JPWO2012002008A1 - 光学素子の製造方法および光学素子の製造装置 - Google Patents

光学素子の製造方法および光学素子の製造装置 Download PDF

Info

Publication number
JPWO2012002008A1
JPWO2012002008A1 JP2012522482A JP2012522482A JPWO2012002008A1 JP WO2012002008 A1 JPWO2012002008 A1 JP WO2012002008A1 JP 2012522482 A JP2012522482 A JP 2012522482A JP 2012522482 A JP2012522482 A JP 2012522482A JP WO2012002008 A1 JPWO2012002008 A1 JP WO2012002008A1
Authority
JP
Japan
Prior art keywords
gas
mold
optical element
cavity
optical material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012522482A
Other languages
English (en)
Other versions
JP5781071B2 (ja
Inventor
宏行 澁木
宏行 澁木
関 博之
博之 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2012522482A priority Critical patent/JP5781071B2/ja
Publication of JPWO2012002008A1 publication Critical patent/JPWO2012002008A1/ja
Application granted granted Critical
Publication of JP5781071B2 publication Critical patent/JP5781071B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/16Gearing or controlling mechanisms specially adapted for glass presses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0013Re-forming shaped glass by pressing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/69Controlling the pressure applied to the glass via the dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

成形型内における光学素材の位置ずれ等に起因する光学素子の品質低下を招くことなく、成形型内への加熱された不活性ガスの導入による加熱効率の向上を実現する。解決手段の一例として、筒型21に対向して挿入された上型22と下型23の間に形成されるキャビティ24に光学素材90を収容して加熱してプレス成形する製造装置M1において、ガス導入穴21aが形成された筒型21と同軸に、ガス供給穴32が形成されたスリーブ31を装着し、スリーブ31の下端に設けられた軸方向駆動ばね33によって、上プレート11の上下動に連動してスリーブ31が昇降し、上型22に固定荷重W1が作用し光学素材90が固定された状態で、ガス導入穴21aにガス供給穴32が一致することでガスノズル34から加熱された不活性ガス80を導入する。これにより光学素材90の位置ずれを生じることなく、光学素材90を効率よく加熱して成形できる。

Description

本発明は、光学素子の製造方法および光学素子の製造装置に関する。
ガラス等の熱可塑性の光学素材を成形型内で加熱および押圧して所望の形状の光学素子を成形する技術が知られている。この技術において、成形型との接触部からの熱伝導でガラス等を加熱しようとしても、ガラス等の熱伝導率が小さいために、均一に加熱するために時間がかかる場合があった。
そのため、特許文献1では、補助加熱手段として、加熱された不活性ガスを直接的に成形型内のガラスに吹き付けることによって均一な加熱を行う技術が開示されている。
特開2008−120645号公報
ところが、上述の特許文献1の技術は、迅速かつ均一にガラス等の光学素材を所定の温度に加熱できるという優れた技術ではあるが、成形型内への加熱ガスの導入時に光学素材がガスの動圧等によりキャビティ内の所定の位置から移動してしまう懸念があった。そして、光学素材が移動してしまう結果、良好な光学素子を得ることができない場合がある、という技術的課題があった。
本発明の目的は、成形型内における光学素材の位置ずれ等に起因する光学素子の品質低下を招くことなく、成形型内への加熱された不活性ガスの導入による加熱効率の向上を実現することが可能な光学素子の製造技術を提供することにある。
本発明の第1の観点は、成形型内のキャビティに位置する光学素材に第1荷重を加えて固定する第1工程と、
その後、加熱されたガスを前記キャビティ内に導入して前記光学素材を加熱軟化させる第2工程と、
その後、前記キャビティ内の前記光学素材に前記第1荷重よりも大きな第2荷重を加えて光学素子を成形する第3工程と、を含む、光学素子の製造方法を提供する。
本発明の第2の観点は、成形型を加圧する加圧手段と、
前記成形型内のキャビティに加熱されたガスを導入可能にするガス導入手段と、
前記キャビティに収容された光学素材の成形時の第2荷重よりも小さい第1荷重を前記光学素材に加えて固定した後に、前記ガスが前記キャビティに導入されるように制御する制御手段と、を含む、光学素子の製造装置を提供する。
本発明によれば、成形型内における光学素材の位置ずれ等に起因する光学素子の品質低下を招くことなく、成形型内への加熱された不活性ガスの導入による加熱効率の向上を実現することが可能な光学素子の製造技術を提供することができる。
本発明の一実施の形態である光学素子の製造方法を実施する製造装置の構成および作用の一例を工程順に示す略断面図である。 本発明の一実施の形態である光学素子の製造方法を実施する製造装置の作用の一例を示す線図である。 本発明の他の実施の形態である光学素子の製造方法を実施する製造装置の構成例を示す略断面図である。 図3の横断面図である。 本発明の他の実施の形態である光学素子の製造方法を実施する製造装置の動作状態の一例を示す略断面図である。 図5の横断面図である。 本発明のさらに他の実施の形態である光学素子の製造方法を実施する製造装置の構成および作用例を示す略断面図である。 本発明のさらに他の実施の形態である光学素子の製造方法を実施する製造装置の構成および作用例を示す略断面図である。 本発明のさらに他の実施の形態である光学素子の製造方法を実施する製造装置の構成および作用の変形例を示す略断面図である。 本発明のさらに他の実施の形態である光学素子の製造方法を実施する製造装置の構成および作用例を示す略断面図である。 本発明のさらに他の実施の形態である光学素子の製造方法を実施する製造装置の構成および作用例を示す略断面図である。
本実施の形態では、一態様として、成形型のキャビティ内に加熱ガスを導入する際に、加熱ガスの導入で光学素材が動くことなく、且つ光学素材が破損することのない荷重で上下の型で成形素材を挟み込んだ後に加熱ガスをキャビティ内に導入する。
また、荷重が解放されている際には加熱ガスや成形型の外部雰囲気内の低温のガス等がキャビティ内に導入されることのないようにガス導入路が閉鎖されるようにして、成形型内における成形素材の位置ずれやキャビティ内の温度低下を防止する。
すなわち、キャビティ内へ導入された加熱ガスの動圧等によって光学素材が所定の位置から移動することなく、所定の位置に静止したままで効率よく加熱され、良好な光学素子が得られる。
以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
なお、以下の本実施の形態の説明では、各図において、X、Y、Zの各方向は図示の通りとし、一例として、Z方向は鉛直方向、X−Y平面は水平面とする。
また、以下の各実施の形態の説明において、共通する構成要素は共通の参照符号を付して、重複した説明は割愛する。
(実施の形態1)
図1は、本発明の一実施の形態である光学素子の製造方法を実施する製造装置の構成および作用の一例を工程順に示す略断面図である。
図2は、本発明の一実施の形態である光学素子の製造方法を実施する製造装置の作用の一例を示す線図である。
本実施の形態の製造装置M1は、上下方向に対向する上プレート11(加圧手段)および下プレート12と、この上プレート11を上下方向に駆動する上軸13と、を備えている。
上プレート11および下プレート12には、図示しないヒータが埋設されている。これにより、ヒータは、各プレートを所定の温度に加熱することが可能になっている。
下プレート12には成形型20が載置されている。この成形型20の周囲には後述の制御機構30(制御手段)が設けられている。
成形型20は、筒型21と、この筒型21の上下の開口端から対向するように挿入された上型22および下型23と、を備えている。
そして、筒型21の内部においては、対向する上型22の成形面22aと、下型23の成形面23aの間にキャビティ24が形成されている。このキャビティ24の内部には、例えば、予め球形に予備成形されたガラスプリフォーム等の光学素材90が収容されている。
筒型21の壁面には、内部のキャビティ24に連通する位置に、複数のガス導入穴21a(ガス導入手段)(透孔)が、Z軸に関して対称な位置に貫通して形成されている。
本実施の形態の製造装置M1の場合、成形型20の周囲には、筒型21が同軸に挿通されるスリーブ31(第1筒体)と、筒型21のガス導入穴21aに対向して開口した複数のガスノズル34と、このスリーブ31の下端に設けられ、当該スリーブ31を上型22の上端から突出させる方向に上向きに常時押圧する軸方向駆動ばね33と、を備えた制御機構30が配置されている。なお、図1においては、便宜上、スリーブ31のみに符号(30)を付してある。
なお、軸方向駆動ばね33としては、スリーブ31の下端部に螺旋状にスリットを形成して、スリーブ31の下端部自体が軸方向駆動ばね33として機能する構成としてもよい。
ガスノズル34は、例えば、トーチヒータで構成されている。ガスノズル34は、所定の温度に加熱されたガスの一例の不活性ガス80を、成形型20のガス導入穴21aに向けて、常時噴き出す構成となっている。
また、スリーブ31には、Z軸の回転方向の位置において、ガス導入穴21aと同一位置に複数のガス供給穴32(第1貫通穴)が開口している。
このガス供給穴32は、スリーブ31が軸方向駆動ばね33によって上方向に突出した状態では、ガス導入穴21aの高さ位置よりも上側に移動することにより、ガス導入穴21aとガスノズル34の連通状態がスリーブ31によって遮断される。
また、上プレート11によって下方に押し込まれてスリーブ31の上端が上型22の上端面と一致する位置まで移動すると、ガス供給穴32が筒型21のガス導入穴21aと同一高さになる。これにより、ガスノズル34がガス導入穴21aと連通して、キャビティ24の内部に加熱された不活性ガス80が導入される。
すなわち、本実施の形態の制御機構30は、上プレート11の上下動に連動して、ガス供給穴32が形成されたスリーブ31を上下動させることで、ガス導入穴21aとガスノズル34の遮断と連通を切り換える動作を実現している。
本実施の形態の場合、上プレート11の中央部には、上プレート11および上軸13を軸方向に貫通してピン穴11aが設けられている。このピン穴11aの内部には、上プレート11の下面から突出する加圧ピン11b(加圧手段)が収容されている。
この加圧ピン11bの上端部は、加圧ばね11cを介して、ピン穴11aの上端部に固定されている。
そして、上軸13によって上プレート11が下降する場合、上プレート11がスリーブ31の上端に当接する前に、最初に加圧ピン11bの下端が成形型20の上型22に当接する。これにより、当該上型22を下型23に接近させる方向に負荷(すなわち、光学素材90を上型22と下型23の間に挟んで固定する後述の固定荷重W1(第1荷重))が発生する。
そして、上プレート11の下降とともに加圧ピン11bはピン穴11aの内部に押し込まれる。そして、上プレート11が上型22に当接した状態では、加圧ピン11bは、ピン穴11aの内部に完全に押し込まれた状態となる。
このように、本実施の形態では、下降する上プレート11がスリーブ31に当接する前に、加圧ピン11bが上型22に当接することで固定荷重W1を発生させる構成となっている。
従って、加圧ピン11bを支持する加圧ばね11cのばね定数や長さを適宜設定することで、固定荷重W1を所望の値に設定可能である。
本実施の形態の場合には、下降する上プレート11によってスリーブ31が押し下げられてガス供給穴32がガス導入穴21aに一致する直前の高さで、すなわち、ガスノズル34からキャビティ24に不活性ガス80が導入される直前の位置で、加圧ピン11bが上型22に対して所定の固定荷重W1を作用させるように設定されている。
以下、本実施の形態の作用の一例を図1および図2を参照して説明する。
まず、内部に光学素材90が収容された成形型20をスリーブ31が装着された状態で、所定の成形温度に加熱されている下プレート12に載置する(準備工程K1)。
このとき、成形型20の内部の光学素材90には、上型22の自重である上型自重W0が作用するのみである。また、光学素材90は、キャビティ24の中央位置、すなわち、成形面22aおよび成形面23aの中心位置(光軸位置)に中心が一致するように位置決めされている。
また、スリーブ31は、軸方向駆動ばね33によって上端が上型22の上端面から突出した状態にあり、ガス供給穴32がガス導入穴21aから上側に逸れた位置に移動している。このため、キャビティ24は、ガスノズル34や外部雰囲気から遮断されている。
このように、外部から負荷が作用しない状態では、スリーブ31によってガス導入穴21aが閉止されている。このため、成形型20のキャビティ24の所定の中心位置に位置する光学素材90は、外部雰囲気等の影響で位置ずれすることはない。
次に、上軸13によって、所定の成形温度に加熱された上プレート11を下降させると、上プレート11から突出した加圧ピン11bが最初に上型22の上端に当接し、上プレート11がスリーブ31に対する当接直前まで下降する。これにより、固定荷重W1を上型22に作用させて(固定タイミングt1)、光学素材90を固定する(固定工程K2(第1工程))。
さらに、上プレート11を下降させてスリーブ31を下方に押し込みつつ、上プレート11が上型22の上端面に当接すると、ガス供給穴32がガス導入穴21aに一致する(ガス導入開始タイミングt2)。これにより、ガスノズル34から噴き出す所定の温度に加熱された不活性ガス80がキャビティ24の光学素材90に吹き付けられて、当該光学素材90の加熱が開始される(加熱工程K3(第2工程))。
このとき、同時に、上プレート11および下プレート12からの熱伝導や輻射熱によっても光学素材90は加熱される。
本実施の形態の場合、このガスノズル34からの不活性ガス80の導入の直前に、光学素材90は、固定荷重W1によって固定されているので、キャビティ24の所定の中心位置から位置ずれすることが確実に防止されている。
そして、光学素材90が所定の成形温度TSに達すると、上軸13により、上プレート11をさらに下降させ、上型22を成形荷重W2(第2荷重)で押圧して光学素材90の成形を開始する(成形プレス開始タイミングt3)。そして、上型22の成形面22aと下型23の成形面23aが光学素材90に転写されることにより、光学素子91が得られる(プレス成形工程K4(第3工程))。
この成形時に、本実施の形態の場合には、光学素材90がキャビティ24の内部で位置ずれせずに、中心位置に精度よく位置決めされている。これにより、例えば、光軸対称に光学素材90が変形して、光軸の回りにおける光学的な性能に偏り等のない、高品質の光学素子91が得られる。
その後、上プレート11による成形荷重W2を解除するとともに、成形型20の冷却を開始する(成形プレス終了タイミングt4)。このとき、上プレート11が上昇してスリーブ31から離間すると、スリーブ31は上昇し、ガス供給穴32はガス導入穴21aから上方に逸れた位置に移動する。これにより、キャビティ24は外部から遮断された状態に復帰する。
そして、所定の温度まで成形型20の温度が低下したら、成形型20を分解して、光学素子91を取り出す。
なお、必要に応じて、冷却開始時に、所望の型締め荷重を上型22に作用させてもよい。
このように、本実施の形態の製造装置M1の場合には、成形型20のガス導入穴21aの開閉を制御するガス供給穴32を有するスリーブ31を、上プレート11に連動して上下動させる。これにより、光学素材90に対して所定の固定荷重W1を作用させて固定した後に、加熱された不活性ガス80がキャビティ24に導入される。
このため、加熱された不活性ガス80をキャビティ24内へ導入して光学素材90に吹き付けることによって光学素材90を成形温度まで短時間に均一に効率よく加熱できるとともに、不活性ガス80の吹き付けによって光学素材90がキャビティ24内の所定の位置から移動することがなく、効率よく、良好な光学性能の光学素子91が得られる。
ここで、本実施の形態における固定荷重W1およびガスノズル34からの不活性ガス80の供給方法の一例を説明する。
本実施の形態の場合、一例として、ガスノズル34は、ノズル径φ=1mm〜4mmとする。
ガスノズル34のノズル径φが小さすぎると流速が早くなりすぎて、不活性ガス80が吹き付けられる光学素材90に作用する動圧が大きくなり、より大きな固定荷重W1で挟み込んで固定する必要がある。
一方、ガスノズル34のノズル径φが大きすぎると流速が遅くなり、加熱された不活性ガス80による光学素材90の充分な熱交換がされなくなる。
また、不活性ガス80の流量Qは、一例として、Q=10L/min〜40L/minとする。
流量Qが小さすぎると不活性ガス80の流速が遅くなり、光学素材90に対する充分な熱交換がされなくなる。また、流量Qが大きすぎると不活性ガス80の流速が早くなりすぎて、より大きな固定荷重W1で挟み込んで固定する必要がある。
次に、光学素材90のサイズや形状等に基づいて固定荷重W1を決定する方法の一例を示す。
光学素材90が荷重で弾性変形して、成形面22a,23aと光学素材90の接触部分が点接触ではなく面で接触していること、および光学素材90の形状が球体である場合、
P:集中荷重[N](=固定荷重W1)、
ν1:光学素材90のポアソン比、
ν2:成形面22a(成形面23a)のポアソン比、
E1:光学素材90の縦弾性係数[MPa]、
E2:成形面22a(成形面23a)の縦弾性係数[MPa]、
R1:光学素材90の曲率半径[mm]、
R2:成形面22a(成形面23a)の曲率半径[mm](凹面の場合、1/R2=−(1/R2)、平面の場合、R2=∞)、とすると、
成形面22a(成形面23a)に対する接触半径α[mm]は、ヘルツの公式より以下の(1)式の通りとなる。
Figure 2012002008
ここで、接触半径αが小さいと加熱時に充分な変形が得られず、大きすぎると光学素材90の表面にワレが生じてしまい良好な光学素子91等の成形品が得られない。
従って、本実施の形態の場合、成形面22a(成形面23a)と光学素材90の接触半径αは、一例として0.05mm〜0.3mmが望ましい。このため、本実施の形態では、固定荷重W1を、一例として、約1kgf〜50kgfの範囲に設定する。
より望ましくは、接触半径αは0.1mm〜0.2mm程度である。その場合、固定荷重W1は、例えば、約5kgf〜30kgfの範囲に設定される。
すなわち、本実施の形態の場合には、加熱された不活性ガス80の流量Qと、光学素材90の形状等に応じて、光学素材90を損傷しない範囲で、光学素材90に十分な固定力が得られる固定荷重W1を決定する。
なお、光学素材90を損傷しない範囲で、固定荷重W1を可能な限り大きくして、加熱工程K3の間に光学素材90の変形が促進されるようにしてプレス成形工程K4の所要時間を短縮してもよい。
あるいは、光学素材90を損傷しない範囲で、加熱工程K3の間に固定荷重W1よりも大きな第3荷重を加えて、加熱工程K3の間に光学素材90の変形が促進されるようにしてもよい。
(実施の形態2)
図3は、本発明の実施の形態2である光学素子の製造方法を実施する製造装置の構成例を示す略断面図、図4は、図3の横断面図である。
図5は、本発明の実施の形態2である光学素子の製造方法を実施する製造装置の動作状態の一例を示す略断面図、図6は、図5の横断面図である。
この実施の形態の製造装置M2では、成形型20の筒型21が同軸に挿入され、筒型21のガス導入穴21aと同じ高さおよび同じ周方向の位置にガス供給穴42(第2貫通穴)が形成された回動スリーブ41(第2筒体)を制御機構40(制御手段)として用いる点が上述の製造装置M1と異なっている。
この場合、上プレート11によるプレス成形時のストロークが十分確保できるように、回動スリーブ41の高さは、光学素材90が収容された状態の成形型20における上型22と下型23の両端面間の距離よりも短く設定されている。
そして、この実施の形態2の製造装置M2の制御機構40の場合には、上プレート11の上下動と連動して、図示しない回動機構により回動スリーブ41をZ軸の回りに回動させ、筒型21のガス導入穴21aと回動スリーブ41のガス供給穴42が一致する位置と、ガス導入穴21aに対して、ガス供給穴42が逸れた位置とを制御する。これにより、ガスノズル34から成形型20のキャビティ24に対する不活性ガス80の導入の有無を制御する。
すなわち、成形前の準備状態では、図3および図4に示す位置に回動スリーブ41を回動させて、回動スリーブ41によってガス導入穴21aを遮断することで、外部雰囲気等に起因する光学素材90の位置ずれを防止する。
そして、上プレート11が下降して上型22の上端面に当接し、所定の固定荷重W1が上型22に作用して光学素材90が上型22と下型23の間に固定された状態で、図5および図6のように、回動スリーブ41を、ガス供給穴42がガス導入穴21aに一致する位置に回動させる。これにより、ガスノズル34から加熱された不活性ガス80を、ガス供給穴42、ガス導入穴21aを通じてキャビティ24に導入して光学素材90に吹き付けることで、光学素材90を加熱する。
また、上プレート11による荷重が除かれた際には、再びガス導入穴21aおよびガス供給穴42の相互の位置がずれるように回動スリーブ41が回動して、キャビティ24内への不活性ガス80の導入路が封鎖される。
このように、本実施の形態の製造装置M2の場合にも、キャビティ24内に位置する光学素材90に対する高温の不活性ガス80の吹き付けによる加熱に際して、光学素材90が所定の位置から移動することが確実に防止され、上述の実施の形態1の場合と同様の効果を得ることができる。
また、この実施の形態2の製造装置M2の場合には、回動スリーブ41の上端部が成形型20の上型22の上側に突出しない。このため、上プレート11に加圧ピン11b等の部材を設けることなく、上プレート11自体の押圧動作によって固定荷重W1の印加を実現できる利点がある。
(実施の形態3)
図7および図8は、本発明の実施の形態3である光学素子の製造方法を実施する製造装置の構成および作用例を示す略断面図である。
この実施の形態3の製造装置M3の場合には、成形型20が配置される上プレート11と下プレート12間の対向空間の周囲に、可動ガスノズル51および可動遮蔽板52からなる制御機構50(制御手段)を設置した点が、上述の実施の形態1と異なっている。
すなわち、この製造装置M3の場合には、制御機構50の可動ガスノズル51は、図示しない駆動機構に支持されることによって、成形型20の筒型21におけるガス導入穴21aに同軸に対向して接近する位置と、ガス導入穴21aから離間した位置との間で変位する。
この可動ガスノズル51は、例えばトーチヒータで構成され、所定の成形温度に加熱された不活性ガス80を連続して噴出している。
また、この可動ガスノズル51の変位の経路途中には、図7および図8の紙面に垂直なY方向に変位することで、ガス導入穴21aに対して可動ガスノズル51から噴出する不活性ガス80を遮ることのできる可動遮蔽板52が配置されている。
この製造装置M3の場合、上プレート11によって上型22及び光学素材90に固定荷重W1が作用していないときには(図7の状態)、可動ガスノズル51はガス導入穴21aから離間した位置に後退しており、後退した可動ガスノズル51と筒型21のガス導入穴21aの間に可動遮蔽板52が進出している。このようにして、ガス導入穴21aに対して可動ガスノズル51から噴出する不活性ガス80を遮断している。
これにより、下プレート12に載置された成形型20の上型22に上プレート11が当接する前の状態において、キャビティ24内の光学素材90が所定の位置からずれることが防止される。
その後、上軸13によって上プレート11が下降し、上型22に当接して固定荷重W1を作用させた時点で、図8のように、可動遮蔽板52を可動ガスノズル51の移動経路から退避させる。これと同時に、可動ガスノズル51をガス導入穴21aに接近させ、所定の温度に加熱された不活性ガス80を可動ガスノズル51からキャビティ24内の光学素材90に吹き付けて成形温度まで加熱する。その後、さらに上プレート11を下降させて成形荷重W2で上型22を押圧するプレス成形を行う。
プレス成形後、上プレート11が上型22から離間すると、可動ガスノズル51が後退するとともに可動遮蔽板52が前進して、可動ガスノズル51から噴出する不活性ガス80を遮断する。
このように、本実施の形態3の場合にも、上プレート11から所定の固定荷重W1を上型22に作用させて光学素材90を固定した状態で、所定の温度の不活性ガス80をキャビティ24内の光学素材90に吹き付けることができる。これにより、短時間に均一に所定の成形温度まで効率よく加熱できるとともに、不活性ガス80を光学素材90に吹き付ける際における光学素材90の位置ずれを確実に防止でき、高品質の光学素子91を得ることができる。
また、本実施の形態3の製造装置M3の場合には、上プレート11や成形型20の側には特別な部品を配置する必要がなく、成形型20の構成を簡略化できる利点もある。
なお、上述した例では、可動遮蔽板52を用いて不活性ガス80を遮断する場合について説明したが、例えば、図9に示すように、可動遮蔽版52を設けずに、可動ガスノズル51をガス導入穴21aから十分に遠ざけることにより、不活性ガス80のキャビティ24内への導入を実質的に遮断することもできる。いずれの場合においても、上述した第1工程(固定工程K2)におけるキャビティ24内に導入される不活性ガス80の流量を、上述した第2工程(加熱工程K3)よりも減少させておくことができる(第1工程におけるキャビティ24内に導入される不活性ガス80の流量がゼロの場合を含む)。
(実施の形態4)
図10および図11は、本発明の実施の形態4である光学素子の製造方法を実施する製造装置の構成および作用例を示す略断面図である。
この実施の形態4の製造装置M4では、上述の制御機構50の代わりに、ガス供給管61と、ガス供給ノズル62と、ガスバイパスノズル63と、切換弁64と、からなる制御機構60(制御手段)を配置した点が、上述の実施の形態3と異なっている。
すなわち、本実施の形態の製造装置M4の場合、ガス供給管61は、例えば、トーチヒータで構成され、常時、所定の成形温度に加熱された不活性ガス80を、切換弁64を介してガス供給ノズル62またはガスバイパスノズル63に供給する構成となっている。
ガス供給ノズル62は、下プレート12に載置される成形型20の筒型21におけるガス導入穴21aに近接して、ガス導入穴21aと同軸に対向する位置に固定的に設置されている。
換言すれば、成形型20を下プレート12に載置する際に、筒型21のガス導入穴21aがガス供給ノズル62の先端に一致するように、成形型20が位置決めされる。
また、ガスバイパスノズル63は、下プレート12に載置された成形型20から逸れた方向に開口し、加熱された不活性ガス80が成形型20に当たらない方向に噴出するように設置されている。
すなわち、本実施の形態の場合、制御機構60では、成形型20に固定荷重W1が作用していないときには、図10のように、加熱された不活性ガス80は、切換弁64によって、ガス供給管61からガスバイパスノズル63に供給される。そして、不活性ガス80は、成形型20から逸れた方向に導かれている。
一方、成形前の段階で、上プレート11から成形型20の上型22に所定の固定荷重W1が作用し、所定の力にて光学素材90が上型22と下型23の間に挟み込まれたことを検知すると、図11のように、切換弁64が作動して加熱された不活性ガス80が、ガス導入穴21aに正対するガス供給ノズル62を介してキャビティ24に導かれ、光学素材90の加熱が行われる。
上プレート11による荷重が除かれた際には、再び切換弁64が作動し、加熱された不活性ガス80は、ガスバイパスノズル63を介して成形型20から逸れた方向に導かれる。
この実施の形態4の場合にも、上述の実施の形態3と同様の効果が得られるとともに、固定的に設置されたガス供給管61、ガス供給ノズル62、ガスバイパスノズル63に対して、上プレート11の上下動に連動して切換弁64により加熱された不活性ガス80の供給方向を切り換えるだけである。このため、切換弁64以外に可動部を必要とせず、構成が簡単になる利点がある。
以上説明したように、本発明の各実施の形態によれば、成形型20内における光学素材90の位置ずれ等に起因する光学素子91の品質低下を招くことなく、成形型20内への加熱された不活性ガス80の導入による加熱効率の向上を実現することが可能となる。
なお、本発明は、上述の実施の形態に例示した構成に限らず、その趣旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
例えば、上述の各実施の形態では、不活性ガス80を加熱する機構としてトーチヒータを用い、加熱された不活性ガス80を常時供給し、不活性ガス80の経路を遮断したり、供給位置や方向を制御したりする構成を例示したが、これらに限られない。例えば、不活性ガス80の加熱および噴出供給動作自体を、上プレート11の上下動と連動してON/OFFするようにしてもよい。
11 上プレート
11a ピン穴
11b 加圧ピン
11c 加圧ばね
12 下プレート
13 上軸
20 成形型
21 筒型
21a ガス導入穴
22 上型
22a 成形面
23 下型
23a 成形面
24 キャビティ
30 制御機構
31 スリーブ
32 ガス供給穴
33 軸方向駆動ばね
34 ガスノズル
40 制御機構
41 回動スリーブ
42 ガス供給穴
50 制御機構
51 可動ガスノズル
52 可動遮蔽板
60 制御機構
61 ガス供給管
62 ガス供給ノズル
63 ガスバイパスノズル
64 切換弁
80 不活性ガス
90 光学素材
91 光学素子
M1 製造装置
M2 製造装置
M3 製造装置
M4 製造装置
TS 成形温度
K1 準備工程
K2 固定工程
K3 加熱工程
K4 プレス成形工程
t1 固定タイミング
t2 ガス導入開始タイミング
t3 成形プレス開始タイミング
t4 成形プレス終了タイミング
W0 上型自重
W1 固定荷重
W2 成形荷重

Claims (12)

  1. 成形型内のキャビティに位置する光学素材に第1荷重を加えて固定する第1工程と、
    その後、加熱されたガスを前記キャビティ内に導入して前記光学素材を加熱軟化させる第2工程と、
    その後、前記キャビティ内の前記光学素材に前記第1荷重よりも大きな第2荷重を加えて光学素子を成形する第3工程と、を含む、光学素子の製造方法。
  2. 請求項1記載の光学素子の製造方法において、
    前記第1工程における前記キャビティ内に導入される前記ガスの流量を、前記第2工程よりも減少させておく、光学素子の製造方法。
  3. 請求項2記載の光学素子の製造方法において、
    前記第1工程では、前記ガスの前記キャビティへの導入路を遮断している、光学素子の製造方法。
  4. 請求項2記載の光学素子の製造方法において、
    前記第1工程では、前記ガスの流路方向を前記第2工程とは異ならせることで、前記キャビティ内へ前記ガスを導入しない、光学素子の製造方法。
  5. 請求項1記載の光学素子の製造方法において、
    前記第1工程にて前記光学素材に加えられる前記第1荷重は、前記光学素材のサイズおよび前記キャビティに導入される前記ガスの流量の少なくとも一方によって決定される、光学素子の製造方法。
  6. 請求項1記載の光学素子の製造方法において、
    前記第2工程では、前記第1荷重よりも大きな第3荷重を加えて前記光学素材の変形を促進させる、光学素子の製造方法。
  7. 成形型を加圧する加圧手段と、
    前記成形型内のキャビティに加熱されたガスを導入可能にするガス導入手段と、
    前記キャビティに収容された光学素材の成形時の第2荷重よりも小さい第1荷重を前記光学素材に加えて固定した後に、前記ガスが前記キャビティに導入されるように制御する制御手段と、を含む、光学素子の製造装置。
  8. 請求項7記載の光学素子の製造装置において、
    前記成形型は、筒型と、前記筒型の内部で前記光学素材を挟んで対向する第1の型および第2の型と、で構成され、
    前記ガス導入手段は、前記キャビティに連通するように前記筒型に貫通して形成された透孔からなり、
    前記加圧手段は、前記第1の型および前記第2の型を対向方向に挟圧する一対のプレートからなる、光学素子の製造装置。
  9. 請求項8記載の光学素子の製造装置において、
    前記制御手段は、前記筒型の外側に同軸に装着され、前記プレートによる前記成形型の挟圧動作に連動して前記対向方向に変位することで前記透孔の開閉を制御する第1貫通穴を備えた第1筒体からなる、光学素子の製造装置。
  10. 請求項8記載の光学素子の製造装置において、
    前記制御手段は、前記筒型の外側に同軸に装着され、前記プレートによる前記成形型の挟圧動作に連動して前記対向方向の回りに回動変位することで、前記透孔の開閉を制御する第2貫通穴を備えた第2筒体からなる、光学素子の製造装置。
  11. 請求項8記載の光学素子の製造装置において、
    前記制御手段は、
    前記透孔に対する相対的な位置を変化させることが可能で前記ガスが噴き出す可動ガスノズルと、
    前記可動ガスノズルと前記透孔との間を仕切ることが可能な可動遮蔽板と、を備え、
    前記プレートによる前記成形型の挟圧動作に連動して前記可動ガスノズルおよび前記可動遮蔽板を変位させることで、前記可動ガスノズルから前記透孔を経由した前記ガスの前記キャビティに対する導入の有無を制御する、光学素子の製造装置。
  12. 請求項8記載の光学素子の製造装置において、
    前記制御手段は、
    前記透孔に前記ガスを供給する位置に配置された第1ガスノズルと、
    前記透孔から逸れた位置に開口する第2ガスノズルと、
    前記第1ガスノズルおよび前記第2ガスノズルのいずれに前記ガスを流すかを切り換える切換弁と、を備え、
    前記プレートによる前記成形型の挟圧動作に連動して前記切換弁を作動させることで、前記第1ガスノズルから前記透孔を経由した前記ガスの前記キャビティに対する導入の有無を制御する、光学素子の製造装置。
JP2012522482A 2010-06-29 2011-03-23 光学素子の製造方法および光学素子の製造装置 Expired - Fee Related JP5781071B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012522482A JP5781071B2 (ja) 2010-06-29 2011-03-23 光学素子の製造方法および光学素子の製造装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010147308 2010-06-29
JP2010147308 2010-06-29
JP2012522482A JP5781071B2 (ja) 2010-06-29 2011-03-23 光学素子の製造方法および光学素子の製造装置
PCT/JP2011/056882 WO2012002008A1 (ja) 2010-06-29 2011-03-23 光学素子の製造方法および光学素子の製造装置

Publications (2)

Publication Number Publication Date
JPWO2012002008A1 true JPWO2012002008A1 (ja) 2013-08-22
JP5781071B2 JP5781071B2 (ja) 2015-09-16

Family

ID=45401746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012522482A Expired - Fee Related JP5781071B2 (ja) 2010-06-29 2011-03-23 光学素子の製造方法および光学素子の製造装置

Country Status (4)

Country Link
US (1) US9481596B2 (ja)
JP (1) JP5781071B2 (ja)
CN (1) CN102958853A (ja)
WO (1) WO2012002008A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE036117T2 (hu) 2013-11-26 2018-06-28 Hoffmann La Roche Oktahidro-ciklobuta[1,2-C;3,4-C']dipirrol származékok, mint autotaxin inhibitorok
JP2018108900A (ja) * 2016-12-28 2018-07-12 オリンパス株式会社 光学素子の成形装置および光学素子の成形方法
CN109956655A (zh) * 2017-12-22 2019-07-02 财团法人金属工业研究发展中心 金属模造玻璃的加热装置及加热方法
CN110156304A (zh) * 2018-02-13 2019-08-23 深圳市诸脉科技有限公司 一种曲面玻璃制备装置及其使用方法
CN111763001B (zh) * 2020-06-10 2021-08-20 北京理工大学 一种高精度玻璃模压成形用多种材料组合模具

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367526A (ja) * 1991-06-14 1992-12-18 Olympus Optical Co Ltd ガラス光学素子の成形方法
JP3103243B2 (ja) * 1992-06-02 2000-10-30 住友重機械プラスチックマシナリー株式会社 ガラス圧縮成形機及びその加工室
JPH10251031A (ja) * 1997-03-11 1998-09-22 Asahi Optical Co Ltd 光学素子の成形方法及び成形装置
JP2002114529A (ja) * 2000-10-03 2002-04-16 Matsushita Electric Ind Co Ltd 光学素子の成形金型および光学素子の製造方法
CN1331787C (zh) * 2004-02-12 2007-08-15 Hoya株式会社 制造玻璃光学元件的装置和方法及由此制造的玻璃光学元件
JP4580677B2 (ja) * 2004-04-26 2010-11-17 東芝機械株式会社 ガラス成形装置
CN1778729B (zh) * 2004-11-19 2010-07-21 鸿富锦精密工业(深圳)有限公司 非球面模造玻璃制造方法及其装置
JP4790570B2 (ja) * 2006-11-14 2011-10-12 オリンパス株式会社 光学素子の製造方法
TW201002631A (en) * 2008-07-07 2010-01-16 Univ Nat Taiwan Science Tech Heating process and apparatus of molding glass

Also Published As

Publication number Publication date
US9481596B2 (en) 2016-11-01
WO2012002008A1 (ja) 2012-01-05
US20130098114A1 (en) 2013-04-25
CN102958853A (zh) 2013-03-06
JP5781071B2 (ja) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5781071B2 (ja) 光学素子の製造方法および光学素子の製造装置
US5588980A (en) Apparatus for molding a glass optical element with a transporting supporting member
JP5418728B2 (ja) 熱間プレス成形方法及び熱間プレス成形金型
JP2007276481A (ja) 射出機用ホットランナーシステムのノズル結合構造
KR20170020444A (ko) 성형시스템 및 성형방법
CA2938436A1 (en) Forming station and method for forming a hot glass sheet with transverse curvature
KR102187971B1 (ko) 실린더를 이용한 열융착 장치
WO2008050846A1 (fr) Appareil de compression d'un élément optique
KR20040002783A (ko) 핫 러너 몰드를 갖는 사출 금형
JPWO2019220571A1 (ja) タイヤ加硫機及びタイヤ加硫方法
JP4255481B2 (ja) ガラスレンズの成形金型、成形方法及び成形装置
US7121119B2 (en) Press molding apparatus for an optical element and method of manufacturing the optical element
KR100851217B1 (ko) 열융착기
JP2006282472A (ja) ガラスレンズ成形装置およびガラスレンズ成形方法
KR101774116B1 (ko) 복합재 시트 복합성형용 금형 장치
JP5829108B2 (ja) 光学素子の製造方法、及び、光学素子の製造装置
JP2024074427A (ja) 成形装置、成形体の製造方法
JP2008285354A (ja) ガラスプレス成形機
JP3246771B2 (ja) 光学素子成形装置
JP3850109B2 (ja) 光学素子の成形方法
JP6888422B2 (ja) 射出成形装置
KR101961117B1 (ko) 플라스틱 연료탱크의 성형장치
JPH1177821A (ja) 樹脂成型品の曲げ加工装置
JP2001010830A (ja) ガラスレンズの成形方法および成形装置
JP2006076852A (ja) 光学素子の成形方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150714

R151 Written notification of patent or utility model registration

Ref document number: 5781071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees