WO2012002099A1 - 渋滞予測装置 - Google Patents
渋滞予測装置 Download PDFInfo
- Publication number
- WO2012002099A1 WO2012002099A1 PCT/JP2011/062711 JP2011062711W WO2012002099A1 WO 2012002099 A1 WO2012002099 A1 WO 2012002099A1 JP 2011062711 W JP2011062711 W JP 2011062711W WO 2012002099 A1 WO2012002099 A1 WO 2012002099A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- inter
- traffic jam
- speed
- result
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 94
- 238000000034 method Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/052—Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/20—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
- B60K35/21—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
- B60K35/215—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays characterised by the combination of multiple visual outputs, e.g. combined instruments with analogue meters and additional displays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/20—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
- B60K35/21—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
- B60K35/22—Display screens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/60—Instruments characterised by their location or relative disposition in or on vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/36—Input/output arrangements for on-board computers
- G01C21/3691—Retrieval, searching and output of information related to real-time traffic, weather, or environmental conditions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0108—Measuring and analyzing of parameters relative to traffic conditions based on the source of data
- G08G1/0112—Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0133—Traffic data processing for classifying traffic situation
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/166—Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/10—Input arrangements, i.e. from user to vehicle, associated with vehicle functions or specially adapted therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/84—Data processing systems or methods, management, administration
Definitions
- the present invention relates to a traffic jam prediction device.
- This application claims priority based on Japanese Patent Application No. 2010-147571 filed in Japan on June 29, 2010, the contents of which are incorporated herein by reference.
- another vehicle is detected by a radar device such as a millimeter wave, the vehicle density between the other vehicle existing within a predetermined distance from the own vehicle and the own vehicle is calculated, and the criticality corresponding to the speed of the own vehicle is further calculated.
- a device is known that uses density to determine whether or not the traveling state of the host vehicle is a cause of traffic jams and informs the driver of the determination result (see, for example, Patent Document 1).
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a traffic jam prediction apparatus capable of appropriately improving the traffic jam prediction accuracy.
- the traffic jam prediction device detects a speed of a host vehicle and outputs a detection result, and detects a distance between the host vehicle and another vehicle to detect a detection result.
- Inter-vehicle distance detection means for outputting, correlation calculation means for calculating a correlation based on the detection result of the speed and the detection result of the inter-vehicle distance and outputting the calculation result, the calculation result of the correlation or the calculation result of the correlation
- display means for displaying information related to.
- a traffic jam prediction apparatus detects and detects a vehicle-to-vehicle distance between the host vehicle and another vehicle, and speed detection means for detecting the speed of the host vehicle and outputting a detection result.
- Inter-vehicle distance detection means for outputting a result
- correlation calculation means for calculating a correlation based on the detection result of the speed and the detection result of the inter-vehicle distance and outputting a calculation result, and occurrence of traffic jam based on the calculation result of the correlation
- a traffic jam prediction means for predicting traffic.
- a traffic jam prediction device detects a speed of a host vehicle and outputs a detection result, and detects an inter-vehicle distance between the host vehicle and the other vehicle.
- An inter-vehicle distance detecting means for outputting a detection result;
- a single regression line calculating means for calculating a single regression line based on the detection result of the speed and the detection result of the inter-vehicle distance;
- Display means for displaying information related to the calculation result or the calculation result of the single regression line.
- the traffic jam prediction apparatus further includes standard deviation calculating means for calculating a standard deviation of the parameters of the single regression line and outputting a calculation result, wherein the display means You may employ
- a traffic jam prediction device detects a speed of a host vehicle and outputs a detection result, and detects an inter-vehicle distance between the host vehicle and the other vehicle.
- An inter-vehicle distance detecting means for outputting a detection result;
- a single regression line calculating means for calculating a single regression line based on the detection result of the speed and the detection result of the inter-vehicle distance;
- a traffic jam prediction means for predicting the occurrence of traffic jam based on the calculation result.
- the traffic jam prediction apparatus further includes standard deviation calculation means for calculating a standard deviation of the parameters of the single regression line and outputting a calculation result, wherein the traffic jam prediction means includes the single regression.
- standard deviation calculation means for calculating a standard deviation of the parameters of the single regression line and outputting a calculation result, wherein the traffic jam prediction means includes the single regression.
- a configuration may be employed in which occurrence of traffic jam is predicted based on a straight line calculation result and a standard deviation calculation result.
- the driver by displaying the correlation between the detection result of the speed and the detection result of the inter-vehicle distance or information related to the correlation, the driver accurately predicts the occurrence of the traffic jam. be able to.
- the driver can predict the occurrence of traffic congestion by displaying a single regression line of the speed detection result and the detection result of the inter-vehicle distance or information related to the single regression line. Can be performed with high accuracy.
- the standard deviation of the parameters of the single regression line between the speed detection result and the inter-vehicle distance detection result or information related to the standard deviation is obtained.
- the driver can accurately predict the occurrence of a traffic jam.
- the traffic jam prediction device 10 includes a vehicle speed sensor 11, a radar device 12, a navigation device 13, a processing device 14, a switch 15, a throttle actuator 16, and a brake actuator. 17, a steering actuator 18, a display device 19, a speaker 20, and a communication device 21.
- the vehicle speed sensor 11 detects the speed (vehicle speed) of the host vehicle and outputs a signal of the detection result.
- the radar apparatus 12 divides a detection target area set in the external environment of the host vehicle into a plurality of angle areas, and transmits an electromagnetic wave transmission signal such as an infrared laser or a millimeter wave so as to scan each angle area. To do. And the reflected signal which arose by reflecting each transmission signal by the object (for example, another vehicle, a structure, a road surface, etc.) outside the own vehicle is received. Then, the signal relating to the transmission signal and the reflection signal is output to the processing device 14.
- the radar device 12 divides a detection target region within a predetermined angle range from the host vehicle into a plurality of vertical angle regions in the vertical direction and a plurality of horizontal angle regions in the horizontal direction of the host vehicle. Then, a plurality of vertical angle areas are sequentially switched, for example, from the top to the bottom in the vertical direction, and the plurality of horizontal angle areas are sequentially switched, for example, from the left to the right in the horizontal direction for each of the plurality of vertical angle areas. However, electromagnetic waves are transmitted for each of a plurality of horizontal angle regions.
- the navigation device 13 receives a positioning signal such as a GPS (Global Positioning System) signal for measuring the position of the host vehicle using an artificial satellite, for example, and calculates the current position of the host vehicle based on the positioning signal.
- a positioning signal such as a GPS (Global Positioning System) signal for measuring the position of the host vehicle using an artificial satellite, for example, and calculates the current position of the host vehicle based on the positioning signal.
- the navigation device 13 determines the current position of the host vehicle by an autonomous navigation calculation process based on the speed (vehicle speed) and yaw rate detection signals output from the vehicle speed sensor 11 and the yaw rate sensor (not shown), for example. calculate.
- the navigation device 13 includes map display data for displaying a map on the display 19 and road coordinate data required for map matching processing based on the current position of the host vehicle. Further, the navigation device 13 is a line connecting each node with data required for processing such as route search and route guidance, for example, a node consisting of latitude and longitude at a predetermined position such as an intersection and a branch point. Road data consisting of links is provided as map data. Various types of information are added to the nodes and links.
- the navigation device 13 performs map matching on the road data based on information on the current position of the host vehicle obtained from either or both of the positioning signal and the autonomous navigation calculation processing, and performs position detection. Correct the result. Further, the navigation device 13 executes processing such as route search and route guidance of the own vehicle in accordance with an input operation by the operator, for example, and displays, for example, route information to the destination and various additional information along with the road data. 19 and various voice messages are output from the speaker 20. Note that the navigation device 13 is based on the prediction result for the occurrence of traffic jam output from the traffic jam prediction unit 38 described later and the prediction result for the traffic jam predicted in the other vehicle output from the communication control unit 41 described later. For example, it is possible to perform processing such as route search and route guidance of the host vehicle so as to avoid traffic jams.
- the processing device 14 includes, for example, a reflection point detection unit 31, an other vehicle detection unit 32, an inter-vehicle distance detection unit 33, a calculation unit 34, a traffic jam prediction unit 38, a travel control unit 39, and a notification control unit 40.
- the communication control unit 41 is provided.
- the signal output from the switch 15 includes, for example, a signal related to an operation state of a brake pedal (not shown) by the driver, a signal related to an operation state of an accelerator pedal (not shown) by the driver, and an input operation by the driver.
- a signal for instructing the start or stop of execution of automatic traveling control that automatically controls the traveling state of the host vehicle in response to the signal, a signal for instructing increase or decrease of the target vehicle speed in automatic traveling control, and automatic traveling control for example, A signal instructing increase / decrease of the target inter-vehicle distance with respect to the inter-vehicle distance between the own vehicle and another vehicle (for example, the preceding vehicle) in the following traveling control that automatically follows the preceding vehicle).
- the reflection point detection unit 31 detects the position of the reflection point of the reflection signal based on the signal output from the radar device 12, for example, and outputs the detection result.
- the other vehicle detection unit 32 automatically detects the reflection point position output from the reflection point detection unit 31 according to the distance between adjacent reflection points, the distribution state of the plurality of reflection points, and the like. At least one or more other vehicles existing outside the vehicle are detected, and a detection result is output.
- the inter-vehicle distance detection unit 33 detects, for example, the inter-vehicle distance between the host vehicle and the other vehicle based on the detection result of at least one other vehicle output from the other vehicle detection unit 32, and determines the detection result. Output together with the number of vehicles detected.
- the calculation unit 34 is based on the detection result of the speed (vehicle speed) of the host vehicle output from the vehicle speed sensor 11 and the detection result of the inter-vehicle distance between the host vehicle and another vehicle output from the inter-vehicle distance detection unit 33. Then, the state quantity related to the sign of occurrence of the traffic jam ahead of the traveling direction of the host vehicle is calculated, and the calculation result is output.
- the computing unit 34 includes, for example, a correlation computing unit 51, a single regression computing unit 52, and a standard deviation computing unit 53.
- a correlation value (Pearson correlation value) is calculated as a combination of the inter-vehicle distance and the speed of the host vehicle, and the calculation result is output.
- the speed of the host vehicle at each time point is, for example, a detection result (that is, an instantaneous value) output from the vehicle speed sensor 11 at each time point, or a predetermined time interval (for example, each time t1 shown in FIGS. 2A and 2B). ,..., T6, etc.) and the average value of detection results output from the vehicle speed sensor 11 (that is, the average value of instantaneous values).
- the inter-vehicle distance at each time point is, for example, an inter-vehicle distance between the own vehicle output from the inter-vehicle distance detection unit 33 and a specific other vehicle (for example, a preceding vehicle) or an output from the inter-vehicle distance detection unit 33, for example.
- inter-vehicle distance detection unit 33 For an average value of the inter-vehicle distance between the host vehicle and the plurality of other vehicles, or a value such as a minimum value of the inter-vehicle distance between the host vehicle and the plurality of other vehicles output from the inter-vehicle distance detection unit 33, for example. These are instantaneous values and average values of instantaneous values.
- the calculation result of the correlation value (Pearson correlation value) output from the correlation calculation unit 51 is, for example, specifically related to the formation process of the vehicle group by other vehicles, and is shown in FIGS. 2A and 2, for example.
- the stable state where the minimum value of the inter-vehicle distance (minimum inter-vehicle distance value) and the large Pearson correlation value is maintained is a state where a vehicle group has already been formed and traffic congestion has occurred. It corresponds to. Further, for example, as shown in FIGS.
- the minimum value of the inter-vehicle distance (minimum inter-vehicle distance value) and a small Pearson correlation value is maintained, or from a state where the minimum inter-vehicle distance value is small and the Pearson correlation value is large
- the unstable state where the minimum distance between vehicles is large and the Pearson correlation value is small is the state where the vehicle group is not formed or the formation of the vehicle group is suppressed, This corresponds to a state where the possibility of traffic jams is low or not.
- a single regression line as shown in FIG. 3 is calculated, and the slope (that is, the vehicle speed / inter-vehicle distance) and the intercept (that is, the inter-vehicle distance is zero). Vehicle speed) and the calculation result is output.
- the speed of the host vehicle at each time point is, for example, a detection result (that is, an instantaneous value) output from the vehicle speed sensor 11 at each time point, or a predetermined time interval (for example, each time ta shown in FIGS. 4A and 4B). ,..., Tc, etc.) and the average value of detection results output from the vehicle speed sensor 11 (that is, the average value of instantaneous values).
- the inter-vehicle distance at each time point is, for example, an inter-vehicle distance between the own vehicle output from the inter-vehicle distance detection unit 33 and a specific other vehicle (for example, a preceding vehicle) or an output from the inter-vehicle distance detection unit 33, for example.
- inter-vehicle distance detection unit 33 For an average value of the inter-vehicle distance between the host vehicle and the plurality of other vehicles, or a value such as a minimum value of the inter-vehicle distance between the host vehicle and the plurality of other vehicles output from the inter-vehicle distance detection unit 33, for example. These are instantaneous values and average values of instantaneous values.
- the standard deviation calculation unit 53 is based on the calculation result of the parameters of the single regression line (that is, the slope and intercept) output from the single regression calculation unit 52, for example, the calculation result output from the single regression calculation unit 52 at a predetermined time interval.
- the average value (that is, the instantaneous value) and the standard deviation are calculated, and the calculation result is output.
- the average value and the standard deviation of the parameters of the single regression line output from the standard deviation calculation unit 53 are specifically related to whether or not the distance between the host vehicle and the other vehicle is sufficiently long. For example, as shown in FIGS. 4A and 4B, the time change of the average value of the slope of the single regression line is increasing, or the time change of the standard deviation of the slope of the single regression line is decreased.
- the tendency state corresponds to a state where the sufficient distance between the vehicles is decreasing and a possibility of occurrence of traffic congestion is high.
- the sufficient distance between the vehicles is increased. This corresponds to a state where the possibility of occurrence of traffic congestion is low or not.
- the traffic jam prediction unit 38 calculates, for example, the calculation result of the correlation value (Pearson correlation value) output from the correlation calculation unit 51 and the average value and standard deviation of the parameters of the single regression line output from the standard deviation calculation unit 53. According to at least one of the results, the occurrence of traffic jam ahead of the traveling direction of the host vehicle is predicted, and the prediction result is output.
- the correlation value Peak correlation value
- the traffic jam prediction unit 38 transitions from a state where the Pearson correlation value is small to a state where it is large, for example, as shown in FIG. 2B.
- the unstable state is determined to be a state where there is a high possibility that a traffic jam will occur.
- an unstable state in which the Pearson correlation value is transitioning from a large state to a small state is determined to be a state in which there is a low or no possibility of occurrence of traffic congestion. Further, for example, as shown in FIG.
- a stable state in which the state with a large Pearson correlation value is maintained is determined to be a state in which a vehicle group has already been formed and traffic congestion has occurred.
- a stable state where the Pearson correlation value is small is a state where no vehicle group is formed and no traffic jam occurs.
- the traffic jam prediction unit 38 is based on at least one of the average value of the parameters of the single regression line output from the standard deviation calculation unit 53 and the calculation result of the standard deviation, for example, as shown in FIGS. 4A and 4B.
- a state in which the time change of the average value of the inclination is increasing or a state in which the time change of the standard deviation of the inclination is decreasing is determined to be a state in which there is a high possibility of occurrence of traffic congestion.
- the sufficient distance between the vehicles increases. It is determined that there is a low possibility or no possibility that a traffic jam will occur.
- the traffic jam prediction unit 38 outputs a prediction result to the navigation device 13, the travel control unit 39, and the notification control unit 40 when performing prediction on the occurrence of the traffic jam. Further, the current position of the host vehicle and position information such as a predetermined area around the current position on the map data are acquired from the navigation device 13, the prediction result and the position information are stored in association with each other and output to the communication control unit 41. To do.
- the traffic jam prediction unit 38 when the traffic jam prediction unit 38 outputs the prediction result to the communication control unit 41, the traffic jam prediction unit 38 outputs the prediction result directly by the communication device 21 or via an appropriate server device (not shown) or relay station (not shown).
- a command may be added to instruct the traveling state of the preceding vehicle to be changed to a traveling state in which the subsequent vehicle of the preceding vehicle is less likely to cause traffic congestion.
- the travel control unit 39 outputs a prediction result for the occurrence of the traffic jam output from the traffic jam prediction unit 38, a prediction result for the occurrence of the traffic jam predicted in another vehicle output from the communication control unit 41 described later, and the output from the switch 15.
- the throttle actuator 16 and the brake are based on the various signals that are output, the detection result of the speed (vehicle speed) of the host vehicle output from the vehicle speed sensor 11, and the detection result of the inter-vehicle distance output from the inter-vehicle distance detection unit 37.
- the traveling control unit 39 starts or stops the execution of the automatic traveling control according to the signal output from the switch 15, and sets or changes the target vehicle speed and the target inter-vehicle distance in the automatic traveling control.
- the travel control unit 39 determines that the possibility of traffic jam occurring in the forward direction of the host vehicle is high in the prediction result output from the traffic jam prediction unit 38, the host vehicle avoids the traffic jam.
- automatic travel control that maintains these target vehicle speed and target inter-vehicle distance (for example, constant speed travel control that matches the actual vehicle speed to the target vehicle speed, and actual inter-vehicle distance with respect to other vehicles (for example, preceding vehicles))
- the inter-vehicle distance control for example, follow-up traveling control
- follow-up traveling control is performed so as to match the target inter-vehicle distance.
- the traveling control unit 39 is ahead of the traveling direction of the host vehicle in the prediction result for the occurrence of traffic jam predicted in another vehicle (for example, a preceding vehicle or a subsequent vehicle) output from the communication control unit 41 described later. If it is determined that there is a high possibility of traffic jams, the target vehicle speed and target required for the vehicle to avoid traffic jams and to make it difficult for subsequent vehicles of the vehicle to cause traffic jams. Set the inter-vehicle distance or change the running state of the vehicle.
- the notification control unit 40 predicts the occurrence of the traffic jam output from the traffic jam prediction unit 38 and the traffic jam predicted in another vehicle (for example, a preceding vehicle or a subsequent vehicle) output from the communication control unit 41 described later.
- Various notification operations are controlled by controlling the display 19 and the speaker 20, for example, based on the prediction result for the occurrence. For example, the notification control unit 40 predicts whether or not there is a possibility that a traffic jam will occur in front of the traveling direction of the host vehicle (or whether the traffic jam is likely to occur or is difficult to occur) and the occurrence of the traffic jam. In order to avoid traffic jams, and to prevent the subsequent vehicle of the host vehicle from causing traffic jams, necessary driving operation instructions are notified.
- the notification control unit 40 notifies, for example, the calculation result of the correlation value (Pearson correlation value) output from the correlation calculation unit 51 or information related to the calculation result of the correlation value.
- the information related to the calculation result of the correlation value is, for example, the prediction result for the occurrence of traffic jam ahead of the traveling direction of the host vehicle output from the traffic jam prediction unit 38 based on the calculation result of the correlation value. Etc.
- the notification control unit 40 calculates, for example, a single regression line parameter calculation result (for example, an instantaneous value, an average value, or a standard deviation) output from the standard deviation calculation unit 53 or a parameter of the single regression line. Information related to the calculation result is notified.
- the information related to the calculation result of the parameter of the single regression line is, for example, the prediction result for the occurrence of the traffic jam in the forward direction of the own vehicle output from the traffic jam prediction unit 38 based on the parameter of the single regression line. is there.
- the notification control unit 40 controls, for example, the display color or display brightness of an appropriate image on the display device 19 according to the prediction result output from the traffic jam prediction unit 38, and the speaker 20 By controlling appropriate audio output etc., there is a high possibility that a traffic jam will occur in the forward direction of the host vehicle, that there is already a traffic jam, a traffic jam is unlikely to occur, Make the driver recognize that no such problem has occurred.
- the communication control unit 41 communicates with another vehicle or an appropriate server device (not shown) or a relay station (not shown), for example, by wireless communication by the communication device 21, and responds to the occurrence of the traffic jam output from the traffic jam prediction unit 38.
- the prediction result and the position information are transmitted in association with each other, and the information on the correspondence between the prediction result and the position information with respect to the occurrence of the traffic jam predicted in the other vehicle is received. Then, the information on the correspondence between the prediction result for the occurrence of the traffic jam acquired from the outside and the position information is output to the navigation device 13, the travel control unit 39, and the notification control unit 40.
- the traffic jam prediction device 10 has the above-described configuration. Next, the operation of the traffic jam prediction device 10, that is, processing of the traffic jam prediction method will be described.
- the vehicle speed sensor 11 detects the speed of the host vehicle (vehicle speed).
- step S02 at least one other vehicle existing outside the host vehicle is detected based on a signal output from the radar device 12, and an inter-vehicle distance between the host vehicle and the other vehicle is detected. .
- a combination of the vehicle speed at each time point for example, a single regression line as shown in FIG.
- step S05 based on the calculation results of the parameters of the single regression line (that is, slope and intercept), for example, the average value of the calculation results (that is, instantaneous values) of the parameters of the single regression line at a predetermined time interval, Calculate the standard deviation.
- step S06 the progress of the host vehicle is determined according to at least one of the calculation result of the correlation value (Pearson correlation value) and the average value and standard deviation of the single regression line parameters. Predict the occurrence of traffic jams ahead of the direction.
- step S07 the calculation result of the correlation value (Pearson correlation value) or information related to the calculation result of the correlation value is notified, or the calculation result of the parameter of the single regression line (for example, instantaneous value, average Value, standard deviation, etc.) or information related to the calculation result of the parameter of the single regression line is notified and the process proceeds to the end.
- the calculation result of the correlation value Pearson correlation value
- the parameter of the single regression line for example, instantaneous value, average Value, standard deviation, etc.
- the correlation value (Pearson correlation value) or the combination of the inter-vehicle distance between the host vehicle and the other vehicle and the speed of the host vehicle is determined.
- the correlation value Pearson correlation value
- the combination of the inter-vehicle distance between the host vehicle and the other vehicle and the speed of the host vehicle is determined.
- the calculation result of the correlation value (Pearson correlation value) or information related to the calculation result of the correlation value, the calculation result of the parameter of the single regression line (for example, instantaneous value, average value, standard deviation, etc.) or the By reporting information related to the calculation results of the parameters of the single regression line, it is possible to accurately tell the driver whether or not there is a possibility of traffic jams (or whether traffic jams are likely to occur or traffic jams are difficult to occur). Can be recognized.
- Traffic jam prediction device 11
- Vehicle speed sensor speed detection means
- Radar device 19
- Display 20
- Speaker 21 Communication Device
- Reflection Point Detection Unit 32
- Other Vehicle Detection Unit 33
- Inter-vehicle Distance Detection Unit 34
- Calculation Unit 38
- Congestion Prediction Unit Congestion Prediction Unit
- Travel control unit 40
- Notification control unit 41
- Communication Control Unit 51
- Correlation Calculation Unit 52
- Single regression calculation unit Single regression calculation unit (Single regression line calculation means)
- Standard deviation calculator standard deviation calculation means
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Analytical Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Atmospheric Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Ecology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Automation & Control Theory (AREA)
- Life Sciences & Earth Sciences (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
Description
本願は、2010年6月29日に、日本に出願された特願2010-147571号に基づき優先権を主張し、その内容をここに援用する。
(1)本発明の一態様における渋滞予測装置は、自車両の速度を検出して検出結果を出力する速度検出手段と、前記自車両と他車両との間の車間距離を検出して検出結果を出力する車間距離検出手段と、前記速度の検出結果と前記車間距離の検出結果とに基づく相関を演算して演算結果を出力する相関演算手段と、前記相関の演算結果または前記相関の演算結果に関連する情報を表示する表示手段とを備えている。
本実施の形態による渋滞予測装置10は、例えば図1に示すように、車速センサ11と、レーダ装置12と、ナビゲーション装置13と、処理装置14と、スイッチ15と、スロットルアクチュエータ16と、ブレーキアクチュエータ17と、ステアリングアクチュエータ18と、表示器19と、スピーカー20と、通信装置21とを備えて構成されている。
レーダ装置12は、自車両の外界に設定された検出対象領域を複数の角度領域に分割し、各角度領域を走査するようにして、赤外光レーザやミリ波などの電磁波の発信信号を発信する。そして、各発信信号が自車両の外部の物体(例えば、他車両や構造物や路面など)によって反射されることで生じた反射信号を受信する。そして、発信信号および反射信号に係る信号を、処理装置14に出力する。
また、ナビゲーション装置13は、例えば車速センサ11およびヨーレートセンサ(図示略)などから出力される自車両の速度(車速)およびヨーレートの検出信号に基づく自律航法の算出処理によって、自車両の現在位置を算出する。
また、ナビゲーション装置13は、例えば操作者による入力操作に応じて自車両の経路探索や経路誘導などの処理を実行し、道路データと共に、例えば目的地までの経路情報や各種の付加情報を表示器19に出力すると共に、各種の音声メッセージをスピーカー20から出力する。
なお、ナビゲーション装置13は、後述する渋滞予測部38から出力される渋滞の発生に対する予測結果と、後述する通信制御部41から出力される他車両において予測された渋滞の発生に対する予測結果とに基づき、例えば渋滞を回避するようにして、自車両の経路探索や経路誘導などの処理を実行可能である。
スイッチ15から出力される信号は、例えば、運転者によるブレーキペダル(図示略)の操作状態に係る信号と、運転者によるアクセルペダル(図示略)の操作状態に係る信号と、運転者の入力操作に応じて自動的に自車両の走行状態を制御する自動走行制御の実行開始または実行停止を指示する信号と、自動走行制御での目標車速の増減を指示する信号と、自動走行制御(例えば、自動的に先行車両に追従する追従走行制御など)での自車両と他車両(例えば、先行車両など)との間の車間距離に対する目標車間距離の増減を指示する信号となどである。
演算部34は、例えば、相関演算部51と、単回帰演算部52と、標準偏差演算部53とを備えて構成されている。
また、各時点での車間距離は、例えば車間距離検出部33から出力される自車両と特定の他車両(例えば、先行車両など)との間の車間距離や、例えば車間距離検出部33から出力される自車両と複数の他車両との間の車間距離の平均値や、例えば車間距離検出部33から出力される自車両と複数の他車両との間の車間距離の最小値などの値に対する瞬時値や瞬時値の平均値などである。
また、例えば図2A,図2Bに示すように、車間距離最小値が大きくかつピアソン相関値が小さい状態から、車間距離最小値が小さくかつピアソン相関値が大きい状態へと遷移している不安定な状態は、車群の形成が促進されている状態であって、渋滞が発生する可能性が高い状態に相当する。
一方、例えば、車間距離の最小値(車間距離最小値)が大きく、かつ、ピアソン相関値が小さい状態を維持している安定な状態や、車間距離最小値が小さくかつピアソン相関値が大きい状態から、車間距離最小値が大きくかつピアソン相関値が小さい状態へと遷移している不安定な状態は、車群が形成されていない、あるいは、車群の形成が抑制されている状態であって、渋滞が発生する可能性が低いあるいは可能性が無い状態に相当する。
また、各時点での車間距離は、例えば車間距離検出部33から出力される自車両と特定の他車両(例えば、先行車両など)との間の車間距離や、例えば車間距離検出部33から出力される自車両と複数の他車両との間の車間距離の平均値や、例えば車間距離検出部33から出力される自車両と複数の他車両との間の車間距離の最小値などの値に対する瞬時値や瞬時値の平均値などである。
この標準偏差演算部53から出力される単回帰直線のパラメータの平均値と標準偏差とは、例えば具体的には、自車両と他車両との間の車間距離が十分に長いか否かに関連するものであって、例えば図4A,図4Bに示すように、単回帰直線の傾きの平均値の時間変化が増大傾向である状態、あるいは、単回帰直線の傾きの標準偏差の時間変化が低下傾向である状態は、車間距離の十分さが減少している状態であって、渋滞が発生する可能性が高い状態に相当する。
一方、例えば、単回帰直線の傾きの平均値の時間変化が低下傾向である状態、あるいは、単回帰直線の傾きの標準偏差の時間変化が増大傾向である状態は、車間距離の十分さが増大している状態であって、渋滞が発生する可能性が低いあるいは可能性が無い状態に相当する。
また、例えば図2Bに示すように、ピアソン相関値が大きい状態を維持している安定な状態は、既に車群が形成されて、渋滞が発生している状態であると判定する。一方、ピアソン相関値が小さい状態を維持している安定な状態は、車群が形成されておらず、渋滞が発生していない状態であると判定する。
例えば、報知制御部40は、自車両の進行方向前方での渋滞が発生する可能性の有無(あるいは、渋滞が発生し易いか、渋滞が発生し難いかなど)や、渋滞の発生が予測される位置の情報や、自車両が渋滞を回避するために、さらには自車両の後続車両が渋滞を起こし難いようにして、必要とされる運転操作の指示などを報知する。
なお、相関値(ピアソン相関値)の演算結果に関連する情報は、例えば、相関値の演算結果に基づいて渋滞予測部38から出力される自車両の進行方向前方での渋滞の発生に対する予測結果などである。
なお、単回帰直線のパラメータの算出結果に関連する情報は、例えば、単回帰直線のパラメータに基づいて渋滞予測部38から出力される自車両の進行方向前方での渋滞の発生に対する予測結果などである。
次に、ステップS02においては、レーダ装置12から出力される信号に基づき自車両の外部に存在する少なくとも1台以上の他車両を検知し、自車両と他車両との間の車間距離を検出する。
次に、ステップS04においては、任意の自然数i,nによるデータ(xi,yi)(i=1,…,n)を、適宜の時点での自車両と他車両との間の車間距離と、各時点での自車両の速度との組み合わせとして、例えば図3に示すような単回帰直線を演算し、この単回帰直線の傾き(つまり、車速/車間距離)と切片(つまり、車間距離がゼロでの車速)とを算出する。
次に、ステップS05においては、単回帰直線のパラメータ(つまり、傾きおよび切片)の算出結果に基づき、例えば、所定時間間隔における単回帰直線のパラメータの算出結果(つまり、瞬時値)の平均値と標準偏差とを演算する。
次に、ステップS07においては、相関値(ピアソン相関値)の演算結果または該相関値の演算結果に関連する情報を報知したり、単回帰直線のパラメータの算出結果(例えば、瞬時値や、平均値や、標準偏差など)または該単回帰直線のパラメータの算出結果に関連する情報を報知して、エンドに進む。
11 車速センサ(速度検出手段)
12 レーダ装置
19 表示器(表示手段)
20 スピーカー
21 通信装置
31 反射点検出部
32 他車両検知部
33 車間距離検出部(車間距離検出手段)
34 演算部
38 渋滞予測部(渋滞予測手段)
39 走行制御部
40 報知制御部(表示手段)
41 通信制御部
51 相関演算部(相関演算手段)
52 単回帰演算部(単回帰直線演算手段)
53 標準偏差演算部(標準偏差算出手段)
Claims (6)
- 自車両の速度を検出して検出結果を出力する速度検出手段と;
前記自車両と他車両との間の車間距離を検出して検出結果を出力する車間距離検出手段と;
前記速度の検出結果と前記車間距離の検出結果とに基づく相関を演算して演算結果を出力する相関演算手段と;
前記相関の演算結果または前記相関の演算結果に関連する情報を表示する表示手段と;
を備えることを特徴とする渋滞予測装置。 - 自車両の速度を検出して検出結果を出力する速度検出手段と;
前記自車両と他車両との間の車間距離を検出して検出結果を出力する車間距離検出手段と;
前記速度の検出結果と前記車間距離の検出結果とに基づく相関を演算して演算結果を出力する相関演算手段と;
前記相関の演算結果に基づき渋滞の発生を予測する渋滞予測手段と;
を備えることを特徴とする渋滞予測装置。 - 自車両の速度を検出して検出結果を出力する速度検出手段と;
前記自車両と他車両との間の車間距離を検出して検出結果を出力する車間距離検出手段と;
前記速度の検出結果と前記車間距離の検出結果とに基づく単回帰直線を演算して演算結果を出力する単回帰直線演算手段と;
前記単回帰直線の演算結果または前記単回帰直線の演算結果に関連する情報を表示する表示手段と;
を備えることを特徴とする渋滞予測装置。 - 前記単回帰直線のパラメータの標準偏差を算出して算出結果を出力する標準偏差算出手段をさらに備え;
前記表示手段が、前記標準偏差の算出結果または前記標準偏差の算出結果に関連する情報を表示する;
ことを特徴とする請求項3に記載の渋滞予測装置。 - 自車両の速度を検出して検出結果を出力する速度検出手段と;
前記自車両と他車両との間の車間距離を検出して検出結果を出力する車間距離検出手段と;
前記速度の検出結果と前記車間距離の検出結果とに基づく単回帰直線を演算して演算結果を出力する単回帰直線演算手段と;
前記単回帰直線の演算結果に基づき渋滞の発生を予測する渋滞予測手段と;
を備えることを特徴とする渋滞予測装置。 - 前記単回帰直線のパラメータの標準偏差を算出して算出結果を出力する標準偏差算出手段をさらに備え;
前記渋滞予測手段が、前記単回帰直線の演算結果と前記標準偏差の算出結果とに基づき渋滞の発生を予測する;
ことを特徴とする請求項5に記載の渋滞予測装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/807,250 US9171463B2 (en) | 2010-06-29 | 2011-06-02 | Congestion estimation device |
JP2012522534A JP5460869B2 (ja) | 2010-06-29 | 2011-06-02 | 渋滞予測装置 |
CN201180031766.0A CN102959598B (zh) | 2010-06-29 | 2011-06-02 | 堵车预测装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010147571 | 2010-06-29 | ||
JP2010-147571 | 2010-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012002099A1 true WO2012002099A1 (ja) | 2012-01-05 |
Family
ID=45401830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/062711 WO2012002099A1 (ja) | 2010-06-29 | 2011-06-02 | 渋滞予測装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9171463B2 (ja) |
JP (1) | JP5460869B2 (ja) |
CN (1) | CN102959598B (ja) |
WO (1) | WO2012002099A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013145128A1 (ja) * | 2012-03-27 | 2013-10-03 | パイオニア株式会社 | ルート探索装置、制御方法、及びプログラム |
JP2016206886A (ja) * | 2015-04-21 | 2016-12-08 | 本田技研工業株式会社 | 運転支援方法、プログラム、および運転支援装置 |
JP2017068688A (ja) * | 2015-09-30 | 2017-04-06 | 株式会社東芝 | 車間距離検出装置、車間距離検出方法、およびプログラム |
JP2018067225A (ja) * | 2016-10-21 | 2018-04-26 | 国立大学法人 東京大学 | 渋滞予測装置、ドライブレコーダ装置及び渋滞予測装置の渋滞予測方法 |
US9991016B2 (en) | 2012-05-21 | 2018-06-05 | Imerys Graphite & Carbon Switzerland Ltd. | Surface-modified carbon hybrid particles, methods of making, and applications of the same |
WO2021209225A1 (fr) | 2020-04-16 | 2021-10-21 | Renault S.A.S | Procédé de détection d'une situation d'embouteillage sur un véhicule automobile |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6515807B2 (ja) * | 2013-10-08 | 2019-05-22 | 日本電気株式会社 | 車両誘導システム、車両誘導方法、管理装置およびその制御方法 |
CN104021673B (zh) * | 2014-06-17 | 2016-04-20 | 北京易华录信息技术股份有限公司 | 利用雷达跟踪技术快速发现拥堵引发原因的系统及方法 |
JP2016215745A (ja) * | 2015-05-18 | 2016-12-22 | トヨタ自動車株式会社 | 車両の制御装置 |
WO2017050500A1 (en) * | 2015-09-25 | 2017-03-30 | Sony Corporation | Wireless telecommunications |
CN105405290B (zh) * | 2015-11-24 | 2018-02-09 | 昆明理工大学 | 一种区域内高速公路堵车预测方法 |
WO2018052305A1 (en) * | 2016-09-16 | 2018-03-22 | Roger Andre Eilertsen | Distributed traffic guidance and surveillance system |
CN108288391A (zh) * | 2018-01-31 | 2018-07-17 | 四川驿停车智慧科技有限公司 | 一种停车场出口车流量预警系统 |
CN108510776A (zh) * | 2018-05-24 | 2018-09-07 | 深圳市华慧品牌管理有限公司 | 基于行车记录仪的道路堵塞预测方法及装置 |
JP7267874B2 (ja) * | 2019-08-27 | 2023-05-02 | 本田技研工業株式会社 | 交通流推定装置、交通流推定方法、およびプログラム |
CN112598907B (zh) * | 2020-12-17 | 2021-12-07 | 东风商用车有限公司 | 拥堵预测方法、装置、设备及可读存储介质 |
KR20230136794A (ko) * | 2022-03-17 | 2023-09-27 | 현대자동차주식회사 | 자율 주행 차량 제어 장치 및 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000172994A (ja) * | 1998-12-03 | 2000-06-23 | Mazda Motor Corp | 車両の障害物警報装置 |
JP2008018872A (ja) * | 2006-07-13 | 2008-01-31 | Nissan Motor Co Ltd | 運転支援装置、自動車及び運転支援方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE470367B (sv) * | 1992-11-19 | 1994-01-31 | Kjell Olsson | Sätt att prediktera trafikparametrar |
US5436835A (en) * | 1994-03-04 | 1995-07-25 | Emry; Lewis D. | Motor vehicle collision avoidance method and means |
EP0767358B1 (en) * | 1995-10-04 | 2004-02-04 | Aisin Aw Co., Ltd. | Vehicle navigation system |
JP4657765B2 (ja) * | 2005-03-09 | 2011-03-23 | 三菱自動車工業株式会社 | ノーズビューシステム |
JP4342535B2 (ja) | 2006-07-10 | 2009-10-14 | トヨタ自動車株式会社 | 渋滞度作成方法、渋滞度作成装置 |
CN1952992A (zh) | 2006-11-03 | 2007-04-25 | 清华大学 | 车载交通信息移动采集终端 |
JP2009286274A (ja) * | 2008-05-29 | 2009-12-10 | Toyota Motor Corp | 車両用運転支援装置 |
CN102460534B (zh) * | 2009-04-22 | 2014-10-29 | 因瑞克斯有限公司 | 基于历史和当前数据预测期望道路交通状况的计算机实现的方法和计算系统 |
US20110190972A1 (en) * | 2010-02-02 | 2011-08-04 | Gm Global Technology Operations, Inc. | Grid unlock |
-
2011
- 2011-06-02 WO PCT/JP2011/062711 patent/WO2012002099A1/ja active Application Filing
- 2011-06-02 CN CN201180031766.0A patent/CN102959598B/zh not_active Expired - Fee Related
- 2011-06-02 US US13/807,250 patent/US9171463B2/en not_active Expired - Fee Related
- 2011-06-02 JP JP2012522534A patent/JP5460869B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000172994A (ja) * | 1998-12-03 | 2000-06-23 | Mazda Motor Corp | 車両の障害物警報装置 |
JP2008018872A (ja) * | 2006-07-13 | 2008-01-31 | Nissan Motor Co Ltd | 運転支援装置、自動車及び運転支援方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013145128A1 (ja) * | 2012-03-27 | 2013-10-03 | パイオニア株式会社 | ルート探索装置、制御方法、及びプログラム |
US9991016B2 (en) | 2012-05-21 | 2018-06-05 | Imerys Graphite & Carbon Switzerland Ltd. | Surface-modified carbon hybrid particles, methods of making, and applications of the same |
US10115493B2 (en) | 2012-05-21 | 2018-10-30 | Imerys Graphite & Carbon Switzerland Ltd. | Surface-modified carbon hybrid particles, methods of making, and applications of the same |
JP2016206886A (ja) * | 2015-04-21 | 2016-12-08 | 本田技研工業株式会社 | 運転支援方法、プログラム、および運転支援装置 |
US9972203B2 (en) | 2015-04-21 | 2018-05-15 | Honda Motor Co., Ltd. | Driving assistance method, program, and driving assistance apparatus |
JP2017068688A (ja) * | 2015-09-30 | 2017-04-06 | 株式会社東芝 | 車間距離検出装置、車間距離検出方法、およびプログラム |
JP2018067225A (ja) * | 2016-10-21 | 2018-04-26 | 国立大学法人 東京大学 | 渋滞予測装置、ドライブレコーダ装置及び渋滞予測装置の渋滞予測方法 |
WO2021209225A1 (fr) | 2020-04-16 | 2021-10-21 | Renault S.A.S | Procédé de détection d'une situation d'embouteillage sur un véhicule automobile |
FR3109452A1 (fr) | 2020-04-16 | 2021-10-22 | Renault S.A.S | Procédé de détection d’une situation d’embouteillage sur un véhicule automobile. |
Also Published As
Publication number | Publication date |
---|---|
US20130103296A1 (en) | 2013-04-25 |
CN102959598B (zh) | 2016-08-24 |
CN102959598A (zh) | 2013-03-06 |
US9171463B2 (en) | 2015-10-27 |
JPWO2012002099A1 (ja) | 2013-08-22 |
JP5460869B2 (ja) | 2014-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5460869B2 (ja) | 渋滞予測装置 | |
JP5481557B2 (ja) | 渋滞予測方法 | |
JP5462945B2 (ja) | 渋滞予測表示方法 | |
JP5555778B2 (ja) | 渋滞予測方法 | |
US10435025B2 (en) | Vehicle control device | |
KR102563708B1 (ko) | 선행 차량 출발 알림 장치 및 방법 | |
US20160347328A1 (en) | Driving assistance device and driving assistance method | |
JP7260503B2 (ja) | 車両制御装置及び車両制御方法 | |
JP5501209B2 (ja) | 車両の走行支援装置 | |
US11780448B2 (en) | Vehicle behavior estimation method, vehicle control method, and vehicle behavior estimation device | |
JP6350149B2 (ja) | 合流支援システム | |
JP2012153296A (ja) | 走行制御装置 | |
JP5146431B2 (ja) | 車両走行制御装置及び車両走行制御方法 | |
JP6451560B2 (ja) | 車両認識装置 | |
JP5024225B2 (ja) | 運転支援調整装置 | |
JP2019202621A (ja) | 車両の制御装置及び方法 | |
JP5909144B2 (ja) | 車群解消システム | |
JP2017056785A (ja) | 車両制御装置、及び車両制御方法 | |
JP2008014819A (ja) | 車両用物体検出装置 | |
JP2007022247A (ja) | 道路形状推定装置 | |
JP2013104815A (ja) | ナビゲーション装置 | |
JP5909401B2 (ja) | 渋滞予測方法 | |
JP2024010869A (ja) | 運転支援方法及び運転支援装置 | |
JP2023106215A (ja) | 物体認識装置 | |
JP2024072097A (ja) | 制御装置、制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180031766.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11800567 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012522534 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13807250 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11800567 Country of ref document: EP Kind code of ref document: A1 |