである。
装置:Varian NMR System 400 NB (400 MHz)
測定溶媒:CDCl3, DMSO-d6
基準物質:テトラメチルシラン(TMS) (δ0.0 ppm for 1H)
CDCl3 (δ77.0 ppm for 13C)
(E)-3,5-ジアミノベンジル 3-(2-ドデシル-1,3-ジオキソイソインドリン-5-イル)アクリレートの合成
1H-NMR (CDCl3): δ 7.97 (m, 1H), 7.85 (m, 1H), 7.71 (m, 1H), 3.68 (t, J=7.2 Hz, 2H), 1.66 (m, 2H ), 1.28 (m, 18H) 0.87 (t. J=7.0 Hz, 3H).
1H-NMR (CDCl3): δ 9.04 (t, J=2.0 Hz, 1H), 8.62 (d, J=2.0 Hz, 2H), 8.03 (s, 1H), 7.87 (m, 2H), 7.85 (d, J=16.0 Hz, 1H), 6.69 (d, J=16.0 Hz, 1H), 5.46 (s, 2H), 3.69 (t, J=7.4 Hz, 2H) 1.67 (m, 2H), 1.31 (m, 18H), 0.87 (t, J=7.2 Hz).
1H-NMR (CDCl3): δ 7.98 (s, 1H), 7.81 (m, 3H), 6.63 (d, J=16.4 Hz, 1H), 6.16 (d, J=2.0 Hz, 2H), 6.01 (t, J=2.0 Hz, 1H), 5.09 (s, 2H), 3.68 (t, J=7.6 Hz, 2H), 3.63 (s, 4H), 1.67 (m, 2H), 1.28 (m, 18H), 0.87 (t, J=7.0 Hz, 3H).
(E)-3,5-ジアミノベンジル 3-(2-デシル-1,3-ジオキソイソインドリン-5-イル)アクリレートの合成
1H-NMR (CDCl3): δ 7.97 (d, J=1.6 Hz, 1H), 7.85 (dd, J=7.8, 1.6 Hz, 1H), 7.70 (d, J=7.8 Hz, 1H), 3.66 (t, J=7.2 Hz, 2H), 1.66 (m, 2H), 1.28 (m, 14H), 0.87 (t, J=7.0 Hz).
1H-NMR (CDCl3): δ 9.04 (t, J=2.4 Hz, 1H), 8.63 (d, J=2.4 Hz, 2H), 8.03 (s, 1H), 7.86 (m, 3H), 6.69 (d, J=16.0 Hz,1H), 5.46 (s, 2H), 3.69 (t. J=7.2 Hz, 2H), 1.67 (m, 2H), 1.42 (m, 14H), 0.87 (t, J=7.0 Hz, 3H).
1H-NMR (CDCl3): δ 7.98 (s, 1H), 7.81 (m, 3H), 6.63 (d, J=16.4 Hz, 1H), 6.16 (d, J=2.0 Hz, 2H), 6.01 (t, J=2.0 Hz, 1H), 5.09 (s, 2H), 3.66 (m, 6H), 1.67 (m, 2H), 1.28 (m, 14H), 0.87 (t, J=7.0 Hz, 3H).
(E)-3,5-ジアミノベンジル 3-(2-オクチル-1,3-ジオキソイソインドリン-5-イル)アクリレートの合成
1H-NMR (CDCl3): δ 7.97 (dd, J=1.6, 0.8 Hz, 1H), 7.85 (dd, J=7.8, 1.6 Hz, 1H), 7.71 (dd, J=7.8, 0.8 Hz, 1H), 3.66 (t, J=7.2 Hz, 2H), 1.66 (m, 2H), 1.28 (m, 10H), 0.87 (t. J=7.0 Hz, 3H).
1H-NMR (CDCl3): δ 9.04 (t, J=2.0 Hz, 1H), 8.63 (d, J=2.0 Hz, 2H), 8.03 (s, 1H), 7.86 (m, 3H), 6.69 (d, J=16.0 Hz), 5.09 (s, 2H), 3.69 (t, J=7.2 Hz, 2H), 1.67 (t, J=7.2 Hz, 2H) 1.42 (m, 10H), 0.87 (t, J=7.0 Hz, 3H).
1H-NMR (CDCl3): δ 7.98 (s, 1H), 7.81 (m, 3H), 6.63 (d, J=16.0 Hz, 1H), 6.16 (d, J=2.0 Hz, 2H), 6.01 (t, J=2.0 Hz, 1H), 5.09 (s, 2H), 3.68 (t, J=7.2 Hz, 2H), 3.63 (s, 4H), 1.67 (m, 2H), 1.28 (m, 10H), 0.87 (t, J=6.8 Hz, 3H).
(テトラカルボン酸二無水物)
PMDA:ピロメリット酸二無水物
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
p-PDA:p-フェニレンジアミン
PCH:1,3-ジアミノ-4-[4-(ヘプチルシクロへキシル)フェノキシ]ベンゼン
DA1:(E)-3,5-ジアミノベンジル 3-(2-ドデシル-1,3-ジオキソイソインドリン-5-イル)アクリレート
DA2:(E)-3,5-ジアミノベンジル 3-(2-デシル-1,3-ジオキソイソインドリン-5-イル)アクリレート
DA3:(E)-3,5-ジアミノベンジル 3-(2-オクチル-1,3-ジオキソイソインドリン-5-イル)アクリレート
NMP:N-メチル-2-ピロリドン
BC:ブチルセロソルブ
以下の実施例におけるポリアミック酸又はポリイミドの分子量はセンシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)、Shodex社製カラム(KD-803、KD-805)を用い以下のようにして測定した。
カラム温度:50℃
溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約9000,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
DA1(0.607g、1.20mmol)、及びp-PDA(0.303g、2.80mmol)をNMP(9.95g)中で混合し、室温で1時間攪拌して溶解させた後、PMDA(0.846g、3.88mmol)を加え、室温で12時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(11.7G)にNMP(11.7g)、及びBC(5.85g)を加え5時間攪拌することにより6質量%の液晶配向剤(A)を得た。
このポリアミック酸の数平均分子量 は17000、重量平均分子量は41000であった。
DA1(0.809g、1.60mmol)、及びp-PDA(0.26G、2.40mmol)をNMP(10.85g)中で混合し、室温で1時間攪拌して溶解させた後、PMDA(0.846G、3.88mmol)を加え、室温で12時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(12.8g)にNMP(12.8g)、及びBC(6.4g)を加え5時間攪拌することにより6質量%の液晶配向剤(B)を得た。
このポリアミック酸の数平均分子量は18000、重量平均分子量は45000であった。
DA1(0.759g、1.50mmol)、及びp-PDA(0.162g、1.50mmol)をNMP(8.78g)中で混合し、室温で1時間攪拌して溶解させた後、PMDA(0.628g、2.88mmol)を加え、室温で12時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(10.33g)にNMP(10.32g)、及びBC(5.16g)を加え5時間攪拌することにより6質量%の液晶配向剤(C)を得た。
このポリアミック酸の数平均分子量は12000、重量平均分子量は31000であった。
DA1(1.011g、2.0mmol)をNMP(8.13g)中で混合し、室温で1時間攪拌して溶解させた後、PMDA(0.423g、1.94mmol)を加え、室温で12時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(9.56g)にNMP(9.56g)、及びBC(4.78g)を加え5時間攪拌することにより6質量%の液晶配向剤(D)を得た。
このポリアミック酸の数平均分子量は18000、重量平均分子量は79000であった。
DA1(2.275g、4.50mmol)、p-PDA(0.973g、9.0mmol)、及びPCH(0.571g、1.50mmol)をNMP(14.6g)中で混合し、40℃で1時間攪拌して溶解させた後、BODA(2.815g、11.25mmol)、及びNMP(7.28g)を加え、80℃で5時間反応させた。その後、40℃にてCBDA(0.647g、3.30mmol)、及びNMP(7.28g)を加え10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(36.4g)にNMPを加え6質量%に希釈した。このアミック酸溶液に無水酢酸(7.66g、75.0mmol)、及びピリジン(2.37g、30.0mmol)を加え、30分攪拌した後、100℃で3時間反応させた。
得られたポリイミド粉末(E-1)(6.0g)にNMP(74.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(20.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(E)を得た。
DA2(0.716g、1.50mmol)、及びp-PDA(0.162g、1.50mmol)をNMP(8.58g)中で混合し、室温で1時間攪拌して溶解させた後、PMDA(0.635g、2.91mmol)を加え、室温で12時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(10.1g)にNMP(10.1g)、及びBC(5.04g)を加え5時間攪拌することにより6質量%の液晶配向剤(F)を得た。
このポリアミック酸の数平均分子量は14000、重量平均分子量は42000であった。
DA2(0.716g、1.80mmol)、及びp-PDA(0.108g、1.20mmol)をNMP(7.67g)中で混合し、室温で1時間攪拌して溶解させた後、PMDA(0.529g、2.91mmol)を加え、室温で12時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(9.02g)にNMP(9.02g)、及びBC(4.51g)を加え5時間攪拌することにより6質量%の液晶配向剤(G)を得た。
このポリアミック酸の数平均分子量は16000、重量平均分子量は68000であった。
DA2(0.836g、2.10mmol)、及びp-PDA(0.081g、0.90mmol)をNMP(8.19g)中で混合し、室温で1時間攪拌して溶解させた後、PMDA(0.529g、2.91mmol)を加え、室温で12時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(9.64g)にNMP(9.64g)、及びBC(4.82g)を加え5時間攪拌することにより6質量%の液晶配向剤(H)を得た。
このポリアミック酸の数平均分子量は15000、重量平均分子量は59000であった。
DA3(0.787g、2.10mmol)、及びp-PDA(0.081g、0.90mmol)をNMP(7.92g)中で混合し、室温で1時間攪拌して溶解させた後、PMDA(0.529g、2.91mmol)を加え、室温で12時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(9.31g)にNMP(9.31g)、及びBC(4.66g)を加え5時間攪拌することにより6質量%の液晶配向剤(I)を得た。
このポリアミック酸の数平均分子量は13000、重量平均分子量は38000であった。
DA3(0.899g、2.0mmol)をNMP(7.52g)中で混合し、室温で1時間攪拌して溶解させた後、PMDA(0.428g、1.96mmol)を加え、室温で12時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(8.84g)にNMP(8.84g)、及びBC(4.42g)を加え5時間攪拌することにより6質量%の液晶配向剤(J)を得た。
このポリアミック酸の数平均分子量は12000、重量平均分子量は42000であった。
実施例4~13で得られた液晶配向剤(A)~(M)を用いて下記に示すような手順で液晶セルを作製し、下記に示すようにして、液晶の配向性の評価、及びチルト角の測定を行った。
実施例4で得られた液晶配向剤(A)を、ITO膜からなる透明電極付きガラス基板のITO面にスピンコートし、80℃のホットプレートで90秒間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
この基板に対して、照射強度8.0mW/cm-2の313nmの直線偏光UVを0~1000mJ照射した。入射光線の方向は基板法線方向に対して40°傾斜していた。直線偏光UVは高圧水銀ランプの紫外光に313nmのバンドパスフィルターを通した後、313nmの偏光板を通すことで調製した。
上記の基板を2枚用意し、一方の基板の液晶配向膜上に6μmのビーズスペーサーを散布した後、その上からシール剤を印刷した。次いで、2枚の基板の液晶配向面を対向させ、各基板への直線偏光UVの光軸の投影方向が逆平行となるように圧着し、150度で105分かけてシール剤を熱硬化させた。この空セルにネガ形液晶(メルク社製、MLC-6608)を減圧注入法によって注入し、液晶セルを作製した。
液晶セルに対して、25℃において8Vの電圧を印加・解除したときの異常ドメインの有無を偏光顕微鏡により観察し、異常ドメインのない場合を「液晶配向性良好」として評価した。上記で製造した液晶セルは電圧無印加の状態で良好な垂直配向性を示し、電圧印加時における液晶配向性も良好であった。
液晶セルのプレチルト角の測定はAxo Metrix社製の「Axo Scan」を用いてミューラーマトリックス法により測定した。
これらから、本発明のジアミン化合物は垂直配向方式の液晶表示素子用の液晶配向膜に利用可能であり、また光配向法で使用する液晶配向膜においても有用な化合物であることがわかる。
δ1H-NMR (CDCl3): δ 8.08 (s, 1H,), 7.95 (d, 1H, J=8.0 Hz), 7.87 (d, 1H, J=8.0 Hz), 7.79 (d, 1H, J=16.0 Hz), 7.31 (m, 2H), 7.01 (m, 2H), 6.66 (d, 1H, J=16.0 Hz), 6.16 (d, 2H, J=2.0 Hz), 6.01 (t, 1H, J=2.0 Hz), 5.09 (s, 2H), 4.00 (t, 2H, J=6.4 Hz), 3.64 (br-s, 4H), 1.79 (m, 2H), 1.50 (m, 2H), 0.99 (t, 3H, J=7.6 Hz).
1H-NMR (CDCl3): δ 8.75 (d, 1H, J=16.0 Hz), 7.89 (d, 1H, J=8.0 Hz), 7.84 (d, 1H, J=8.0 Hz), 7.69 (t, 1H, J=7.6 Hz), 6.67 (d, 1H, J=16.0 Hz), 6.20 (d, 2H, J=2.4 Hz),
6.00 (t, 1H, J=2.0 Hz), 5.11 (s, 2H), 3.68 (t, 2H, J=7.2 Hz), 3.64 (br-s, 4H), 1.65 (m, 2H), 1.30 (m, 14H), 0.87 (t, 3H, J=6.8 Hz).
1H-NMR (CDCl3): δ 8.03 (d, 1H, J=16.0 Hz), 7.95 (s, 1H), 7.36 (s, 1H), 6.65 (d, 1H, J=16.0 Hz), 6.16 (d, 2H, J=2.0 Hz), 6.00 (t, 1H, J=2.0 Hz), 5.08 (s, 2H), 4.02 (s, 3H), 3.65 (t, 2H, J=7.2 Hz), 3.63 (m, 4H), 1.65 (m, 2H), 1.30 (m, 14H), 0.87 (t, 3H, J=6.8 Hz).
DA-4(1.21g、 2.5mmol)をNMP(9.6g)中で混合し、室温で1時間攪拌して溶解させた後、CBDA(0.48g、2.5mmol)を加え、室温で12時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(11.3g)にNMP(5.7g)およびBC(11.3g)を加え5時間攪拌することにより6質量%の液晶配向剤(K)を得た。このポリアミック酸の数平均分子量は11000、重量平均分子量は23000であった。
DA-5(1.02g、 2.0mmol)をNMP(7.93g)中で混合し、室温で1時間攪拌して溶解させた後、CBDA(0.38g、2.0mmol)を加え、室温で12時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(9.33g)にNMP(4.7g)およびBC(9.3g)を加え5時間攪拌することにより6質量%の液晶配向剤(L)を得た。このポリアミック酸の数平均分子量は14000、重量平均分子量は32000であった。
DA-6(0.96g、 2.0mmol)をNMP(7.60g)中で混合し、室温で1時間攪拌して溶解させた後、CBDA(0.38g、2.0mmol)を加え、室温で12時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(8.93g)にNMP(4.5g)およびBC(8.9g)を加え5時間攪拌することにより6質量%の液晶配向剤(M)を得た。このポリアミック酸の数平均分子量は16000、重量平均分子量は49000であった。
実施例27~29で得られた液晶配向剤(A)~(M)を用いて、上記実施例14~23と同様にして液晶セルを作製し、下記に示すようにして、液晶の配向性の評価、及びチルト角の測定を行った。
なお、上記液晶配向剤(K)~(M)の製造で使用したテトラカルボン酸二無水物、及びジアミンの各組成の比率を以下の表10に示す。また、上記液晶配向剤(K)~(M)を使用して製造した液晶セルの評価結果を以下の表11中に示す。
また、本発明のジアミンは、液晶配向剤の製造に用いられる、ポリアミック酸やポリイミドの原料として使用される。
なお、2010年7月5日に出願された日本特許出願2010-153074号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (10)
- 下記式[1]で表されるジアミンを含有する下記式[2]で表されるジアミン成分と下記式[3]で表されるテトラカルボン酸二無水物成分とを重合反応させることにより得られるポリアミック酸、及び該ポリアミック酸を脱水閉環して得られるポリイミドからなる群から選ばれる少なくとも一種の重合体を含有することを特徴とする液晶配向剤。
- 前記式[2]で表されるジアミン成分が、前記式[1]で表されるジアミンを30~100モル%含有する、請求項1に記載の液晶配向剤。
- 請求項1~3のいずれか1項に記載の液晶配向剤を塗布し焼成して得られる液晶配向膜。
- 請求項4に記載の液晶配向膜を有する液晶表示素子。
- 前記式[1]で表されるジアミンが、(E)-3,5-ジアミノベンジル 3-(2-ドデシル-1,3-ジオキソイソインドリン-5-イル)アクリレート、(E)-3,5-ジアミノベンジル 3-(2-デシル-1,3-ジオキソイソインドリン-5-イル)アクリレート、(E)-3,5-ジアミノベンジル 3-(2-オクチル-1,3-ジオキソイソインドリン-5-イル)アクリレート、(E)-3,5-ジアミノベンジル 3-(2-(4-ブトキシフェニル)-1,3-ジオキソイソインドリン-5-イル)アクリレート、(E)-3,5-ジアミノベンジル 3-(2-デシル-1,3-ジオキソイソインドリン-4-イル)アクリレート、又は(E)-3,5-ジアミノベンジル 3-(2-デシル-6-メトキシ-1,3-ジオキソイソインドリン-5-イル)アクリレートである請求項6に記載のジアミン。
- 請求項9に記載のポリアミック酸を脱水閉環して得られるポリイミド。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137002931A KR101828105B1 (ko) | 2010-07-05 | 2011-07-05 | 액정 배향제 및 그것을 사용한 액정 표시 소자 |
CN201180042445.0A CN103080190B (zh) | 2010-07-05 | 2011-07-05 | 液晶取向剂及使用该液晶取向剂的液晶显示元件 |
JP2012523886A JP5803915B2 (ja) | 2010-07-05 | 2011-07-05 | 液晶配向剤及びそれを用いた液晶表示素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-153074 | 2010-07-05 | ||
JP2010153074 | 2010-07-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012005261A1 true WO2012005261A1 (ja) | 2012-01-12 |
Family
ID=45441239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/065395 WO2012005261A1 (ja) | 2010-07-05 | 2011-07-05 | 液晶配向剤及びそれを用いた液晶表示素子 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5803915B2 (ja) |
KR (1) | KR101828105B1 (ja) |
CN (1) | CN103080190B (ja) |
TW (1) | TWI512010B (ja) |
WO (1) | WO2012005261A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102603536A (zh) * | 2012-02-23 | 2012-07-25 | 绍兴贝斯美化工有限公司 | 一种3-硝基邻苯二甲酸的合成方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201411044D0 (en) * | 2014-06-20 | 2014-08-06 | Dupont Teijin Films Us Ltd | Copolyestermides and films made therefrom |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008117759A1 (ja) * | 2007-03-23 | 2008-10-02 | Nissan Chemical Industries, Ltd. | ジアミン化合物、ポリアミック酸、ポリイミド及び液晶配向処理剤 |
JP2009520702A (ja) * | 2005-12-23 | 2009-05-28 | ロリク アーゲー | 光架橋性材料 |
JP2009251439A (ja) * | 2008-04-09 | 2009-10-29 | Jsr Corp | 垂直配向型液晶配向膜および垂直配向型液晶表示素子 |
JP2010002880A (ja) * | 2008-03-18 | 2010-01-07 | Jsr Corp | 液晶配向剤および液晶表示素子 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1261659B1 (en) * | 2000-01-24 | 2004-10-06 | Rolic AG | Photoactive polyimides, polyamide acids or esters with side chain photocrosslinkable groups |
EP1801097A1 (en) * | 2005-12-23 | 2007-06-27 | Rolic AG | Photocrosslinkable materials |
CN101990650B (zh) * | 2008-04-28 | 2013-05-01 | Jsr株式会社 | 液晶取向剂和液晶取向膜的形成方法 |
-
2011
- 2011-07-05 CN CN201180042445.0A patent/CN103080190B/zh active Active
- 2011-07-05 JP JP2012523886A patent/JP5803915B2/ja active Active
- 2011-07-05 TW TW100123674A patent/TWI512010B/zh active
- 2011-07-05 KR KR1020137002931A patent/KR101828105B1/ko active IP Right Grant
- 2011-07-05 WO PCT/JP2011/065395 patent/WO2012005261A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009520702A (ja) * | 2005-12-23 | 2009-05-28 | ロリク アーゲー | 光架橋性材料 |
WO2008117759A1 (ja) * | 2007-03-23 | 2008-10-02 | Nissan Chemical Industries, Ltd. | ジアミン化合物、ポリアミック酸、ポリイミド及び液晶配向処理剤 |
JP2010002880A (ja) * | 2008-03-18 | 2010-01-07 | Jsr Corp | 液晶配向剤および液晶表示素子 |
JP2009251439A (ja) * | 2008-04-09 | 2009-10-29 | Jsr Corp | 垂直配向型液晶配向膜および垂直配向型液晶表示素子 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102603536A (zh) * | 2012-02-23 | 2012-07-25 | 绍兴贝斯美化工有限公司 | 一种3-硝基邻苯二甲酸的合成方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201206996A (en) | 2012-02-16 |
KR101828105B1 (ko) | 2018-02-09 |
KR20130124294A (ko) | 2013-11-13 |
CN103080190A (zh) | 2013-05-01 |
JP5803915B2 (ja) | 2015-11-04 |
TWI512010B (zh) | 2015-12-11 |
CN103080190B (zh) | 2015-04-01 |
JPWO2012005261A1 (ja) | 2013-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5035517B2 (ja) | 液晶配向剤およびそれを用いた液晶表示素子 | |
JP5751171B2 (ja) | 液晶配向処理剤及びそれを用いた液晶表示素子 | |
WO2016153064A1 (ja) | ジアミンおよびその利用 | |
JP5660160B2 (ja) | ジアミン化合物 | |
JPWO2004052962A1 (ja) | 新規なジアミノベンゼン誘導体、それを用いたポリイミド前駆体およびポリイミド、並びに液晶配向処理剤 | |
US20060024452A1 (en) | Aligning agent for liquid crystal and liquid-crystal display element | |
KR20090123898A (ko) | 디아민 화합물, 폴리아믹산, 폴리이미드 및 액정 배향 처리제 | |
JP5332204B2 (ja) | ポリアミック酸、ポリイミド及びその製造方法 | |
KR20090123897A (ko) | 디아민 화합물, 폴리아믹산, 폴리이미드 및 액정 배향 처리제 | |
JP6347298B2 (ja) | ジアミン化合物及びその製造方法 | |
CN109791334B (zh) | 液晶取向剂组合物、使用其制备液晶取向膜的方法和使用其的液晶取向膜 | |
JP2012012493A (ja) | 液晶配向剤及びそれを用いた液晶表示素子 | |
KR20180065776A (ko) | 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 및 이를 이용한 액정 배향막 | |
JP6361168B2 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子、液晶表示素子の製造方法、重合体及び化合物 | |
JP2020079812A (ja) | 液晶配向膜の製造方法および液晶素子 | |
JP5904120B2 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
JP5803915B2 (ja) | 液晶配向剤及びそれを用いた液晶表示素子 | |
US11512255B2 (en) | Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same | |
WO2013094646A1 (ja) | ビス(ヒドロキシアミド)型酸二無水物、その製造法及びポリイミド | |
CN110191938B (zh) | 液晶取向剂组合物、使用其制备液晶取向膜的方法和使用其的液晶取向膜 | |
JP5939157B2 (ja) | 液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子 | |
JP7102541B2 (ja) | 液晶配向剤組成物、それを用いた液晶配向膜の製造方法、それを用いた液晶配向膜および液晶表示素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180042445.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11803595 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012523886 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137002931 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11803595 Country of ref document: EP Kind code of ref document: A1 |