WO2012004848A1 - 充電制御装置 - Google Patents

充電制御装置 Download PDF

Info

Publication number
WO2012004848A1
WO2012004848A1 PCT/JP2010/061395 JP2010061395W WO2012004848A1 WO 2012004848 A1 WO2012004848 A1 WO 2012004848A1 JP 2010061395 W JP2010061395 W JP 2010061395W WO 2012004848 A1 WO2012004848 A1 WO 2012004848A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
voltage
vehicle
relay
control device
Prior art date
Application number
PCT/JP2010/061395
Other languages
English (en)
French (fr)
Inventor
松木 務
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/141,454 priority Critical patent/US8779719B2/en
Priority to PCT/JP2010/061395 priority patent/WO2012004848A1/ja
Priority to CN201080003869.1A priority patent/CN102439815B/zh
Priority to EP10838392.8A priority patent/EP2592711A4/en
Priority to JP2011525330A priority patent/JP5327328B2/ja
Publication of WO2012004848A1 publication Critical patent/WO2012004848A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a charging control device, and more particularly to a charging control device that is mounted on a vehicle connected to an external charging device by a charging connector and controls charging.
  • a hybrid vehicle is a vehicle equipped with an internal combustion engine as a power source together with an electric motor
  • a fuel cell vehicle is a vehicle equipped with a fuel cell as a DC power source for driving the vehicle.
  • a vehicle that can charge a power storage device for driving a vehicle mounted on the vehicle from a power source of a general household is known.
  • a power outlet provided in a house and a charging port provided in a vehicle with a charging cable electric power is supplied from the power supply of a general household to the power storage device.
  • a vehicle that can charge the power storage device mounted on the vehicle from a power source outside the vehicle is also referred to as a “plug-in vehicle”.
  • Patent Document 1 discloses a technique related to charging of such a plug-in vehicle.
  • This plug-in vehicle can communicate with a charging station or the like at the time of charging using a pilot signal, and can detect disconnection of a control line that communicates the pilot signal.
  • JP 2009-71989 JP-A-1-107619 JP 7-33033 A Japanese Patent Laid-Open No. 9-149544 Japanese Patent Laid-Open No. 10-38298 Japanese Patent Laid-Open No. 11-66993 JP 2002-153086 A JP 2007-26741 A
  • the standard for plug-in vehicles is established in Japan by the Japan Electric Vehicle Association Standard (JEVS) “General Requirements for Conductive Charging Systems for Electric Vehicles”.
  • JEVS Japan Electric Vehicle Association Standard
  • the above-mentioned Japanese Patent Application Laid-Open No. 2009-71989 also uses a control pilot defined in “General Requirements for Electric Vehicle Conductive Charging System”.
  • a control pilot is defined as a control line that connects an EVSE (Electric Vehicle Supply Equipment) control circuit that supplies power to the vehicle from the on-site wiring and the vehicle grounding unit via a control circuit on the vehicle side. Based on the pilot signal communicated via the line, the connection state of the charging cable, the availability of power supply from the power source to the vehicle, the rated current of the EVSE, and the like are determined.
  • EVSE Electric Vehicle Supply Equipment
  • the connection state of the charging cable the availability of power supply from the power source to the vehicle, the rated current of the EVSE, and the like are determined.
  • charging modes modes 2 and 3 using a control pilot are described.
  • the “electric vehicle conductive charging system general requirements” also describes a charging mode (mode 1) that does not use a control pilot.
  • the charging stand compatible with modes 2 and 3 sets the relay of the charging stand to the off state when the connector is connected to the vehicle.
  • the vehicle determines that the relay of the charging station is not welded.
  • the charging stand is manufactured by a plurality of manufacturers, the presence / absence of the discharge resistance, the resistance value of the discharge resistance, and the way in which the voltage drops vary, so it is difficult to set the waiting time uniformly.
  • An object of the present invention is to provide a charge control device capable of accurately determining a failure of a charging station.
  • the present invention is a charge control device that is mounted on a vehicle connected to an external charging device by a charging connector and performs control related to charging, and the charging control device detects a voltage applied to the charging connector. Based on a change in voltage detected by the detection unit and the voltage detection unit within a predetermined period after the charging connector is connected to the vehicle, a change in voltage applied to the charging connector after a predetermined period has elapsed is predicted. An abnormality that determines that a failure has occurred in the external charging device when the degree of deviation between the change in the voltage detected by the voltage detector after the lapse of the predetermined period and the predicted change in the voltage is greater than a predetermined value A determination unit.
  • the external charging device includes a relay that switches between applying and interrupting a charging voltage with respect to the charging connector, and a discharging device that is provided closer to the charging connector than the relay and discharges the residual charge of the charging connector.
  • the failure determined by the abnormality determination unit includes a relay failure.
  • the discharge device includes a discharge resistor.
  • the abnormality determination unit obtains a plurality of detection voltages from the voltage detection unit at a plurality of times at different times within a predetermined period, estimates a discharge curve due to the discharge resistance based on the plurality of detection voltages, and the voltage after a predetermined period has elapsed.
  • the value indicating the degree of deviation between the detection voltage acquired from the detection unit and the corresponding voltage on the discharge curve is greater than the threshold value, it is determined that a failure has occurred in the relay.
  • the external charging device communicates with the vehicle in the first charging mode in which a voltage is applied to the charging connector according to an instruction to start charging by the operator, and when the communication result satisfies a predetermined condition, This corresponds to the second charging mode in which a voltage is applied.
  • the external charging device starts communication after setting the relay in a disconnected state.
  • the vehicle is compatible with the second charging mode, and the abnormality determination unit determines the failure of the relay based on the voltage of the charging connector before the start of communication.
  • the present invention is a vehicle including any one of the charge control devices described above.
  • the present invention it is possible to accurately determine the failure of the charging station, and it is possible to reduce the prohibition of charging due to erroneous determination.
  • FIG. 1 is a block diagram showing a configuration of a hybrid vehicle 1 according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration of external charging device 100 in FIG. It is the wave form diagram which showed an example of the change of the voltage VIN until charge operation is started.
  • 5 is a flowchart for illustrating a welding determination operation of relay 116 executed by control device 30. It is the figure which showed an example of the discharge curve of the voltage VIN.
  • FIG. 1 is a block diagram showing a configuration of a hybrid vehicle 1 according to an embodiment of the present invention.
  • hybrid vehicle 1 includes front wheels 20R and 20L, rear wheels 22R and 22L, an engine 40, a planetary gear PG, a differential gear DG, and gears 4 and 6.
  • Hybrid vehicle 1 further includes a battery B, a boosting unit 20 that boosts the DC power output from battery B, and an inverter 14 that exchanges DC power with boosting unit 20.
  • Hybrid vehicle 1 further includes a motor generator MG1 that generates power by receiving the power of engine 40 via planetary gear PG, and a motor generator MG2 whose rotating shaft is connected to planetary gear PG.
  • Inverter 14 is connected to motor generators MG1 and MG2 and performs conversion between AC power and DC power from the booster circuit.
  • Planetary gear PG includes a sun gear, a ring gear, a pinion gear that meshes with both the sun gear and the ring gear, and a planetary carrier that rotatably supports the pinion gear around the sun gear.
  • Planetary gear PG has first to third rotation shafts.
  • the first rotating shaft is a rotating shaft of a planetary carrier connected to the engine 40.
  • the second rotating shaft is a rotating shaft of a sun gear connected to motor generator MG1.
  • the third rotating shaft is a rotating shaft of a ring gear connected to motor generator MG2.
  • the gear 4 is attached to the third rotating shaft, and the gear 4 drives the gear 6 to transmit mechanical power to the differential gear DG.
  • the differential gear DG transmits the mechanical power received from the gear 6 to the front wheels 20R and 20L, and transmits the rotational force of the front wheels 20R and 20L to the third rotating shaft of the planetary gear PG via the gears 6 and 4.
  • Planetary gear PG plays a role of dividing power between engine 40 and motor generators MG1, MG2 (role as a power split mechanism). That is, the planetary gear PG determines the rotation of the remaining one rotation shaft according to the rotation of the two rotation shafts among the three rotation shafts. Therefore, the vehicle speed is controlled by controlling the power generation amount of the motor generator MG1 and driving the motor generator MG2 while operating the engine 40 in the most efficient region, thereby realizing an overall energy efficient vehicle. Yes.
  • the battery B which is a direct current power source includes, for example, a nickel metal hydride secondary battery or a lithium ion secondary battery.
  • the battery B supplies DC power to the boosting unit 20 and is charged by DC power from the boosting unit 20.
  • the boosting unit 20 boosts the DC voltage received from the battery B, and supplies the boosted DC voltage to the inverter 14.
  • the inverter 14 converts the supplied DC voltage into an AC voltage, and drives and controls the motor generator MG1 when the engine is started. Further, after the engine is started, AC power generated by motor generator MG1 is converted to DC by inverter 14 and converted to a voltage suitable for charging battery B by boosting unit 20 to charge battery B.
  • the inverter 14 drives the motor generator MG2.
  • Motor generator MG2 assists engine 40 to drive front wheels 20R and 20L.
  • motor generator MG2 performs a regenerative operation and converts the rotational energy of the wheels into electric energy.
  • the obtained electric energy is returned to the battery B via the inverter 14 and the booster unit 20.
  • Battery B is an assembled battery and includes a plurality of battery units BU0 to BUn connected in series.
  • System relays SR1 and SR2 are provided between boost unit 20 and battery B, and the high voltage is cut off when the vehicle is not in operation.
  • the hybrid vehicle 1 is an input unit that receives an acceleration request instruction from the driver, and further includes an accelerator sensor 9 that detects the position of the accelerator pedal, a current sensor 8 that detects the current of the battery B, and a voltage of the battery B. And a control device 30 for controlling the engine 40, the inverter 14 and the boosting unit 20 according to the accelerator opening Acc from the accelerator sensor 9, the current IB from the current sensor 8 and the voltage VB from the voltage sensor 10. including.
  • Current sensor 8 and voltage sensor 10 detect current IB and voltage VB of battery B and transmit them to control device 30.
  • Hybrid vehicle 1 further includes an inlet 16 for connecting connector 104 provided at the end of charging cable 102 extending from external charging device 100, and a charger that receives AC power from external charging device 100 via inlet 16. 12.
  • the charger 12 is connected to the battery B and supplies DC power for charging to the battery B.
  • the control device 30 detects the connection confirmation element 106 of the connector 104 and recognizes that the connector 104 is connected to the inlet 16.
  • the coupling confirmation element 106 may be of any type, for example, a resistor or a magnet built in the plug side. Alternatively, a push button switch that is pushed in when the plug is inserted may be provided on the inlet 16 side.
  • Hybrid vehicle 1 further includes a voltage sensor 18 that detects voltage VIN applied to inlet 16 and a relay 17 that switches conduction / non-conduction of the electrical connection path between inlet 16 and charger 12.
  • the control device 30 receives detection values relating to current and voltage from the current sensor 8 and the voltage sensor 10 installed in the battery B, and indicates a state quantity indicating the charging state of the battery B (hereinafter referred to as “SOC (State Of Charge)”. Is also calculated.).
  • SOC State Of Charge
  • control apparatus 30 controls the charger 12 and the relay 17 in order to charge the battery B based on these information.
  • FIG. 2 is a circuit diagram showing a configuration of external charging device 100 of FIG.
  • control device 30 provided in vehicle 1 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer (not shown), and inputs signals from each sensor and controls each device. While outputting a command, the vehicle 1 and each device are controlled. Note that these controls are not limited to software processing, and can be constructed and processed by dedicated hardware (electronic circuit).
  • Control device 30 receives cable connection signal CNCT and pilot signal CPLT from charging cable 102 via vehicle inlet 16. Control device 30 receives voltage detection value VIN of received power from voltage sensor 18.
  • the charging cable 102 has one end connected to the external charging device 100 and the other end provided with a connector 104 for connection to the vehicle inlet 16.
  • Charging cable 102 includes a power line pair for transmitting charging power to a vehicle battery, a ground line, and a signal line for transmitting and receiving pilot signal CPLT.
  • the external charging device 100 includes a discharge resistor 120 for discharging the residual charge of the power line pair, a smoothing capacitor 118 connected between the power line pair, a relay 116, an overcurrent circuit breaker 114, a leakage breaker 112, A relay control unit 122 and an operation switch 124 are included.
  • the earth leakage breaker 112, the overcurrent breaker 114, and the relay 116 are provided in series on a path connecting the external power source and the power line pair. When any of earth leakage circuit breaker 112, overcurrent circuit breaker 114, and relay 116 is opened, the power of the external power source is electrically cut off from connector 104.
  • the relay 116 is controlled to open and close based on a command from the relay control unit 122.
  • the relay control unit outputs an opening / closing command for the relay 116 in accordance with either the pilot signal CPLT or the operation switch 124.
  • a coupling confirmation element 106 for detecting the connection of the charging connector 104 is provided inside the charging connector 104.
  • the level of signal CNCT changes according to the connection state between vehicle inlet 16 and charging connector 104.
  • Control device 30 determines whether or not charging connector 104 is connected to vehicle inlet 16 based on a change in the level of signal CNCT.
  • Relay control unit 122 outputs pilot signal CPLT to control device 30 via charging connector 104 and vehicle inlet 16.
  • the pilot signal CPLT is a signal for notifying the rated current of the charging cable 102 from the external charging device 100 to the control device 30.
  • Pilot signal CPLT is also used as a signal for remotely operating relay 116 from control device 30 based on the potential of pilot signal CPLT operated by control device 30.
  • Relay control unit 122 controls relay 116 based on the potential change of pilot signal CPLT. That is, pilot signal CPLT is exchanged between control device 30 and relay control unit 122.
  • FIG. 3 is a waveform diagram showing an example of a change in voltage VIN until the charging operation is started. Referring to FIGS. 2 and 3, it is assumed that an operator first turns on the operation switch of external charging device 100 at time t1, and then performs an operation of connecting the connector to the vehicle at time t2.
  • external charging device 100 does not know whether the connected vehicle is a vehicle corresponding to mode 1 or a vehicle corresponding to mode 3. Although depending on the specifications of the external charging device 100, it is also assumed that a voltage is applied to the connector at the same time as the operation switch 124 is turned on.
  • the voltage sensor 18 detects the voltage VIN, so that the waveform in FIG. 3 rises at time t2.
  • the control device 30 on the vehicle side determines whether or not the relay 116 of the external charging device 100 is welded.
  • the value of the discharge resistor 120 and the capacitance value of the capacitor 118 vary depending on the manufacturer of the external charging device 100. Therefore, the discharge curve at times t3 to t4 is not uniform.
  • control device 30 estimates what discharge curve the voltage VIN value is from the first plurality of sampling values, and whether or not the subsequent sampling value of the voltage VIN changes along the estimated discharge curve. Therefore, it is determined that the relay 116 is normally disconnected.
  • relay 116 When it is determined that relay 116 is normal (no welding has occurred), communication is performed using pilot signal CPLT from time t4 to time t5. As a result, relay 17 and relay 116 are turned on at time t5. And the voltage VIN is reapplied to start charging the battery B.
  • FIG. 4 is a flowchart for explaining the welding determination operation of the relay 116 executed by the control device 30.
  • the process of this flowchart is a process called from a predetermined main routine.
  • the processing of this flowchart is executed after the processing for transmitting a command to shut off relay 116 by pilot signal CPLT from control device 30 to relay control portion 122 is executed in the main routine.
  • FIG. 5 is a diagram showing an example of a discharge curve of the voltage VIN.
  • variable t is set to zero in step S1.
  • step S5 the voltage value VIN sampled first at time t1 becomes V (0).
  • step S3 the variable t is incremented. Further, in step S4, it is determined whether or not voltage value VIN is smaller than threshold value V ⁇ . If the voltage value VIN is smaller than the threshold value V ⁇ , the process proceeds to step S6. On the other hand, if the voltage value VIN is not smaller than the threshold value V ⁇ , the process proceeds to step S5. In step S5, it is determined whether or not a predetermined timeout time has elapsed. If there is no timeout in step S5, the process of step S4 is executed again. On the other hand, if it is time out in step S5, the process proceeds to step S14.
  • step S6 the voltage value VIN at that time is stored as data V (t). Since voltage value VIN is lower than threshold value V ⁇ at time t3 in FIG. 5, it is stored as data V (1).
  • step S7 it is determined whether or not the change in the voltage value VIN is in the direction in which the voltage decreases. Specifically, it is determined whether or not V (t ⁇ 1) ⁇ V (t) is larger than threshold value ⁇ V. If V (t ⁇ 1) ⁇ V (t)> ⁇ V does not hold in step S7, the processes in steps S4 and S6 are performed again, and V (t) once stored becomes a newly sampled value. Rewritten.
  • step S7 If V (t ⁇ 1) ⁇ V (t)> ⁇ V is satisfied in step S7, the process proceeds to step S8.
  • step S8 it is determined whether or not voltage value VIN is smaller than threshold value V ⁇ . As shown in FIG. 5, the threshold value V ⁇ is a value smaller than the threshold value V ⁇ and close to zero.
  • step S9 If the variable t has not reached 6 in step S9, the processes in and after step S3 are repeated. On the other hand, if the variable t is 6 in step S9, the process proceeds to step S10.
  • step S10 the following approximate expression is completed by the least square method or the like using the three data V (1), V (2), and V (3).
  • a, ⁇ , and b are constants
  • exp () is an exponential function of the base e of the natural logarithm.
  • V ′ (t) a * V (1) * exp ( ⁇ * t) + b (1)
  • the method for determining the degree of divergence between the approximate expression and the acquired data can be variously changed. For example, the difference between the approximate expression and the acquired data may be simply compared with the determination threshold value.
  • step S12 it is determined that the relay 116 is normal (no welding), and charging is permitted in step S13.
  • step S14 it is determined that the relay 116 is abnormal (with welding), and charging is prohibited in step S15.
  • step S13 or step S15 When the process of step S13 or step S15 is completed, the process is returned to the main routine in step S16.
  • the voltage value VIN is determined by sampling six points, but the number of samplings may be increased or decreased. Further, although the approximate expression (1) is completed from the three points of data, the approximate expression (1) may be completed using more data.
  • the charging control device is a charging control device that is mounted on vehicle 1 connected to external charging device 100 by charging connector 104 and performs control related to charging.
  • the charging control device has a predetermined voltage sensor 18 that detects a voltage applied to the charging connector 104 and a voltage change detected by the voltage sensor 18 within a predetermined period after the charging connector 104 is connected to the vehicle.
  • a change in the voltage applied to the charging connector 104 after the lapse of the period is predicted, and the degree of deviation between the change in the voltage detected by the voltage sensor 18 after the lapse of the predetermined period and the predicted change in voltage is greater than a predetermined value. Is larger, the control device 30 determines that a failure has occurred in the external charging device.
  • the external charging device includes a relay 116 that switches between applying and interrupting a charging voltage with respect to the charging connector 104, and a residual charge of the charging connector 104 (residual charge of the capacitor 118) provided closer to the charging connector than the relay 116.
  • a discharge device discharge resistor 120.
  • the failure determined by the control device 30 includes a failure of the relay 116.
  • the discharge device includes a discharge resistor 120.
  • the control device 30 receives a plurality of detected voltages (for example, V (1) and V (2 in FIG. 5) from the voltage sensor 18 at a plurality of time points (for example, times t3, t4, and t5 in FIG. 5) at different times within a predetermined period. ), V (3)), a discharge curve by the discharge resistor 120 is estimated based on a plurality of detected voltages, and the detected voltage (for example, V (4), FIG. If the value indicating the difference between V (5), V (6)) and the corresponding voltage on the discharge curve is greater than the threshold value (NO in step S11 in FIG. 4), a failure has occurred in relay 116.
  • the external charging device 100 includes a first charging mode (mode 1 established in JEVS) in which a voltage is applied to the charging connector 104 in response to an operator's charging start instruction (operation switch ON), This corresponds to the second charging mode (mode 2 or 3 established by JEVS) in which the communication is performed with the vehicle 1 and the voltage is applied to the charging connector 104 when the communication result satisfies a predetermined condition.
  • mode 1 established in JEVS
  • mode 2 or 3 established by JEVS
  • external charging apparatus 100 starts communication after relay 116 is turned off.
  • control device 30 determines failure of relay 116 based on the voltage of charging connector 16 between times t3 and t4 before the start of communication between times t4 and t5.
  • the voltage is continuously detected after a certain period of time by the first several acquired voltages. If the subsequent acquired voltage asymptotically approximates the obtained approximate expression, it is determined that no relay welding has occurred. Thereby, even if the connector is connected to the vehicle in a state where a high voltage remains in the charging connector by the operation of the operator, it is possible to prevent the vehicle from erroneously determining that the charging stand has failed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 充電コネクタ(104)によって外部充電装置(100)に接続される車両(1)に搭載され、充電に関する制御を行なう充電制御装置であって、充電制御装置は、充電コネクタ(104)に印加される電圧を検出する電圧センサ(18)と、充電コネクタ(104)が車両に接続されてから後の所定期間内の電圧センサ(18)で検出した電圧の変化に基づいて所定期間が経過した後の充電コネクタ(104)に印加される電圧の変化を予測し、所定期間が経過した後の電圧センサ(18)で検出した電圧の変化と予測した電圧の変化との乖離度合いが所定値よりも大きい場合には外部充電装置に故障が発生していると判断する制御装置(30)とを備える。

Description

充電制御装置
 この発明は、充電制御装置に関し、特に、充電コネクタによって外部充電装置に接続される車両に搭載され、充電に関する制御を行なう充電制御装置に関する。
 環境に配慮した車両として、電気自動車やハイブリッド車、燃料電池車などが近年注目されている。これらの車両は、走行駆動力を発生する電動機と、その電動機に供給される電力を蓄える蓄電装置とを搭載する。ハイブリッド車は、電動機とともに内燃機関をさらに動力源として搭載した車両であり、燃料電池車は、車両駆動用の直流電源として燃料電池を搭載した車両である。
 このような車両において、車両に搭載された車両駆動用の蓄電装置を一般家庭の電源から充電可能な車両が知られている。たとえば、家屋に設けられた電源コンセントと車両に設けられた充電口とを充電ケーブルで接続することにより、一般家庭の電源から蓄電装置へ電力が供給される。なお、以下では、このように車両外部の電源から車両に搭載された蓄電装置を充電可能な車両を「プラグイン車」とも称する。
 特開2009-71989号公報(特許文献1)は、このようなプラグイン車の充電に関する技術を開示する。このプラグイン車は、パイロット信号を用いて充電時に充電スタンド等と通信を行ない、また、このパイロット信号を通信する制御線の断線を検出することが可能である。
特開2009-71989号公報 特開平1-107619号公報 特開平7-33033号公報 特開平9-149544号公報 特開平10-38298号公報 特開平11-66993号公報 特開2002-153086号公報 特開2007-26741号公報
 プラグイン車の規格は、日本においては日本電動車両協会規格(JEVS)「電気自動車用コンダクティブ充電システム一般要求事項」にて制定されている。上記の特開2009-71989号公報も、「電気自動車用コンダクティブ充電システム一般要求事項」において定められているコントロールパイロットを使用するものである。
 コントロールパイロットは、構内配線から車両へ電力を供給するEVSE(Electric Vehicle Supply Equipment)の制御回路と車両の接地部とを車両側の制御回路を介して接続する制御線と定義されており、この制御線を介して通信されるパイロット信号に基づいて、充電ケーブルの接続状態や電源から車両への電力供給の可否、EVSEの定格電流などが判断される。「電気自動車用コンダクティブ充電システム一般要求事項」には、コントロールパイロットを使用する充電モード(モード2,3)が記載されている。
 ところで、「電気自動車用コンダクティブ充電システム一般要求事項」には、コントロールパイロットを使用しない充電モード(モード1)についても記載されている。
 モード1に対応している充電スタンドは、充電スタンドに設けられているスタートボタンを作業者が押すと、充電プラグに充電電圧の印加が開始される。一方、モード2,3に対応している充電スタンドは、充電コネクタが車両側充電インレットに接続されると、通信が開始され、充電準備が確認された場合に充電電圧の印加が開始される。
 電気自動車やプラグイン車は、様々の種類のものが登場してくる可能性がある。そこで、充電スタンドもモード1とモード2,3との両方に対応するものが必要となる可能性がある。
 モード1とモード2,3との両方に対応する充電スタンドにおいて、モード2,3に対応する車両を充電する場合に、充電スタンドのスタートボタンを押すタイミングによっては、車両が充電スタンドの故障を誤検出する可能性がある。
 モード2,3に対応する車両は、充電スタンドのリレーの溶着の有無を判断して、リレーの溶着が発生している場合には、充電を行なわないことが望ましい。このためモード2,3対応の充電スタンドは、コネクタが車両に接続された場合に充電スタンドのリレーをオフ状態に設定する。そして車両はコネクタが接続された状態で充電電圧が印加されていないことを確認すると、充電スタンドのリレーが溶着していないと判断する。
 しかし、このような場合にモード1とモード2,3との両方に対応する充電スタンドの場合には、スタートボタンを押してから直ぐにコネクタ接続を行なうと、コネクタに電圧が残っており車両は充電スタンドのリレーが溶着していると誤判定をする恐れがある。
 時間をしばらく待ってから判定を行なうことも考えられるが、充電開始までに時間がかかってしまう。また充電スタンドは複数のメーカーが製造しており、放電抵抗の有無や放電抵抗の抵抗値も様々であり、電圧の下がり方もばらばらであるために、一律に待ち時間を設定することも難しい。
 この発明の目的は、充電スタンドの故障の判定を正確に行なうことが可能な充電制御装置を提供することである。
 この発明は、要約すると、充電コネクタによって外部充電装置に接続される車両に搭載され、充電に関する制御を行なう充電制御装置であって、充電制御装置は、充電コネクタに印加される電圧を検出する電圧検出部と、充電コネクタが車両に接続されてから後の所定期間内の電圧検出部で検出した電圧の変化に基づいて所定期間が経過した後の充電コネクタに印加される電圧の変化を予測し、所定期間が経過した後の電圧検出部で検出した電圧の変化と予測した電圧の変化との乖離度合いが所定値よりも大きい場合には外部充電装置に故障が発生していると判断する異常判定部とを備える。
 好ましくは、外部充電装置は、充電コネクタに対して充電電圧の印加と遮断とを切り替えるリレーと、リレーよりも充電コネクタ側に設けられ充電コネクタの残留電荷を放電させるための放電装置とを含む。異常判定部が判断する故障は、リレーの故障を含む。
 より好ましくは、放電装置は、放電抵抗を含む。異常判定部は、所定期間内の時刻の異なる複数の時点において電圧検出部からそれぞれ複数の検出電圧を取得し、複数の検出電圧に基づいて放電抵抗による放電カーブを推定し、所定期間経過後に電圧検出部から取得した検出電圧と放電カーブ上の対応する電圧との乖離度を示す値がしきい値よりも大きい場合にはリレーに故障が発生したと判断する。
 さらに好ましくは、外部充電装置は、操作者の充電開始指示に応じて充電コネクタに電圧を印加する第1の充電モードと、車両と通信を行ない通信結果が所定の条件を満たす場合に充電コネクタに電圧を印加する第2の充電モードとに対応する。外部充電装置は、第2の充電モードでは、リレーを遮断状態としてから通信を開始する。
 さらに好ましくは、車両は、第2の充電モードに対応しており、異常判定部は、通信の開始前に充電コネクタの電圧に基づいてリレーの故障判定を行なう。
 この発明は他の局面では、上記いずれかに記載の充電制御装置を備える車両である。
 本発明によれば、充電スタンドの故障の判定を正確に行なうことができ、誤判定によって充電が禁止されることが低減される。
本発明の実施の形態のハイブリッド車両1の構成を示すブロック図である。 図1の外部充電装置100の構成を示した回路図である。 充電動作が開始されるまでの電圧VINの変化の一例を示した波形図である。 制御装置30が実行するリレー116の溶着判定動作を説明するためのフローチャートである。 電圧VINの放電カーブの一例を示した図である。
 以下、本発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付してそれらについての説明は繰返さない。
 図1は、本発明の実施の形態のハイブリッド車両1の構成を示すブロック図である。
 図1を参照して、ハイブリッド車両1は、前輪20R,20Lと、後輪22R,22Lと、エンジン40と、プラネタリギヤPGと、デファレンシャルギヤDGと、ギヤ4,6とを含む。
 ハイブリッド車両1は、さらに、バッテリBと、バッテリBの出力する直流電力を昇圧する昇圧ユニット20と、昇圧ユニット20との間で直流電力を授受するインバータ14とを含む。
 ハイブリッド車両1は、さらに、プラネタリギヤPGを介してエンジン40の動力を受けて発電を行なうモータジェネレータMG1と、回転軸がプラネタリギヤPGに接続されるモータジェネレータMG2とを含む。インバータ14はモータジェネレータMG1,MG2に接続され交流電力と昇圧回路からの直流電力との変換を行なう。
 プラネタリギヤPGは、サンギヤと、リングギヤと、サンギヤおよびリングギヤの両方に噛み合うピニオンギヤと、ピニオンギヤをサンギヤの周りに回転可能に支持するプラネタリキャリヤとを含む。プラネタリギヤPGは第1~第3の回転軸を有する。第1の回転軸はエンジン40に接続されるプラネタリキャリヤの回転軸である。第2の回転軸はモータジェネレータMG1に接続されるサンギヤの回転軸である。第3の回転軸はモータジェネレータMG2に接続されるリングギヤの回転軸である。
 この第3の回転軸にはギヤ4が取付けられ、このギヤ4はギヤ6を駆動することによりデファレンシャルギヤDGに機械的動力を伝達する。デファレンシャルギヤDGはギヤ6から受ける機械的動力を前輪20R,20Lに伝達するとともに、ギヤ6,4を介して前輪20R,20Lの回転力をプラネタリギヤPGの第3の回転軸に伝達する。
 プラネタリギヤPGはエンジン40,モータジェネレータMG1,MG2の間で動力を分割する役割(動力分割機構としての役割)を果たす。すなわちプラネタリギヤPGは、3つの回転軸のうち2つの回転軸の回転に応じて残る1つの回転軸の回転を決定する。したがって、エンジン40を最も効率のよい領域で動作させつつ、モータジェネレータMG1の発電量を制御してモータジェネレータMG2を駆動させることにより車速の制御を行ない、全体としてエネルギ効率のよい自動車を実現している。
 直流電源であるバッテリBは、たとえば、ニッケル水素二次電池やリチウムイオン二次電池等を含んで構成される。バッテリBは、直流電力を昇圧ユニット20に供給するとともに、昇圧ユニット20からの直流電力によって充電される。
 昇圧ユニット20はバッテリBから受ける直流電圧を昇圧し、その昇圧された直流電圧をインバータ14に供給する。インバータ14は供給された直流電圧を交流電圧に変換してエンジン始動時にはモータジェネレータMG1を駆動制御する。また、エンジン始動後にはモータジェネレータMG1が発電した交流電力はインバータ14によって直流に変換されて昇圧ユニット20によってバッテリBの充電に適切な電圧に変換されバッテリBが充電される。
 また、インバータ14はモータジェネレータMG2を駆動する。モータジェネレータMG2はエンジン40を補助して前輪20R,20Lを駆動する。制動時には、モータジェネレータMG2は回生運転を行ない、車輪の回転エネルギを電気エネルギに変換する。得られた電気エネルギは、インバータ14および昇圧ユニット20を経由してバッテリBに戻される。
 バッテリBは、組電池であり、直列に接続された複数の電池ユニットBU0~BUnを含む。昇圧ユニット20とバッテリBとの間にはシステムリレーSR1,SR2が設けられ車両非運転時には高電圧が遮断される。
 ハイブリッド車両1は、さらに、運転者からの加速要求指示を受ける入力部でありアクセルペダルの位置を検知するアクセルセンサ9と、バッテリBの電流を検出する電流センサ8と、バッテリBの電圧を検出する電圧センサ10と、アクセルセンサ9からのアクセル開度Acc、電流センサ8からの電流IBおよび電圧センサ10からの電圧VBに応じてエンジン40、インバータ14および昇圧ユニット20を制御する制御装置30とを含む。電流センサ8および電圧センサ10は、バッテリBの電流IBおよび電圧VBをそれぞれ検知して制御装置30に送信する。
 ハイブリッド車両1は、さらに、外部充電装置100から延びる充電ケーブル102の先に設けられたコネクタ104を接続するためのインレット16と、インレット16を経由して外部充電装置100から交流電力を受ける充電器12とをさらに含む。充電器12は、バッテリBに接続されており、充電用の直流電力をバッテリBに対して供給する。
 制御装置30は、コネクタ104の結合確認素子106を検出してコネクタ104がインレット16に接続されたことを認識する。
 なお、結合確認素子106は、どのような形式のものでも良いが、たとえばプラグ側に内蔵された抵抗や磁石であっても良い。また、これに代えてプラグ挿入時に押し込まれる押しボタン式のスイッチをインレット16側に設けても良い。
 ハイブリッド車両1は、さらに、インレット16に印加された電圧VINを検出する電圧センサ18と、インレット16と充電器12との電気的接続経路の導通/非導通を切り替えるリレー17とを含む。
 制御装置30は、バッテリBに設置された電流センサ8、電圧センサ10からの、電流、電圧に関する検出値の入力を受け、バッテリBの充電状態を示す状態量(以下「SOC(State Of Charge)」とも称する。)の算出を行なう。
 そして、制御装置30は、これらの情報に基づいて、バッテリBを充電するために、充電器12およびリレー17を制御する。
 図2は、図1の外部充電装置100の構成を示した回路図である。
 図2を参照して、車両1に設けられる制御装置30は、図示しないがCPU(Central Processing Unit)、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御指令の出力を行なうとともに、車両1および各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で構築して処理することも可能である。
 制御装置30は、充電ケーブル102から、車両インレット16を経由して、ケーブル接続信号CNCTおよびパイロット信号CPLTを受ける。また、制御装置30は、電圧センサ18から受電電力の電圧検出値VINを受ける。
 充電ケーブル102は、外部充電装置100に一端が接続され、他端には車両のインレット16と接続するためのコネクタ104が設けられている。充電ケーブル102は、車両のバッテリに充電電力を送電するための電力線対と、アース線と、パイロット信号CPLTを送受信するための信号線とを含む。
 外部充電装置100は、電力線対の残留電荷を放電するための放電抵抗120と、電力線対間に接続された平滑コンデンサ118と、リレー116と、過電流遮断器114と、漏電遮断器112と、リレー制御部122と操作スイッチ124とを含む。
 漏電遮断器112、過電流遮断器114、リレー116は、外部電源と電力線対とを結ぶ経路上に直列に設けられている。漏電遮断器112、過電流遮断器114、リレー116のいずれかが開状態となった場合には、外部電源の電力はコネクタ104から電気的に遮断される。
 リレー116は、リレー制御部122の指令に基づいて、開閉が制御される。リレー制御部は、パイロット信号CPLTと操作スイッチ124のいずれかに応じてリレー116の開閉指令を出力する。
 充電コネクタ104の内部には、充電コネクタ104の接続を検知するための結合確認素子106が設けられている。信号CNCTのレベルは、車両インレット16と充電コネクタ104との接続状態に応じて変化する。
 車両インレット16と充電コネクタ104とが未接続の場合には、信号CNCTはプルアップ抵抗19によって電源電位に設定される。車両インレット16と充電コネクタ104とが接続された場合には、信号CNCTはプルアップ抵抗19と結合確認素子106(抵抗)とによって抵抗分割された電位に設定される。制御装置30は、信号CNCTのレベルの変化に基づいて充電コネクタ104が車両インレット16に接続されたか否かを判断する。
 リレー制御部122は、充電コネクタ104および車両インレット16を介して制御装置30へパイロット信号CPLTを出力する。このパイロット信号CPLTは、外部充電装置100から制御装置30へ充電ケーブル102の定格電流を通知するための信号である。また、パイロット信号CPLTは、制御装置30によって操作されるパイロット信号CPLTの電位に基づいて、制御装置30からリレー116を遠隔操作するための信号としても使用される。そして、リレー制御部122は、パイロット信号CPLTの電位変化に基づいてリレー116を制御する。すなわち、パイロット信号CPLTは、制御装置30およびリレー制御部122の間で授受される。
 図3は、充電動作が開始されるまでの電圧VINの変化の一例を示した波形図である。
 図2、図3を参照して、まず、時刻t1において作業者が外部充電装置100の操作スイッチをオンしてから、時刻t2においてコネクタを車両に接続する操作を行なったとする。
 この時点では、外部充電装置100は、接続される車両がモード1に対応する車両であるのか、モード3に対応する車両であるのかは分からない。外部充電装置100の仕様にもよるが、操作スイッチ124のオンと同時にコネクタに電圧が印加される場合も想定される。
 時刻t2においてコネクタ104がインレット16に接続されると、電圧センサ18が電圧VINを検出するので時刻t2において図3の波形が上昇している。
 時刻t2~t3の間はパイロット信号CPLTによる通信が実行される。その結果、時刻t3において車両の制御装置30からリレー制御部122にリレー116をオフする指令が与えられる。これに応じて時刻t3~t4の間にコンデンサ118に蓄積されていた残留電荷が放電抵抗120によって放電される。
 この時刻t3~t4の間に車両側の制御装置30は、外部充電装置100のリレー116が溶着していないかを判定する。しかし、放電抵抗120の値やコンデンサ118の容量値は外部充電装置100のメーカによって様々である。したがって、時刻t3~t4における放電カーブは一様ではない。
 そこで、制御装置30は、電圧VINの値がどのような放電カーブであるのかを最初の複数のサンプリング値から推定し、続く電圧VINのサンプリング値が推定した放電カーブに沿うように変化するか否かでリレー116が正常に切り離されていることを判断する。
 リレー116が正常である(溶着が発生していない)と判断された場合には、時刻t4~t5においてパイロット信号CPLTによる通信が実行され、その結果、時刻t5においてリレー17およびリレー116がオン状態に設定され電圧VINが再投入されバッテリBへの充電が開始される。
 図4は、制御装置30が実行するリレー116の溶着判定動作を説明するためのフローチャートである。このフローチャートの処理は、所定のメインルーチンから呼び出される処理である。制御装置30からリレー制御部122にパイロット信号CPLTによってリレー116を遮断する指令を送信する処理が、メインルーチンにおいて実行されてから後に、このフローチャートの処理が実行される。
 図5は、電圧VINの放電カーブの一例を示した図である。
 図4、図5を参照して、まず処理が開始されると、ステップS1において変数tがゼロに設定される。そして、ステップS2においてそのときの電圧値VINがデータV(t)に設定される。t=0であるので、VINがV(0)として記憶される。図5において最初に時刻t1でサンプリングされる電圧値VINがV(0)となる。
 続いて、ステップS3において変数tがインクリメントされる。さらにステップS4において電圧値VINがしきい値Vαよりも小さいか否かが判断される。電圧値VINがしきい値Vαよりも小さい場合はステップS6に処理が進む。一方電圧値VINがしきい値Vαよりも小さくない場合はステップS5に処理が進む。ステップS5では所定のタイムアウト時間が経過したか否かが判断される。ステップS5においてタイムアウトで無い場合には再びステップS4の処理が実行される。一方ステップS5でタイムアウトであった場合にはステップS14に処理が進む。
 図5の時刻t2においては、電圧値VINがまだしきい値Vαよりも小さくなっていないので、データとして記憶されていない。一方ステップS4からステップS6に処理が進んだ場合には、そのときの電圧値VINがデータV(t)として記憶される。図5の時刻t3では電圧値VINはしきい値Vαよりも低下しているので、データV(1)として記憶される。
 続いて、ステップS7では、電圧値VINの変化が電圧が低下する方向であるか否かが判断される。具体的には、V(t-1)-V(t)がしきい値ΔVよりも大きいか否かが判断される。ステップS7においてV(t-1)-V(t)>ΔVが成立しない場合には、ステップS4、S6の処理が再度行なわれ、一度記憶されたV(t)が新たにサンプリングされた値に書き換えられる。
 ステップS7においてV(t-1)-V(t)>ΔVが成立した場合には、ステップS8に処理が進む。ステップS8では電圧値VINがしきい値Vβより小さいか否かが判断される。図5に示されているようにしきい値Vβはしきい値Vαよりも小さい値であって、かつゼロに近い値である。
 ステップS8でVIN<Vβが成立した場合には、ステップS12に処理が進む。この場合は正常にリレー116の遮断が行なわれ電圧VINが十分に低下した場合である。一方、ステップS8でVIN<Vβが成立しない場合には、ステップS9に処理が進む。ステップS9ではt=6であるか否か、つまり電圧値VINのサンプリングデータがV(1)~V(6)まで取得し終わったか否かが判断される。
 ステップS9において変数tが6に到達していない場合には、ステップS3以降の処理が繰返される。一方ステップS9において変数tが6になっている場合には、ステップS10に処理が進む。
 ステップS10ではデータV(1)、V(2)、V(3)の3データを使って、最小2乗法等により次の近似式を完成する。なお、a、γ、bは定数であり、exp()は自然対数の底eの指数関数である。
V’(t)=a*V(1)*exp(-γ*t)+b   ・・・(1)
 続いて、ステップS11において、データV(4)、V(5)、V(6)が近似式(1)に沿って変化しているか否かを判断する。たとえば、判断するために次式(2)がt=4,5,6のとき全てにおいて成立する場合にデータが近似式に沿って変化していると判断しても良い。ただしXは判定基準値である。
|V(t)-V’(t)|/V’(t)<X   ・・・(2)
 なお式(2)以外でも近似式と取得データの乖離度合いを判断する方法は種々に変更が可能である。たとえば、近似式と取得データの差を単純に判定しきい値と比べても良い。
 ステップS11において式(2)がt=4,5,6のとき全てにおいて成立した場合には、ステップS12に処理が進み、t=4,5,6のいずれかにおいて式(2)が成立しなかった場合にはステップS14に処理が進む。
 ステップS12では、リレー116が正常(溶着なし)と判定され、ステップS13において充電が許可される。一方ステップS14ではリレー116が異常(溶着あり)と判定され、ステップS15において充電が禁止される。
 ステップS13またはステップS15の処理が終了するとステップS16において処理はメインルーチンに戻される。
 なお、図4のフローチャートでは電圧値VINを6点サンプリングして判定することにしたが、サンプリング数を増減させても良い。また3点のデータから近似式(1)を完成させたが、さらに多くのデータを用いて近似式(1)を完成させても良い。
 最後に、本実施の形態について再び図面を参照して総括する。 図1、図2を参照して、本実施の形態に係る充電制御装置は、充電コネクタ104によって外部充電装置100に接続される車両1に搭載され、充電に関する制御を行なう充電制御装置である。充電制御装置は、充電コネクタ104に印加される電圧を検出する電圧センサ18と、充電コネクタ104が車両に接続されてから後の所定期間内の電圧センサ18で検出した電圧の変化に基づいて所定期間が経過した後の充電コネクタ104に印加される電圧の変化を予測し、所定期間が経過した後の電圧センサ18で検出した電圧の変化と予測した電圧の変化との乖離度合いが所定値よりも大きい場合には外部充電装置に故障が発生していると判断する制御装置30とを備える。
 好ましくは、外部充電装置は、充電コネクタ104に対して充電電圧の印加と遮断とを切り替えるリレー116と、リレー116よりも充電コネクタ側に設けられ充電コネクタ104の残留電荷(コンデンサ118の残留電荷)を放電させるための放電装置(放電抵抗120)とを含む。制御装置30が判断する故障は、リレー116の故障を含む。
 より好ましくは、放電装置は、放電抵抗120を含む。制御装置30は、所定期間内の時刻の異なる複数の時点(たとえば図5の時刻t3、t4、t5)において電圧センサ18からそれぞれ複数の検出電圧(たとえば図5のV(1),V(2),V(3))を取得し、複数の検出電圧に基づいて放電抵抗120による放電カーブを推定し、所定期間経過後に電圧検出部から取得した検出電圧(たとえば図5のV(4),V(5),V(6))と放電カーブ上の対応する電圧との乖離度を示す値がしきい値よりも大きい場合(図4のステップS11でNO)にはリレー116に故障が発生したと判断する。
 さらに好ましくは、外部充電装置100は、操作者の充電開始指示(操作スイッチON)に応じて充電コネクタ104に電圧を印加する第1の充電モード(JEVSにて制定されているモード1)と、車両1と通信を行ない通信結果が所定の条件を満たす場合に充電コネクタ104に電圧を印加する第2の充電モード(JEVSにて制定されているモード2または3)とに対応する。外部充電装置100は、第2の充電モードでは、リレー116を遮断状態としてから通信を開始する。
 さらに好ましくは、車両1は、第2の充電モードに対応している。図3に示すように制御装置30は、時刻t4~t5の通信の開始前に、時刻t3~t4の間において充電コネクタ16の電圧に基づいてリレー116の故障判定を行なう。
 以上説明したように、充電スタンドでプラグインハイブリッド自動車や電気自動車を充電する際に、本実施の形態では充電コネクタ接続後、一定時間後に連続的に電圧を検出し最初のいくつかの取得電圧により求まる近似式にその後の取得電圧が漸近する場合は、リレーの溶着が発生していないと判断する。これにより、操作者の操作によって充電コネクタに高電圧が残留している状態で車両にコネクタが接続されたとしても、充電スタンドが故障していると車両が誤判定することを防ぐことができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 ハイブリッド車両、4,6 ギヤ、8 電流センサ、9 アクセルセンサ、10,18 電圧センサ、12 充電器、14 インバータ、16 車両インレット、17,116 リレー、19 プルアップ抵抗、20 昇圧ユニット、20R,20L 前輪、22R,22L 後輪、30 制御装置、40 エンジン、100 外部充電装置、102 充電ケーブル、104 充電コネクタ、106 結合確認素子、112 漏電遮断器、114 過電流遮断器、118 コンデンサ、120 放電抵抗、122 リレー制御部、124 操作スイッチ、B バッテリ、BU0~BUn 電池ユニット、DG デファレンシャルギヤ、MG1,MG2,MG1,MG2 モータジェネレータ、PG プラネタリギヤ、SR1,SR2 システムリレー。

Claims (6)

  1.  充電コネクタ(104)によって外部充電装置(100)に接続される車両(1)に搭載され、充電に関する制御を行なう充電制御装置であって、
     前記充電制御装置は、
     前記充電コネクタ(104)に印加される電圧を検出する電圧検出部(18)と、
     前記充電コネクタ(104)が前記車両に接続されてから後の所定期間内の前記電圧検出部(18)で検出した電圧の変化に基づいて前記所定期間が経過した後の前記充電コネクタ(104)に印加される電圧の変化を予測し、前記所定期間が経過した後の前記電圧検出部(18)で検出した電圧の変化と予測した電圧の変化との乖離度合いが所定値よりも大きい場合には前記外部充電装置に故障が発生していると判断する異常判定部(30)とを備える、充電制御装置。
  2.  前記外部充電装置は、
     前記充電コネクタ(104)に対して充電電圧の印加と遮断とを切り替えるリレー(116)と、
     前記リレー(116)よりも前記充電コネクタ側に設けられ前記充電コネクタ(104)の残留電荷を放電させるための放電装置とを含み、
     前記異常判定部(30)が判断する故障は、前記リレー(116)の故障を含む、請求の範囲第1項に記載の充電制御装置。
  3.  前記放電装置は、
     放電抵抗(120)を含み、
     前記異常判定部(30)は、前記所定期間内の時刻の異なる複数の時点において前記電圧検出部(18)からそれぞれ複数の検出電圧を取得し、前記複数の検出電圧に基づいて前記放電抵抗(120)による放電カーブを推定し、前記所定期間経過後に前記電圧検出部から取得した検出電圧と前記放電カーブ上の対応する電圧との乖離度を示す値がしきい値よりも大きい場合には前記リレー(116)に故障が発生したと判断する、請求の範囲第2項に記載の充電制御装置。
  4.  前記外部充電装置(100)は、操作者の充電開始指示に応じて前記充電コネクタ(104)に電圧を印加する第1の充電モードと、前記車両(1)と通信を行ない通信結果が所定の条件を満たす場合に前記充電コネクタ(104)に電圧を印加する第2の充電モードとに対応し、
     前記外部充電装置(100)は、前記第2の充電モードでは、前記リレー(116)を遮断状態としてから前記通信を開始する、請求の範囲第3項に記載の充電制御装置。
  5.  前記車両(1)は、前記第2の充電モードに対応しており、
     前記異常判定部(30)は、前記通信の開始前に前記充電コネクタ(16)の電圧に基づいて前記リレー(116)の故障判定を行なう、請求の範囲第4項に記載の充電制御装置。
  6.  請求の範囲第1項~第5項のいずれか1項に記載の充電制御装置を備える車両。
PCT/JP2010/061395 2010-07-05 2010-07-05 充電制御装置 WO2012004848A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/141,454 US8779719B2 (en) 2010-07-05 2010-07-05 Charging control apparatus
PCT/JP2010/061395 WO2012004848A1 (ja) 2010-07-05 2010-07-05 充電制御装置
CN201080003869.1A CN102439815B (zh) 2010-07-05 2010-07-05 充电控制装置
EP10838392.8A EP2592711A4 (en) 2010-07-05 2010-07-05 CHARGE CONTROL DEVICE
JP2011525330A JP5327328B2 (ja) 2010-07-05 2010-07-05 充電制御装置および車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061395 WO2012004848A1 (ja) 2010-07-05 2010-07-05 充電制御装置

Publications (1)

Publication Number Publication Date
WO2012004848A1 true WO2012004848A1 (ja) 2012-01-12

Family

ID=45440850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061395 WO2012004848A1 (ja) 2010-07-05 2010-07-05 充電制御装置

Country Status (5)

Country Link
US (1) US8779719B2 (ja)
EP (1) EP2592711A4 (ja)
JP (1) JP5327328B2 (ja)
CN (1) CN102439815B (ja)
WO (1) WO2012004848A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193042A (ja) * 2013-03-27 2014-10-06 Panasonic Corp 車両用電力装置
JP5642318B1 (ja) * 2013-08-02 2014-12-17 株式会社小松製作所 作業車両
JP2015082465A (ja) * 2013-10-24 2015-04-27 住友電装株式会社 コネクタ
JP2020099160A (ja) * 2018-12-19 2020-06-25 トヨタ自動車株式会社 車両の充電システム
JP2022548918A (ja) * 2019-12-20 2022-11-22 エルジー エナジー ソリューション リミテッド バッテリー診断装置及び方法
WO2024195532A1 (ja) * 2023-03-23 2024-09-26 株式会社オートネットワーク技術研究所 劣化判定装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102823209B (zh) 2010-04-09 2015-06-10 丰田自动车株式会社 通信装置、通信系统以及车辆
EP2557745B1 (en) * 2010-04-09 2016-02-10 Toyota Jidosha Kabushiki Kaisha Vehicle, communication system, and communication device
US8841881B2 (en) 2010-06-02 2014-09-23 Bryan Marc Failing Energy transfer with vehicles
JP5842181B2 (ja) * 2010-10-20 2016-01-13 パナソニックIpマネジメント株式会社 電気自動車充電装置
EP2631102B1 (en) * 2011-11-17 2016-04-27 Toyota Jidosha Kabushiki Kaisha Vehicle and power supply system
DE102011121486B4 (de) * 2011-12-16 2020-12-17 Audi Ag Kraftfahrzeug mit einer Vorrichtung zur Erzeugung eines dreiphasigen Drehwechselstroms aus einem ein- oder zweiphasigen Wechselstrom
DE102012007906A1 (de) * 2012-04-23 2013-10-24 Audi Ag Verfahren zur Vorbereitung einer Energieversorgung eines Fahrzeugs
US8653841B2 (en) * 2012-05-04 2014-02-18 GM Global Technology Operations LLC Method and apparatus for monitoring a high-voltage electrical circuit including a discharge circuit
JP5577379B2 (ja) * 2012-05-21 2014-08-20 株式会社日本自動車部品総合研究所 充電装置
JP6308486B2 (ja) 2012-09-13 2018-04-11 パナソニックIpマネジメント株式会社 リレー溶着検出装置
CN102931695A (zh) * 2012-10-11 2013-02-13 惠州市尚联达电子有限公司 一种自动检测负载的移动电源及其对负载电池的充电方法
JP6201319B2 (ja) 2013-01-15 2017-09-27 住友電気工業株式会社 変換装置、故障判定方法及び制御プログラム
US20140211345A1 (en) 2013-01-30 2014-07-31 Eaton Corporation Annunciating or power vending circuit breaker for an electric load
US9231423B2 (en) * 2013-02-07 2016-01-05 Mitac International Corp. Electric vehicle supply equipment and control method thereof
JP6326829B2 (ja) * 2014-01-28 2018-05-23 株式会社リコー 電気機器及び残留電荷放電方法
KR101592780B1 (ko) * 2014-11-04 2016-02-18 현대자동차주식회사 친환경 자동차의 커넥터 체결 불량 검출 방법
CN104590160B (zh) * 2014-12-22 2017-05-31 重庆长安汽车股份有限公司 一种混合动力汽车充电系统及其控制方法
JP2016226245A (ja) * 2015-06-04 2016-12-28 日東工業株式会社 車両用充電装置
JP6569122B2 (ja) * 2015-08-05 2019-09-04 株式会社オートネットワーク技術研究所 車載充電システム
JP6365497B2 (ja) * 2015-10-14 2018-08-01 株式会社オートネットワーク技術研究所 電流制御装置、電流制御方法及びコンピュータプログラム
DE102016220541A1 (de) * 2016-10-20 2018-04-26 Robert Bosch Gmbh Verfahren zum Betrieb eines Antriebssystems für ein Fahrzeug
US10017064B1 (en) * 2016-12-20 2018-07-10 Eaton Intelligent Power Limited Isolated high precision pilot voltage generating circuit and electric vehicle supply equipment including the same
JP6911722B2 (ja) * 2017-11-16 2021-07-28 トヨタ自動車株式会社 充電管理装置
JP7003896B2 (ja) * 2018-11-07 2022-02-04 トヨタ自動車株式会社 電動車両
JP7163826B2 (ja) * 2019-03-04 2022-11-01 トヨタ自動車株式会社 充電器および充電器の制御方法
JP7380272B2 (ja) * 2020-02-04 2023-11-15 トヨタ自動車株式会社 車両
DE102021104129A1 (de) * 2021-02-22 2022-08-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Erweiterungsmodul für eine DC-Ladesäule und entsprechend erweiterte DC-Ladesäule
US11613184B1 (en) 2021-10-31 2023-03-28 Beta Air, Llc Systems and methods for disabling an electric vehicle during charging

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107619A (ja) 1987-10-20 1989-04-25 Furukawa Electric Co Ltd:The リレー接点溶着検出回路
JPH0733033A (ja) 1993-07-20 1995-02-03 Aisin Seiki Co Ltd 電気モ−タ駆動機器の電源リレ−故障検知装置
JPH09149544A (ja) 1995-11-20 1997-06-06 Hitachi Cable Ltd 無線操作設備のリレー接点溶着検出回路
JPH1038298A (ja) 1996-07-24 1998-02-13 Sanyo Electric Co Ltd 電気加熱具の保安装置
JPH1166993A (ja) 1997-08-11 1999-03-09 Yaskawa Electric Corp ブレーキ付きモータの接点溶着検出装置
JP2002153086A (ja) 2000-11-10 2002-05-24 Mitsubishi Electric Corp 電動パワーステアリング制御装置
JP2007026741A (ja) 2005-07-13 2007-02-01 Jtekt Corp リレー接点の溶着検出装置
JP2007305365A (ja) * 2006-05-10 2007-11-22 Honda Motor Co Ltd 燃料電池システムにおけるコンタクタ故障検知方法及びその装置
JP2008312380A (ja) * 2007-06-15 2008-12-25 Toyota Motor Corp 充電装置および充電システム
JP2009071989A (ja) 2007-09-13 2009-04-02 Toyota Motor Corp 車両の充電制御装置および車両

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045975A (ja) 2000-08-07 2002-02-12 Central Motor Co Ltd ロボットスポット溶接機の溶着検出器
JP2007143370A (ja) * 2005-11-22 2007-06-07 Toyota Motor Corp 充電装置、電動車両および充電システム
JP5090763B2 (ja) * 2007-03-22 2012-12-05 ヤマハ発動機株式会社 二次電池の充電装置
EP2184827B1 (en) * 2007-07-24 2015-12-09 Panasonic Intellectual Property Management Co., Ltd. Charge monitoring device
JP5015686B2 (ja) * 2007-07-24 2012-08-29 パナソニック株式会社 充電監視装置
JP4332861B2 (ja) * 2008-01-16 2009-09-16 トヨタ自動車株式会社 車両の充電制御装置
JP2011035975A (ja) 2009-07-30 2011-02-17 Toyota Motor Corp 車両および車両の制御方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107619A (ja) 1987-10-20 1989-04-25 Furukawa Electric Co Ltd:The リレー接点溶着検出回路
JPH0733033A (ja) 1993-07-20 1995-02-03 Aisin Seiki Co Ltd 電気モ−タ駆動機器の電源リレ−故障検知装置
JPH09149544A (ja) 1995-11-20 1997-06-06 Hitachi Cable Ltd 無線操作設備のリレー接点溶着検出回路
JPH1038298A (ja) 1996-07-24 1998-02-13 Sanyo Electric Co Ltd 電気加熱具の保安装置
JPH1166993A (ja) 1997-08-11 1999-03-09 Yaskawa Electric Corp ブレーキ付きモータの接点溶着検出装置
JP2002153086A (ja) 2000-11-10 2002-05-24 Mitsubishi Electric Corp 電動パワーステアリング制御装置
JP2007026741A (ja) 2005-07-13 2007-02-01 Jtekt Corp リレー接点の溶着検出装置
JP2007305365A (ja) * 2006-05-10 2007-11-22 Honda Motor Co Ltd 燃料電池システムにおけるコンタクタ故障検知方法及びその装置
JP2008312380A (ja) * 2007-06-15 2008-12-25 Toyota Motor Corp 充電装置および充電システム
JP2009071989A (ja) 2007-09-13 2009-04-02 Toyota Motor Corp 車両の充電制御装置および車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2592711A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193042A (ja) * 2013-03-27 2014-10-06 Panasonic Corp 車両用電力装置
JP5642318B1 (ja) * 2013-08-02 2014-12-17 株式会社小松製作所 作業車両
WO2015015647A1 (ja) * 2013-08-02 2015-02-05 株式会社小松製作所 作業車両
US9579988B2 (en) 2013-08-02 2017-02-28 Komatsu Ltd. Work vehicle
JP2015082465A (ja) * 2013-10-24 2015-04-27 住友電装株式会社 コネクタ
WO2015060101A1 (ja) * 2013-10-24 2015-04-30 住友電装株式会社 コネクタ
JP2020099160A (ja) * 2018-12-19 2020-06-25 トヨタ自動車株式会社 車両の充電システム
JP7087983B2 (ja) 2018-12-19 2022-06-21 トヨタ自動車株式会社 車両の充電システム
JP2022548918A (ja) * 2019-12-20 2022-11-22 エルジー エナジー ソリューション リミテッド バッテリー診断装置及び方法
JP7436114B2 (ja) 2019-12-20 2024-02-21 エルジー エナジー ソリューション リミテッド バッテリー診断装置及び方法
WO2024195532A1 (ja) * 2023-03-23 2024-09-26 株式会社オートネットワーク技術研究所 劣化判定装置

Also Published As

Publication number Publication date
EP2592711A4 (en) 2014-09-10
EP2592711A1 (en) 2013-05-15
US8779719B2 (en) 2014-07-15
JP5327328B2 (ja) 2013-10-30
CN102439815A (zh) 2012-05-02
US20120091954A1 (en) 2012-04-19
CN102439815B (zh) 2014-04-23
JPWO2012004848A1 (ja) 2013-09-02

Similar Documents

Publication Publication Date Title
JP5327328B2 (ja) 充電制御装置および車両
EP2596981B1 (en) Control device for vehicle and control method for vehicle
US9434257B2 (en) Power supply connector, vehicle and control method for vehicle
JP5077376B2 (ja) 車両
US9090169B2 (en) Adapter and vehicle for performing power feeding using adapter
JP4254890B2 (ja) 車両の制御装置
US9093724B2 (en) Vehicle and method of charging vehicle
JP4254894B1 (ja) 充電システムおよびその作動方法
US9257867B2 (en) Vehicle
US9337681B2 (en) Power source system, vehicle including same, and method for controlling power source system
US20140132226A1 (en) Power source system, vehicle including power source system, and method for controlling power source system
CN104584373B (zh) 车辆电力控制系统和电力控制方法
JP2015095934A (ja) 充電制御装置
JPWO2009034883A1 (ja) 充電システムの異常判定装置および異常判定方法
JP5989589B2 (ja) 電気システム
JP5918103B2 (ja) 電力供給装置
JP2023127208A (ja) 車両
JP2014060824A (ja) 充放電システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003869.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011525330

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13141454

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010838392

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE