WO2012003715A1 - 具有多个外延反应腔的mocvd系统及其操作方法 - Google Patents

具有多个外延反应腔的mocvd系统及其操作方法 Download PDF

Info

Publication number
WO2012003715A1
WO2012003715A1 PCT/CN2011/001124 CN2011001124W WO2012003715A1 WO 2012003715 A1 WO2012003715 A1 WO 2012003715A1 CN 2011001124 W CN2011001124 W CN 2011001124W WO 2012003715 A1 WO2012003715 A1 WO 2012003715A1
Authority
WO
WIPO (PCT)
Prior art keywords
tray
epitaxial reaction
transfer
epitaxial
chamber
Prior art date
Application number
PCT/CN2011/001124
Other languages
English (en)
French (fr)
Inventor
陈爱华
金小亮
孙仁君
张伟
Original Assignee
江苏中晟半导体设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏中晟半导体设备有限公司 filed Critical 江苏中晟半导体设备有限公司
Publication of WO2012003715A1 publication Critical patent/WO2012003715A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure

Definitions

  • MOCVD system with multiple epitaxial reaction chambers and method of operation thereof
  • the present invention relates to a MOCVD (Metal Organic Chemical Vapor Deposition) system for producing a compound semiconductor photovoltaic device and a method of operating the same, and more particularly to an MOCVD system having a plurality of epitaxial reaction chambers and an operation method thereof.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • MOCVD system Metal organic chemical vapor deposition system
  • MOCVD system is one of the most core equipment for the production of semiconductor optoelectronic devices.
  • the substrate substrate is grown in an MOCVD chamber by an epitaxial process structure to form a specialized optoelectronic device structure. It is widely used in the production of LED epitaxial wafers, high-power lasers and high-efficiency solar cells.
  • the MOCVD system includes a transfer chamber 200, and a reaction chamber 100, a transfer station 300, and a loading and unloading station 400 respectively connected to the transfer chamber 200.
  • the transfer chamber 200 is further provided with a robot 210 for loading the tray 600. Pick and place is performed in each of the above chambers.
  • the reaction chamber 100 is separated from the transfer chamber 200 by a vacuum isolation valve 500 when the substrate substrate 610 is epitaxially processed under set process conditions.
  • the transfer station 300 is used for temporarily storing the processed tray to be placed in the loading and unloading station 400 from the reaction chamber 100, and the tray to be processed 600 to be placed in the reaction chamber 100 from the loading and unloading station 400; the transfer station 300 and the transfer chamber 200 are Working in a vacuum environment, but operating at atmospheric pressure when opening the vacuum isolation valve 500 between the transfer chamber 200 and the loading and unloading station 400
  • the mechanized operation of the MOCVD system can be performed at a higher temperature, thereby reducing the cooling time of the device; the mechanization operation also increases the speed of the change of the sheet and improves the production utilization rate of the device.
  • the object of the present invention is to provide an MOCVD system having a plurality of epitaxial reaction chambers and a method for operating the same, so that a plurality of epitaxial reaction chambers share the same set of transmission chambers, transfer stations, and loading and unloading stations, etc., which can be multiplied by each
  • the output of the MOCVD system is adapted to the needs of large-scale production, while at the same time effectively reducing the unit manufacturing cost and operating cost of the system, and saving the system footprint.
  • the technical solution of the present invention is to provide an MOCVD system having a plurality of epitaxial reaction chambers for performing epitaxial reaction on a plurality of substrate substrates placed on a tray, characterized in that a robot is provided a transfer cavity, respectively equal to or greater than two epitaxial reaction chambers connected to the transfer cavity; the trays are respectively placed in the plurality of epitaxial reaction chambers, and a plurality of substrate substrates are simultaneously epitaxially reacted in the plurality of epitaxial reaction chambers .
  • the above MOCVD system having a plurality of epitaxial reaction chambers further includes at least one transfer station respectively connected to the transfer chamber, and a loading and unloading station connected to the transfer station.
  • the MOCVD system having a plurality of epitaxial reaction chambers further includes a plurality of vacuum isolation valves; the vacuum isolation is disposed between the transfer chamber and each of the epitaxial reaction chambers;
  • the vacuum isolation valve is disposed between the transfer station and the loading and unloading station;
  • the above may optionally be provided with a vacuum isolation valve between the transmission chamber and the transfer station;
  • the manipulator cooperates with the three-dimensional movement of the radial expansion, the axial rotation, and the up-and-down movement, and the tray is taken between the epitaxial reaction chamber and the transfer station, and is taken between the epitaxial reaction chambers, and is taken between the transfer stations. .
  • At least one set of transfer stations and loading and unloading stations are connected to the transfer chamber as the input and output ports of the tray.
  • the above transfer station is provided with a plurality of slots, such that each epitaxial reaction chamber is correspondingly assigned an input slot and an output slot;
  • a tray containing the substrate for completing the epitaxial reaction taken out from the epitaxial reaction chamber is placed in the output slot;
  • a tray in which the substrate for a substrate waiting for epitaxial processing is placed is placed from the loading and unloading station in the input slot.
  • Some slots of the above-mentioned transfer station may be provided with heating means or cooling means; some slots of the above-mentioned transfer station may be moved in a vertical direction or a horizontal direction.
  • An operation method of an MOCVD system having a plurality of epitaxial reaction chambers and a transfer station characterized in that the flow of replacing the trays in the horizontally movable output slot A1 of the transfer station comprises the following steps:
  • the above method of operating a MOCVD system having a plurality of epitaxial reaction chambers further includes the steps of replacing the trays in the epitaxial reaction chamber:
  • the robot takes out the tray from the epitaxial reaction chamber and places it in the output slot of the transfer station, and then puts the new tray in the input slot into the epitaxial reaction chamber.
  • the MOCVD system with multiple epitaxial reaction chambers of the present invention has the following advantages:
  • the invention can simultaneously perform epitaxial reaction on the substrate substrate in a plurality of epitaxial reaction chambers, multiplying the output of each MOCVD system, without opening the epitaxial reaction chamber, keeping the vacuum state and the high working temperature.
  • the operation of picking and placing the tray in the epitaxial reaction chamber not only saves the cooling time of the epitaxial reaction chamber and the time of the disk changing operation, but also makes the deposit on the cavity wall not easily fall off, and prolongs the cleaning and maintenance of the cavity. Cycles increase the utilization rate of equipment.
  • the invention also changes the system structure of the existing loading and unloading station and the transmission cavity, so that the transmission cavity can have more positions to connect more epitaxial reaction chambers, to share the same set of transmission cavity, manipulator, transfer station and loading and unloading station, thereby saving another One or several sets of corresponding equipment reduces the installation cost and operating cost, which saves the installation site of this part of the equipment.
  • the invention designs a transfer station and a loading and unloading station for a multi-epitaxial reaction chamber, and designs a sequence of multiple tray replacements, and realizes quick replacement of the tray under the cooperation of the vertical and horizontal movement slots and the robot. operating.
  • the invention puts the new tray and the removed tray respectively in the input slot and the output slot corresponding to the epitaxial reaction chamber in the transfer station, and can shorten the preparation time of the subsequent operation by the heating or cooling function of the slot respectively.
  • the production utilization rate of the equipment is further improved.
  • the invention can also realize the further simplification of the operation steps by setting two sets of transfer stations and loading and unloading stations, respectively as the input port and the output port of the tray, or removing the vacuum isolation valve 52.
  • FIG. 1 is a schematic view showing the structure of a conventional manually operated MOCVD system having a single epitaxial reaction chamber
  • FIG. 2 is a schematic view showing the structure of an MOCVD system having a single epitaxial reaction chamber which is operated by a conventional machine;
  • 3 is a schematic structural view of an MOCVD system having two epitaxial reaction chambers in Embodiment 1 of the present invention;
  • Figure 4 is a schematic view showing the structure of an MOCVD system having three epitaxial reaction chambers in the first embodiment of the present invention
  • Figure 5 is a schematic view showing the structure of an MOCVD system having two epitaxial reaction chambers in Embodiment 2 of the present invention
  • Figure 6 is a schematic view showing the structure of an MOCVD system having three epitaxial reaction chambers in Embodiment 3 of the present invention.
  • Figure 7 is a side elevational view of a preferred construction of an MOCVD system having two epitaxial reaction chambers in accordance with the present invention. The best way to implement the invention
  • the MOCVD system with multiple epitaxial reaction chambers in this embodiment includes a transmission cavity 20 provided with a robot 21 and two or more connected to the transmission cavity 20 .
  • the epitaxial reaction chamber 10 further includes a transfer station 30 connected to the transfer chamber 20, and a loading and unloading station 40 connected to the transfer station 30.
  • a vacuum isolation valve 51 is disposed between the transmission chamber 20 and each of the epitaxial reaction chambers 10; a vacuum isolation valve 52 is disposed between the transmission chamber 20 and the transfer station 30, and a vacuum isolation valve 53 is disposed between the transfer station 30 and the loading and unloading station 40. .
  • Figure 3 shows an MOCVD system with two epitaxial reaction chambers
  • Figure 4 shows an MOCVD system with three epitaxial reaction chambers.
  • the maximum number of epitaxial reaction chambers 10 to which a transfer chamber 20 can be connected is determined by the design of the transfer chamber 20.
  • the epitaxial reaction chamber 10 is a core portion of the MOCVD system for epitaxially growing a structural thin film on the substrate substrate 61.
  • a tray 60 is placed in the epitaxial reaction chamber 10, and a plurality of epitaxial wafer substrates 61 are placed on the tray 60 for epitaxial growth, and the number of substrate substrates 61 to be processed is determined by the design of the epitaxial reaction chamber 10.
  • the epitaxial reaction chamber 10 generally operates in a vacuum and high temperature state. When the tray 60 is loaded/unloaded, the epitaxial reaction chamber 10 is kept in a vacuum state, which can prevent external pollution from entering, and the vacuum high temperature state can prevent epitaxy.
  • the central position of the transfer chamber 20 is provided with a robot 21 having three motion functions of rotation, radial translation, and up and down movement. By the combination of these movements, the robot 21 can take out the tray 60 from the epitaxial reaction chamber 10, place it in the transfer station 30, or take it out from the transfer station 30 and put it into the epitaxial reaction chamber 10.
  • the transfer chamber 20 and the epitaxial reaction chamber 10 are pressure balanced or reach a certain preset range, generally in a vacuum state, the vacuum isolation valve 51 between the two chambers can be opened, and the tray 60 is taken by the robot 21.
  • the transfer station 30 operates in a balance with the pressure of the transfer chamber 20 and the epitaxial reaction chamber 10 when the tray is exchanged with the epitaxial reaction chamber 10 through the transfer chamber 20, and the most common one is under vacuum, at which time
  • the vacuum isolation valve 52 between the transfer station 30 and the transfer chamber 20 is opened; the vacuum isolation valve 53 between the transfer station 30 and the loading and unloading station 40 can be opened only under atmospheric pressure.
  • no vacuum isolation valve 52 is provided between the transfer station 30 and the transfer chamber 20 (i.e., the dashed portions in Figures 3 and 4 are removed).
  • the vacuum isolation width 51 can be opened to perform the exchange of the tray 60 in the epitaxial reaction chamber 10.
  • the vacuum isolation valve 53 is opened, the transfer chamber 20 will follow the transfer station 30. It enters the state of atmospheric pressure.
  • the device configuration in which the vacuum isolation valve 52 is not provided requires simultaneous evacuation of the two chambers of the transfer chamber 20 and the transfer station 30. Although the time is extended, further simplification can be achieved in the structure and operation steps.
  • the transfer station 30 is provided with a plurality of slots 31 for placing the trays 60.
  • the number of the slots 31 is determined by the number of epitaxial reaction chambers 10. Two slots 31 are assigned to each of the epitaxial reaction chambers 10 for placement.
  • the tray 60 in which the epitaxial reaction is completed by the epitaxial reaction chamber 10 is placed in the tray 60 waiting for processing from the loading and unloading station 40.
  • the slot 31 in which the new tray 60 is placed may have a heating device to enable the temperature of the tray 60 to reach, for example, 100 degrees Celsius or more, to shorten the warm-up time of the tray 60; and the slot 31 for placing the epitaxially completed tray 60 may have a cooling device, at a certain The tray 60 can be cooled during the time to an operating temperature of, for example, 100 degrees Celsius or less.
  • the above provides only one configuration method of the heating device and the cooling device, which can be configured according to different production requirements.
  • a plurality of slots 31 in the above-mentioned transfer station 30 have the function of moving up and down in the vertical direction. After opening the vacuum isolation valves 51, 52, the robot 21 in the transfer chamber 20 is engaged, and the slots 31 and the epitaxial reaction chamber are in different slots. The operation of picking and placing the tray 60 is performed between 10; the horizontal movement function is set on at least one of the slots 31, and when the vacuum isolation valve 53 is opened, the slot 31 can be translated to the loading and unloading station 40, and the tray 60 is moved to On the loading and unloading station 40, subsequent operations are performed. The operator can perform the operation of changing the tray 60 or changing the substrate substrate 61 on the tray 60 at the loading and unloading station 40.
  • the loading dock 40 can be placed in a glove box 70 filled with nitrogen to maintain a clean working environment.
  • the loading and unloading station 40 can also be placed in a dust-free laminar flow hood 70 equipped with a high-efficiency air filter to meet the requirements of dust control in the working environment.
  • the MOCVD system according to this embodiment is exemplified by two epitaxial reaction chambers 10, which are similar to the structure in the above embodiment, and include a transmission cavity 20 provided with a robot 21, and a transmission cavity. 20 connected two epitaxial reaction chambers 10. The difference is that it also includes two transfer stations 30 connected to the transfer chamber 20, each of which is also connected to a loading dock 40.
  • a vacuum isolation valve 51 is disposed between the transfer chamber 20 and each of the epitaxial reaction chambers 10; a vacuum isolation valve 53 is disposed between the transfer station 30 and the loading and unloading station 40.
  • a vacuum isolation valve 52 (shown in phantom in Figure 5) between the transfer chamber 20 and the transfer station 30 can be selectively set or removed as desired.
  • the vacuum isolation valves 51, 52, and 53 are all opened when the pressure of the two chambers is balanced or within a certain range.
  • the present embodiment is provided with two sets of transfer stations 30 and loading and unloading stations 40, so that one of the sets can be placed specifically for the new tray 60 waiting for the epitaxial processing, and the other set can be taken out of the two epitaxial reaction chambers 10
  • the epitaxial reaction completes the tray 60; or each group of the transfer station 30 and the loading and unloading station 40 corresponds to an epitaxial reaction chamber 10, and only the epitaxial reaction chamber 10 performs the tray pick-and-place operation.
  • each of the transfer stations 30 is provided with a plurality of slots 31 which can be moved in the vertical or horizontal direction to facilitate the handling of the tray 60; the plurality of slots 31 can also be heated according to different production needs.
  • the device or cooling device preheats or cools the tray 60 to save time for subsequent processing.
  • the loading dock 40 can be placed in a nitrogen-filled glove box 70 or a dust-free laminar flow hood 70 with a high efficiency air filter to allow the operating environment to meet dust control requirements.
  • the above two transfer stations 30 can be transferred by the robot 21 to share the same loading and unloading station 40 to replace the tray 60 (i.e., remove the loading and unloading station 40 shown by the dashed line in Fig. 5) to further simplify the system structure.
  • the embodiment relates to an MOCVD system having a plurality of epitaxial reaction chambers, and
  • the structure of the embodiment is similar, comprising a transfer chamber 20 provided with a robot 21, and a plurality of transfer stations 30 and a plurality of epitaxial reaction chambers 10 connected to the transfer chamber 20.
  • the transfer chamber 20 is polygonal, enabling it to be connected to more epitaxial reaction chambers 10 or transfer stations 30.
  • the transfer chamber 20 is hexagonal, which is connected to two transfer stations 30, and three epitaxial reaction chambers 10; each transfer station 30 is also connected to a loading and unloading station 40.
  • a vacuum isolation valve 51 is disposed between the transfer chamber 20 and each of the epitaxial reaction chambers 10; a vacuum isolation valve 53 is disposed between the transfer station 30 and the loading and unloading station 40.
  • a vacuum isolation valve 52 (shown in phantom in Figure 6) between the transfer chamber 20 and the transfer station 30 can be selected or removed as desired.
  • the vacuum isolation valves 51, 52, and 53 are all opened when the pressure of the two chambers is balanced or within a certain range.
  • the two sets of transfer stations 30 and the loading and unloading station 40 provided in this embodiment serve as the input port and the output port of the tray 60, respectively, in which one group is specially placed on the new tray 60 waiting for the epitaxial treatment, and in another A set of epitaxially completed trays 60 taken from the three epitaxial reaction chambers 10 are placed in one set.
  • each of the transfer stations 30 is provided with a plurality of slots 31 which can be moved in a vertical or horizontal direction to facilitate the handling of the tray 60; the plurality of slots 31 can also be heated according to different production needs.
  • the device or cooling device preheats or cools the tray 60 to save time for subsequent processing.
  • the loading dock 40 can be placed in a nitrogen-filled glove box 70 or a dust-free laminar flow hood 70 with a high efficiency air filter to allow the operating environment to meet dust control requirements.
  • the above two transfer stations 30 can be transferred by the robot 21 to share the same loading and unloading station 40 to replace the tray 60 (i.e., remove the loading and unloading station 40 shown by the dashed line in Fig. 5) to further simplify the system structure.
  • the following is an example of a MOCVD system having a double epitaxial reaction chamber as shown in Fig. 7, and the working flow of the present invention will be described with reference to the embodiment 1.
  • the two epitaxial reaction chambers 10 connected to the transfer chamber 20 share the same set of transfer stations 30 and loading and unloading stations 40.
  • FIG. 7 is only an embodiment of the present invention, and the relay station 30 and the vertically and horizontally moved slots 31 and the like involved in the present invention are not limited to the structures described below.
  • the transfer station 30 is provided with four slots.
  • the tray 60 on which the epitaxial reaction is completed may be provided with a cooling device.
  • a vacuum isolation valve 52 between the transfer station 30 and the transfer chamber 20 is disposed at an upper portion of a side wall of the transfer station 30, and a vacuum isolation ⁇ 53 between the transfer station 30 and the loading and unloading station 40 is disposed in the chamber.
  • the chamber corresponds to the lower portion of the side wall.
  • the slot 31 of the transfer station 30 is vertically moved.
  • the robot 21 is used to perform the operation of picking and placing the tray 60 (as shown in the input slot B2 in Fig.
  • a epitaxial reaction chamber is changed to the tray: the vacuum isolation valves 51 and 52 are opened under the condition of maintaining the pressure balance, and the robot 21 takes out the tray 60 from the A epitaxial reaction chamber 10 and puts it into the output slot A1 of the transfer station 30, and then puts A new tray 60 input to the slot A2 is placed in the A epitaxial reaction chamber 10.
  • the above steps can be implemented by automatic control software and hardware.
  • the above steps of "epitaxial reaction chamber changing tray” and "preparing a new tray” are performed.
  • the above steps of "changing the tray for the epitaxial reaction chamber” and "preparing the new tray” are equally applicable to the transfer chambers 20 connected to the plurality of epitaxial reaction chambers 10 as described in Embodiments 2 and 3, and are also connected as the trays 60, respectively.
  • the MOCVD system with multiple epitaxial reaction chambers can simultaneously perform epitaxial reaction on a substrate substrate in a plurality of epitaxial reaction chambers, thereby multiplying the output of each MOCVD system without opening.
  • the epitaxial reaction chamber is kept in a vacuum state and a high working temperature, and the operation of picking and placing the tray in the epitaxial reaction chamber can be realized, which not only saves the cooling time of the epitaxial reaction chamber and the time of the disk changing operation, but also makes the cavity
  • the deposit on the wall is not easy to fall off, which prolongs the cycle of cleaning and maintenance of the cavity, and improves the utilization rate of the equipment.
  • the invention also changes the system structure of the existing loading and unloading station and the transmission cavity, so that the transmission cavity can have more positions to connect more epitaxial reaction chambers, to share the same set of transmission cavity, manipulator, transfer station and loading and unloading station, thereby saving another One or several sets of corresponding equipment reduces the installation cost and operating cost, which saves the installation site of this part of the equipment.
  • the invention designs a transfer station and a loading and unloading station for a multi-epitaxial reaction chamber, and designs a sequence of multiple tray replacements, and realizes quick replacement of the tray under the cooperation of the vertical and horizontal movement slots and the robot. operating.
  • the invention puts the new tray and the removed tray respectively in the input slot and the output slot corresponding to the epitaxial reaction chamber in the transfer station, and can shorten the preparation time of the subsequent operation by the heating or cooling function of the slot respectively.
  • the production utilization rate of the equipment is further improved.
  • the invention can also further simplify the operation steps by providing two sets of transfer stations and loading and unloading stations, respectively as the input and output ports of the tray, or removing the vacuum isolation valve 52.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种具有多个外延反应腔的MOCVD系统及其操作方法,所述系统用于对放置在托盘上的若干衬底基片进行外延反应,包含一设置有机械手的传输腔,以及与传输腔连接的若干中转站和等于或大于两个的外延反应腔,该多个外延反应腔可同时对衬底基片进行外延反应。

Description

具有多个外延反应腔的 MOCVD系统及其操作方法
技术领域
本发明涉及一种用于生产化合物半导体光电器件的 MOCVD (金属有机 化学气相沉淀) 系统及其操作方法, 特别涉及一种具有多个外延反应腔的 MOCVD系统及其操作方法。 背景技术
金属有机化学气相沉淀系统(以下简称 MOCVD系统)是用于生产半导 体光电器件的一个最核心设备,衬底基片在 MOCVD的腔室内通过外延工艺 结构生长, 形成专门的光电器件结构, 目前 MOCVD被大量应用于 LED外 延片、 大功率激光器和高效率太阳电池等的生产。
以前由于市场和技术原因, 对于外延片的产量要求不高, MOCVD设备 都是为小规模生产设计的。 如图 1所示, 是目前市场上最多见的人工操作更 换托盘或基片的 MOCVD系统,其通过一独立的真空反应腔 100对衬底基片 610进行外延处理。 每一次外延完成后需要打开腔盖, 由操作人员在反应腔 100里面的托盘 600上取换衬底基片 610,并清理腔体上的沉积物, 以确保反 应腔 100能继续正常工作, 这些准备工作占去了许多设备运行的时间, 使 MOCVD系统的生产效率低下。
还有一种喷淋及高速旋转式 MOCVD系统, 每炉由机械手取换托盘, 而 在托上放置外延完成或待处理的衬底基片。 如图 2所示, 该种 MOCVD系统 包含传输腔 200,和分别与传输腔 200连接的反应腔 100、中转站 300和装卸 台 400;传输腔 200中还设置有机械手 210,用来将托盘 600在上述各个腔室 进行取放。 反应腔 100在设定工艺条件下对衬底基片 610进行外延处理时, 通过一真空隔离阀 500与传输腔 200分隔。 中转站 300用于暂存要从反应腔 100放入装卸台 400的处理后的托盘, 以及要从装卸台 400放入反应腔 100 的待处理的托盘 600; 该中转站 300与传输腔 200—般在真空环境下工作, 但在打开传输腔 200与装卸台 400之间的真空隔离阀 500时就工作在大气压
1
S6认本 力下。
相比人工操作,该种 MOCVD系统的机械化操作可以在较高的温度下进 行, 由此减少了设备冷却时间; 机械化操作还提高了换片的速度, 提高了设 备的生产利用率。
然而,上述现有的两款生产用 MOCVD系统都仅设置有单个的外延反应 腔, 产量低, 不能够适应大规模外延衬底基片的生产需要; 机械自动化操作 的 MOCVD系统由于设置了传输腔、 中转站和装卸台等设备, 更是增加了单 位制造的成本和运行成本。 发明的公开
本发明的目的是提供一种具有多个外延反应腔的 MOCVD系统及其操作 方法, 使多个外延反应腔共用同一组传输腔、 中转站和装卸台等设备, 既可 成倍地增加每台 MOCVD系统的产量, 以适应大规模生产的需要, 同时又能 有效降低系统的单位制造成本与运行成本, 节省系统的占地面积。
为了达到上述目的, 本发明的技术方案是提供一种具有多个外延反应腔 的 MOCVD系统, 用于对放置在托盘上的若干衬底基片进行外延反应, 其特 征在于, 包含一设置有机械手的传输腔、 分别与传输腔连接的等于或大于两 个的外延反应腔; 上述托盘分别放置在上述多个外延反应腔内, 使若干衬底 基片在该多个外延反应腔同时进行外延反应。
上述的具有多个外延反应腔的 MOCVD系统, 还包含分别与上述传输腔 连接的至少一个中转站, 以及与上述中转站连接的装卸台。
上述的具有多个外延反应腔的 MOCVD系统, 还包含若干真空隔离阀; 上述真空隔离阔设置在上述传输腔与每个外延反应腔之间;
上述真空隔离阀设置在中转站与装卸台之间;
上述在传输腔与中转站之间可选择设置真空隔离阀;
上述若干真空隔离阀仅在其两边的腔室中压力平衡或处于设定范围时打 开。
上述机械手由径向伸缩、 轴向转动、 上下移动的三维运动配合, 将上述 托盘在上述外延反应腔与中转站之间取放, 在外延反应腔之间取放, 在中转 站之间取放。 与上述传输腔连接有至少一组中转站和装卸台, 作为托盘的输入口和输 出口。
与上述传输腔连接有两组中转站和装卸台, 在其中一组放置装有等待外 延处理的新衬底基片的托盘, 而在另一组中放置从多个外延反应腔取出的装 有完成了外延反应衬底基片的托盘。
上述中转站中设有若干槽位, 使每个外延反应腔对应分配有输入槽位和 输出槽位;
上述输出槽位中放置从上述外延反应腔取出的装有完成了外延反应衬底 基片的托盘;
上述输入槽位中放置从上述装卸台放入装有等待外延处理的衬底基片的 托盘。
上述中转站的一些槽位中可设置有加热装置或冷却装置; 上述中转站的 一些槽位, 可在竖直方向或水平方向移动。
一种具有多个外延反应腔和一个中转站的 MOCVD系统的操作方法, 其 特征在于, 在所述中转站的可水平移动的输出槽位 A1中更换托盘的流程, 包 含以下步骤:
( b ) 打开真空隔离阀;
(c) 托盘被搬到装卸台;
( d ) 换新的托盘或换托盘上的衬底基片;
(e) 新的托盘送回到中转站的输出槽位 A1 ;
(f) 关上真空隔离阀;
(g) 由机械手 (21 ) 把新的托盘从输出槽位 A1搬到输入槽位 A2。
在所述中转站的不可水平移动的输出槽位, 如 B1 , 中更换托盘的流程, 在所述可水平移动的输出槽位 A1上没有托盘时进行, 包含以下步骤:
(a) 由机械手把托盘从输出槽位 B1搬至输出槽位 A1 ;
( b ) 打开真空隔离阀;
(c) 托盘被搬到装卸台;
( d ) 换新的托盘或换托盘上的衬底基片;
(e) 新的托盘送回到中转站的输出槽位 A1 ;
(0 关上真空隔离阀; (h) 由机械手把新的托盘从输出槽位 Al搬到输入槽位 B2。
上述的具有多个外延反应腔的 MOCVD系统的操作方法, 还包含在外延 反应腔更换托盘的步骤:
在保持压力平衡条件下打开真空隔离阀, 机械手从外延反应腔里取出托 盘并放入中转站的输出槽位,然后把输入槽位上的新的托盘放入外延反应腔。
与现有技术相比, 本发明所述具有多个外延反应腔的 MOCVD系统, 具 有以下优点:
本发明可同时在多个外延反应腔内对衬底基片进行外延反应, 成倍地增 加每台 MOCVD系统的产量, 不用打开外延反应腔, 使其保持在真空状态和 较高的工作温度下, 而能实现外延反应腔内托盘取放的操作, 不仅节约了外 延反应腔冷却的时间和换盘操作的时间, 还使腔壁上的沉积物不容易脱落, 延长了进行腔体清洗维护的周期, 提高了设备的生产利用率。
本发明还改变现有装卸台与传输腔连接的系统结构, 使传输腔能有更多 位置连接更多的外延反应腔, 以共用同一套传输腔、 机械手、 中转站和装卸 台, 节省了另外一套或几套相应的设备, 降低了其设置成本和运行费用, 节 约了这部分设备的安装场地。
本发明设计了用于多外延反应腔的中转站和装卸台, 设计了多个托盘更 换的顺序, 在可竖直及水平方向移动的槽位与机械手的配合下, 实现了快速 取换托盘的操作。
本发明将新的托盘和取出的托盘分别放在中转站中与外延反应腔对应的 输入槽位和输出槽位上, 并可分别通过槽位的加热或冷却功能来縮短后续操 作的准备时间, 进一步提高了设备的生产利用率。
本发明还可以通过设置两组中转站及装卸台, 分别作为托盘的输入口和 输出口, 或是把真空隔离阀 52去掉, 实现了操作步骤的迸一步简化。 附图的简要说明
图 1是现有人工操作的具有单个外延反应腔的 MOCVD系统的结构示意 图;
图 2是现有机械自动化操作的具有单个外延反应腔的 MOCVD系统的结 构示意图; 图 3是本发明在实施例 1中具有两个外延反应腔的 MOCVD系统的结构 示意图;
图 4是本发明在实施例 1中具有三个外延反应腔的 MOCVD系统的结构 示意图;
图 5是本发明在实施例 2中具有两个外延反应腔的 MOCVD系统的结构 示意图;
图 6是本发明在实施例 3中具有三个外延反应腔的 MOCVD系统的结构 示意图;
图 7是本发明中具有两个外延反应腔的 MOCVD系统的一种优选结构的 侧视图。 实现本发明的最佳方式
以下结合附图说明本发明的多种具体的系统配置。
实施例 1
请配合参见图 3、 图 4所示, 本实施例涉及的具有多个外延反应腔的 MOCVD系统, 包含一设置有机械手 21的传输腔 20, 以及与传输腔 20连接 的等于或大于两个的外延反应腔 10,还包含一与传输腔 20连接的中转站 30, 及与中转站 30连接的装卸台 40。 传输腔 20与每个外延反应腔 10之间设有 一真空隔离阀 51 ;传输腔 20与中转站 30之间设有一真空隔离阀 52, 中转站 30与装卸台 40之间设有一真空隔离阀 53。
如图 3所示是具有两个外延反应腔的 MOCVD系统; 图 4所示是具有三 个外延反应腔的 MOCVD系统。 一个传输腔 20可连接的最大外延反应腔 10 数量由传输腔 20的设计所决定的。
其中,外延反应腔 10是 MOCVD系统中用于在衬底基片 61上外延生长 结构薄膜的核心部分。 外延反应腔 10中放置有一个托盘 60, 使多个外延片 基底 61放在该托盘 60上进行外延生长,同时处理的衬底基片 61数量由外延 反应腔 10的设计决定。 外延反应腔 10—般工作在真空和高温的状态, 本发 明在装 /卸托盘 60时, 使外延反应腔 10保持在真空状态下, 能防止外界污染 进入,而真空高温的状态还能防止外延反应腔 10内壁上的沉积物脱落, 因而 能保持外延反应腔 10内的干净, 有效延长清理外延反应腔 10的周期。 传输腔 20的中心位置设置有机械手 21, 其具有转动、 径向平移、 上下 移动 3个运动功能。该机械手 21通过这些运动的组合,不用打开外延反应腔 10, 就能把托盘 60从外延反应腔 10取出、放入中转站 30, 或是从中转站 30 取出、放入外延反应腔 10。在传输腔 20与外延反应腔 10压力平衡或是达到 一定的预设范围时, 一般是真空状态下, 可以打开两个腔体之间的真空隔离 阀 51, 由机械手 21取送托盘 60。
中转站 30在通过传输腔 20与外延反应腔 10交换托盘时,工作在与传输 腔 20和外延反应腔 10的压力平衡或是一定范围内, 最常见的是在真空状态 下,这时才能将中转站 30与传输腔 20之间的真空隔离阀 52打开;仅在大气 压力状态下, 才能将中转站 30与装卸台 40之间的真空隔离阀 53打开。
在另一种设备配置中, 中转站 30与传输腔 20之间不设置真空隔离阀 52 (即去除图 3、 图 4中虚线部分)。这样的配置使得传输腔 20和中转站 30始 终工作在相同的压力状态。 在传输腔 20和中转站 30处于真空状态时, 才能 打开真空隔离阔 51, 进行托盘 60在外延反应腔 10的取换; 在打开真空隔离 阀 53时,传输腔 20会随着中转站 30—起进入大气压力状态。该种不设置真 空隔离阀 52的设备配置,需要同时为传输腔 20和中转站 30两个腔体抽真空, 虽然时间延长了, 但是能在结构和操作步骤上实现进一步的简化。
中转站 30中设置有若干放置托盘 60的槽位 31, 该槽位 31的数量由外 延反应腔 10的数量决定, 为每个外延反应腔 10分配有两个槽位 31, 分别用 于放置从外延反应腔 10取出的外延反应完成的托盘 60和从装卸台 40放入等 待处理的托盘 60。其中放置新托盘 60的槽位 31可具有加热装置, 能使托盘 60温度达到如 100摄氏度以上, 缩短托盘 60的预热时间; 放置外延完成的 托盘 60的槽位 31可具有冷却装置,在一定时间内能把托盘 60冷却到后续操 作例如 100摄氏度以下的工作温度。 上述仅提供了加热装置和冷却装置的一 种配置方法, 其可按照不同的生产要求进行配置。
上述中转站 30中的若干槽位 31, 具有在竖直方向上下移动的功能, 在 打开真空隔离阀 51、 52后, 配合传输腔 20中的机械手 21,在不同的槽位 31 与外延反应腔 10之间进行托盘 60取放的操作;在至少一个槽位 31上设置水 平方向移动的功能, 在打开真空隔离阀 53时, 可以使该槽位 31平移到装卸 台 40, 把托盘 60搬到装卸台 40上, 进行后续操作。 操作人员可以在装卸台 40进行换托盘 60或者换托盘 60上衬底基片 61 的操作。如图 7所示,该装卸台 40可以放在一个充满氮气的手套箱 70里面, 保持干净的作业环境。装卸台 40也可以放在一个装有高效空气过滤器的无尘 层流罩 70内, 以使作业环境满足粉尘控制的要求 实施例 2
如图 5所示,本实施例涉及的 MOCVD系统, 以配置两个外延反应腔 10 为例, 其与上述实施例中结构相类似, 包含一设置有机械手 21的传输腔 20, 以及与传输腔 20连接的两个外延反应腔 10。 其不同点在于, 还包含与传输 腔 20连接的两个中转站 30, 每个中转站 30还与一个装卸台 40连接。
与上述实施例类似, 传输腔 20与每个外延反应腔 10之间设有真空隔离 阀 51 ; 中转站 30与装卸台 40之间设有真空隔离阀 53。 传输腔 20与中转站 30之间的真空隔离阀 52 (图 5中虚线表示)可根据要求选择设置或去除。上 述真空隔离阀 51、 52、 53均在其两边腔体的压力平衡或是达到一定范围内时 才能打开。
与上述不同, 本实施例设置有两组中转站 30和装卸台 40, 因此可使其 中一组专门放置等待外延处理的新托盘 60,而在另一组中放置从两个外延反 应腔 10取出的外延反应完成的托盘 60; 或是使每组中转站 30和装卸台 40 对应一个外延反应腔 10, 仅为该外延反应腔 10进行托盘的更替取放工作。
与上述实施例类似,每个中转站 30中设置有若干可在竖直或水平方向移 动的槽位 31,方便托盘 60的搬运;该若干槽位 31还可根据不同的生产需要, 任意配置加热装置或冷却装置,对托盘 60进行预热或冷却, 以节省后续处理 的时间。
装卸台 40可放在一个充满氮气的手套箱 70, 或装有高效空气过滤器的 无尘层流罩 70内, 以使作业环境满足粉尘控制要求。 上述两个中转站 30可 通过机械手 21的传递,共用同一个装卸台 40进行托盘 60的更换(即去除图 5中虚线所示的装卸台 40), 以进一步简化系统结构。 实施例 3
如图 6所示, 本实施例涉及具有多个外延反应腔的 MOCVD系统, 与上 述实施例中结构相类似, 包含一设置有机械手 21的传输腔 20, 以及与传输 腔 20连接的若干中转站 30及多个外延反应腔 10。
其不同点在于,本实施例中传输腔 20是多边形的,使其能与更多的外延 反应腔 10或中转站 30连接。 以图 6中为例, 传输腔 20是六边形的, 其分别 与两个中转站 30, 及三个外延反应腔 10连接; 每个中转站 30还与一个装卸 台 40连接。
与上述实施例类似, 传输腔 20与每个外延反应腔 10之间设有真空隔离 阀 51 ; 中转站 30与装卸台 40之间设有真空隔离阀 53。 传输腔 20与中转站 30之间的真空隔离阀 52 (图 6中虚线表示)可根据要求选择设置或去除。上 述真空隔离阀 51、 52、 53均在其两边腔体的压力平衡或是达到一定范围内时 才能打开。
与上述实施例 2类似, 本实施例中设置的两组中转站 30和装卸台 40分 别作为托盘 60的输入口和输出口,在其中一组专门放置等待外延处理的新托 盘 60, 而在另一组中放置从三个外延反应腔 10取出的外延反应完成的托盘 60。
与上述实施例类似,每个中转站 30中设置有若干可在竖直或水平方向移 动的槽位 31 ,方便托盘 60的搬运;该若干槽位 31还可根据不同的生产需要, 任意配置加热装置或冷却装置,对托盘 60进行预热或冷却, 以节省后续处理 的时间。
装卸台 40可放在一个充满氮气的手套箱 70, 或装有高效空气过滤器的 无尘层流罩 70内, 以使作业环境满足粉尘控制要求。 上述两个中转站 30可 通过机械手 21的传递,共用同一个装卸台 40进行托盘 60的更换(即去除图 5中虚线所示的装卸台 40), 以进一步简化系统结构。 以下结合图 7所示一种具有双外延反应腔的 MOCVD系统为例,配合参 见实施例 1所述说明本发明的工作流程。
该系统中, 与传输腔 20连接的两个外延反应腔 10, 共用同一组中转站 30及装卸台 40。需要说明的是, 图 7仅作为本发明的一种实施例, 本发明涉 及的中转站 30及竖直、 水平移动的槽位 31等, 并不限于以下所述的结构。
对应系统中设置的两个外延反应腔 10A和 10B, 中转站 30设有 4个槽 位 31, 分别为输出槽位 Al, B1和输入槽位 A2, B2, 其中输入槽位 A2和 B2用于放置新的待处理的托盘 60, 可以设有加热装置; 输出槽位 A1和 B1 放置完成了外延反应的托盘 60, 可以设有冷却装置。
在本例中, 中转站 30与传输腔 20之间的真空隔离阀 52设置在中转站 30腔室一侧壁的上部, 而中转站 30与装卸台 40之间的真空隔离闽 53设置 在腔室对应侧壁的下部。 中转站 30的槽位 31通过竖直移动, 在中转站 30 与传输腔 20的连接口处, 配合机械手 21进行托盘 60取放的操作 (如图 7 中输入槽位 B2所示); 类似的, 在本例中只有竖直移动到中转站 30与装卸 台 40的连接口处, 槽位 31才能水平移动到装卸台 40 (如图 7中输出槽位 A1所示), 由操作人员取放托盘 60或托盘 60上的衬底基片 61。 以下取换托 盘 60的操作流程中, 省略槽位 31在竖直或水平方向移动的描述。 外延反应腔换托盘的步骤:
( 1 ) A外延反应腔换托盘: 在保持压力平衡条件下打开真空隔离阀 51 和 52,机械手 21从 A外延反应腔 10里取出托盘 60并放入中转站 30的输出 槽位 A1, 然后把输入槽位 A2上的新的托盘 60放入 A外延反应腔 10。
(2) B外延反应腔换托盘: 在保持压力平衡条件下打开真空隔离阀 51 和 52, 机械手 21从 B外延反应腔 10里取出的托盘 60并放入中转站的输出 槽位 Bl, 然后把输入槽位 B2上的新的托盘 60放入 B外延反应腔 10。 准备新的托盘的步骤:
( 1 )如果只在输出槽位 A1上有完成了外延生长的衬底基片 61的托盘, 操作步骤为
(b) 打开真空隔离阔 (53 );
(c) 托盘 (60) 被搬到装卸台 (40);
(d) 换新的托盘 (60) 或换托盘 (60) 上的衬底基片 61 ;
(e) 新的托盘 (60) 送回到中转站 (30) 的输出槽位 A1 ;
(f) 关上真空隔离阀 (53 );
(g) 由机械手 (21 ) 把新的托盘 (60) 从输出槽位 A1搬到输入槽 位 A2。 这样就完成了为 A外延反应腔准备下一轮的外延反应,更换托盘的操作。
(2)如果只在输出槽位 B1上有完成了外延生长的衬底基片 61的托盘, 操作步骤为
(a) 由机械手把托盘 (60) 从输出槽位 B1搬至输出槽位 A1 ;
(b) 打开真空隔离阀 (53 );
(c) 托盘 (60) 被搬到装卸台 (40);
(d) 换新的托盘 (60) 或换托盘 (60) 上的衬底基片 61 ;
(e) 新的托盘 (60) 送回到中转站 (30) 的输出槽位 A1 ;
(f) 关上真空隔离阀 (53 );
(h) 由机械手把新的托盘 (60) 从输出槽位 A1搬到输入槽位 B2。 这样就完成了为 B外延反应腔准备下一轮的外延反应,更换托盘的操作。
(3 ) 如果在输出槽位 A1和输出槽位 B1都有完成了外延生长的衬底基 片 61的托盘, 必须先完成输出槽位 A1上托盘 60的更新, 即 (1 ) 的所有步 骤, 把输出槽位 A1空出后再完成输出槽位 B1上托盘的更新, 即 (2) 的所 有步骤。
以上步骤都可以由自动控制软件和硬件来实现。 对于实施例 1中所述传输腔 20与中转站 30间不设置真空隔离阀 52的系 统配置(即去除图 7中虚线部分), 上述 "外延反应腔换托盘"和 "准备新托 盘" 的步骤可同样适用。 上述 "外延反应腔换托盘"和 "准备新的托盘" 的步骤, 可同样适用如 实施例 2、 3中所述, 与多个外延反应腔 10连接的传输腔 20, 还分别连接作 为托盘 60的输入口和输出口的两组中转站 30及装卸台 40的系统配置。对该 种系统更替托盘 60的操作中, 仅需在输入口端将装卸台 40中所有的新托盘 60依次运送至中转站 30中;而在输出口端将外延反应完成的托盘 60依次从 中转站 30运送至装卸台 40, 使机械手 21的操作及每一个中转站 30控制的 复杂程度进一步简化。 综上所述, 本发明所述具有多个外延反应腔的 MOCVD系统, 可同时在 多个外延反应腔内对衬底基片进行外延反应,成倍地增加每台 MOCVD系统 的产量, 不用打开外延反应腔, 使其保持在真空状态和较高的工作温度下, 而能实现外延反应腔内托盘取放的操作, 不仅节约了外延反应腔冷却的时间 和换盘操作的时间, 还使腔壁上的沉积物不容易脱落, 延长了进行腔体清洗 维护的周期, 提高了设备的生产利用率。
本发明还改变现有装卸台与传输腔连接的系统结构, 使传输腔能有更多 位置连接更多的外延反应腔, 以共用同一套传输腔、 机械手、 中转站和装卸 台, 节省了另外一套或几套相应的设备, 降低了其设置成本和运行费用, 节 约了这部分设备的安装场地。
本发明设计了用于多外延反应腔的中转站和装卸台, 设计了多个托盘更 换的顺序, 在可竖直及水平方向移动的槽位与机械手的配合下, 实现了快速 取换托盘的操作。
本发明将新的托盘和取出的托盘分别放在中转站中与外延反应腔对应的 输入槽位和输出槽位上, 并可分别通过槽位的加热或冷却功能来缩短后续操 作的准备时间, 进一步提高了设备的生产利用率。
本发明还可以通过设置两组中转站及装卸台, 分别作为托盘的输入口和 输出口, 或是把真空隔离阀 52去掉, 实现了操作步骤的进一步简化。
尽管本发明的内容已经通过上述优选实施例作了详细介绍, 但应当认识 到上述的描述不应被认为是对本发明的限制。 在本领域技术人员阅读了上述 内容后, 对于本发明的多种修改和替代都将是显而易见的。 因此, 本发明的 保护范围应由所附的权利要求来限定。

Claims

1 权利要求
1. 一种具有多个外延反应腔的 MOCVD系统, 用于对放置在托盘 (60) 上 的若干衬底基片(61 )进行外延反应, 其特征在于, 包含一设置有机械手
(21 ) 的传输腔 (20)、 分别与传输腔 (20) 连接的等于或大于两个的外 延反应腔 (10); 所述托盘 (60) 分别放置在所述多个外延反应腔 (10) 内,使若干衬底基片(61 )在该多个外延反应腔(10)同时进行外延反应。
2. 如权利要求 1所述的具有多个外延反应腔的 MOCVD系统,其特征在于, 还包含分别与所述传输腔 (20) 连接的至少一个中转站 (30), 以及与所 述中转站 (30) 连接的装卸台 (40)。
3. 如权利要求 2所述的具有多个外延反应腔的 MOCVD系统,其特征在于, 还包含若干真空隔离阀 (51、 52、 53 );
所述真空隔离阀 (51 ) 设置在所述传输腔 (20) 与每个外延反应腔 ( 10) 之间;
所述真空隔离阀 (53 ) 设置在中转站 (30) 与装卸台 (40) 之间; 在传输腔 (20) 与中转站 (30) 之间可设置所述真空隔离阀 (52); 所述若干真空隔离阀 (51、 52、 53 ) 仅在其两边的腔室中压力平衡 或处于设定范围时打开。
4. 如权利要求 2所述的具有多个外延反应腔的 MOCVD系统,其特征在于, 所述机械手(21 ) 由径向伸縮、轴向转动、上下移动的三维运动配合, 将 所述托盘(60)在所述外延反应腔(10)与中转站(30)之间取放、 或者 在外延反应腔 (10) 之间取放, 或者在中转站 (30) 之间取放。
5. 如权利要求 2所述的具有多个外延反应腔的 MOCVD系统,其特征在于, 与所述传输腔 (20) 连接有至少一组中转站 (30) 和装卸台 (40), 作为 托盘 (60) 的输入口和输出口, 或者两组中转站 (30) 和装卸台 (40), 其中一组放置装有等待外延处理的新衬底基片 (61 ) 的托盘 (60), 而在 另一组中放置从多个外延反应腔(10)取出的装有完成了外延反应衬底基 片 (61 ) 的托盘 (60)。
6. 如权利要求 2或 5所述的具有多个外延反应腔的 MOCVD系统, 其特征 在于, 所述中转站(30) 中设有若干槽位(31 ), 使每个外延反应腔(10) 对应分配有输入槽位和输出槽位;
所述输出槽位中放置从所述外延反应腔 (10) 取出的外延反应完成 的托盘 (60);
所述输入槽位中放置从所述装卸台 (40) 放入等待外延处理的托盘 (60)。
7. 如权利要求 6所述的具有多个外延反应腔的 MOCVD系统,其特征在于, 所述中转站(30)的一些槽位(31 ) 中可设置有加热装置或冷却装置; 所 述中转站 (30) 的一些槽位 (31 ), 可在竖直方向或水平方向移动。
8. 一种具有多个外延反应腔和一个中转站的 MOCVD系统的操作方法, 其 特征在于, 在所述中转站(30) 的可水平移动的输出槽位 A1中更换托盘
(60) 的流程, 包含以下步骤-
(b) 打开真空隔离阀 (53 );
(c) 托盘 (60) 被搬到装卸台 (40);
(d) 换新的托盘 (60) 或换托盘 (60) 上的衬底基片 (61 );
(e) 新的托盘 (60) 送回到中转站 (30) 的输出槽位 A1 ;
(f) 关上真空隔离阀 (53 );
(g) 由机械手 (21 ) 把新的托盘 (60) 从输出槽位 A1搬到输入槽 位 A2。
9. 如权利要求 8所述的具有多个外延反应腔和一个中转站的 MOCVD系统 的操作方法, 其特征在于, 在所述中转站(30)的不可水平移动的输出槽 位 B1中更换托盘 (60) 的流程, 在所述可水平移动的输出槽位 A1上没 有托盘 (60) 时进行, 包含以下步骤:
(a) 由机械手把托盘 (60) 从输出槽位 B1搬至输出槽位 A1 ;
(b) 打开真空隔离阀 (53 );
(c) 托盘 (60) 被搬到装卸台 (40);
(d) 换新的托盘 (60) 或换托盘 (60) 上的衬底基片 (61 );
(e) 新的托盘 (60) 送回到中转站 (30) 的输出槽位 A1 ;
(f) 关上真空隔离阀 (53 );
(h) 由机械手把新的托盘 (60) 从输出槽位 A1搬到输入槽位 B2。 如权利要求 9所述的具有多个外延反应腔的 MOCVD系统的操作方法, 其特征在于, 还包含在外延反应腔 (10) 更换托盘 (60) 的步骤:
在保持压力平衡条件下打开真空隔离阀(51 )和(52), 机械手(21 ) 从外延反应腔 (10) 里取出托盘 (60) 并放入中转站 (30) 的输出槽位, 然后把输入槽位上的新的托盘 (60) 放入外延反应腔 (10)。
PCT/CN2011/001124 2010-07-09 2011-07-08 具有多个外延反应腔的mocvd系统及其操作方法 WO2012003715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102312739A CN102212877B (zh) 2010-07-09 2010-07-09 具有多个外延反应腔的mocvd系统及其操作方法
CN201010231273.9 2010-07-09

Publications (1)

Publication Number Publication Date
WO2012003715A1 true WO2012003715A1 (zh) 2012-01-12

Family

ID=44744401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001124 WO2012003715A1 (zh) 2010-07-09 2011-07-08 具有多个外延反应腔的mocvd系统及其操作方法

Country Status (2)

Country Link
CN (1) CN102212877B (zh)
WO (1) WO2012003715A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778079B2 (en) 2007-10-11 2014-07-15 Valence Process Equipment, Inc. Chemical vapor deposition reactor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105986251A (zh) * 2015-02-11 2016-10-05 上海理想万里晖薄膜设备有限公司 一种pecvd系统
CN110952079A (zh) * 2018-09-26 2020-04-03 东泰高科装备科技有限公司 搁架、承载盘、托盘、缓冲腔、装载腔及基片传输系统
DE102019123556A1 (de) 2019-09-03 2021-03-04 Aixtron Se Lademodul für ein CVD-Reaktorsystem
CN112391608A (zh) * 2020-11-13 2021-02-23 宁波沁圆科技有限公司 Cvd处理系统及处理方法
CN113463190A (zh) * 2021-05-13 2021-10-01 顾赢速科技(合肥)有限公司 外延生长装置
CN113881931A (zh) * 2021-10-11 2022-01-04 湘潭大学 一种cvd装置及其分散进气方法
CN114540946B (zh) * 2021-12-29 2023-11-14 华灿光电(浙江)有限公司 提高制备效率的mocvd外延设备及其使用方法
CN114411247B (zh) * 2022-01-21 2023-05-16 深圳市纳设智能装备有限公司 一种外延反应设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1644754A (zh) * 2004-10-19 2005-07-27 吉林大学 氧化锌生长用低压金属有机化学汽相沉积设备及其工艺
CN101061253A (zh) * 2004-11-22 2007-10-24 应用材料股份有限公司 使用批式制程腔室的基材处理装置
US20070264821A1 (en) * 2006-05-10 2007-11-15 Samsung Electronics Co., Ltd. Methods of forming a semiconductor device
US20090194026A1 (en) * 2008-01-31 2009-08-06 Burrows Brian H Processing system for fabricating compound nitride semiconductor devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944857A (en) * 1997-05-08 1999-08-31 Tokyo Electron Limited Multiple single-wafer loadlock wafer processing apparatus and loading and unloading method therefor
JP2000012647A (ja) * 1998-06-19 2000-01-14 Sumitomo Eaton Noba Kk ウエハ搬送装置及びその方法
IT1308606B1 (it) * 1999-02-12 2002-01-08 Lpe Spa Dispositivo per maneggiare substrati mediante un istema autolivellante a depressione in reattori epistassiali ad induzione con suscettore
CN2756644Y (zh) * 2004-12-21 2006-02-08 中国科学技术大学 连通式多反应室高温有机金属化学气相淀积装置
CN101911253B (zh) * 2008-01-31 2012-08-22 应用材料公司 闭环mocvd沉积控制

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1644754A (zh) * 2004-10-19 2005-07-27 吉林大学 氧化锌生长用低压金属有机化学汽相沉积设备及其工艺
CN101061253A (zh) * 2004-11-22 2007-10-24 应用材料股份有限公司 使用批式制程腔室的基材处理装置
US20070264821A1 (en) * 2006-05-10 2007-11-15 Samsung Electronics Co., Ltd. Methods of forming a semiconductor device
US20090194026A1 (en) * 2008-01-31 2009-08-06 Burrows Brian H Processing system for fabricating compound nitride semiconductor devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778079B2 (en) 2007-10-11 2014-07-15 Valence Process Equipment, Inc. Chemical vapor deposition reactor

Also Published As

Publication number Publication date
CN102212877A (zh) 2011-10-12
CN102212877B (zh) 2012-08-22

Similar Documents

Publication Publication Date Title
WO2012003715A1 (zh) 具有多个外延反应腔的mocvd系统及其操作方法
TWI685909B (zh) 用以移動晶圓之設備前端模組及方法
US9443749B2 (en) Vacuum processing apparatus
JP2022191406A (ja) 最適化された低エネルギ/高生産性の蒸着システム
US11600503B2 (en) High-throughput, multi-chamber substrate processing system
JP2011049585A (ja) 基板搬送装置及び方法
JP2007049150A (ja) 半導体ワークピース処理システム及びその処理方法
WO1999035673B1 (en) Two-wafer loadlock wafer processing apparatus and loading and unloading method therefor
TWI762518B (zh) 用於工件處理之系統與方法
JP2016105462A (ja) 搬送される半導体基板の熱制御のためのバッファステーションおよび半導体基板の搬送方法
KR101764444B1 (ko) 모듈식 반도체 처리 시스템
KR20180018403A (ko) 시스템 생산성을 개선하기 위한 플랫폼 아키텍처
WO2014189788A1 (en) System and method for quick-swap of multiple substrates
US20090162170A1 (en) Tandem type semiconductor-processing apparatus
TW202143363A (zh) 半導體處理系統
CN112391608A (zh) Cvd处理系统及处理方法
TW202114023A (zh) 具有多物件能力的裝載閘系統
CN116895570A (zh) 一种应用于多腔室多工艺的传送片系统及方法
WO2020062541A1 (zh) 搁架、承载盘、托盘、缓冲腔、装载腔及基片传输系统
CN106033737A (zh) 真空锁系统及基片传送方法
CN213507189U (zh) Cvd处理系统
CN213835528U (zh) SiC材料外延生长设备
TWI390653B (zh) 磊晶製程系統及其製程方法
JP2010153453A (ja) 基板処理装置および半導体装置の製造方法
CN118824915A (zh) 一种晶圆传送装置及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803069

Country of ref document: EP

Kind code of ref document: A1