WO2012002008A1 - 光学素子の製造方法および光学素子の製造装置 - Google Patents

光学素子の製造方法および光学素子の製造装置 Download PDF

Info

Publication number
WO2012002008A1
WO2012002008A1 PCT/JP2011/056882 JP2011056882W WO2012002008A1 WO 2012002008 A1 WO2012002008 A1 WO 2012002008A1 JP 2011056882 W JP2011056882 W JP 2011056882W WO 2012002008 A1 WO2012002008 A1 WO 2012002008A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
optical element
mold
manufacturing
cavity
Prior art date
Application number
PCT/JP2011/056882
Other languages
English (en)
French (fr)
Inventor
宏行 澁木
関 博之
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2012522482A priority Critical patent/JP5781071B2/ja
Priority to CN2011800295483A priority patent/CN102958853A/zh
Publication of WO2012002008A1 publication Critical patent/WO2012002008A1/ja
Priority to US13/712,149 priority patent/US9481596B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/16Gearing or controlling mechanisms specially adapted for glass presses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0013Re-forming shaped glass by pressing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/69Controlling the pressure applied to the glass via the dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type

Definitions

  • the present invention relates to a method of manufacturing an optical element and an apparatus for manufacturing an optical element.
  • Patent Document 1 discloses a technique of performing uniform heating by directly spraying a heated inert gas onto the glass in the mold as the auxiliary heating means.
  • Patent Document 1 is an excellent technology that can quickly and uniformly heat an optical material such as glass to a predetermined temperature, but when the heating gas is introduced into the mold, the optical material is a gas There is a concern that it may move from a predetermined position in the cavity due to dynamic pressure or the like. And there existed a technical subject that a favorable optical element might not be obtained as a result of an optical raw material moving.
  • An object of the present invention is to realize improvement in heating efficiency by introducing a heated inert gas into a mold without causing deterioration in the quality of an optical element caused by positional deviation of an optical material or the like in the mold. It is an object of the present invention to provide a manufacturing technology of an optical element that can
  • a first step of applying and fixing a first load to an optical material positioned in a cavity in a mold Thereafter, a second step of introducing a heated gas into the cavity to heat and soften the optical material; Thereafter, a third step of forming an optical element by applying a second load larger than the first load to the optical material in the cavity, and providing a method of manufacturing an optical element.
  • a pressing means for pressing a mold A gas introducing means capable of introducing a heated gas into a cavity in the mold; Control means for controlling the gas to be introduced into the cavity after applying and fixing to the optical material a first load smaller than a second load at the time of molding of the optical material housed in the cavity; An apparatus for manufacturing an optical element is provided.
  • the improvement of the heating efficiency by introducing the heated inert gas into the mold is realized without causing the quality deterioration of the optical element caused by the positional deviation of the optical material in the mold and the like. It is possible to provide an optical element manufacturing technology capable of
  • FIG. 1 It is a schematic sectional drawing which shows an example of a structure and effect
  • the upper and lower molds when introducing the heating gas into the cavity of the mold, the upper and lower molds are not moved by the introduction of the heating gas and the load does not damage the optical material.
  • the heating gas is introduced into the cavity after sandwiching the molding material.
  • the gas introduction path is closed so that the heating gas and the low temperature gas in the external atmosphere of the mold are not introduced into the cavity, and the mold is formed. It prevents the displacement of the molding material inside and the temperature drop in the cavity.
  • the optical material is efficiently heated while standing still at the predetermined position, and a good optical element can be obtained.
  • the directions of X, Y, and Z are as illustrated, and as an example, the Z direction is a vertical direction, and the XY plane is a horizontal plane.
  • FIG. 1 is a schematic cross-sectional view showing, in the order of steps, an example of the configuration and operation of a manufacturing apparatus for performing the method of manufacturing an optical element according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the operation of the manufacturing apparatus for carrying out the method of manufacturing an optical element according to an embodiment of the present invention.
  • the manufacturing apparatus M1 of the present embodiment includes an upper plate 11 (pressure means) and a lower plate 12 opposed in the vertical direction, and an upper shaft 13 for driving the upper plate 11 in the vertical direction.
  • Heaters (not shown) are embedded in the upper plate 11 and the lower plate 12. Thus, the heater can heat each plate to a predetermined temperature.
  • a mold 20 is mounted on the lower plate 12.
  • a control mechanism 30 (control means) described later is provided around the molding die 20.
  • the mold 20 includes a cylindrical mold 21, and an upper mold 22 and a lower mold 23 inserted so as to face each other from the upper and lower open ends of the cylindrical mold 21.
  • a cavity 24 is formed between the molding surface 22 a of the upper mold 22 and the molding surface 23 a of the lower mold 23 facing each other.
  • an optical material 90 such as a glass preform preformed into a spherical shape in advance is accommodated.
  • a plurality of gas introduction holes 21a are formed through the wall surface of the cylindrical mold 21 at symmetrical positions with respect to the Z axis at positions communicating with the internal cavity 24.
  • the sleeve 31 (first cylindrical body) through which the cylindrical mold 21 is coaxially inserted is opposed to the gas introduction hole 21a of the cylindrical mold 21 around the molding die 20.
  • a control mechanism 30 comprising a plurality of gas nozzles 34 opened and an axial drive spring 33 provided at the lower end of the sleeve 31 and always pressing upward in a direction of causing the sleeve 31 to project from the upper end of the upper mold 22 It is arranged.
  • FIG. 1 for convenience, only the sleeve 31 is given the reference numeral (30).
  • a slit may be formed in a spiral shape at the lower end of the sleeve 31, and the lower end itself of the sleeve 31 may function as the axial drive spring 33.
  • the gas nozzle 34 is configured by, for example, a torch heater.
  • the gas nozzle 34 has a configuration in which the inert gas 80, which is an example of a gas heated to a predetermined temperature, is constantly sprayed toward the gas introduction hole 21a of the molding die 20.
  • a plurality of gas supply holes 32 are opened at the same position as the gas introduction hole 21 a at the position in the rotational direction of the Z axis.
  • the gas supply hole 32 communicates with the gas introduction hole 21 a and the gas nozzle 34 by moving upward with respect to the height position of the gas introduction hole 21 a in a state where the sleeve 31 protrudes upward by the axial drive spring 33. The state is blocked by the sleeve 31.
  • the gas supply hole 32 has the same height as the gas introduction hole 21 a of the cylindrical mold 21.
  • the gas nozzle 34 communicates with the gas introduction hole 21a, and the heated inert gas 80 is introduced into the cavity 24.
  • control mechanism 30 of the present embodiment moves the sleeve 31 in which the gas supply hole 32 is formed up and down in conjunction with the up and down movement of the upper plate 11 to shut off the gas introduction hole 21 a and the gas nozzle 34.
  • the operation of switching the communication is realized.
  • a pin hole 11 a is provided in the central portion of the upper plate 11 so as to penetrate the upper plate 11 and the upper shaft 13 in the axial direction.
  • a pressure pin 11 b (pressure means) protruding from the lower surface of the upper plate 11 is accommodated inside the pin hole 11 a.
  • the upper end portion of the pressure pin 11b is fixed to the upper end portion of the pin hole 11a via a pressure spring 11c.
  • the pressing pin 11b contacts the upper die 22 before the descending upper plate 11 contacts the sleeve 31, so that the fixed load W1 is generated.
  • the fixed load W1 can be set to a desired value by appropriately setting the spring constant and the length of the pressure spring 11c supporting the pressure pin 11b.
  • the sleeve 31 is pushed down by the descending upper plate 11 so that the gas supply hole 32 is at the height just before the gas introduction hole 21a matches, that is, inert gas from the gas nozzle 34 to the cavity 24.
  • the pressure pin 11 b is set so as to apply a predetermined fixed load W 1 to the upper mold 22 at a position immediately before the introduction 80.
  • the mold 20 in which the optical material 90 is accommodated is placed on the lower plate 12 heated to a predetermined molding temperature in a state in which the sleeve 31 is mounted (preparation step K1).
  • the upper mold self weight W0 which is the self weight of the upper mold 22 acts on the optical material 90 inside the mold 20.
  • the optical material 90 is positioned so that its center coincides with the central position of the cavity 24, that is, the central position (optical axis position) of the molding surface 22a and the molding surface 23a.
  • the upper end of the sleeve 31 is protruded from the upper end surface of the upper die 22 by the axial drive spring 33, and the gas supply hole 32 is moved to a position deviated upward from the gas introduction hole 21a. Therefore, the cavity 24 is isolated from the gas nozzle 34 and the external atmosphere.
  • the gas introduction hole 21 a is closed by the sleeve 31.
  • the optical material 90 located at the predetermined center position of the cavity 24 of the forming die 20 is not displaced due to the influence of the external atmosphere or the like.
  • the gas supply hole 32 coincides with the gas introduction hole 21 a (gas introduction start timing t2 ).
  • the inert gas 80 heated to the predetermined temperature spouted from the gas nozzle 34 is sprayed to the optical material 90 of the cavity 24 and heating of the optical material 90 is started (heating process K3 (second process)) .
  • the optical material 90 is also heated by heat conduction and radiant heat from the upper plate 11 and the lower plate 12.
  • the upper plate 11 is further lowered by the upper shaft 13, and the upper die 22 is pressed with the molding load W2 (second load) to mold the optical material 90.
  • Start forming press start timing t3
  • the molding surface 22a of the upper mold 22 and the molding surface 23a of the lower mold 23 are transferred to the optical material 90, whereby the optical element 91 is obtained (press molding step K4 (third step)).
  • the optical material 90 is accurately positioned at the center position without being misaligned within the cavity 24.
  • the optical material 90 is deformed symmetrically with respect to the optical axis, and a high quality optical element 91 having no deviation in optical performance around the optical axis can be obtained.
  • the molding load W2 by the upper plate 11 is released, and cooling of the molding die 20 is started (molding press end timing t4).
  • the sleeve 31 ascends, and the gas supply hole 32 moves to a position deviated upward from the gas introduction hole 21a.
  • the cavity 24 returns to the state of being shut off from the outside.
  • the mold 20 is disassembled and the optical element 91 is taken out.
  • a desired mold clamping load may be applied to the upper mold 22 at the start of cooling.
  • the sleeve 31 having the gas supply hole 32 for controlling the opening and closing of the gas introduction hole 21a of the mold 20 is moved up and down in conjunction with the upper plate 11. .
  • the heated inert gas 80 is introduced into the cavity 24.
  • the optical material 90 can be efficiently heated uniformly to a molding temperature in a short time, and by the spraying of the inert gas 80.
  • the optical material 90 does not move from the predetermined position in the cavity 24, and the optical element 91 with good optical performance can be obtained efficiently.
  • the nozzle diameter ⁇ of the gas nozzle 34 is too large, the flow velocity becomes low, and sufficient heat exchange of the optical material 90 by the heated inert gas 80 can not be performed.
  • the flow rate Q is too small, the flow rate of the inert gas 80 will be low and the heat exchange with the optical material 90 will not be sufficient. In addition, if the flow rate Q is too large, the flow rate of the inert gas 80 becomes too fast, and it is necessary to sandwich and fix with a larger fixed load W1.
  • the optical material 90 is elastically deformed by a load so that the contact portions of the molding surfaces 22a and 23a and the optical material 90 are not in point contact but in a surface contact, and when the shape of the optical material 90 is a sphere,
  • 1 1 Poisson's ratio of optical material 90
  • 2 2 Poisson's ratio of the molding surface 22a (molding surface 23a)
  • E1 longitudinal elastic modulus [MPa] of the optical material 90
  • E2 Longitudinal elastic modulus [MPa] of molding surface 22a (molding surface 23a)
  • the contact radius ⁇ is small, sufficient deformation can not be obtained at the time of heating, and if it is too large, the surface of the optical material 90 will be cracked, and a good molded article such as the optical element 91 can not be obtained.
  • the contact radius ⁇ of the molding surface 22a (the molding surface 23a) and the optical material 90 is preferably 0.05 mm to 0.3 mm, for example. Therefore, in the present embodiment, the fixed load W1 is set, for example, in the range of approximately 1 kgf to 50 kgf.
  • the contact radius ⁇ is about 0.1 mm to 0.2 mm.
  • the fixed load W1 is set, for example, in the range of approximately 5 kgf to 30 kgf.
  • the fixed load W1 is made as large as possible without damaging the optical material 90, and the deformation of the optical material 90 is promoted during the heating process K3 to shorten the time required for the press forming process K4. May be
  • the deformation of the optical material 90 may be promoted during the heating process K3 by applying a third load larger than the fixed load W1 during the heating process K3 in a range that does not damage the optical material 90. .
  • FIG. 3 is a schematic cross-sectional view showing a configuration example of a manufacturing apparatus for performing the method of manufacturing an optical element according to the second embodiment of the present invention
  • FIG. 4 is a cross-sectional view of FIG.
  • FIG. 5 is a schematic cross-sectional view showing an example of an operation state of a manufacturing apparatus for performing the method of manufacturing an optical element according to the second embodiment of the present invention
  • FIG. 6 is a cross-sectional view of FIG.
  • the cylindrical mold 21 of the mold 20 is coaxially inserted, and the gas supply holes 42 (second through holes) are provided at the same height and in the same circumferential position as the gas introduction holes 21a of the cylindrical mold 21.
  • the point which uses the rotation sleeve 41 (2nd cylinder) in which the hole was formed as a control mechanism 40 (control means) differs from the above-mentioned manufacturing apparatus M1.
  • the height of the pivoting sleeve 41 is set at both ends of the upper die 22 and the lower die 23 in the forming die 20 in a state in which the optical material 90 is accommodated so that the stroke at the time of press molding It is set shorter than the distance between faces.
  • the pivoting sleeve 41 is pivoted around the Z axis by a pivoting mechanism (not shown).
  • the position where the gas introduction hole 21a of the cylindrical mold 21 and the gas supply hole 42 of the rotation sleeve 41 coincide with each other and the position where the gas supply hole 42 deviates from the gas introduction hole 21a are controlled. Thereby, the presence or absence of introduction of the inert gas 80 from the gas nozzle 34 to the cavity 24 of the mold 20 is controlled.
  • the optical rotation sleeve 41 is rotated to the position shown in FIG. 3 and FIG. 4 and the gas introduction hole 21a is shut off by the rotational sleeve 41. Positional displacement of the material 90 is prevented.
  • the upper plate 11 descends and abuts on the upper end face of the upper mold 22, and a predetermined fixed load W1 acts on the upper mold 22 to fix the optical material 90 between the upper mold 22 and the lower mold 23.
  • the rotation sleeve 41 is rotated to a position where the gas supply hole 42 matches the gas introduction hole 21a.
  • the inert gas 80 heated from the gas nozzle 34 is introduced into the cavity 24 through the gas supply hole 42 and the gas introduction hole 21 a and sprayed onto the optical material 90 to heat the optical material 90.
  • the optical material 90 moves from the predetermined position upon heating by spraying the high-temperature inert gas 80 to the optical material 90 located in the cavity 24. Can be reliably prevented, and the same effect as that of the first embodiment described above can be obtained.
  • the upper end portion of the rotation sleeve 41 does not protrude above the upper mold 22 of the mold 20. Therefore, there is an advantage that the application of the fixed load W1 can be realized by the pressing operation of the upper plate 11 itself without providing the upper plate 11 with a member such as the pressure pin 11b.
  • FIG. 7 and FIG. 8 are schematic cross-sectional views showing an example of the configuration and operation of a manufacturing apparatus for implementing the method of manufacturing an optical element according to the third embodiment of the present invention.
  • a control mechanism 50 (a movable gas nozzle 51 and a movable shielding plate 52) around the opposing space between the upper plate 11 and the lower plate 12 in which the mold 20 is disposed.
  • the point in which the control means is installed differs from the above-described first embodiment.
  • the movable gas nozzle 51 of the control mechanism 50 is coaxially opposed to and approached the gas introduction hole 21a in the cylindrical mold 21 of the mold 20 by being supported by the drive mechanism not shown. And the position separated from the gas introduction hole 21a.
  • the movable gas nozzle 51 is, for example, a torch heater, and continuously ejects an inert gas 80 heated to a predetermined molding temperature.
  • the inert gas 80 ejected from the movable gas nozzle 51 to the gas introduction hole 21a is displaced by displacing in the Y direction perpendicular to the sheet of FIG. 7 and FIG.
  • a movable shield 52 is provided which can be blocked.
  • the movable shielding plate 52 is retracted from the moving path of the movable gas nozzle 51 as shown in FIG. .
  • the movable gas nozzle 51 is brought close to the gas introduction hole 21a, and the inert gas 80 heated to a predetermined temperature is sprayed from the movable gas nozzle 51 onto the optical material 90 in the cavity 24 to heat it to the molding temperature.
  • the upper plate 11 is further lowered to perform press forming in which the upper mold 22 is pressed with the forming load W2.
  • the movable gas nozzle 51 is retracted and the movable shielding plate 52 is advanced to block the inert gas 80 ejected from the movable gas nozzle 51.
  • the inert gas 80 of the predetermined temperature is The optical material 90 in 24 can be sprayed.
  • the case of blocking the inert gas 80 using the movable shielding plate 52 has been described, but as shown in FIG. 9, for example, the movable gas nozzle 51 is used as a gas without providing the movable shielding plate 52
  • the introduction of the inert gas 80 into the cavity 24 can be substantially blocked by sufficiently separating the introduction hole 21a.
  • the flow rate of the inert gas 80 introduced into the cavity 24 in the first step (fixing step K2) described above may be reduced compared to the second step (heating step K3) described above. (Including the case where the flow rate of the inert gas 80 introduced into the cavity 24 in the first step is zero).
  • FIG. 10 and FIG. 11 are schematic cross-sectional views showing an example of the configuration and operation of a manufacturing apparatus for performing the method of manufacturing an optical element according to the fourth embodiment of the present invention.
  • a control mechanism 60 (control) including a gas supply pipe 61, a gas supply nozzle 62, a gas bypass nozzle 63, and a switching valve 64 instead of the control mechanism 50 described above.
  • This embodiment differs from the third embodiment described above in that means is disposed.
  • the gas supply pipe 61 is constituted of, for example, a torch heater, and constantly supplies the inert gas 80 heated to a predetermined molding temperature via the switching valve 64.
  • the nozzle 62 or the gas bypass nozzle 63 is configured to be supplied.
  • the gas supply nozzle 62 is fixedly installed at a position facing the gas introduction hole 21 a coaxially with the gas introduction hole 21 a in the vicinity of the gas introduction hole 21 a in the cylindrical mold 21 of the mold 20 placed on the lower plate 12.
  • the mold 20 when the mold 20 is placed on the lower plate 12, the mold 20 is positioned such that the gas introduction hole 21 a of the cylindrical mold 21 coincides with the tip of the gas supply nozzle 62.
  • the gas bypass nozzle 63 is opened in a direction deviated from the mold 20 placed on the lower plate 12 and installed so that the heated inert gas 80 is jetted in a direction not to hit the mold 20 There is.
  • the heated inert gas 80 is supplied with gas by the switching valve 64 as shown in FIG.
  • the pipe 61 supplies the gas bypass nozzle 63. Then, the inert gas 80 is introduced in the direction away from the mold 20.
  • a predetermined fixed load W1 acts on the upper mold 22 of the mold 20 from the upper plate 11 at a stage before molding, and the optical material 90 is sandwiched between the upper mold 22 and the lower mold 23 with a predetermined force.
  • the switching valve 64 is activated and the inert gas 80 heated is introduced to the cavity 24 through the gas supply nozzle 62 facing the gas introduction hole 21a and the optical material 90 heating is performed.
  • the switching valve 64 operates again, and the heated inert gas 80 is guided through the gas bypass nozzle 63 in a direction away from the mold 20.
  • the same effects as those of the third embodiment described above can be obtained, and the gas supply pipe 61, the gas supply nozzle 62, and the gas bypass nozzle 63, which are fixedly installed, are up. It merely switches the supply direction of the inert gas 80 heated by the switching valve 64 in conjunction with the vertical movement of the plate 11. For this reason, there is an advantage that the structure is simplified without requiring a movable part other than the switching valve 64.
  • the heating into the mold 20 is performed without causing the quality deterioration of the optical element 91 caused by the positional deviation of the optical material 90 in the mold 20 and the like. It is possible to realize the improvement of the heating efficiency by the introduction of the inert gas 80 as described above.
  • a torch heater is used as a mechanism for heating the inert gas 80, and the heated inert gas 80 is constantly supplied to shut off the path of the inert gas 80, or the supply position and direction
  • the configuration for controlling or controlling is illustrated, it is not limited thereto.
  • the heating and jet supply operation itself of the inert gas 80 may be turned on / off in conjunction with the vertical movement of the upper plate 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

 成形型内における光学素材の位置ずれ等に起因する光学素子の品質低下を招くことなく、成形型内への加熱された不活性ガスの導入による加熱効率の向上を実現する。 解決手段の一例として、筒型21に対向して挿入された上型22と下型23の間に形成されるキャビティ24に光学素材90を収容して加熱してプレス成形する製造装置M1において、ガス導入穴21aが形成された筒型21と同軸に、ガス供給穴32が形成されたスリーブ31を装着し、スリーブ31の下端に設けられた軸方向駆動ばね33によって、上プレート11の上下動に連動してスリーブ31が昇降し、上型22に固定荷重W1が作用し光学素材90が固定された状態で、ガス導入穴21aにガス供給穴32が一致することでガスノズル34から加熱された不活性ガス80を導入する。これにより光学素材90の位置ずれを生じることなく、光学素材90を効率よく加熱して成形できる。

Description

光学素子の製造方法および光学素子の製造装置
 本発明は、光学素子の製造方法および光学素子の製造装置に関する。
 ガラス等の熱可塑性の光学素材を成形型内で加熱および押圧して所望の形状の光学素子を成形する技術が知られている。この技術において、成形型との接触部からの熱伝導でガラス等を加熱しようとしても、ガラス等の熱伝導率が小さいために、均一に加熱するために時間がかかる場合があった。
 そのため、特許文献1では、補助加熱手段として、加熱された不活性ガスを直接的に成形型内のガラスに吹き付けることによって均一な加熱を行う技術が開示されている。
特開2008-120645号公報
 ところが、上述の特許文献1の技術は、迅速かつ均一にガラス等の光学素材を所定の温度に加熱できるという優れた技術ではあるが、成形型内への加熱ガスの導入時に光学素材がガスの動圧等によりキャビティ内の所定の位置から移動してしまう懸念があった。そして、光学素材が移動してしまう結果、良好な光学素子を得ることができない場合がある、という技術的課題があった。
 本発明の目的は、成形型内における光学素材の位置ずれ等に起因する光学素子の品質低下を招くことなく、成形型内への加熱された不活性ガスの導入による加熱効率の向上を実現することが可能な光学素子の製造技術を提供することにある。
 本発明の第1の観点は、成形型内のキャビティに位置する光学素材に第1荷重を加えて固定する第1工程と、
 その後、加熱されたガスを前記キャビティ内に導入して前記光学素材を加熱軟化させる第2工程と、
 その後、前記キャビティ内の前記光学素材に前記第1荷重よりも大きな第2荷重を加えて光学素子を成形する第3工程と、を含む、光学素子の製造方法を提供する。
 本発明の第2の観点は、成形型を加圧する加圧手段と、
 前記成形型内のキャビティに加熱されたガスを導入可能にするガス導入手段と、
 前記キャビティに収容された光学素材の成形時の第2荷重よりも小さい第1荷重を前記光学素材に加えて固定した後に、前記ガスが前記キャビティに導入されるように制御する制御手段と、を含む、光学素子の製造装置を提供する。
 本発明によれば、成形型内における光学素材の位置ずれ等に起因する光学素子の品質低下を招くことなく、成形型内への加熱された不活性ガスの導入による加熱効率の向上を実現することが可能な光学素子の製造技術を提供することができる。
本発明の一実施の形態である光学素子の製造方法を実施する製造装置の構成および作用の一例を工程順に示す略断面図である。 本発明の一実施の形態である光学素子の製造方法を実施する製造装置の作用の一例を示す線図である。 本発明の他の実施の形態である光学素子の製造方法を実施する製造装置の構成例を示す略断面図である。 図3の横断面図である。 本発明の他の実施の形態である光学素子の製造方法を実施する製造装置の動作状態の一例を示す略断面図である。 図5の横断面図である。 本発明のさらに他の実施の形態である光学素子の製造方法を実施する製造装置の構成および作用例を示す略断面図である。 本発明のさらに他の実施の形態である光学素子の製造方法を実施する製造装置の構成および作用例を示す略断面図である。 本発明のさらに他の実施の形態である光学素子の製造方法を実施する製造装置の構成および作用の変形例を示す略断面図である。 本発明のさらに他の実施の形態である光学素子の製造方法を実施する製造装置の構成および作用例を示す略断面図である。 本発明のさらに他の実施の形態である光学素子の製造方法を実施する製造装置の構成および作用例を示す略断面図である。
 本実施の形態では、一態様として、成形型のキャビティ内に加熱ガスを導入する際に、加熱ガスの導入で光学素材が動くことなく、且つ光学素材が破損することのない荷重で上下の型で成形素材を挟み込んだ後に加熱ガスをキャビティ内に導入する。
 また、荷重が解放されている際には加熱ガスや成形型の外部雰囲気内の低温のガス等がキャビティ内に導入されることのないようにガス導入路が閉鎖されるようにして、成形型内における成形素材の位置ずれやキャビティ内の温度低下を防止する。
 すなわち、キャビティ内へ導入された加熱ガスの動圧等によって光学素材が所定の位置から移動することなく、所定の位置に静止したままで効率よく加熱され、良好な光学素子が得られる。
 以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
 なお、以下の本実施の形態の説明では、各図において、X、Y、Zの各方向は図示の通りとし、一例として、Z方向は鉛直方向、X-Y平面は水平面とする。
 また、以下の各実施の形態の説明において、共通する構成要素は共通の参照符号を付して、重複した説明は割愛する。
  (実施の形態1)
 図1は、本発明の一実施の形態である光学素子の製造方法を実施する製造装置の構成および作用の一例を工程順に示す略断面図である。
 図2は、本発明の一実施の形態である光学素子の製造方法を実施する製造装置の作用の一例を示す線図である。
 本実施の形態の製造装置M1は、上下方向に対向する上プレート11(加圧手段)および下プレート12と、この上プレート11を上下方向に駆動する上軸13と、を備えている。
 上プレート11および下プレート12には、図示しないヒータが埋設されている。これにより、ヒータは、各プレートを所定の温度に加熱することが可能になっている。
 下プレート12には成形型20が載置されている。この成形型20の周囲には後述の制御機構30(制御手段)が設けられている。
 成形型20は、筒型21と、この筒型21の上下の開口端から対向するように挿入された上型22および下型23と、を備えている。
 そして、筒型21の内部においては、対向する上型22の成形面22aと、下型23の成形面23aの間にキャビティ24が形成されている。このキャビティ24の内部には、例えば、予め球形に予備成形されたガラスプリフォーム等の光学素材90が収容されている。
 筒型21の壁面には、内部のキャビティ24に連通する位置に、複数のガス導入穴21a(ガス導入手段)(透孔)が、Z軸に関して対称な位置に貫通して形成されている。
 本実施の形態の製造装置M1の場合、成形型20の周囲には、筒型21が同軸に挿通されるスリーブ31(第1筒体)と、筒型21のガス導入穴21aに対向して開口した複数のガスノズル34と、このスリーブ31の下端に設けられ、当該スリーブ31を上型22の上端から突出させる方向に上向きに常時押圧する軸方向駆動ばね33と、を備えた制御機構30が配置されている。なお、図1においては、便宜上、スリーブ31のみに符号(30)を付してある。
 なお、軸方向駆動ばね33としては、スリーブ31の下端部に螺旋状にスリットを形成して、スリーブ31の下端部自体が軸方向駆動ばね33として機能する構成としてもよい。
 ガスノズル34は、例えば、トーチヒータで構成されている。ガスノズル34は、所定の温度に加熱されたガスの一例の不活性ガス80を、成形型20のガス導入穴21aに向けて、常時噴き出す構成となっている。
 また、スリーブ31には、Z軸の回転方向の位置において、ガス導入穴21aと同一位置に複数のガス供給穴32(第1貫通穴)が開口している。
 このガス供給穴32は、スリーブ31が軸方向駆動ばね33によって上方向に突出した状態では、ガス導入穴21aの高さ位置よりも上側に移動することにより、ガス導入穴21aとガスノズル34の連通状態がスリーブ31によって遮断される。
 また、上プレート11によって下方に押し込まれてスリーブ31の上端が上型22の上端面と一致する位置まで移動すると、ガス供給穴32が筒型21のガス導入穴21aと同一高さになる。これにより、ガスノズル34がガス導入穴21aと連通して、キャビティ24の内部に加熱された不活性ガス80が導入される。
 すなわち、本実施の形態の制御機構30は、上プレート11の上下動に連動して、ガス供給穴32が形成されたスリーブ31を上下動させることで、ガス導入穴21aとガスノズル34の遮断と連通を切り換える動作を実現している。
 本実施の形態の場合、上プレート11の中央部には、上プレート11および上軸13を軸方向に貫通してピン穴11aが設けられている。このピン穴11aの内部には、上プレート11の下面から突出する加圧ピン11b(加圧手段)が収容されている。
 この加圧ピン11bの上端部は、加圧ばね11cを介して、ピン穴11aの上端部に固定されている。
 そして、上軸13によって上プレート11が下降する場合、上プレート11がスリーブ31の上端に当接する前に、最初に加圧ピン11bの下端が成形型20の上型22に当接する。これにより、当該上型22を下型23に接近させる方向に負荷(すなわち、光学素材90を上型22と下型23の間に挟んで固定する後述の固定荷重W1(第1荷重))が発生する。
 そして、上プレート11の下降とともに加圧ピン11bはピン穴11aの内部に押し込まれる。そして、上プレート11が上型22に当接した状態では、加圧ピン11bは、ピン穴11aの内部に完全に押し込まれた状態となる。
 このように、本実施の形態では、下降する上プレート11がスリーブ31に当接する前に、加圧ピン11bが上型22に当接することで固定荷重W1を発生させる構成となっている。
 従って、加圧ピン11bを支持する加圧ばね11cのばね定数や長さを適宜設定することで、固定荷重W1を所望の値に設定可能である。
 本実施の形態の場合には、下降する上プレート11によってスリーブ31が押し下げられてガス供給穴32がガス導入穴21aに一致する直前の高さで、すなわち、ガスノズル34からキャビティ24に不活性ガス80が導入される直前の位置で、加圧ピン11bが上型22に対して所定の固定荷重W1を作用させるように設定されている。
 以下、本実施の形態の作用の一例を図1および図2を参照して説明する。
 まず、内部に光学素材90が収容された成形型20をスリーブ31が装着された状態で、所定の成形温度に加熱されている下プレート12に載置する(準備工程K1)。
 このとき、成形型20の内部の光学素材90には、上型22の自重である上型自重W0が作用するのみである。また、光学素材90は、キャビティ24の中央位置、すなわち、成形面22aおよび成形面23aの中心位置(光軸位置)に中心が一致するように位置決めされている。
 また、スリーブ31は、軸方向駆動ばね33によって上端が上型22の上端面から突出した状態にあり、ガス供給穴32がガス導入穴21aから上側に逸れた位置に移動している。このため、キャビティ24は、ガスノズル34や外部雰囲気から遮断されている。
 このように、外部から負荷が作用しない状態では、スリーブ31によってガス導入穴21aが閉止されている。このため、成形型20のキャビティ24の所定の中心位置に位置する光学素材90は、外部雰囲気等の影響で位置ずれすることはない。
 次に、上軸13によって、所定の成形温度に加熱された上プレート11を下降させると、上プレート11から突出した加圧ピン11bが最初に上型22の上端に当接し、上プレート11がスリーブ31に対する当接直前まで下降する。これにより、固定荷重W1を上型22に作用させて(固定タイミングt1)、光学素材90を固定する(固定工程K2(第1工程))。
 さらに、上プレート11を下降させてスリーブ31を下方に押し込みつつ、上プレート11が上型22の上端面に当接すると、ガス供給穴32がガス導入穴21aに一致する(ガス導入開始タイミングt2)。これにより、ガスノズル34から噴き出す所定の温度に加熱された不活性ガス80がキャビティ24の光学素材90に吹き付けられて、当該光学素材90の加熱が開始される(加熱工程K3(第2工程))。
 このとき、同時に、上プレート11および下プレート12からの熱伝導や輻射熱によっても光学素材90は加熱される。
 本実施の形態の場合、このガスノズル34からの不活性ガス80の導入の直前に、光学素材90は、固定荷重W1によって固定されているので、キャビティ24の所定の中心位置から位置ずれすることが確実に防止されている。
 そして、光学素材90が所定の成形温度TSに達すると、上軸13により、上プレート11をさらに下降させ、上型22を成形荷重W2(第2荷重)で押圧して光学素材90の成形を開始する(成形プレス開始タイミングt3)。そして、上型22の成形面22aと下型23の成形面23aが光学素材90に転写されることにより、光学素子91が得られる(プレス成形工程K4(第3工程))。
 この成形時に、本実施の形態の場合には、光学素材90がキャビティ24の内部で位置ずれせずに、中心位置に精度よく位置決めされている。これにより、例えば、光軸対称に光学素材90が変形して、光軸の回りにおける光学的な性能に偏り等のない、高品質の光学素子91が得られる。
 その後、上プレート11による成形荷重W2を解除するとともに、成形型20の冷却を開始する(成形プレス終了タイミングt4)。このとき、上プレート11が上昇してスリーブ31から離間すると、スリーブ31は上昇し、ガス供給穴32はガス導入穴21aから上方に逸れた位置に移動する。これにより、キャビティ24は外部から遮断された状態に復帰する。
 そして、所定の温度まで成形型20の温度が低下したら、成形型20を分解して、光学素子91を取り出す。
 なお、必要に応じて、冷却開始時に、所望の型締め荷重を上型22に作用させてもよい。
 このように、本実施の形態の製造装置M1の場合には、成形型20のガス導入穴21aの開閉を制御するガス供給穴32を有するスリーブ31を、上プレート11に連動して上下動させる。これにより、光学素材90に対して所定の固定荷重W1を作用させて固定した後に、加熱された不活性ガス80がキャビティ24に導入される。
 このため、加熱された不活性ガス80をキャビティ24内へ導入して光学素材90に吹き付けることによって光学素材90を成形温度まで短時間に均一に効率よく加熱できるとともに、不活性ガス80の吹き付けによって光学素材90がキャビティ24内の所定の位置から移動することがなく、効率よく、良好な光学性能の光学素子91が得られる。
 ここで、本実施の形態における固定荷重W1およびガスノズル34からの不活性ガス80の供給方法の一例を説明する。
 本実施の形態の場合、一例として、ガスノズル34は、ノズル径φ=1mm~4mmとする。
 ガスノズル34のノズル径φが小さすぎると流速が早くなりすぎて、不活性ガス80が吹き付けられる光学素材90に作用する動圧が大きくなり、より大きな固定荷重W1で挟み込んで固定する必要がある。
 一方、ガスノズル34のノズル径φが大きすぎると流速が遅くなり、加熱された不活性ガス80による光学素材90の充分な熱交換がされなくなる。
 また、不活性ガス80の流量Qは、一例として、Q=10L/min~40L/minとする。
 流量Qが小さすぎると不活性ガス80の流速が遅くなり、光学素材90に対する充分な熱交換がされなくなる。また、流量Qが大きすぎると不活性ガス80の流速が早くなりすぎて、より大きな固定荷重W1で挟み込んで固定する必要がある。
 次に、光学素材90のサイズや形状等に基づいて固定荷重W1を決定する方法の一例を示す。
 光学素材90が荷重で弾性変形して、成形面22a,23aと光学素材90の接触部分が点接触ではなく面で接触していること、および光学素材90の形状が球体である場合、
P:集中荷重[N](=固定荷重W1)、
ν1:光学素材90のポアソン比、
ν2:成形面22a(成形面23a)のポアソン比、
E1:光学素材90の縦弾性係数[MPa]、
E2:成形面22a(成形面23a)の縦弾性係数[MPa]、
R1:光学素材90の曲率半径[mm]、
R2:成形面22a(成形面23a)の曲率半径[mm](凹面の場合、1/R2=-(1/R2)、平面の場合、R2=∞)、とすると、
成形面22a(成形面23a)に対する接触半径α[mm]は、ヘルツの公式より以下の(1)式の通りとなる。
Figure JPOXMLDOC01-appb-I000001
 ここで、接触半径αが小さいと加熱時に充分な変形が得られず、大きすぎると光学素材90の表面にワレが生じてしまい良好な光学素子91等の成形品が得られない。
 従って、本実施の形態の場合、成形面22a(成形面23a)と光学素材90の接触半径αは、一例として0.05mm~0.3mmが望ましい。このため、本実施の形態では、固定荷重W1を、一例として、約1kgf~50kgfの範囲に設定する。
 より望ましくは、接触半径αは0.1mm~0.2mm程度である。その場合、固定荷重W1は、例えば、約5kgf~30kgfの範囲に設定される。
 すなわち、本実施の形態の場合には、加熱された不活性ガス80の流量Qと、光学素材90の形状等に応じて、光学素材90を損傷しない範囲で、光学素材90に十分な固定力が得られる固定荷重W1を決定する。
 なお、光学素材90を損傷しない範囲で、固定荷重W1を可能な限り大きくして、加熱工程K3の間に光学素材90の変形が促進されるようにしてプレス成形工程K4の所要時間を短縮してもよい。
 あるいは、光学素材90を損傷しない範囲で、加熱工程K3の間に固定荷重W1よりも大きな第3荷重を加えて、加熱工程K3の間に光学素材90の変形が促進されるようにしてもよい。
  (実施の形態2)
 図3は、本発明の実施の形態2である光学素子の製造方法を実施する製造装置の構成例を示す略断面図、図4は、図3の横断面図である。
 図5は、本発明の実施の形態2である光学素子の製造方法を実施する製造装置の動作状態の一例を示す略断面図、図6は、図5の横断面図である。
 この実施の形態の製造装置M2では、成形型20の筒型21が同軸に挿入され、筒型21のガス導入穴21aと同じ高さおよび同じ周方向の位置にガス供給穴42(第2貫通穴)が形成された回動スリーブ41(第2筒体)を制御機構40(制御手段)として用いる点が上述の製造装置M1と異なっている。
 この場合、上プレート11によるプレス成形時のストロークが十分確保できるように、回動スリーブ41の高さは、光学素材90が収容された状態の成形型20における上型22と下型23の両端面間の距離よりも短く設定されている。
 そして、この実施の形態2の製造装置M2の制御機構40の場合には、上プレート11の上下動と連動して、図示しない回動機構により回動スリーブ41をZ軸の回りに回動させ、筒型21のガス導入穴21aと回動スリーブ41のガス供給穴42が一致する位置と、ガス導入穴21aに対して、ガス供給穴42が逸れた位置とを制御する。これにより、ガスノズル34から成形型20のキャビティ24に対する不活性ガス80の導入の有無を制御する。
 すなわち、成形前の準備状態では、図3および図4に示す位置に回動スリーブ41を回動させて、回動スリーブ41によってガス導入穴21aを遮断することで、外部雰囲気等に起因する光学素材90の位置ずれを防止する。
 そして、上プレート11が下降して上型22の上端面に当接し、所定の固定荷重W1が上型22に作用して光学素材90が上型22と下型23の間に固定された状態で、図5および図6のように、回動スリーブ41を、ガス供給穴42がガス導入穴21aに一致する位置に回動させる。これにより、ガスノズル34から加熱された不活性ガス80を、ガス供給穴42、ガス導入穴21aを通じてキャビティ24に導入して光学素材90に吹き付けることで、光学素材90を加熱する。
 また、上プレート11による荷重が除かれた際には、再びガス導入穴21aおよびガス供給穴42の相互の位置がずれるように回動スリーブ41が回動して、キャビティ24内への不活性ガス80の導入路が封鎖される。
 このように、本実施の形態の製造装置M2の場合にも、キャビティ24内に位置する光学素材90に対する高温の不活性ガス80の吹き付けによる加熱に際して、光学素材90が所定の位置から移動することが確実に防止され、上述の実施の形態1の場合と同様の効果を得ることができる。
 また、この実施の形態2の製造装置M2の場合には、回動スリーブ41の上端部が成形型20の上型22の上側に突出しない。このため、上プレート11に加圧ピン11b等の部材を設けることなく、上プレート11自体の押圧動作によって固定荷重W1の印加を実現できる利点がある。
  (実施の形態3)
 図7および図8は、本発明の実施の形態3である光学素子の製造方法を実施する製造装置の構成および作用例を示す略断面図である。
 この実施の形態3の製造装置M3の場合には、成形型20が配置される上プレート11と下プレート12間の対向空間の周囲に、可動ガスノズル51および可動遮蔽板52からなる制御機構50(制御手段)を設置した点が、上述の実施の形態1と異なっている。
 すなわち、この製造装置M3の場合には、制御機構50の可動ガスノズル51は、図示しない駆動機構に支持されることによって、成形型20の筒型21におけるガス導入穴21aに同軸に対向して接近する位置と、ガス導入穴21aから離間した位置との間で変位する。
 この可動ガスノズル51は、例えばトーチヒータで構成され、所定の成形温度に加熱された不活性ガス80を連続して噴出している。
 また、この可動ガスノズル51の変位の経路途中には、図7および図8の紙面に垂直なY方向に変位することで、ガス導入穴21aに対して可動ガスノズル51から噴出する不活性ガス80を遮ることのできる可動遮蔽板52が配置されている。
 この製造装置M3の場合、上プレート11によって上型22及び光学素材90に固定荷重W1が作用していないときには(図7の状態)、可動ガスノズル51はガス導入穴21aから離間した位置に後退しており、後退した可動ガスノズル51と筒型21のガス導入穴21aの間に可動遮蔽板52が進出している。このようにして、ガス導入穴21aに対して可動ガスノズル51から噴出する不活性ガス80を遮断している。
 これにより、下プレート12に載置された成形型20の上型22に上プレート11が当接する前の状態において、キャビティ24内の光学素材90が所定の位置からずれることが防止される。
 その後、上軸13によって上プレート11が下降し、上型22に当接して固定荷重W1を作用させた時点で、図8のように、可動遮蔽板52を可動ガスノズル51の移動経路から退避させる。これと同時に、可動ガスノズル51をガス導入穴21aに接近させ、所定の温度に加熱された不活性ガス80を可動ガスノズル51からキャビティ24内の光学素材90に吹き付けて成形温度まで加熱する。その後、さらに上プレート11を下降させて成形荷重W2で上型22を押圧するプレス成形を行う。
 プレス成形後、上プレート11が上型22から離間すると、可動ガスノズル51が後退するとともに可動遮蔽板52が前進して、可動ガスノズル51から噴出する不活性ガス80を遮断する。
 このように、本実施の形態3の場合にも、上プレート11から所定の固定荷重W1を上型22に作用させて光学素材90を固定した状態で、所定の温度の不活性ガス80をキャビティ24内の光学素材90に吹き付けることができる。これにより、短時間に均一に所定の成形温度まで効率よく加熱できるとともに、不活性ガス80を光学素材90に吹き付ける際における光学素材90の位置ずれを確実に防止でき、高品質の光学素子91を得ることができる。
 また、本実施の形態3の製造装置M3の場合には、上プレート11や成形型20の側には特別な部品を配置する必要がなく、成形型20の構成を簡略化できる利点もある。
 なお、上述した例では、可動遮蔽板52を用いて不活性ガス80を遮断する場合について説明したが、例えば、図9に示すように、可動遮蔽版52を設けずに、可動ガスノズル51をガス導入穴21aから十分に遠ざけることにより、不活性ガス80のキャビティ24内への導入を実質的に遮断することもできる。いずれの場合においても、上述した第1工程(固定工程K2)におけるキャビティ24内に導入される不活性ガス80の流量を、上述した第2工程(加熱工程K3)よりも減少させておくことができる(第1工程におけるキャビティ24内に導入される不活性ガス80の流量がゼロの場合を含む)。
  (実施の形態4)
 図10および図11は、本発明の実施の形態4である光学素子の製造方法を実施する製造装置の構成および作用例を示す略断面図である。
 この実施の形態4の製造装置M4では、上述の制御機構50の代わりに、ガス供給管61と、ガス供給ノズル62と、ガスバイパスノズル63と、切換弁64と、からなる制御機構60(制御手段)を配置した点が、上述の実施の形態3と異なっている。
 すなわち、本実施の形態の製造装置M4の場合、ガス供給管61は、例えば、トーチヒータで構成され、常時、所定の成形温度に加熱された不活性ガス80を、切換弁64を介してガス供給ノズル62またはガスバイパスノズル63に供給する構成となっている。
 ガス供給ノズル62は、下プレート12に載置される成形型20の筒型21におけるガス導入穴21aに近接して、ガス導入穴21aと同軸に対向する位置に固定的に設置されている。
 換言すれば、成形型20を下プレート12に載置する際に、筒型21のガス導入穴21aがガス供給ノズル62の先端に一致するように、成形型20が位置決めされる。
 また、ガスバイパスノズル63は、下プレート12に載置された成形型20から逸れた方向に開口し、加熱された不活性ガス80が成形型20に当たらない方向に噴出するように設置されている。
 すなわち、本実施の形態の場合、制御機構60では、成形型20に固定荷重W1が作用していないときには、図10のように、加熱された不活性ガス80は、切換弁64によって、ガス供給管61からガスバイパスノズル63に供給される。そして、不活性ガス80は、成形型20から逸れた方向に導かれている。
 一方、成形前の段階で、上プレート11から成形型20の上型22に所定の固定荷重W1が作用し、所定の力にて光学素材90が上型22と下型23の間に挟み込まれたことを検知すると、図11のように、切換弁64が作動して加熱された不活性ガス80が、ガス導入穴21aに正対するガス供給ノズル62を介してキャビティ24に導かれ、光学素材90の加熱が行われる。
 上プレート11による荷重が除かれた際には、再び切換弁64が作動し、加熱された不活性ガス80は、ガスバイパスノズル63を介して成形型20から逸れた方向に導かれる。
 この実施の形態4の場合にも、上述の実施の形態3と同様の効果が得られるとともに、固定的に設置されたガス供給管61、ガス供給ノズル62、ガスバイパスノズル63に対して、上プレート11の上下動に連動して切換弁64により加熱された不活性ガス80の供給方向を切り換えるだけである。このため、切換弁64以外に可動部を必要とせず、構成が簡単になる利点がある。
 以上説明したように、本発明の各実施の形態によれば、成形型20内における光学素材90の位置ずれ等に起因する光学素子91の品質低下を招くことなく、成形型20内への加熱された不活性ガス80の導入による加熱効率の向上を実現することが可能となる。
 なお、本発明は、上述の実施の形態に例示した構成に限らず、その趣旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 例えば、上述の各実施の形態では、不活性ガス80を加熱する機構としてトーチヒータを用い、加熱された不活性ガス80を常時供給し、不活性ガス80の経路を遮断したり、供給位置や方向を制御したりする構成を例示したが、これらに限られない。例えば、不活性ガス80の加熱および噴出供給動作自体を、上プレート11の上下動と連動してON/OFFするようにしてもよい。
11 上プレート
11a ピン穴
11b 加圧ピン
11c 加圧ばね
12 下プレート
13 上軸
20 成形型
21 筒型
21a ガス導入穴
22 上型
22a 成形面
23 下型
23a 成形面
24 キャビティ
30 制御機構
31 スリーブ
32 ガス供給穴
33 軸方向駆動ばね
34 ガスノズル
40 制御機構
41 回動スリーブ
42 ガス供給穴
50 制御機構
51 可動ガスノズル
52 可動遮蔽板
60 制御機構
61 ガス供給管
62 ガス供給ノズル
63 ガスバイパスノズル
64 切換弁
80 不活性ガス
90 光学素材
91 光学素子
M1 製造装置
M2 製造装置
M3 製造装置
M4 製造装置
TS 成形温度
K1 準備工程
K2 固定工程
K3 加熱工程
K4 プレス成形工程
t1 固定タイミング
t2 ガス導入開始タイミング
t3 成形プレス開始タイミング
t4 成形プレス終了タイミング
W0 上型自重
W1 固定荷重
W2 成形荷重

Claims (12)

  1.  成形型内のキャビティに位置する光学素材に第1荷重を加えて固定する第1工程と、
     その後、加熱されたガスを前記キャビティ内に導入して前記光学素材を加熱軟化させる第2工程と、
     その後、前記キャビティ内の前記光学素材に前記第1荷重よりも大きな第2荷重を加えて光学素子を成形する第3工程と、を含む、光学素子の製造方法。
  2.  請求項1記載の光学素子の製造方法において、
     前記第1工程における前記キャビティ内に導入される前記ガスの流量を、前記第2工程よりも減少させておく、光学素子の製造方法。
  3.  請求項2記載の光学素子の製造方法において、
     前記第1工程では、前記ガスの前記キャビティへの導入路を遮断している、光学素子の製造方法。
  4.  請求項2記載の光学素子の製造方法において、
     前記第1工程では、前記ガスの流路方向を前記第2工程とは異ならせることで、前記キャビティ内へ前記ガスを導入しない、光学素子の製造方法。
  5.  請求項1記載の光学素子の製造方法において、
     前記第1工程にて前記光学素材に加えられる前記第1荷重は、前記光学素材のサイズおよび前記キャビティに導入される前記ガスの流量の少なくとも一方によって決定される、光学素子の製造方法。
  6.  請求項1記載の光学素子の製造方法において、
     前記第2工程では、前記第1荷重よりも大きな第3荷重を加えて前記光学素材の変形を促進させる、光学素子の製造方法。
  7.  成形型を加圧する加圧手段と、
     前記成形型内のキャビティに加熱されたガスを導入可能にするガス導入手段と、
     前記キャビティに収容された光学素材の成形時の第2荷重よりも小さい第1荷重を前記光学素材に加えて固定した後に、前記ガスが前記キャビティに導入されるように制御する制御手段と、を含む、光学素子の製造装置。
  8.  請求項7記載の光学素子の製造装置において、
     前記成形型は、筒型と、前記筒型の内部で前記光学素材を挟んで対向する第1の型および第2の型と、で構成され、
     前記ガス導入手段は、前記キャビティに連通するように前記筒型に貫通して形成された透孔からなり、
     前記加圧手段は、前記第1の型および前記第2の型を対向方向に挟圧する一対のプレートからなる、光学素子の製造装置。
  9.  請求項8記載の光学素子の製造装置において、
     前記制御手段は、前記筒型の外側に同軸に装着され、前記プレートによる前記成形型の挟圧動作に連動して前記対向方向に変位することで前記透孔の開閉を制御する第1貫通穴を備えた第1筒体からなる、光学素子の製造装置。
  10.  請求項8記載の光学素子の製造装置において、
     前記制御手段は、前記筒型の外側に同軸に装着され、前記プレートによる前記成形型の挟圧動作に連動して前記対向方向の回りに回動変位することで、前記透孔の開閉を制御する第2貫通穴を備えた第2筒体からなる、光学素子の製造装置。
  11.  請求項8記載の光学素子の製造装置において、
     前記制御手段は、
     前記透孔に対する相対的な位置を変化させることが可能で前記ガスが噴き出す可動ガスノズルと、
     前記可動ガスノズルと前記透孔との間を仕切ることが可能な可動遮蔽板と、を備え、
     前記プレートによる前記成形型の挟圧動作に連動して前記可動ガスノズルおよび前記可動遮蔽板を変位させることで、前記可動ガスノズルから前記透孔を経由した前記ガスの前記キャビティに対する導入の有無を制御する、光学素子の製造装置。
  12.  請求項8記載の光学素子の製造装置において、
     前記制御手段は、
     前記透孔に前記ガスを供給する位置に配置された第1ガスノズルと、
     前記透孔から逸れた位置に開口する第2ガスノズルと、
     前記第1ガスノズルおよび前記第2ガスノズルのいずれに前記ガスを流すかを切り換える切換弁と、を備え、
     前記プレートによる前記成形型の挟圧動作に連動して前記切換弁を作動させることで、前記第1ガスノズルから前記透孔を経由した前記ガスの前記キャビティに対する導入の有無を制御する、光学素子の製造装置。
PCT/JP2011/056882 2010-06-29 2011-03-23 光学素子の製造方法および光学素子の製造装置 WO2012002008A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012522482A JP5781071B2 (ja) 2010-06-29 2011-03-23 光学素子の製造方法および光学素子の製造装置
CN2011800295483A CN102958853A (zh) 2010-06-29 2011-03-23 光学元件制造方法以及光学元件制造装置
US13/712,149 US9481596B2 (en) 2010-06-29 2012-12-12 Optical element manufacturing method and optical element manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010147308 2010-06-29
JP2010-147308 2010-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/712,149 Continuation US9481596B2 (en) 2010-06-29 2012-12-12 Optical element manufacturing method and optical element manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2012002008A1 true WO2012002008A1 (ja) 2012-01-05

Family

ID=45401746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056882 WO2012002008A1 (ja) 2010-06-29 2011-03-23 光学素子の製造方法および光学素子の製造装置

Country Status (4)

Country Link
US (1) US9481596B2 (ja)
JP (1) JP5781071B2 (ja)
CN (1) CN102958853A (ja)
WO (1) WO2012002008A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123825A1 (ja) * 2016-12-28 2018-07-05 オリンパス株式会社 光学素子の成形装置および光学素子の成形方法
US10849881B2 (en) 2013-11-26 2020-12-01 Hoffmann-La Roche Inc. Octahydro-cyclobuta[1,2-c;3,4-c′]dipyrrol-2-yl

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109956655A (zh) * 2017-12-22 2019-07-02 财团法人金属工业研究发展中心 金属模造玻璃的加热装置及加热方法
CN110156304A (zh) * 2018-02-13 2019-08-23 深圳市诸脉科技有限公司 一种曲面玻璃制备装置及其使用方法
CN111763001B (zh) * 2020-06-10 2021-08-20 北京理工大学 一种高精度玻璃模压成形用多种材料组合模具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367526A (ja) * 1991-06-14 1992-12-18 Olympus Optical Co Ltd ガラス光学素子の成形方法
JP2002114529A (ja) * 2000-10-03 2002-04-16 Matsushita Electric Ind Co Ltd 光学素子の成形金型および光学素子の製造方法
JP2010013349A (ja) * 2008-07-07 2010-01-21 National Taiwan Univ Of Science & Technology ガラス成形の加熱プロセスおよび器具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3103243B2 (ja) * 1992-06-02 2000-10-30 住友重機械プラスチックマシナリー株式会社 ガラス圧縮成形機及びその加工室
JPH10251031A (ja) * 1997-03-11 1998-09-22 Asahi Optical Co Ltd 光学素子の成形方法及び成形装置
CN1331787C (zh) * 2004-02-12 2007-08-15 Hoya株式会社 制造玻璃光学元件的装置和方法及由此制造的玻璃光学元件
JP4580677B2 (ja) * 2004-04-26 2010-11-17 東芝機械株式会社 ガラス成形装置
CN1778729B (zh) * 2004-11-19 2010-07-21 鸿富锦精密工业(深圳)有限公司 非球面模造玻璃制造方法及其装置
JP4790570B2 (ja) * 2006-11-14 2011-10-12 オリンパス株式会社 光学素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367526A (ja) * 1991-06-14 1992-12-18 Olympus Optical Co Ltd ガラス光学素子の成形方法
JP2002114529A (ja) * 2000-10-03 2002-04-16 Matsushita Electric Ind Co Ltd 光学素子の成形金型および光学素子の製造方法
JP2010013349A (ja) * 2008-07-07 2010-01-21 National Taiwan Univ Of Science & Technology ガラス成形の加熱プロセスおよび器具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10849881B2 (en) 2013-11-26 2020-12-01 Hoffmann-La Roche Inc. Octahydro-cyclobuta[1,2-c;3,4-c′]dipyrrol-2-yl
WO2018123825A1 (ja) * 2016-12-28 2018-07-05 オリンパス株式会社 光学素子の成形装置および光学素子の成形方法

Also Published As

Publication number Publication date
JP5781071B2 (ja) 2015-09-16
CN102958853A (zh) 2013-03-06
US9481596B2 (en) 2016-11-01
US20130098114A1 (en) 2013-04-25
JPWO2012002008A1 (ja) 2013-08-22

Similar Documents

Publication Publication Date Title
WO2012002008A1 (ja) 光学素子の製造方法および光学素子の製造装置
US5588980A (en) Apparatus for molding a glass optical element with a transporting supporting member
JP4495744B2 (ja) 射出機用ホットランナーシステムのノズル結合構造
US10040110B2 (en) Forming system and forming method
KR102273619B1 (ko) 교축 곡률을 가진 고온 유리판을 성형하기 위한 성형기 및 방법
CN108349771B (zh) 用于玻璃加工系统的抬升装置
JPH1179765A (ja) ガラス容器の製造方法および製造装置
JPS6372435A (ja) 熱塑性加工方法及びその装置
US7121119B2 (en) Press molding apparatus for an optical element and method of manufacturing the optical element
JP5171900B2 (ja) 剥離治具本体、剥離治具及び剥離方法
JPWO2019220571A1 (ja) タイヤ加硫機及びタイヤ加硫方法
JP2006282472A (ja) ガラスレンズ成形装置およびガラスレンズ成形方法
US8343393B2 (en) Molding method and apparatus for an optical element
KR100851217B1 (ko) 열융착기
US20040182112A1 (en) Conveyance apparatus, a manufacturing apparatus of an optical element, and a manufacturing method of the optical element
TWI789505B (zh) 用於鉚接構件的方法及裝置
JP2004330284A (ja) 熱間型鍛造プレスの離型剤塗布機構
JP5829108B2 (ja) 光学素子の製造方法、及び、光学素子の製造装置
CN100355681C (zh) 玻璃镜片模造制程中避免镜片沾粘模仁的方法
JP7422865B2 (ja) ホットランナー型および樹脂製容器の製造装置
JPH1177821A (ja) 樹脂成型品の曲げ加工装置
KR101950989B1 (ko) 모터 코어의 제조장치 및 제조방법
JP2003226528A (ja) レンズ素子の成形装置及びその成形方法
JPH0739616Y2 (ja) 同時成形転写装置の転写フイルム加熱盤
JPH0597448A (ja) 光学素子の成形法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029548.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522482

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800478

Country of ref document: EP

Kind code of ref document: A1