WO2011161947A1 - 流動層炉及び廃棄物処理方法 - Google Patents

流動層炉及び廃棄物処理方法 Download PDF

Info

Publication number
WO2011161947A1
WO2011161947A1 PCT/JP2011/003527 JP2011003527W WO2011161947A1 WO 2011161947 A1 WO2011161947 A1 WO 2011161947A1 JP 2011003527 W JP2011003527 W JP 2011003527W WO 2011161947 A1 WO2011161947 A1 WO 2011161947A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
fluidized
region
fluidized bed
particles
Prior art date
Application number
PCT/JP2011/003527
Other languages
English (en)
French (fr)
Inventor
卓也 松村
博之 細田
伊藤 正
Original Assignee
株式会社神鋼環境ソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神鋼環境ソリューション filed Critical 株式会社神鋼環境ソリューション
Priority to PL11797836T priority Critical patent/PL2587146T3/pl
Priority to CN2011800311217A priority patent/CN102947646A/zh
Priority to EP11797836.1A priority patent/EP2587146B1/en
Priority to US13/805,858 priority patent/US20130092064A1/en
Publication of WO2011161947A1 publication Critical patent/WO2011161947A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/20Inlets for fluidisation air, e.g. grids; Bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/22Fuel feeders specially adapted for fluidised bed combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/24Devices for removal of material from the bed
    • F23C10/26Devices for removal of material from the bed combined with devices for partial reintroduction of material into the bed, e.g. after separation of agglomerated parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/10Waste feed arrangements using ram or pusher
    • F23G2205/101Waste feed arrangements using ram or pusher sequentially operated

Definitions

  • the present invention relates to a fluidized bed furnace for extracting combustible gas from the waste by heating the waste in a fluidized bed in which fluidized particles are fluidized, and a waste treatment method.
  • this fluidized bed furnace has a furnace body 104 having fluidized sand (fluidized particles) 102 at the bottom of the furnace, and fluidized sand at the bottom of the furnace to fluidize the fluidized sand 102 to form a fluidized bed.
  • An air supply unit 106 for supplying air into the air supply 102.
  • the furnace body 104 has side walls. The side wall is provided with a charging unit 108 for charging waste onto the fluidized bed.
  • the air supply unit 106 supplies air into the high-temperature fluidized sand 102.
  • the fluidized sand 102 is floated and fluidized to form a fluidized bed.
  • the fluidized state of the fluidized sand 102 is substantially the entire fluidized bed so that the waste introduced into the fluidized bed from the input unit 108 is taken into the bed and burned efficiently. Supply air so that it is constant.
  • waste is thrown into the hot fluidized sand from the throwing-in part 108, the waste is mixed with the hot fluidized sand 102 in the fluidized bed and pyrolyzed (gasified). Thereby, combustible gas is generated. This combustible gas is burned at a high temperature in a subsequent melting furnace, for example.
  • the waste thrown into the fluidized bed furnace 100 is taken into an active fluidized bed and burned or gasified.
  • the combustible in the waste burns rapidly, so that sudden fluctuations in the amount and concentration of the generated combustible gas are repeated.
  • This change in gasification reaction is highly dependent on the quantitative nature of the waste supply. For this reason, combustible gas cannot be generated stably when there is a change in waste supply or change in waste quality.
  • the waste contains a large amount of flammable garbage such as paper or sheet-like plastic, the generated flammable gas fluctuates more and its stabilization is required.
  • An object of the present invention is to provide a fluidized bed furnace and a waste treatment method capable of stably obtaining a combustible gas even if the waste contains easily burnable garbage.
  • a fluidized bed furnace for heating the waste and taking out the combustible gas from the waste, the fluidized particles constituting the fluidized bed for heating the waste,
  • a bottom wall that supports the fluidized particles from below and a side wall that rises from the bottom wall, and discharges incombustibles in the waste together with the fluidized particles to a position biased in a specific direction from the center position on the bottom wall.
  • An incombustible discharge port is provided, and the upper surface of the bottom wall is lowered toward the incombustible discharge port so that the incombustible material descends on the upper surface of the bottom wall toward the incombustible discharge port.
  • a furnace body that is inclined to the bottom, a gas supply part that fluidizes the fluidized particles by blowing fluidized gas from the bottom wall of the furnace body toward the fluidized particles, and a center position of the bottom wall among the side walls.
  • the incombustible discharge The waste is supplied from the supply side wall located on the opposite side to the region adjacent to the supply side wall on the fluidized bed, thereby moving the waste on the fluidized bed to the incombustible discharge port side. Circulating the fluidized particles by returning the fluidized particles discharged from the waste supply unit and the incombustible material discharge port from the waste supply unit side to the fluidized bed, thereby to the opposite side to the incombustible material discharge port.
  • a sand circulation device that forms a flow of fluidized particles from the side of the supply-side side wall to the incombustible discharge port.
  • the said gas supply part blows in the said fluidization gas from the circumference
  • FIG. 1 is a schematic configuration diagram of a fluidized bed furnace according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the furnace body for explaining the waste insertion position and the fluid particle insertion position in the fluidized bed furnace.
  • FIG. 3 is a view for explaining the arrangement of nozzles on the bottom wall of the furnace body.
  • FIG. 4 is a diagram for explaining a configuration in which fluidized particles are directly pushed into a fluidized bed in the furnace body.
  • FIG. 5 is a view for explaining a furnace body having a reflection portion on a front wall in a fluidized bed furnace according to another embodiment.
  • FIG. 6 is a view for explaining a furnace body having a guide portion on a rear wall in a fluidized bed furnace according to another embodiment.
  • FIG. 7 is a view for explaining a furnace body having a roof portion on a front wall and a rear wall in a fluidized bed furnace according to another embodiment.
  • FIG. 8 is a view for explaining a furnace body having a bent bottom wall in a fluidized bed furnace according to another embodiment.
  • FIG. 9 is a diagram for explaining a furnace body including a thermometer and an air supply unit in a fluidized bed furnace according to another embodiment.
  • FIG. 10 is a diagram for explaining a waste supply unit in a fluidized bed furnace according to another embodiment.
  • FIG. 11 is a schematic configuration diagram of a conventional fluidized bed furnace.
  • the fluidized bed furnace takes out combustible gas from waste by heating the waste with high-temperature fluidized particles.
  • the fluidized bed furnace includes fluidized particles 12, a furnace body 20, a gas supply unit 30, a waste supply unit 40, and a sand circulation device 50.
  • the fluidized particles 12 constitute the fluidized bed 14 inside the furnace body 20 and are particles for heating the waste 18. That is, when the fluidized particles 12 heated to a high temperature by the combustion of a part of the waste are mixed with the waste 18, the waste 18 is gasified and combustible gas is generated.
  • the fluidized particles 12 of the present embodiment are, for example, silica sand.
  • the furnace body 20 has fluid particles 12 inside, and takes out combustible gas from the waste 18 by the high temperature fluid particles 12.
  • the furnace body 20 includes a bottom wall 21 that supports the fluidized particles 12 from below, a side wall 22 that rises from the bottom wall 21, and a combustible gas discharge part 23 that is provided at the upper end of the side wall 22.
  • the side wall 22 has a rectangular tube shape extending vertically. Specifically, as shown in FIG. 2, the side wall 22 includes a front wall (supply side wall) 24 and a rear wall 25 that are opposed to each other at an interval in the front-rear direction (left and right in FIG. 2). It has horizontal walls 26 and 26 that connect the ends of the wall 25 to each other. The lateral walls 26, 26 are parallel to each other. That is, the furnace body 20 has a planar shape in which the dimension in the width direction, which is the distance between the lateral walls 26, 26, is uniform in the front-rear direction.
  • the side wall (front wall) 24 located on the opposite side of the incombustible discharge port 29 across the center position of the bottom wall 21 of the side wall 22 has a sand insertion portion 27 and a waste insertion port 28.
  • the sand insertion portion 27 inserts the fluidized particles 12 into the furnace body 20, and the waste insertion port 28 inserts the waste 18 into the furnace body 20.
  • the sand insertion portions 27 are provided at both ends in the width direction below the front wall 24 so that fluid particles can be inserted into both ends in the width direction in the furnace body 20 (see FIG. 2).
  • the sand insertion portion 27 is provided at a height where the fluidized particles 12 can be introduced from above the fluidized particles 12 (fluidized bed 14) supported by the bottom wall 21 toward the fluidized bed 14.
  • the location where the flowing particles 12 are charged is not limited to both ends in the width direction.
  • the part into which the flowing particles 12 are charged may be one end in the width direction.
  • the place where the fluidized particles 12 are charged may be the upper part of the waste 18 (the central part on the front wall 24 side in FIG. 2). When the fluidized particles 12 are put on the waste 18, the fluidized particles 12 become an ignition source, and only combustible waste can be stably combusted (gasified) first.
  • the waste insertion port 28 is provided in substantially the entire width direction in the lower part of the front wall 24.
  • the waste insertion port 28 is provided at a height position where the waste 18 can be pushed sideways onto the upper surface of the fluidized bed 14 constituted by the fluidized particles 12 supported by the bottom wall 21. That is, the waste insertion port 28 is provided such that the lower end thereof is positioned slightly higher than the upper surface of the fluidized bed 14.
  • the combustible gas discharge unit 23 discharges the combustible gas generated in the furnace body 20.
  • This combustible gas discharge part 23 has an outer diameter narrower than that of the side wall 22 so that a duct or the like for supplying the combustible gas obtained in the furnace body 20 to, for example, a gas engine of a power generation process in the subsequent stage can be connected. Yes.
  • the bottom wall 21 has an incombustible discharge port 29 for discharging the incombustible material in the waste 18 together with the flowing particles 12 at a position deviated in a specific direction from the center position.
  • the incombustible discharge port 29 opens over the entire width direction of the bottom wall 21.
  • the upper surface 21a of the bottom wall 21 is inclined so as to become lower toward the incombustible discharge port 29 so that the incombustible material descends on the upper surface 21a.
  • the bottom wall 21 of this embodiment has an incombustible discharge port 29 at a position biased to the rear side, and the upper surface 21a of the bottom wall 21 is constant toward the rear (from left to right in FIG. 1).
  • the slope is descending.
  • the upper surface 21a of the bottom wall 21 is an inclined surface of 15 ° to 25 ° with respect to the horizontal plane.
  • the gas supply unit 30 fluidizes the fluidized particles 12 by blowing fluidized gas from the bottom wall 21 toward the fluidized particles 12.
  • the gas supply unit 30 includes a plurality of nozzles 31 for blowing out the fluidizing gas, a wind box 32 that supplies the fluidizing gas to each nozzle 31, a blower unit 33 that blows the fluidizing gas to the wind box 32,
  • the plurality of nozzles 31 are arranged on the bottom wall 21 in a grid pattern spaced in the width direction and the front-rear direction. Each nozzle 31 is attached to the bottom wall 21 so as to penetrate the bottom wall 21.
  • the bottom wall 21 is divided into a front region 21b and a rear region 21c.
  • the nozzles 31 are arranged in the regions 21b and 21c so that the number of nozzles 31 provided in the front region 21b is larger than the number of nozzles 31 provided in the rear region 21c.
  • regions 21b and 21c is not limited.
  • the number of nozzles 31 in the front region 21b may be the same as the number of nozzles 31 in the rear region 21c. Further, the number of nozzles 31 in the rear region 21c may be larger than the number of nozzles 31 in the front region 21b.
  • the wind box 32 has a box shape extending in the width direction.
  • the wind box 32 serves as a header that distributes the fluidized gas to the nozzles 31 arranged in the width direction on the bottom wall 21.
  • the air box 32 has a function of making the flow rate of the fluidized gas blown out from the nozzles 31 arranged in the width direction uniform.
  • a plurality of wind boxes 32 are arranged in the front-rear direction on the lower surface side of the bottom wall 21. Therefore, for each nozzle 31 corresponding to each wind box 32, the flow rate of the fluidized gas blown from the nozzle 31 can be changed.
  • five wind boxes 32a, 32b, 32c, 32d, and 32e are arranged in the front-rear direction.
  • wind boxes 32 a, 32 b, 32 c, and 32 d are arranged on the front wall 24 side from the incombustible discharge port 29, and one wind box 32 e is placed on the rear wall 25 side from the non-combustible discharge port 29. Has been placed.
  • the blower 33 blows (supplies) fluidized gas to each wind box 32.
  • the blower 33 can blow the fluidizing gas at different flow rates for each wind box 32.
  • the air blowing unit 33 of the present embodiment is configured so that the flow rate of the fluidized gas blown to the wind box 32 on the rear side of the flow rate of the fluidized gas blown to the wind box 32 on the front side with respect to the wind boxes 32 and 32 adjacent in the front-rear direction.
  • the fluidizing gas is blown so that the flow rate is increased.
  • the air blower 33 blows air as a fluidizing gas to each wind box 32, but in addition to this air, an inert gas such as nitrogen can also be blown.
  • the blower unit 33 is provided with an incombustible discharge port. A fluidizing gas is blown from around 29. At this time, the air blowing unit 33 forms the first fluidized region 15 that gasifies the waste 18 by the convection of the fluidized particles 12 and mixing with the waste 18. At the same time, the blowing unit 33 blows fluidized gas between the first fluidized region 15 and the front wall 24 at a flow rate lower than the fluidized gas blown velocity in the first fluidized region 15.
  • the second fluidized region 16 is formed in which the fluidized particles 12 are less fluidized than the first fluidized region 15.
  • the air blowing unit 33 is located on the rear side of the flow rate of the fluidized gas blown to the front side wind box 32 (for example, 32b) with respect to the wind box 32 adjacent in the front-rear direction (for example, The flow rate of the fluidizing gas blown to 32c) is increased.
  • the air blowing unit 33 forms the first fluidized region 15 in which the fluidized state is active around the incombustible discharge port 29 in the fluidized bed 14 and between the first fluidized region 15 and the front wall 24.
  • a second flow region 16 in which flow is suppressed is formed.
  • the air blowing unit 33 increases the flow rate of the fluidizing gas supplied to the wind boxes 32c, 32d, and 32e on the rear wall 25 side than the flow rate of the fluidizing gas supplied to the wind boxes 32a and 32b on the front wall 24 side. May be.
  • the blowing section 33 forms the second flow region 16 in which flow is suppressed in the region corresponding to the front wall side wind boxes 32a and 32b in the fluidized bed 14, and the rear wall side wind boxes 32c and 32d.
  • 32e is formed in the first flow region 15 where the flow is active.
  • the blower unit 33, the second flow area 16, thereby blown fluidizing gas at a flow rate U o / U mf is less than 1 or more 2, in the first flow region 15, U o / U Fluidizing gas is blown at a flow rate at which mf is 2 or more and less than 5.
  • U mf is the minimum fluidization speed that is the minimum flow rate of fluidizing gas blowing for fluidizing the fluidized particles 12.
  • Uo is the average cross-sectional flow velocity of the fluidized gas.
  • the blower 33 is an inert gas to the air as a fluidizing gas supplied to each wind box 32. Blow the mixture.
  • the ventilation part 33 makes an inert gas gradually increase the ratio of the air and inert gas in fluidization gas. Thereby, the ventilation part 33 suppresses that the waste 18 which remains in the furnace main body 20 burns violently, and suppresses the temperature rise in the furnace main body 20.
  • the waste 18 is burned and gasified in a state where the oxygen concentration is lower than a value suitable for the combustion of the waste 18.
  • the amount of combustible material in the furnace body 20 decreases.
  • the fluidizing gas (air) is supplied at a predetermined flow rate in order to maintain the fluidized bed 14 in the furnace body 20, the oxygen concentration in the furnace body 20 becomes high.
  • the oxygen concentration in the furnace body 20 becomes a value suitable for the combustion of the waste 18 remaining in the furnace body 20, the waste 18 burns violently and the temperature in the furnace body 20 is higher than that during normal operation. To rise.
  • the fluidized particles 12 forming the fluidized bed 14 are hardened by this heat.
  • the fluidized particles 12 are thus solidified, the fluidized particles 12 are not fluidized even if the fluidized gas is blown into the fluidized particles 12 to form the fluidized bed 14 next time. Therefore, when the insertion of the waste 18 into the furnace body 20 is stopped, the blower unit 33 mixes an inert gas with the air blown into the furnace body 20 and gradually increases the ratio of the inert gas. Thereby, the oxygen concentration in the furnace body 20 is kept lower than a value suitable for the combustion of the waste 18. As a result, the waste 18 remaining in the furnace body 20 can be prevented from burning violently.
  • the blower 33 can adjust the temperature of the fluidizing gas blown to the wind box 32.
  • the blower unit 33 blows a high-temperature fluidized gas from the periphery of the incombustible discharge port 29 toward the fluidized particles 12.
  • the air blowing unit 32 heats the fluidized particles 12 until reaching a temperature at which the waste 18 can be combusted and gasified.
  • the air blowing unit 33 may lower the temperature of the fluidizing gas blown to the wind box 32 when the combustion starts.
  • the waste supply unit 40 supplies the waste 18 from the front wall 24 to a region adjacent to the front wall 24 on the fluidized bed 14.
  • the waste supply unit 40 of the present embodiment pushes the waste 18 sideways onto the fluidized bed 14 from the front wall 24 (specifically, the waste insertion port 28 of the front wall 24), thereby causing the waste 18 to be nonflammable. Move to the object outlet 29 side. That is, the waste supply unit 40 pushes the waste 18 so that the waste 18 stays on the second flow region 16 and the stayed waste 18 sequentially enters the first flow region 15. I do.
  • the waste supply unit 40 includes a pusher 41 and a drive unit (not shown) for driving the pusher 41.
  • the pusher 41 has a pushing surface 42 extending in the width direction.
  • the length in the width direction of the pushing surface 42 is the same as the width of the waste insertion port 28 of the front wall 24. Further, the length of the pushing surface 42 in the vertical direction is substantially half of the opening height of the waste insertion port 28.
  • the pusher 41 is installed to be movable in the front-rear direction at the same height position as the waste insertion port 28.
  • the drive unit includes a power source such as a motor and a cylinder, and the pusher 41 is reciprocated in the front-rear direction by the power.
  • the specific configuration of the waste supply unit 40 is not limited. For example, in the waste supply unit 40 of the present embodiment, the pusher 41 pushes the waste 18 into the furnace.
  • the waste supply unit may be configured to push the waste 18 into the furnace by a screw pusher or the like.
  • the pusher 41 and the screw push-in machine dust having a small bulk specific gravity, such as paper and plastic sheet, which is easily scattered is supplied into the furnace body 20 as a lump. Thereby, compared with the case where garbage is thrown in from the upper part of the conventional furnace, scattering of the garbage in the furnace main body 20 is suppressed.
  • the sand circulation device 50 circulates the fluidized particles 12 by returning the fluidized particles 12 discharged from the incombustible discharge port 29 to the fluidized bed 14 from the waste supply unit 40 side. As described above, the sand circulating device 50 returns the fluidized particles 12 discharged from the incombustible discharge port 29 to the front wall 24 side, whereby the fluidized particles directed from the front wall 24 toward the incombustible discharge port 29 in the fluidized bed 14. Twelve streams are formed. Further, the second flow region 16 is kept at a certain high temperature.
  • the sand circulation device 50 includes an incombustible discharge unit 51, a separation unit 52, and a transport unit 53.
  • the incombustible discharge unit 51 is provided below the incombustible discharge port 29 on the bottom wall 21, and moves the mixture of the noncombustible material and the fluidized particles 12 that have fallen from the incombustible discharge port 29 to the separation unit 52.
  • the incombustible discharge part 51 of this embodiment moves the mixture which has fallen from the incombustible discharge port 29 to the separation part 52 by a screw pusher.
  • the separation unit 52 separates the fluidized particles 12 from the mixture sent from the incombustible material discharge unit 51.
  • the separation unit 52 of the present embodiment separates the fluidized particles 12 from the mixture using a sieve.
  • the transport unit 53 transports the fluidized particles 12 separated in the separation unit 52 to the sand insertion unit 27 of the furnace body 20 and inserts the fluid particles 12 into the furnace body 20 from the sand insertion unit 27.
  • the sand circulation device 50 of the present embodiment flows the flowing particles 12 discharged from the incombustible discharge port 29 by introducing the flowing particles 12 from above the fluidized bed 14 toward the upper surface of the fluidized bed 14.
  • the fluidized particles 12 discharged from the incombustible discharge port 29 may be returned directly into the fluidized bed 14.
  • a sand insertion portion (sand insertion opening) 27 ⁇ / b> A is provided at a height position in the middle of the fluidized bed 14 in the front wall 24.
  • a screw pusher 55 is provided at the end of the conveyance unit 53 of the sand circulation device 50 on the furnace body 20 side, and the end of the conveyance unit 53 is inserted into the sand insertion unit 27.
  • the fluidized particles 12 discharged from the incombustible discharge port 29 may be returned to the fluidized bed 14 so as to be pushed directly into the fluidized bed 14.
  • the sand layer containing portion 27 is not limited to the intermediate height position of the fluidized bed 14, and may be located on the upper side in the height direction or on the lower side.
  • combustible gas is recovered from the waste 18 as follows.
  • the blowing unit 33 supplies the fluidizing gas to each wind box 32, the fluidizing gas is blown into the furnace body 20 from the bottom wall 21 toward the fluidized particles 12, and the fluidized bed 14 is formed in the furnace body 20. Is done. At this time, the blower 33 adjusts the flow rate of the fluidizing gas blown to each wind box 32. Thereby, in the fluidized bed 14, the first fluidized region 15 that is actively flowing is formed on the incombustible discharge port 29 side, and the flow is suppressed between the first fluidized region 15 and the front wall 24. The flow region 16 is formed.
  • blower unit 33 supplies a high-temperature fluidized gas to the wind box 32 (in the present embodiment, for example, the wind boxes 32c, 32d, and 32e in the present embodiment) corresponding to the first flow area 15, thereby supplying the first flow area. Fifteen fluid particles 12 are actively heated.
  • the sand circulating device 50 circulates the fluidized particles 12 to form a flow of fluidized particles 12 in the fluidized bed 14.
  • the incombustible material discharge unit 51 sends the fluidized particles 12 that have dropped from the incombustible material discharge port 29 of the furnace body 20 to the separation unit 52.
  • the transport unit 53 transports the fluidized particles 12 that have passed through the separation unit 52 to the sand insertion unit 27 of the furnace body 20.
  • the conveyed fluidized particles 12 are returned from the sand insertion portion 27 to the front wall 24 side of the fluidized bed 14.
  • the fluidized particles 12 discharged from the incombustible discharge port 29 on the rear wall 25 side are returned to the front wall 24 side of the fluidized bed 14, thereby flowing particles from the front wall 24 toward the incombustible discharge port 29. Twelve streams are formed in the fluidized bed 14.
  • the high temperature fluidized particles 12 in the first fluidized region 15 are ejected from the incombustible material outlet 29, and the sand circulating device 50 returns the fluidized particles 12 to the front wall 24 side of the fluidized bed 14.
  • the temperature of the 2nd flow field 16 is maintained at predetermined temperature.
  • the temperature of the fluidized particles 12 decreases until the sand circulating device 50 returns the incombustible discharge port 29 to the fluidized bed 14.
  • the temperature of the second flow region 16 is lower than the temperature of the first flow region 15.
  • the temperature of the first flow region 15 is 600 ° C. to 800 ° C.
  • the temperature of the second flow region 16 is maintained at about 400 ° C. to 600 ° C.
  • the waste supply unit 40 starts to push the waste 18 into the furnace body 20 from the waste insertion port 28.
  • the pusher 41 driven by the driving unit pushes the waste 18 sideways toward the rear wall 25 side.
  • the waste 18 is pushed into the vicinity of the front wall 24 on the second flow region 16 (see FIG. 2).
  • the flow of the flowing particles 12 in the second flow region 16 is suppressed. For this reason, the pushed waste 18 is not actively mixed with the fluidized particles 12, and most of the waste 18 stays on the second fluidized region 16, and a heavy incombustible material settles. Therefore, in the second flow region 16, the rapid combustion of the waste 18 is suppressed, and what is easily gasified in the waste is gasified by heat radiation in the furnace body 20. That is, the waste 18 that is easily gasified, such as plastic or paper, is gasified while moving on the surface layer of the second flow region 16. On the other hand, some of the wood pieces and the like that are difficult to gasify are partially gasified, but most of them reach the first flow region 15 without being gasified.
  • the waste 18 that is easily gasified is gasified under a mild condition in the second fluidized region 16 before reaching the intense fluidized bed (first fluidized region 15).
  • the staying waste 18 is burned by the radiant heat in the furnace body 20 as described above.
  • the temperature of the radiant heat is 800 ° C. to 900 ° C. and higher than the fluidized particles 12 forming the fluidized bed 14, the contact between the waste 18 and the air is not good. For this reason, flammable garbage such as paper and sheet-like plastic mainly contained in the waste 18 is gasified.
  • new waste 18 is pushed into the furnace body 20 from the waste insertion port 28 by the pusher 41. Accordingly, the waste 18 staying on the second flow region 16 is pushed by the pushed new waste 18 and enters the first region 15 side in order.
  • the waste 18 that has entered from the second flow region 16 is mixed with the flow particles and the gasification is sufficiently performed. Done. Thereby, combustible gas is generated.
  • the fluidized bed 14 the fluidized state gradually becomes active from the front wall 24 toward the incombustible discharge port 29.
  • the waste 18 is gradually mixed with the fluidized particles 12 as it proceeds from the vicinity of the front wall 24 on the second fluidized region 16 to the first fluidized region 15. Further, the amount of air (fluidized gas) blown from the front wall 24 toward the incombustible discharge port 29 increases. For this reason, as the waste 18 advances from the second fluidized region 16 to the first fluidized region 15, it burns and the temperature of the fluidized particles 12 increases. The waste 18 is sufficiently mixed with the fluidized particles 12 in the region above and around the incombustible discharge port 29 in the high temperature fluidized bed 14. As a result, the waste 18 remaining unburned in the second flow region 16 is sufficiently gasified in the first flow region 15.
  • the waste 18 newly pushed onto the second fluidized region 16 by the pusher 41 stays on the second fluidized region 16 without being mixed with the fluidized particles 12 as described above.
  • the waste 18 gradually burns in a state where intense combustion is suppressed.
  • the waste 18 is pushed in one after another by the pusher 41 in the state where the first fluidized region 15 and the second fluidized region 16 are formed in the fluidized bed 14, so that the combustible gas is intermittently and suddenly pushed. Generation is suppressed, and the generation of the gas can be stabilized.
  • the blower unit 33 blows air in which an inert gas is mixed as a fluidizing gas supplied to each wind box 32. At this time, the air blowing unit 33 causes the inert gas to gradually increase the ratio of the air and the inert gas in the fluidized gas with the passage of time. In this way, the air blowing unit 33 suppresses the oxygen concentration in the furnace body 20 and suppresses the waste 18 remaining in the fluidized bed 14 from burning violently.
  • the intense combustion of the waste 18 remaining in the fluidized bed 14 is suppressed so that the ratio of the inert gas in the fluidized gas is increased at the remote location. Yes.
  • the remaining waste 18 may be prevented from burning by spraying water on the fluidized bed 14.
  • the fluidized bed furnace 10 described above even if the waste contains a lot of flammable garbage, the intermittent and rapid generation of the combustible gas can be suppressed, and the generation of the gas can be stabilized.
  • a first region 15 around the incombustible discharge port 29 and a second fluidized region 16 having a lower degree of fluidization than the first region 15 are formed.
  • new waste 18 is pushed onto the second flow region 16.
  • the waste 18 in which the new waste 18 stays on the second fluidized area 16 is made to enter the first fluidized area 15 in order.
  • the above operation is repeated. Thereby, in the fluidized-bed furnace 10, the waste 18 is fully gasified while suppressing a rapid fluctuation of the obtained combustible gas.
  • the upper surface 21 a of the bottom wall 21 is inclined so as to become lower toward the incombustible discharge port 29. For this reason, the noncombustible material in the waste 18 that sinks to the bottom wall 21 in the fluidized bed 14 descends on the upper surface 21 a of the bottom wall 21 toward the noncombustible material discharge port 29.
  • the incombustible material can be easily discharged from the furnace body 20 by discharging the incombustible material together with the fluidized particles 12 from the incombustible material discharge port 29.
  • the incombustible material discharged together with the fluidized particles 12 from the incombustible material outlet 29 is separated from the fluidized particles 12 in the separation unit 52 of the sand circulation device 50.
  • the furnace body 20 has a planar shape in which the dimension in the width direction is uniform in the pushing direction of the waste 18. For this reason, when the waste 18 on the second flow region 16 is pushed by the waste 18 newly pushed from the waste supply unit 40 and enters the first flow region 15 side, the waste 18 The movement is stable. Moreover, since the flow of the fluidized particles 12 from the second fluidized region 16 to the first fluidized region 15 formed by the sand circulation device 50 is the same as the moving direction of the waste 18, the fluidized particles 12 are also stable in flow. To do.
  • the pusher 41 reciprocates in a direction parallel to the pushing direction (front-rear direction) so that the pushing surface 42 simultaneously pushes the waste 18 onto the fluidized bed 14 over the entire width direction of the pushing surface 42. .
  • the pushing surface 42 pushes the waste 18 onto the fluidized bed 14 uniformly in the width direction. Therefore, the movement of the waste 18 from the second flow region 16 toward the first flow region 15 becomes substantially uniform in the width direction, and it is possible to prevent the waste 18 from concentrating on a part of the furnace.
  • fluidized bed furnace and the waste treatment method of the present invention are not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention.
  • the side wall 22 of the above embodiment rises straight from the bottom wall 21 to the combustible gas discharge part 23, but is not limited to this.
  • the front wall 24 ⁇ / b> A may include a reflecting portion 224 that extends toward the rear wall 25 so as to cover the second flow region 16 at a predetermined height position.
  • the waste 18 staying on the second flow region 16 is heated by the radiant heat from the reflecting portion 224.
  • combustible gas can be generated from the waste 18 staying on the second flow region 16. That is, gasification of the waste 18 staying on the second flow region 16 is promoted.
  • the rear wall 25 ⁇ / b> A may include a guide portion 225 extending toward the front wall 24 so as to cover the upper part of the first flow region 15 at a predetermined height position.
  • the guide unit 225 guides the combustible gas so that the high-temperature combustible gas generated from the waste in the first flow region 15 contacts the waste 18 staying on the second flow region 16.
  • the guide part 225 contributes to the heating of the waste 18 on the said 2nd flow area
  • gasification of the waste 18 staying on the second flow region 16 is promoted without adding any special heating means to the furnace body 20.
  • the front wall 24B and the rear wall 25B may each include roof portions 324 and 325 extending in directions approaching each other at the same height position.
  • the waste 18 staying on the second flow region 16 is heated by the radiant heat from the roof portion 324 of the front wall 24B, and gasification is promoted.
  • the furnace body 20B can be downsized by reducing the size in the front-rear direction of the furnace body 20B at a position lower than the combustible gas discharge part 23 at the upper end of the furnace body 20B.
  • the inclination angle of the upper surface 21a of the bottom wall 21 is uniform from the front wall 24 to the incombustible discharge port 29, but is not limited thereto.
  • the inclination angle ⁇ of the upper surface 21d on the second flow region 16 side with respect to the horizontal plane may be larger than the inclination angle ⁇ with respect to the horizontal surface of the upper surface 21e on the first flow region 15 side. In this way, when the inclination angle of the upper surface 21 d that supports the second flow region 16 in which the flow of the flowing particles 12 is suppressed from below is large, the incombustible material that sinks to the bottom wall 21 ⁇ / b> A is more surely reached to the incombustible material outlet 29.
  • the inclination angle ⁇ with respect to the horizontal plane of the upper surface 21e on the first flow region 15 side is 15 ° to 25 °
  • the inclination angle ⁇ with respect to the horizontal surface of the upper surface 21d on the second flow region 16 side is 20 °. It is ⁇ 75 °, preferably 20 ° to 30 °.
  • the upper surface 21 a of the bottom wall 21 may be curved without being inclined straight from the front wall 24 toward the incombustible discharge port 29.
  • thermometers T may be disposed above the second flow region 16, and an air supply unit 60 capable of supplying air may be provided on the second flow region 16. .
  • an air supply unit 60 capable of supplying air may be provided on the second flow region 16.
  • thermometer T As another method, if the temperature of the specified thermometer T is equal to or higher than the threshold value, it is determined that there is no dust at the position of the thermometer T. If the temperature is lower than the threshold value, dust is detected at the position of the thermometer T.
  • the amount of air may be controlled by determining that it is present (buried in garbage). Moreover, instead of controlling the amount of air, the amount of waste supplied may be controlled.
  • the air blowing unit 33 blows air or inert gas as fluidized gas, but is not limited thereto.
  • the sending unit 33 may blow steam or oxygen as fluidized gas according to the combustion state in the furnace body 20.
  • the fluidized bed furnace 10 is provided with a gas supply unit on the side wall 22 in addition to the gas supply unit 30, and air or gas is supplied from the gas supply unit into the furnace body 20 according to the combustion state of the fluidized bed 14 or the waste 18. You may be comprised so that oxygen, water vapor
  • the fluidizing gas supplied to the second fluidizing region 16 may be a high temperature fluidizing gas. Even if the temperature of the second fluidized region 16 cannot be sufficiently maintained only by circulation of the fluidized particles 12 by supplying the high-temperature fluidized gas, the supply amount of the fluidized gas is not increased. The temperature of the second flow region 16 can be kept high.
  • the waste insertion port 28 is provided at a height position that partially overlaps the waste 18 staying on the fluidized bed 14 in the vertical direction, and is supplied from the waste insertion port 28.
  • the fluidized bed furnace 10 may be configured to supply the waste 18 to a region adjacent to the front wall (supply side wall) 24 on the fluidized bed 14.
  • the waste insertion port 28 is located at a height position near the upper surface of the fluidized bed 14 and adjacent to the front wall 24 on the upper surface of the fluidized bed 14.
  • the waste 18 newly supplied with respect to the waste 18 staying in (on the second flow region 16) may be provided at a height position where it does not come into contact with the waste at the time of supply.
  • the waste insertion port 28 is provided so as to be able to supply new waste laterally from a height position above the waste staying on the fluidized bed 14. May be.
  • the waste insertion port 28 may be provided so that new waste can be supplied downward from a height position above the waste staying on the fluidized bed 14. . Even if the waste 18 is supplied into the furnace main body 20 as described above, a new waste 18 is supplied onto the staying waste 18 so that the pile of the waste 18 collapses and expands, and the first flow.
  • Waste 18 enters the region 15 side.
  • the waste 18 that stays on the second fluidized region 16 also flows toward the first fluidized region 15 due to the flow of the fluidized particles 12 from the front wall 24 formed in the fluidized bed 14 toward the incombustible discharge port 29. Enter.
  • the waste 18 is sufficiently gasified while suppressing rapid fluctuations in the combustible gas recovered from the fluidized bed furnace 10. As a result, combustible gas is stably generated from the waste 18.
  • the fluidizing gas supplied to the fluidized bed 14 is supplied at a flow rate such that U o / U mf is 1 or more and less than 2 in the second fluidized region 16 as described above.
  • U o / U mf is supplied at a flow rate at which U o / U mf is 2 or more but less than 5, but the present invention is not limited to this.
  • U o / U mf is 2 in the second flow region 16 only for a certain period in order to discharge it to the outside.
  • the fluidizing gas may be supplied at a flow rate of less than 5 above.
  • the fluidizing gas is not uniformly blown in the second flow region 16, but from the front wall 24 side (left side in FIG. 1) of the furnace body 20 toward the rear wall 25 side (right side in FIG. 1). It is preferable that the supply amount of the fluidizing gas increases in order for each wind box 32. Specifically, the flow rate of the fluidizing gas supplied to the wind box 32a at a certain time t0 becomes larger than the flow rate of the fluidizing gas supplied to the other wind boxes. Then, at the time t1 after several seconds, the flow rate of the fluidizing gas supplied to the wind box 32a returns to the flow rate during normal operation, and the flow rate of the fluidizing gas supplied to the adjacent wind box 32b is different from that of the other wind boxes.
  • the fluidized bed furnace is a fluidized bed furnace that heats waste and takes out combustible gas from the waste, and includes fluidized particles that constitute a fluidized bed for heating waste.
  • a bottom wall for supporting the fluid particles from below and a side wall rising from the bottom wall, and incombustibles in the waste together with the fluid particles at a position deviated in a specific direction from the center position on the bottom wall.
  • An incombustible discharge port is provided for discharging, and the upper surface of the bottom wall is lowered toward the incombustible discharge port so that the incombustible material descends on the upper surface of the bottom wall toward the incombustible discharge port.
  • An inclining furnace body a gas supply part for fluidizing the fluidized particles by blowing fluidized gas from the bottom wall of the furnace body toward the fluidized particles, and the center of the bottom wall of the side walls Across the position
  • the waste is supplied from a supply side wall located on the opposite side to the fuel discharge port to a region adjacent to the supply side wall on the fluidized bed, whereby the waste on the fluidized bed is discharged to the incombustible material discharge port.
  • a waste supply unit that is moved to the side, and fluid particles discharged from the non-combustible discharge port are circulated by returning the fluid particles from the waste supply unit side to the fluidized bed, whereby the non-combustible discharge port
  • a sand circulation device that forms a flow of fluidized particles from the side of the supply side wall located on the opposite side to the incombustible discharge port, and the gas supply unit flows from the periphery of the incombustible discharge port to the flow
  • the first fluidized region and the waste supply unit are formed by blowing the gasified gas so that the fluidized particles convect and mix with the waste to form a first fluidized region that gasifies the waste.
  • the fluidized gas is blown at a flow rate lower than the flow rate of the fluidized gas in the fluidized region, thereby forming a second fluidized region in which the fluidized particles are less fluidized than the first fluidized region.
  • the waste supply section is configured so that the waste stays on the second flow region and the stayed waste sequentially enters the first flow region. To supply the waste to the fluidized bed.
  • the first region around the incombustible discharge port and the second fluidized region having a lower degree of fluidization than the first region are formed in the fluidized bed.
  • the waste supply section is on the fluidized bed so that the waste stays on the second fluidized area, and the waste accumulated on the second fluidized area is sequentially sent to the first fluidized area side. Waste is supplied to an area adjacent to the supply side wall.
  • the waste is sufficiently gasified while suppressing rapid fluctuations in the combustible gas recovered from the fluidized bed furnace, thereby stably generating the combustible gas from the waste.
  • the waste that tends to burn is slowly gasified while the waste stays on the second flow region without being mixed with the flow particles. Therefore, in the second flow region, the rapid combustion of the waste is suppressed, and the generation of combustible gas due to the rapid gasification of the waste is small.
  • the waste staying on the second fluidized area sequentially enters the first area by supplying new waste into the furnace body by the waste supply section. Then, in this first flow region, since the flow is active and the temperature is high due to the combustion of waste, the waste that has entered from above the second flow region is sufficiently mixed with the flow particles, and thus the waste is disposed of. Goods are fully gasified and combustible gas is generated.
  • the temperature of the second fluidized region is maintained by returning the high-temperature fluidized particles discharged from the incombustible discharge port to the second fluidized region of the fluidized bed.
  • the temperature of the second fluidized region becomes lower than the temperature of the first fluidized region.
  • the incombustible matter in the waste that sinks to the bottom wall in the fluidized bed is directed toward the incombustible discharge port Descent over the top surface of the bottom wall.
  • the said incombustible material can be easily discharged
  • the waste supply unit pushes a new waste sideways from the supply side wall toward the waste staying on the second flow region, and thereby the waste staying on the second flow region. It is preferable to sequentially move objects into the first flow region.
  • U mf is the minimum fluidization velocity that is the minimum flow velocity of the fluidizing gas for fluidizing the fluidized particles
  • U 0 is the average cross-sectional velocity of the fluidizing gas.
  • the gas supply unit blows the fluidizing gas at a flow rate such that U 0 / U mf is 1 or more and less than 2 in the second flow region, and U 0 / U in the first flow region.
  • the fluidizing gas is preferably blown at a flow rate at which mf is 2 or more and less than 5.
  • the furnace body has a planar shape in which the dimension in the width direction, which is a direction orthogonal to the pushing direction of the waste by the waste supply unit, is uniform in the pushing direction.
  • the waste supply unit includes a pusher having a pushing surface extending in the width direction, and the pusher pushes the pusher so that the pushing surface of the pusher simultaneously pushes waste onto the fluidized bed over the entire width direction of the pushing surface. It is preferable to have a drive unit that reciprocates in a direction parallel to the direction.
  • the waste treatment method according to the above embodiment is a waste treatment method for heating waste to take out combustible gas from the waste, and includes a fluidized bed for heating the waste.
  • a non-combustible material in the waste having a fluidized particle, a bottom wall supporting the fluidized particle from below, and a side wall rising from the bottom wall at a position deviated in a specific direction from the center of the bottom wall; Is provided with an incombustible discharge port for discharging the incombustible material together with the fluidized particles, and the upper surface of the bottom wall is disposed on the upper surface of the bottom wall toward the incombustible discharge port.
  • Injecting chemical gas A supply side that forms a first flow region in which the flow particles convect and is located on the opposite side of the incombustible discharge port with the first flow region and the side wall sandwiching the center position of the bottom wall.
  • the degree of fluidization of the fluidized particles is lower than that of the first fluidized region by injecting fluidized gas between the side wall and the fluidized gas at a flow rate lower than that of the fluidized gas in the first fluidized region.
  • the second On moving areas is retained the waste, and, and a step of gasified waste that the residence are sequentially enters the first flow region, a.
  • the first region around the incombustible discharge port and the second fluid region having a lower degree of fluidization than the first region are formed in the fluidized bed. Then, the waste stays on the second flow region, and the waste staying on the second flow region enters the first flow region in order. As a result, the waste is sufficiently gasified while suppressing rapid fluctuations in the combustible gas recovered from the fluidized bed furnace, thereby stably generating the combustible gas from the waste.
  • the incombustible material in the waste descends on the top surface of the bottom wall toward the incombustible discharge port. .
  • the incombustible material is easily discharged from the furnace body by discharging the incombustible material together with the flowing particles from the incombustible material discharge port.
  • the waste is pushed sideways from the supply side wall, whereby the waste staying on the second flow region is sequentially introduced into the first flow region and gasified. It is preferable to do.
  • the minimum fluidization speed which is the minimum flow velocity of the fluidizing gas for fluidizing the fluidized particles
  • U mf the minimum flow velocity of the fluidizing gas for fluidizing the fluidized particles
  • U mf the average cross-sectional flow velocity of the fluidizing gas
  • the fluidizing gas is blown at a flow rate at which U 0 / U mf is 1 or more and less than 2
  • a flow rate at which U 0 / U mf is 2 or more and less than 5. It is preferable that the fluidizing gas is blown.
  • the fluidizing gas When the fluidizing gas is blown at such a flow rate, the first fluidized region and the second fluidized region that are preferable in the fluidized bed are formed. As a result, gasification of the waste is suitably performed while suppressing rapid combustion of the waste, and combustible gas can be stably obtained from the waste.
  • the fluidized bed furnace and the waste treatment method according to the present invention are useful for extracting the combustible gas from the waste by heating the waste in the fluidized bed in which the fluidized particles are fluidized. Yes, it is suitable for stably obtaining flammable gas even if it is waste containing flammable garbage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

 不燃物排出口29の周囲から流動粒子に向けて流動化ガスを吹き込んで第1の流動領域15を形成すると共に、第1の流動領域15と前壁24との間に第1の流動領域15での流速より低い流速で流動化ガスを吹き込んで流動粒子12の流動化の度合いが低い第2の流動領域16を形成し、不燃物排出口29から排出される流動粒子12を前壁24側から流動層14に戻して流動層14に前壁24側から不燃物排出口29へ向けた流動粒子12の流れを形成し、前壁24から流動層14上に廃棄物18を供給して第2の流動領域16上に廃棄物18を滞留させ、かつ、その滞留した廃棄物18を順次第1の流動領域15内に進入させてガス化することを特徴とする。 

Description

流動層炉及び廃棄物処理方法
 本発明は、流動粒子を流動化させた流動層において廃棄物を加熱することにより、当該廃棄物から可燃性ガスを取り出す流動層炉、及び廃棄物処理方法に関するものである。
 従来、流動層炉として特許文献1に記載のものが知られている。この流動層炉は、図11に示すように、炉底部に流動砂(流動粒子)102を有する炉本体104と、流動砂102を流動化させて流動層を形成するために炉底部の流動砂102中に空気を供給する空気供給部106と、を備える。炉本体104は側壁を有する。この側壁には、前記流動層の上に廃棄物を投入するための投入部108が設けられる。
 この流動層炉100では、空気供給部106が高温の流動砂102中に空気を供給する。これにより、流動砂102が浮遊懸濁状態となって流動化し、流動層が形成される。このとき、前記空気供給部106は、投入部108から流動層上に投入された廃棄物が層内部に取り込まれて効率よく燃焼するように、流動層の全域において流動砂102の流動状態が略一定となるように空気を供給する。
 高温の流動砂に投入部108から廃棄物が投入される度に、当該廃棄物は前記流動層の高温の流動砂102と混合されて熱分解(ガス化)される。これにより、可燃性ガスが発生する。この可燃性ガスは、例えば、後段の溶融炉で高温燃焼される。
 流動層炉100に投入される廃棄物は、活発な流動層の中に取り込まれて燃焼若しくはガス化する。このとき、廃棄物が間欠的に投入される度に廃棄物中の可燃物が急激に燃えることにより、発生する可燃性ガスの発生量や濃度等の急激な変動が繰り返される。このガス化反応の変化は、廃棄物の供給の定量性に大きく依存する。このため、廃棄物供給の変動やごみ質に変化がある場合、可燃性ガスを安定して発生させることができない。特に、廃棄物に紙やシート状のプラスチック等の燃え易いゴミが多く含まれる場合には、発生する可燃性ガスの変動がより大きくなり、その安定化が求められる。
 例えば、発生させた可燃性ガスをガスエンジンに用いて発電を行うような場合、可燃性ガスの変動が大きいと安定したエネルギーを得ることができない。このため、流動層炉において得られる可燃性ガスの安定化がより求められる。
日本国特開2006-242454号公報
 本発明の目的は、燃え易いゴミを含む廃棄物であっても可燃性ガスを安定して得ることができる流動層炉、及び廃棄物処理方法を提供することである。
 本発明の一つの面によれば、廃棄物を加熱して当該廃棄物から可燃性ガスを取り出す流動層炉であって、前記廃棄物を加熱するための流動層を構成する流動粒子と、前記流動粒子を下方から支持する底壁およびこの底壁から立上がる側壁を有し、前記底壁においてその中心位置から特定方向に偏った位置に前記廃棄物中の不燃物を前記流動粒子とともに排出するための不燃物排出口が設けられ、この不燃物排出口に向かって前記底壁の上面上を前記不燃物が降下するように当該底壁の上面が前記不燃物排出口に向かって低くなるように傾斜する炉本体と、前記炉本体の底壁から前記流動粒子に向かって流動化ガスを吹き込むことにより当該流動粒子を流動化させるガス供給部と、前記側壁のうち前記底壁の中心位置を挟んで前記不燃物排出口と反対側に位置する供給側側壁から前記流動層上における当該供給側側壁に隣接する領域に前記廃棄物を供給し、これにより前記流動層上の廃棄物を前記不燃物排出口側に移動させる廃棄物供給部と、前記不燃物排出口から排出された流動粒子を前記廃棄物供給部側から前記流動層に戻すことにより当該流動粒子を循環させ、これにより前記不燃物排出口と反対側に位置する供給側側壁の側から前記不燃物排出口へ向けた流動粒子の流れを形成する砂循環装置とを備える。そして、前記ガス供給部は、前記不燃物排出口の周囲から前記流動化ガスを吹き込んで、前記流動粒子が対流して前記廃棄物と混合することにより当該廃棄物をガス化させる第1の流動領域を形成するとともに、この第1の流動領域と前記廃棄物供給部との間に前記第1の流動領域での流動化ガスの吹き込みの流速よりも低い流速で流動化ガスを吹き込むことにより、当該第1の流動領域よりも前記流動粒子の流動化の度合いが低い第2の流動領域を形成し、前記廃棄物供給部は、前記第2の流動領域上に前記廃棄物が滞留し、かつ、その滞留した廃棄物が順次前記第1の流動領域内に進入するように、前記供給側側壁から前記流動層に対して廃棄物の供給を行う。
図1は、本実施形態による流動層炉の概略構成図である。 図2は、前記流動層炉における廃棄物の挿入位置と流動粒子の挿入位置とを説明するための炉本体の横断面図である。 図3は、前記炉本体の底壁におけるノズルの配置を説明するための図である。 図4は、前記炉本体内の流動層に直接流動粒子を押し込む構成を説明するための図である。 図5は、他実施形態による流動層炉における前壁に反射部を有する炉本体を説明するための図である。 図6は、他実施形態による流動層炉における後壁に案内部を有する炉本体を説明するための図である。 図7は、他実施形態による流動層炉における前壁と後壁とに屋根部を有する炉本体を説明するための図である。 図8は、他実施形態による流動層炉における屈曲した底壁を有する炉本体を説明するための図である。 図9は、他実施形態による流動層炉における温度計と空気供給部とを備えた炉本体を説明するための図である。 図10は、他実施形態による流動層炉における廃棄物供給部を説明するための図である。 図11は、従来の流動層炉の概略構成図である。
 以下、本発明の一実施形態について、添付図面を参照しつつ説明する。
 本実施形態による流動層炉は、高温の流動粒子によって廃棄物を加熱することにより、廃棄物から可燃性ガスを取り出す。この流動層炉は、図1に示すように、流動粒子12と、炉本体20と、ガス供給部30と、廃棄物供給部40と、砂循環装置50と、を備える。
 流動粒子12は、炉本体20の内部において流動層14を構成し、廃棄物18を加熱するための粒子である。即ち、廃棄物の一部の燃焼により加熱されて高温になった流動粒子12が廃棄物18と混合されることにより、廃棄物18がガス化されて可燃性ガスが発生する。本実施形態の流動粒子12は、例えば、珪砂である。
 炉本体20は、流動粒子12を内部に有し、高温の流動粒子12により廃棄物18から可燃性ガスを取り出す。炉本体20は、流動粒子12を下方から支持する底壁21と、この底壁21から立上がる側壁22と、側壁22上端に設けられた可燃性ガス排出部23とを有する。
 側壁22は、上下に延びる角筒形状を有する。具体的に、側壁22は、図2にも示すように、前後(図2において左右)に間隔をおいて対向する前壁(供給側側壁)24及び後壁25と、これら前壁24と後壁25との端部同士をそれぞれ接続する横壁26,26と、を有する。横壁26,26同士は互いに平行である。即ち、炉本体20は、横壁26,26同士の間隔である幅方向の寸法が前後方向について均一な平面形状を有する。
 この側壁22のうち底壁21の中心位置を挟んで不燃物排出口29と反対側に位置する側壁(前壁)24は、砂挿入部27と、廃棄物挿入口28と、を有する。この砂挿入部27は、流動粒子12を炉本体20内へ挿入し、廃棄物挿入口28は、炉本体20内へ廃棄物18を挿入する。
 具体的に、砂挿入部27は、炉本体20内の幅方向両端部に流動粒子を挿入できるように(図2参照)、前壁24下部の幅方向両端部に設けられる。この砂挿入部27は、底壁21に支持される流動粒子12(流動層14)の上方から流動層14に向けて流動粒子12を投入できる高さ位置に設けられる。尚、流動粒子12が投入される箇所は、幅方向の両端部に限定されない。例えば、流動粒子12が投入される箇所は、幅方向における片方の端部でもよい。また、流動粒子12が投入される箇所は、廃棄物18の上部(図2の前壁24側の中央部)でもよい。流動粒子12が廃棄物18の上に投入されることにより当該流動粒子12が着火源となり、燃え易いごみのみを先に安定燃焼(ガス化)させることができる。
 廃棄物挿入口28は、前壁24の下部において、幅方向の略全域に設けられている。この廃棄物挿入口28は、底壁21が支持する流動粒子12により構成される流動層14の上面上に廃棄物18を横向きに押し込むことができる高さ位置に設けられている。即ち、廃棄物挿入口28は、その下端が流動層14の上面よりも僅かに高い位置となるように設けられている。
 可燃性ガス排出部23は、炉本体20内で発生した可燃性ガスを排出する。この可燃性ガス排出部23は、炉本体20において得られた可燃性ガスを後段の例えば発電プロセスのガスエンジン等に供給するダクト等を接続できるように、側壁22よりも外径が絞られている。
 底壁21は、その中心位置から特定の方向に偏った位置に廃棄物18中の不燃物を流動粒子12と共に排出するための不燃物排出口29を有する。この不燃物排出口29は、底壁21において幅方向の全域に亘って開口する。底壁21の上面21aは、当該上面21a上を不燃物が降下するよう、不燃物排出口29に向って低くなるように傾斜する。本実施形態の底壁21は、後方側に偏った位置に不燃物排出口29を有し、底壁21の上面21aは、後方へ向かって(図1において左から右に向って)一定の下り勾配となっている。具体的に、底壁21の上面21aは、水平面に対して15°~25°の傾斜面である。
 ガス供給部30は、底壁21から流動粒子12に向って流動化ガスを吹き込むことにより当該流動粒子12を流動化させる。このガス供給部30は、流動化ガスを吹き出すための複数のノズル31と、各ノズル31に流動化ガスを供給する風箱32と、風箱32へ流動化ガスを送風する送風部33と、を有する。
 複数のノズル31は、底壁21において幅方向及び前後方向に間隔をおいた格子状に配設される。各ノズル31は、底壁21を貫通するように底壁21に取り付けられている。本実施形態では、図3にも示すように、底壁21が前側領域21bと後側領域21cとに分けられる。そして、各ノズル31は、前側領域21bに設けられたノズル31の数の方が後側領域21cに設けられたノズル31の数よりも多くなるように各領域21b,21cに配設される。尚、領域21b,21c間のノズル31の数の大小は限定されない。例えば、前側領域21bのノズル31の数と後側領域21cのノズル31の数とが同じでもよい。また、後側領域21cのノズル31の数の方が前側領域21bのノズル31の数より大きくてもよい。
 風箱32は、幅方向に延びる箱形状を有する。この風箱32は、底壁21において幅方向に並ぶ各ノズル31に流動化ガスを分配するヘッダーとして働く。また、風箱32は、幅方向に並ぶ各ノズル31から吹き出される流動化ガスの流量を均一にする機能をもつ。本実施形態では、複数の風箱32が底壁21の下面側において前後方向に並ぶ。従って、各風箱32に対応するノズル31毎に、そのノズル31から吹き出す流動化ガスの流量が変更可能である。本実施形態では、5個の風箱32a,32b,32c,32d,32eが前後方向に並んでいる。詳しくは、不燃物排出口29よりも前壁24側に4個の風箱32a,32b,32c,32dが配置され、不燃物排出口29よりも後壁25側に1個の風箱32eが配置されている。
 送風部33は、各風箱32に流動化ガスを送風(供給)する。この送風部33は、風箱32毎に流動化ガスを異なる流量で送風可能である。本実施形態の送風部33は、前後方向に隣り合う風箱32,32に対し、前側の風箱32に送風する流動化ガスの流量よりも後側の風箱32に送風する流動化ガスの流量が大きくなるように流動化ガスを送風する。送風部33は、各風箱32に流動化ガスとして空気を送風するが、この空気に加えて窒素等の不活性ガスも送風可能である。
 詳しくは、流動層炉10の通常の操業時、即ち、廃棄物18を炉本体20内に挿入してこの廃棄物18から可燃性ガスを発生させるときに、送風部33は、不燃物排出口29の周囲から流動化ガスを吹き込ませる。このとき、送風部33は、流動粒子12が対流して廃棄物18と混合することにより当該廃棄物18をガス化させる第1の流動領域15を形成する。これと共に、送風部33は、前記第1の流動領域15と前壁24との間に第1の流動領域15での流動化ガスの吹き込みの流速よりも低い流速で流動化ガスを吹き込ませて、第1の流動領域15よりも流動粒子12の流動化の度合いが低い第2の流動領域16を形成する。即ち、送風部33は、前記のように、前後方向に隣り合う風箱32に対して前側の風箱(例えば、32b)に送風する流動化ガスの流量よりも後側の風箱(例えば、32c)に送風する流動化ガスの流量を大きくする。これにより、送風部33は、流動層14において不燃物排出口29の周囲に流動状態が活発な第1の流動領域15を形成すると共にこの第1の流動領域15と前壁24とに間に流動が抑えられた第2の流動領域16を形成する。また、送風部33は、前壁24側の風箱32a,32bへ供給する流動化ガスの流量よりも後壁25側の風箱32c,32d,32eへ供給する流動化ガスの流量を多くしてもよい。これにより、送風部33は、流動層14において前壁側の風箱32a,32bに対応する領域に流動が抑えられた第2の流動領域16を形成すると共に後壁側の風箱32c,32d,32eに対応する領域に流動が活発な第1の流動領域15を形成する。
 具体的に、送風部33は、第2の流動領域16では、U/Umfが1以上2未満となる流速で流動化ガスを吹き込ませ、第1の流動領域15では、U/Umfが2以上5未満となる流速で流動化ガスを吹き込ませる。ここで、Umfは、流動粒子12を流動化するための流動化ガスの吹き込みの最小流速である最小流動化速度である。また、Uは、流動化ガスの平均断面流速である。
 一方、流動層炉10の停止時、即ち、炉本体20内への廃棄物18の挿入が停止されたときには、送風部33は、各風箱32へ供給する流動化ガスとして空気に不活性ガスを混ぜたものを送風する。そして、送風部33は、流動化ガスにおける空気と不活性ガスとの比率を不活性ガスが徐々に多くなるようにする。これにより、送風部33は、炉本体20内に残っている廃棄物18が激しく燃えることを抑制し、炉本体20内の温度上昇を抑える。
 詳しくは、炉本体20内において、通常の操業時には、酸素濃度が廃棄物18の燃焼に適した値よりも低い状態で廃棄物18の燃焼及びガス化等が行われている。この状態で廃棄物18の炉本体20内への挿入が停止されると、炉本体20内における可燃物の量が減少する。このとき、炉本体20内へは流動層14を維持するために所定の流量で流動化ガス(空気)が供給されているため炉本体20内の酸素濃度が高くなる。炉本体20内の酸素濃度が炉本体20内に残っている廃棄物18の燃焼に適した値となると、この廃棄物18が激しく燃焼して炉本体20内の温度が通常の操業時よりも上昇する。炉本体20内がこのような高温状態になると、この熱により流動層14を形成する流動粒子12が固まる。このように流動粒子12が固まると、次に流動層14を形成しようと流動粒子12に流動化ガスを吹き込んでも当該流動粒子12が流動化しない。そこで、送風部33は、廃棄物18の炉本体20内への挿入が停止されたときには、炉本体20内に吹き込ませる空気に不活性ガスを混ぜ、この不活性ガスの比率を徐々に増やす。これにより、炉本体20内の酸素濃度が廃棄物18の燃焼に適した値よりも低く保たれる。その結果、炉本体20内に残っている廃棄物18が激しく燃焼することが抑えられる。
 さらに、送風部33は、風箱32に送風する流動化ガスの温度を調整可能である。送風部33は、流動層炉10の運転を開始するときに、高温の流動化ガスを不燃物排出口29の周辺から流動粒子12に向けて吹き込ませる。このようにして、送風部32は、廃棄物18の燃焼やガス化が可能な温度になるまで流動粒子12の加熱を行う。この場合、流動粒子12が高温となり廃棄物18の燃焼が始まると、この燃焼により流動粒子12の温度が維持される。そのため、送風部33は、前記燃焼が始まると、風箱32に送風する流動化ガスの温度を下げてもよい。
 廃棄物供給部40は、前壁24から流動層14上における前壁24に隣接する領域に廃棄物18を供給する。本実施形態の廃棄物供給部40は、前壁24(詳しくは、前壁24の廃棄物挿入口28)から流動層14上に廃棄物18を横向きに押し込み、これにより当該廃棄物18を不燃物排出口29側に移動させる。即ち、廃棄物供給部40は、第2の流動領域16上に廃棄物18が滞留し、この滞留した廃棄物18が順次第1の流動領域15内に進入するように、廃棄物18の押込みを行う。この廃棄物供給部40は、プッシャ41と、このプッシャ41を駆動するための駆動部(図示省略)とを有する。プッシャ41は、幅方向に延びる押込み面42を有する。本実施形態において、押込み面42の幅方向の長さは、前壁24の廃棄物挿入口28の幅と同じである。また、押込み面42の上下方向の長さは、廃棄物挿入口28の開口高さの略半分である。このプッシャ41は、廃棄物挿入口28と同じ高さ位置において前後方向に移動可能に設置される。駆動部は、モータやシリンダ等の動力源を含み、その動力によりプッシャ41を前後方向に往復移動させる。尚、廃棄物供給部40の具体的構成は限定されない。例えば、本実施形態の廃棄物供給部40においては、プッシャ41が廃棄物18を炉内に押し込む。しかし廃棄物供給部は、スクリュー押し込み機等によって廃棄物18を炉内に押し込むように構成されてもよい。プッシャ41やスクリュー押し込み機が用いられることにより、紙やプラスチックシートのような嵩比重が小さく飛散しやすいごみが塊のまま炉本体20内に供給される。これにより、従来のような炉の上部からごみを投入する場合に比べ、炉本体20内におけるごみの飛散が抑制される。
 砂循環装置50は、不燃物排出口29から排出された流動粒子12を廃棄物供給部40側から流動層14に戻して当該流動粒子12を循環させる。このように、砂循環装置50が不燃物排出口29から排出された流動粒子12を前壁24側に戻すことにより、流動層14内で前壁24から不燃物排出口29へ向けた流動粒子12の流れが形成される。また、第2の流動領域16がある程度高温に保たれる。この砂循環装置50は、不燃物排出部51と、分離部52と、搬送部53とを有する。
 不燃物排出部51は、底壁21の不燃物排出口29の下方に設けられ、この不燃物排出口29から落下してきた不燃物と流動粒子12との混合物を分離部52へ移動させる。本実施形態の不燃物排出部51は、不燃物排出口29から落下してきた混合物をスクリュー押し込み機によって分離部52まで移動させる。分離部52は、不燃物排出部51から送られてきた混合物から流動粒子12を分離する。本実施形態の分離部52は、ふるいを用いて混合物から流動粒子12を分離する。搬送部53は、分離部52において分離された流動粒子12を炉本体20の砂挿入部27まで搬送し、当該砂挿入部27から炉本体20内に挿入する。
 尚、本実施形態の砂循環装置50は、流動層14の上方から当該流動層14の上面に向けて流動粒子12を投入することにより、不燃物排出口29から排出された流動粒子12を流動層14に戻しているが、これに限定されない。例えば、図4に示すように、不燃物排出口29から排出された流動粒子12が流動層14中に直接戻されてもよい。図4に示す例では、砂挿入部(砂挿入開口)27Aが前壁24における流動層14の中間の高さ位置に設けられる。砂循環装置50の搬送部53の炉本体20側端部にスクリュー押し込み機55が設けられ、この搬送部53の端部が砂挿入部27に挿入される。このように、不燃物排出口29から排出された流動粒子12は、流動層14中に直接押し込まれるようにして流動層14に戻されてもよい。この場合、砂層入部27は、流動層14の中間高さ位置に限定されず、高さ方向の上側に位置してもよいし、下側に位置してもよい。流動粒子12が流動層14内に押し込まれることにより、流動粒子12の横方向の移動がより強制的に行われ、炉床に不燃物が停滞することが抑制される。
 以上のように構成される流動層炉10において、以下のようにして廃棄物18から可燃性ガスが回収される。
 送風部33が各風箱32に流動化ガスを供給することにより、流動化ガスが底壁21から流動粒子12に向けて炉本体20内に吹き込まれ、炉本体20内に流動層14が形成される。このとき送風部33は、各風箱32に送風する流動化ガスの流量を調整する。これにより、流動層14において不燃物排出口29側に流動の活発な第1の流動領域15が形成されると共に第1の流動領域15と前壁24との間に流動の抑えられた第2の流動領域16が形成される。また、送風部33は、第1の流動領域15に対応する風箱32(本実施形態では、例えば、風箱32c,32d,32e)に高温の流動化ガスを供給して第1の流動領域15の流動粒子12を積極的に加熱する。
 一方、砂循環装置50が流動粒子12を循環させ、流動層14において流動粒子12の流れを形成する。具体的に、不燃物排出部51が炉本体20の不燃物排出口29から落下してきた流動粒子12を分離部52に送る。そして、搬送部53が分離部52を通過した流動粒子12を炉本体20の砂挿入部27まで搬送する。この搬送された流動粒子12は、砂挿入部27から流動層14の前壁24側に戻される。このように、後壁25側の不燃物排出口29から排出された流動粒子12が流動層14の前壁24側に戻されることにより、前壁24から不燃物排出口29へ向けた流動粒子12の流れが流動層14において形成される。このとき、不燃物排出口29から高温の第1の流動領域15の流動粒子12が排出され、この流動粒子12を砂循環装置50が流動層14の前壁24側に戻す。これにより、第2の流動領域16の温度が所定の温度に維持される。但し、砂循環装置50によって不燃物排出口29から流動層14に戻されるまでの間に流動粒子12の温度が低下する。このため、第2の流動領域16の温度は、第1の流動領域15の温度よりも低くなる。好ましくは、第1の流動領域15の温度が600℃~800℃であるのに対し、第2の流動領域16の温度が400℃~600℃程度に保たれる。
 炉本体20内の流動層14における各領域15,16の温度がそれぞれ所定の温度になると、廃棄物供給部40が廃棄物18を廃棄物挿入口28から炉本体20内に押し込み始める。具体的には、駆動部により駆動されたプッシャ41が後壁25側へ向けて横向きに廃棄物18を押し込む。これにより、廃棄物18は、第2の流動領域16上の前壁24近傍に押し込まれる(図2参照)。
 第2の流動領域16における流動粒子12の流動は抑えられている。このため、押し込まれた廃棄物18は流動粒子12と積極的には混合されず、その大部分が第2の流動領域16上に滞留し、重たい不燃物が沈降する。そのため、第2の流動領域16においては、廃棄物18の急激な燃焼が抑えられ、廃棄物中のガス化し易いものが炉本体20内の熱輻射によってガス化する。即ち、プラスチックや紙等のガス化し易い廃棄物18は、第2の流動領域16の表層を移動しながらガス化する。一方、木片などのガス化し難いものは一部がガス化するものの、大部分がガス化せずに第1の流動領域15に到達する。このように、ガス化し易い廃棄物18が激しい流動層(第1の流動領域15)に到達する前に第2の流動領域16において穏やかな条件でガス化する。これにより、発生する可燃性ガスの変動が抑制される。尚、滞留している廃棄物18は、上記の通り炉本体20内の輻射熱によって燃焼する。しかし、この輻射熱の温度が800℃~900℃と流動層14を形成する流動粒子12よりも高いものの、廃棄物18と空気との接触が良好でない。このため、主に廃棄物18に含まれる紙やシート状のプラスチック等の燃え易いゴミがガス化する。このとき、温度が低く且つ第2の流動領域16に供給される空気(流動化ガス)が少ないため、前記燃え易いゴミであっても、徐々にガス化する。さらに、流動粒子12が不燃物排出口29を通じて徐々に排出されるため、この流動粒子12の排出と流動化ガスによる流動粒子12の流動とにより、滞留する廃棄物18の一部が図1の左側から右側へと少しずつ移動若しくは拡散する。そのため、廃棄物18が塊状で投入されその内部に燃え易い紙類があった場合でも、拡散時にこれら紙類が前記塊の表面側に出てくることによってそのガス化を促すことも期待しうる。このように第2の流動領域16においては、廃棄物18の急激な燃焼が抑えられ、廃棄物18挿入時の可燃性ガスの急増が防がれる。
 次に、新たな廃棄物18が廃棄物挿入口28からプッシャ41によって炉本体20内に押し込まれる。これにより、第2の流動領域16上に滞留している廃棄物18は、押し込まれた新たな廃棄物18に押されて順に第1の領域15側に進入する。第1の流動領域15では、流動が活発で且つ廃棄物18の燃焼により高温となるため、第2の流動領域16上から進入してきた廃棄物18が流動粒子と混合されてガス化が十分に行われる。これにより可燃性ガスが発生する。詳しくは、流動層14において、前壁24から不燃物排出口29に向って流動状態が徐々に活発となっている。このため、廃棄物18は、第2の流動領域16上の前壁24近傍から第1の流動領域15に進むに従って徐々に流動粒子12と混合される。また、前壁24から不燃物排出口29に向って吹き込まれる空気(流動化ガス)が多くなる。このため、廃棄物18が第2の流動領域16から第1の流動領域15に進むに従って燃焼して流動粒子12の温度が高くなる。そして、この高温の流動層14における不燃物排出口29の上方領域及びその周辺において、廃棄物18が流動粒子12と十分に混合される。これにより、第2の流動領域16で燃え残った廃棄物18のガス化が第1の流動領域15において十分に行われる。
 一方、プッシャ41によって第2の流動領域16上に新たに押し込まれた廃棄物18は、前記のように流動粒子12と殆ど混合されずに第2の流動領域16上に滞留する。そして、廃棄物18は、激しい燃焼を抑えられた状態で徐々に燃焼する。
 このように、流動層14に第1の流動領域15と第2の流動領域16とが形成された状態において廃棄物18がプッシャ41によって次々に押し込まれることにより、可燃性ガスの間欠的且つ急激な発生が抑えられ、当該ガスの発生を安定させることができる。
 そして、流動層炉10が停止するときには、先ず、プッシャ41による廃棄物18の炉本体20への押し込みが停止される。廃棄物18の押し込みが停止されると、送風部33は、各風箱32へ供給する流動化ガスとして空気に不活性ガスを混ぜたものを送風する。このとき、送風部33は、時間の経過に伴って流動化ガスにおける空気と不活性ガスとの比率を不活性ガスが徐々に多くなるようにする。このように、送風部33は、炉本体20内の酸素濃度を抑え、流動層14内に残っている廃棄物18が激しく燃えるのを抑制する。
 尚、本実施形態では、流動層炉10の停止時に、流動化ガスにおける不活性ガスの比率が除所に大きくなるようにして流動層14に残っている廃棄物18の激しい燃焼が抑制されている。しかし、流動層炉10の停止時に、流動層14に水が散布されることにより、残っている廃棄物18の燃焼が防止されてもよい。
 以上の流動層炉10によれば、廃棄物に燃え易いゴミが多く含まれていても、可燃性ガスの間欠的且つ急激な発生が抑えられ、当該ガスの発生を安定させることができる。具体的には、流動層14において、不燃物排出口29の周囲の第1の領域15とこの第1の領域15よりも流動化の度合いの低い第2の流動領域16とが形成される。この状態で、新たな廃棄物18が第2の流動領域16上に押し込まれる。この新たな廃棄物18が第2の流動領域16上に滞留している廃棄物18を順に第1の流動領域15側に進入させる。以上の動作が繰り返される。これにより、流動層炉10において、得られる可燃性ガスの急激な変動が抑えられつつ、廃棄物18のガス化が十分に行われる。その結果、廃棄物18から可燃性ガスを安定して発生させることが可能になる。また、廃棄物18が炉本体20への投入直後に活発な流動層14(第1の流動領域15)に曝されないため、軽量のごみが炉本体20内に多量に舞い上がり、フリーボード部で急激に燃焼することを抑制することができる。
 また、炉本体20において、底壁21の上面21aが不燃物排出口29に向かって低くなるように傾斜している。このため、流動層14において底壁21まで沈んだ廃棄物18中の不燃物は、不燃物排出口29に向かって底壁21の上面21a上を降下する。これにより、不燃物排出口29から流動粒子12と共に不燃物を排出することにより、不燃物を炉本体20から容易に排出することができる。この不燃物排出口29から流動粒子12と共に排出された不燃物は、砂循環装置50の分離部52において、流動粒子12と分離される。
 炉本体20は、その幅方向の寸法が廃棄物18の押込み方向について均一な平面形状を有している。このため、第2の流動領域16上の廃棄物18が廃棄物供給部40から新たに押し込まれた廃棄物18に押されて第1の流動領域15側に進入するときに、廃棄物18の移動が安定する。しかも、砂循環装置50が形成する第2の流動領域16から第1の流動領域15へ向う流動粒子12の流れも廃棄物18の移動方向と同じであるため、前記流動粒子12の流れも安定する。
 廃棄物供給部40において、押込み面42が当該押込み面42の幅方向全域にわたって同時に廃棄物18を流動層14上に押し込むようにプッシャ41が押込み方向(前後方向)と平行な方向に往復動作する。これにより、押込み面42が幅方向に均一に廃棄物18を流動層14上に押し込む。従って、第2の流動領域16から第1の流動領域15側への廃棄物18の移動が幅方向において略均一となり、炉内の一部に廃棄物18が集中することを防ぐことができる。
 尚、本発明の流動層炉及び廃棄物処理方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
 上記実施形態の側壁22は、底壁21から可燃性ガス排出部23まで真っ直ぐに立上がっているが、これに限定されない。例えば、図5に示すように、前壁24Aは、所定の高さ位置において第2の流動領域16の上方を覆うように後壁25側に延びる反射部224を具備してもよい。この前壁24Aによれば、第2の流動領域16上に滞留する廃棄物18が反射部224からの輻射熱により加熱される。その結果、第2の流動領域16上に滞留している廃棄物18から可燃性ガスを発生させることができる。即ち、第2の流動領域16上に滞留している廃棄物18のガス化が促進される。
 また、図6に示すように、後壁25Aは、所定の高さ位置において第1の流動領域15の上方を覆うように前壁24側に延びる案内部225を具備してもよい。この案内部225は、第1の流動領域15において廃棄物から発生した高温の可燃性ガスが第2の流動領域16上に滞留する廃棄物18と接するように当該可燃性ガスを案内する。これにより、案内部225は、可燃性ガスを前記第2の流動領域16上の廃棄物18の加熱に寄与させる。その結果、炉本体20に特別な加熱手段が付加されることなく、第2の流動領域16上に滞留している廃棄物18のガス化が促進される。
 また、図7に示すように、前壁24Bと後壁25Bとは、同じ高さ位置において互いに接近する方向に延びる屋根部324,325をそれぞれ具備してもよい。この前壁24B及び後壁25Bによれば、第2の流動領域16上に滞留する廃棄物18が前壁24Bの屋根部324からの輻射熱によって加熱され、ガス化が促進される。また、炉本体20B上端の可燃性ガス排出部23よりも低い位置において炉本体20Bの前後方向の寸法を小さくすることにより、炉本体20Bの小型化を図ることもできる。
 上記実施形態では、底壁21の上面21aの傾斜角が、前壁24から不燃物排出口29まで均一であるが、これに限定されない。例えば、図8に示すように、第2の流動領域16側の上面21dの水平面に対する傾斜角αが第1の流動領域15側の上面21eの水平面に対する傾斜角βより大きくてもよい。このように流動粒子12の流動が抑えられた第2の流動領域16を下方から支持する上面21dの傾斜角が大きいと、底壁21Aまで沈んだ不燃物が不燃物排出口29までより確実に降下する。具体的に、第1の流動領域15側の上面21eの水平面に対する傾斜角βは、15°~25°であり、第2の流動領域16側の上面21dの水平面に対する傾斜角αは、20°~75°、好ましくは20°~30°である。
 また、底壁21の上面21aは、前壁24から不燃物排出口29に向けて真っ直ぐに傾斜せずに湾曲していてもよい。
 図9に示すように、第2の流動領域16の上方に複数の温度計Tが配置されると共に、第2の流動領域16上に空気を供給可能な空気供給部60が設けられてもよい。かかる構成によれば、第2の流動領域16上に滞留する廃棄物18の滞留量が推定でき、この滞留量の制御ができる。具体的に、廃棄物18に埋まった温度計Tの指示値が低くなることが利用されて、第2の流動領域16上の廃棄物18の滞留量が推定される。滞留量が多い場合、即ち、廃棄物18に埋まる温度計Tが多い場合には、空気供給部60が空気を供給して炉本体20内の温度を上げる。そうすると、第2の流動領域16上に滞留している廃棄物18のガス化が促進され、廃棄物18の滞留量が減少する。尚、別の方法としては、指定した温度計Tの温度が閾値以上であれば当該温度計Tの位置にはごみが無いと判断され、閾値未満であれば当該温度計Tの位置にごみがある(ごみに埋まっている)と判断されて空気の量が制御されてもよい。また、空気の量の制御に代えてごみの供給量が制御されてもよい。
 上記実施形態では、送風部33は、空気や不活性ガスを流動化ガスとして送風するが、これに限定されない。例えば、送付部33は、炉本体20内の燃焼状態に応じて、水蒸気や酸素を流動化ガスとして送風してもよい。また、流動層炉10は、側壁22にガス供給部30とは別に気体供給部を設け、流動層14や廃棄物18の燃焼状況に応じて、前記気体供給部から炉本体20内に空気や酸素、水蒸気等を供給可能に構成されてもよい。
 また、第2の流動領域16に供給される流動化ガスは、高温の流動化ガスでもよい。高温の流動化ガスが供給されることにより、流動粒子12の循環のみでは第2の流動領域16の温度を充分に保てない場合であっても、流動化ガスの供給量を増加させることなく第2の流動領域16の温度を高く維持することができる。
 上記実施形態では、廃棄物挿入口28が、流動層14上に滞留する廃棄物18に対して上下方向において一部重なる高さ位置に設けられて、廃棄物挿入口28から供給される廃棄物18が流動層14上面に滞留する廃棄物を積極的に横方向(第1の流動領域15側)に移動させる構成としたが、これに限定されない。即ち、流動層炉10は、流動層14上における前壁(供給側側壁)24に隣接する領域に廃棄物18を供給するような構成であればよい。例えば、図10(A)及び図10(B)に示すように、廃棄物挿入口28が、流動層14の上面近傍の高さ位置で、且つ流動層14上面における前壁24に隣接する領域(第2の流動領域16上)に滞留する廃棄物18に対し新たに供給される廃棄物18が供給時点において接触しない高さ位置に設けられてもよい。この場合、廃棄物挿入口28は、例えば図10(A)に示すように、流動層14上に滞留する廃棄物よりも上方の高さ位置から横向きに新たな廃棄物を供給可能に設けられてもよい。また、廃棄物挿入口28は、図10(B)に示すように、流動層14上に滞留する廃棄物の上方の高さ位置から下向きに新たな廃棄物を供給可能に設けられてもよい。これらのように廃棄物18が炉本体20内に供給されても、滞留する廃棄物18上に新たな廃棄物18が供給されることにより廃棄物18の山が崩れて拡がって第1の流動領域15側に廃棄物18が進入する。また、流動層14内に形成される前壁24から不燃物排出口29へ向けた流動粒子12の流れによっても第2の流動領域16上に滞留する廃棄物18が第1の流動領域15側に進入する。このため、流動層炉10から回収される可燃性ガスの急激な変動が抑えられながら廃棄物18のガス化が十分に行わる。その結果、廃棄物18から可燃性ガスが安定して発生する。
 また、上記実施形態では、流動層14に供給される流動化ガスは、上記の通り第2の流動領域16においては、U/Umfが1以上2未満となる流速で供給され、第1の流動領域15においては、U/Umfが2以上5未満となる流速で供給されるが、これに限定されない。例えば、炉床(底壁21の上面21a)に不燃物が滞留して外部に排出されない場合、これを外部へ排出するために一定期間のみ第2の流動領域16でもU/Umfが2以上5未満となる流速で流動化ガスが供給されてもよい。この場合、第2の流動領域16において均一に流動化ガスが吹き込まれるのではなく、炉本体20の前壁24側(図1における左側)から後壁25側(図1における右側)に向けて順に風箱32毎に流動化ガスの供給量が多くなることが好ましい。具体的には、ある時間t0の時点で風箱32aに供給される流動化ガスの流量が他の風箱に供給される流動化ガスの流量よりも大きくなる。そして、数秒後のt1の時点で、風箱32aに供給される流動化ガスの流量が通常運転時の流量に戻ると共に、隣の風箱32bに供給される流動化ガスの流量が他の風箱に供給される流動化ガスの流量よりも大きくなる。さらに、数秒経過後のt2の時点で、風箱32bに供給される流動化ガスの流量が元に戻り、さらに隣に位置する風箱32cに供給される流動化ガスの流量が他の風箱に供給される流動化ガスの流量よりも大きくなる。このような運転により、通常運転時に炉床に不燃物が滞留したとしても、当該不燃物が炉本体20の外へ確実に排出される。尚、上記の運転が行われるのはごくわずかな時間であるため、後段の設備への影響が最小限に抑えられる。
[実施の形態の概要]
 以上の実施形態をまとめると、以下の通りである。
 即ち、上記の実施形態に係る流動層炉では、廃棄物を加熱して当該廃棄物から可燃性ガスを取り出す流動層炉であって、廃棄物を加熱するための流動層を構成する流動粒子と、前記流動粒子を下方から支持する底壁およびこの底壁から立上がる側壁を有し、前記底壁においてその中心位置から特定方向に偏った位置に前記廃棄物中の不燃物を前記流動粒子とともに排出するための不燃物排出口が設けられ、この不燃物排出口に向かって前記底壁の上面上を前記不燃物が降下するように当該底壁の上面が前記不燃物排出口に向かって低くなるように傾斜する炉本体と、前記炉本体の底壁から前記流動粒子に向かって流動化ガスを吹き込むことにより当該流動粒子を流動化させるガス供給部と、前記側壁のうち前記底壁の中心位置を挟んで前記不燃物排出口と反対側に位置する供給側側壁から前記流動層上における当該供給側側壁に隣接する領域に前記廃棄物を供給し、これにより前記流動層上の廃棄物を前記不燃物排出口側に移動させる廃棄物供給部と、前記不燃物排出口から排出された流動粒子を前記廃棄物供給部側から前記流動層に戻すことにより当該流動粒子を循環させ、これにより前記不燃物排出口と反対側に位置する供給側側壁の側から前記不燃物排出口へ向けた流動粒子の流れを形成する砂循環装置とを備え、前記ガス供給部は、前記不燃物排出口の周囲から前記流動化ガスを吹き込んで、前記流動粒子が対流して前記廃棄物と混合することにより当該廃棄物をガス化させる第1の流動領域を形成するとともに、この第1の流動領域と前記廃棄物供給部との間に前記第1の流動領域での流動化ガスの吹き込みの流速よりも低い流速で流動化ガスを吹き込むことにより、当該第1の流動領域よりも前記流動粒子の流動化の度合いが低い第2の流動領域を形成し、前記廃棄物供給部は、前記第2の流動領域上に前記廃棄物が滞留し、かつ、その滞留した廃棄物が順次前記第1の流動領域内に進入するように、前記供給側側壁から前記流動層に対して廃棄物の供給を行う。
 この流動層炉によれば、流動層に不燃物排出口の周囲の第1の領域とこの第1の領域よりも流動化の度合いの低い第2の流動領域とが形成される。そして、廃棄物が前記第2の流動領域上に滞留し、この第2の流動領域上に滞留した廃棄物が順に第1の流動領域側に送られるように廃棄物供給部が流動層上における供給側側壁に隣接する領域に廃棄物を供給する。その結果、流動層炉から回収される可燃性ガスの急激な変動が抑えられながら廃棄物のガス化が十分に行われ、これにより、廃棄物から可燃性ガスが安定して発生する。
 具体的に、第2の流動領域では、流動が抑えられているので、廃棄物が流動粒子と混合されずに第2の流動領域上に滞留しながら燃え易い廃棄物がゆっくりガス化する。そのため、第2の流動領域では、廃棄物の急激な燃焼が抑えられ、また、廃棄物の急激なガス化による可燃性ガスの発生も少ない。この第2の流動領域上に滞留する廃棄物は、廃棄物供給部により炉本体内に新たな廃棄物が供給されることによって順に第1の領域に進入する。そうすると、この第1の流動領域では、流動が活発で且つ廃棄物の燃焼により高温であるため、第2の流動領域上から進入してきた廃棄物が流動粒子と十分に混合され、これにより、廃棄物が十分にガス化されて可燃性ガスが発生する。その結果、可燃性ガスの間欠的且つ急激な発生が抑えられ、当該ガスの発生が安定する。尚、第2の流動領域の温度は、砂循環装置が不燃物排出口から排出された高温の流動粒子を流動層の第2の流動領域に戻すことにより維持される。但し、砂循環装置によって不燃物排出口から流動層に戻されるまでの間に流動粒子の温度が低下するため、第2の流動領域の温度は、第1の流動領域の温度よりも低くなる。
 また、炉本体の底壁の上面が不燃物排出口に向かって低くなるように傾斜しているため、流動層において底壁まで沈んだ廃棄物中の不燃物は、不燃物排出口に向かって底壁の上面上を降下する。これにより、不燃物が不燃物排出口から流動粒子と共に排出されることによって、前記不燃物を炉本体から容易に排出することができる。
 前記廃棄物供給部は、前記第2の流動領域上に滞留する廃棄物に向けて前記供給側側壁から新たな廃棄物を横向きに押込み、これにより、前記第2の流動領域上に滞留する廃棄物を順次前記第1の流動領域内に進入させること、が好ましい。
 かかる構成によれば、新たな廃棄物が第2の流動領域上に滞留する廃棄物に向けて横向きに押し込まれる。このため、この廃棄物に押されて第2の流動領域上に滞留する廃棄物が確実に第1の流動領域内に進入する。
 尚、本発明に係る流動層炉において、前記流動粒子を流動化するための前記流動化ガスの吹き込みの最小流速である最小流動化速度をUmf、当該流動化ガスの平均断面流速をUとすると、前記ガス供給部は、前記第2の流動領域ではU/Umfが1以上2未満となる流速で前記流動化ガスの吹き込みを行い、前記第1の流動領域ではU/Umfが2以上5未満となる流速で前記流動化ガスの吹き込みを行うことが好ましい。
 このような流速で流動化ガスが吹き込まれることにより、好ましい第1の流動領域と第2の流動領域とが形成される。その結果、廃棄物の急激な燃焼が抑えられながら当該廃棄物のガス化が好適に行われ、廃棄物から可燃性ガスが安定して得られる。
 前記炉本体は、前記廃棄物供給部による前記廃棄物の押込み方向と直交する方向である幅方向の寸法が当該押込み方向について均一な平面形状を有することが好ましい。
 かかる構成によれば、第2の流動領域上の廃棄物が廃棄物供給部から新たに押し込まれた廃棄物に押されて第1の流動領域側に進入するときに、炉本体における廃棄物の移動方向と直交する方向(幅方向)の寸法が均一であるため、前記廃棄物の移動が安定する。しかも、砂循環装置が形成する第2の流動領域から第1の流動領域へ向う流動粒子の流れも前記廃棄物の移動方向と同じであるため、前記流動粒子の流れも安定する。
 前記廃棄物供給部は、前記幅方向に延びる押込み面を有するプッシャと、このプッシャの押込み面が当該押込み面の幅方向全域にわたって同時に廃棄物を前記流動層上に押し込むように当該プッシャを前記押込み方向と平行な方向に往復動作させる駆動部とを有することが好ましい。
 かかる構成によれば、前記幅方向に均一に廃棄物が流動層上に押し込まれるため、第2の流動領域から第1の流動領域側への廃棄物の移動が幅方向において略均一となり、炉内の一部に廃棄物が集中することが防がれる。
 また、上記の実施形態に係る廃棄物処理方法は、廃棄物を加熱して当該廃棄物から可燃性ガスを取り出すための廃棄物処理方法であって、前記廃棄物を加熱するための流動層を構成する流動粒子と、この流動粒子を下方から支持する底壁およびこの底壁から立上がる側壁を有し、前記底壁においてその中心位置から特定方向に偏った位置に前記廃棄物中の不燃物を前記流動粒子とともに排出するための不燃物排出口が設けられ、この不燃物排出口に向かって前記底壁の上面上を前記不燃物が降下するように当該底壁の上面が前記不燃物排出口に向かって低くなるように傾斜する炉本体とを有する流動層炉を用意する工程と、前記炉本体の底壁のうち前記不燃物排出口の周囲の領域から前記流動粒子に向けて前記流動化ガスを吹き込むことにより当該流動粒子が対流する第1の流動領域を形成するとともに、この第1の流動領域と前記側壁のうち前記底壁の中心位置を挟んで前記不燃物排出口と反対側に位置する供給側側壁との間に前記第1の流動領域での流動化ガスの吹き込みの流速よりも低い流速で流動化ガスを吹き込むことにより当該第1の流動領域よりも前記流動粒子の流動化の度合いが低い第2の流動領域を形成する工程と、前記不燃物排出口から排出される流動粒子を前記供給側側壁の側から前記流動層に戻すことにより当該流動粒子を循環させ、これにより前記供給側側壁の側から前記不燃物排出口へ向けた流動粒子の流れを形成する工程と、前記供給側側壁から前記流動層上における前記供給側側壁に隣接する領域に前記廃棄物を供給し、これにより、前記第2の流動領域上に前記廃棄物を滞留させ、かつ、その滞留した廃棄物を順次前記第1の流動領域内に進入させてガス化する工程と、を含む。
 この廃棄物処理方法によれば、流動層に不燃物排出口の周囲の第1の領域とこの第1の領域よりも流動化の度合いの低い第2の流動領域とが形成される。そして、廃棄物が前記第2の流動領域上に滞留し且つこの第2の流動領域上に滞留した廃棄物が順に第1の流動領域側に進入する。その結果、流動層炉から回収される可燃性ガスの急激な変動が抑えられながら廃棄物のガス化が十分に行われ、これにより、廃棄物から可燃性ガスが安定して発生する。
 また、炉本体の底壁の上面が不燃物排出口に向かって低くなるように傾斜しているので、廃棄物中の不燃物は、不燃物排出口に向かって底壁の上面上を降下する。このため、不燃物が不燃物排出口から流動粒子と共に排出されることにより、前記不燃物が炉本体から容易に排出される。
 前記ガス化する工程では、前記供給側側壁から前記廃棄物を横向きに押込み、これにより、前記第2の流動領域上に滞留する廃棄物を順次前記第1の流動領域内に進入させてガス化すること、が好ましい。
 かかる構成によれば、新たな廃棄物が第2の流動領域上に滞留する廃棄物に向けて横向きに押し込まれる。このため、この廃棄物に押されて第2の流動領域上に滞留する廃棄物が確実に第1の流動領域内に進入してガス化する。
 尚、この廃棄物処理方法において、前記流動粒子を流動化するための前記流動化ガスの吹き込みの最小流速である最小流動化速度をUmf、当該流動化ガスの平均断面流速をUとすると、前記第2の流動領域ではU/Umfが1以上2未満となる流速で前記流動化ガスが吹込まれ、前記第1の流動領域ではU/Umfが2以上5未満となる流速で前記流動化ガスが吹込まれること、が好ましい。
 このような流速で流動化ガスが吹き込まれることにより、流動層において好ましい第1の流動領域と第2の流動領域とが形成される。その結果、廃棄物の急激な燃焼が抑えられながら当該廃棄物のガス化が好適に行われ、廃棄物から可燃性ガスが安定して得られる。
 以上のように、本発明に係る流動層炉及び廃棄物処理方法は、流動粒子を流動化させた流動層において廃棄物を加熱することにより、当該廃棄物から可燃性ガスを取り出すのに有用であり、燃え易いゴミを含む廃棄物であっても可燃性ガスを安定して得るのに適している。

Claims (8)

  1.  廃棄物を加熱して当該廃棄物から可燃性ガスを取り出す流動層炉であって、
     前記廃棄物を加熱するための流動層を構成する流動粒子と、
     前記流動粒子を下方から支持する底壁およびこの底壁から立上がる側壁を有し、前記底壁においてその中心位置から特定方向に偏った位置に前記廃棄物中の不燃物を前記流動粒子とともに排出するための不燃物排出口が設けられ、この不燃物排出口に向かって前記底壁の上面上を前記不燃物が降下するように当該底壁の上面が前記不燃物排出口に向かって低くなるように傾斜する炉本体と、
     前記炉本体の底壁から前記流動粒子に向かって流動化ガスを吹き込むことにより当該流動粒子を流動化させるガス供給部と、
     前記側壁のうち前記底壁の中心位置を挟んで前記不燃物排出口と反対側に位置する供給側側壁から前記流動層上における当該供給側側壁に隣接する領域に前記廃棄物を供給し、これにより前記流動層上の廃棄物を前記不燃物排出口側に移動させる廃棄物供給部と、
     前記不燃物排出口から排出された流動粒子を前記廃棄物供給部側から前記流動層に戻すことにより当該流動粒子を循環させ、これにより前記不燃物排出口と反対側に位置する供給側側壁の側から前記不燃物排出口へ向けた流動粒子の流れを形成する砂循環装置とを備え、
     前記ガス供給部は、前記不燃物排出口の周囲から前記流動化ガスを吹き込んで、前記流動粒子が対流して前記廃棄物と混合することにより当該廃棄物をガス化させる第1の流動領域を形成するとともに、この第1の流動領域と前記廃棄物供給部との間に前記第1の流動領域での流動化ガスの吹き込みの流速よりも低い流速で流動化ガスを吹き込むことにより、当該第1の流動領域よりも前記流動粒子の流動化の度合いが低い第2の流動領域を形成し、
     前記廃棄物供給部は、前記第2の流動領域上に前記廃棄物が滞留し、かつ、その滞留した廃棄物が順次前記第1の流動領域内に進入するように、前記供給側側壁から前記流動層に対して廃棄物の供給を行う、流動層炉。
  2.  請求項1記載の流動層炉において、
     前記廃棄物供給部は、前記第2の流動領域上に滞留する廃棄物に向けて前記供給側側壁から新たな廃棄物を横向きに押込み、これにより、前記第2の流動領域上に滞留する廃棄物を順次前記第1の流動領域内に進入させる、流動層炉。
  3.  請求項1又は2記載の流動層炉において、
     前記流動粒子を流動化するための前記流動化ガスの吹き込みの最小流速である最小流動化速度をUmf、当該流動化ガスの平均断面流速をUとすると、前記空気供給部は、前記第2の流動領域ではU/Umfが1以上2未満となる流速で前記流動化ガスの吹き込みを行い、前記第1の流動領域ではU/Umfが2以上5未満となる流速で前記流動化ガスの吹き込みを行う、流動層炉。
  4.  請求項1乃至3のいずれか1項に記載の流動層炉において、
     前記炉本体は、前記廃棄物供給部による前記廃棄物の押込み方向と直交する方向である幅方向の寸法が当該押込み方向について均一な平面形状を有する、流動層炉。
  5.  請求項4記載の流動層炉において、
     前記廃棄物供給部は、前記幅方向に延びる押込み面を有するプッシャと、このプッシャの押込み面が当該押込み面の幅方向全域にわたって同時に廃棄物を前記流動層上に押し込むように当該プッシャを前記押込み方向と平行な方向に往復動作させる駆動部とを有する、流動層炉。
  6.  廃棄物を加熱して当該廃棄物から可燃性ガスを取り出すための廃棄物処理方法であって、
     前記廃棄物を加熱するための流動層を構成する流動粒子と、この流動粒子を下方から支持する底壁およびこの底壁から立上がる側壁を有し、前記底壁においてその中心位置から特定方向に偏った位置に前記廃棄物中の不燃物を前記流動粒子とともに排出するための不燃物排出口が設けられ、この不燃物排出口に向かって前記底壁の上面上を前記不燃物が降下するように当該底壁の上面が前記不燃物排出口に向かって低くなるように傾斜する炉本体とを有する流動層炉を用意する工程と、
     前記炉本体の底壁のうち前記不燃物排出口の周囲の領域から前記流動粒子に向けて流動化ガスを吹き込むことにより当該流動粒子が対流する第1の流動領域を形成するとともに、この第1の流動領域と前記側壁のうち前記底壁の中心位置を挟んで前記不燃物排出口と反対側に位置する供給側側壁との間に前記第1の流動領域での流動化ガスの吹き込みの流速よりも低い流速で流動化ガスを吹き込むことにより当該第1の流動領域よりも前記流動粒子の流動化の度合いが低い第2の流動領域を形成する工程と、
     前記不燃物排出口から排出される流動粒子を前記供給側側壁の側から前記流動層に戻すことにより当該流動粒子を循環させ、これにより前記供給側側壁の側から前記不燃物排出口へ向けた流動粒子の流れを形成する工程と、
     前記供給側側壁から前記流動層上における前記供給側側壁に隣接する領域に前記廃棄物を供給し、これにより、前記第2の流動領域上に前記廃棄物を滞留させ、かつ、その滞留した廃棄物を順次前記第1の流動領域内に進入させてガス化する工程と、を含む廃棄物処理方法。
  7.  請求項6記載の廃棄物処理方法において、
     前記ガス化する工程では、前記第2の流動領域上に滞留する廃棄物に向けて前記供給側側壁から新たな廃棄物を横向きに押込み、これにより、前記第2の流動領域上に滞留する廃棄物を順次前記第1の流動領域内に進入させてガス化する、廃棄物処理方法。
  8.  請求項6又は7記載の廃棄物処理方法において、
     前記流動粒子を流動化するための前記流動化ガスの吹き込みの最小流速である最小流動化速度をUmf、当該流動化ガスの平均断面流速をUとすると、前記第2の流動領域ではU/Umfが1以上2未満となる流速で前記流動化ガスが吹込まれ、前記第1の流動領域ではU/Umfが2以上5未満となる流速で前記流動化ガスが吹込まれる、廃棄物処理方法。
PCT/JP2011/003527 2010-06-22 2011-06-21 流動層炉及び廃棄物処理方法 WO2011161947A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL11797836T PL2587146T3 (pl) 2010-06-22 2011-06-21 Piec ze złożem fluidalnym oraz sposób obróbki odpadów
CN2011800311217A CN102947646A (zh) 2010-06-22 2011-06-21 流化床炉以及废弃物处理方法
EP11797836.1A EP2587146B1 (en) 2010-06-22 2011-06-21 Fluidized bed furnace and waste treatment method
US13/805,858 US20130092064A1 (en) 2010-06-22 2011-06-21 Fluidized bed furnace and waste treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010141830A JP5694690B2 (ja) 2010-06-22 2010-06-22 流動層炉及び廃棄物処理方法
JP2010-141830 2010-06-22

Publications (1)

Publication Number Publication Date
WO2011161947A1 true WO2011161947A1 (ja) 2011-12-29

Family

ID=45371154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003527 WO2011161947A1 (ja) 2010-06-22 2011-06-21 流動層炉及び廃棄物処理方法

Country Status (6)

Country Link
US (1) US20130092064A1 (ja)
EP (1) EP2587146B1 (ja)
JP (1) JP5694690B2 (ja)
CN (1) CN102947646A (ja)
PL (1) PL2587146T3 (ja)
WO (1) WO2011161947A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109400B1 (ja) * 2016-12-01 2017-04-05 建十 鳥居 耐火物及び焼却炉

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010746A (ja) * 2013-06-27 2015-01-19 株式会社神鋼環境ソリューション 粒子供給装置、清掃方法及び清掃装置
JP2015045422A (ja) * 2013-08-27 2015-03-12 株式会社Ihi 流動層ボイラ
JP6178352B2 (ja) * 2014-03-18 2017-08-09 株式会社神鋼環境ソリューション 流動床炉の運転方法及び流動床炉
JP2016000379A (ja) * 2014-06-11 2016-01-07 永田エンジニアリング株式会社 流動層焼却炉の異物分離装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205720A (ja) * 1985-03-08 1986-09-11 Kobe Steel Ltd 横型流動床焼却炉
JPH07145921A (ja) * 1993-11-22 1995-06-06 Takuma Co Ltd 流動層式焼却炉
JPH09500714A (ja) * 1993-12-23 1997-01-21 コンバッション エンヂニアリング インコーポレーテッド 内部循環流動床燃焼システム
JPH109511A (ja) * 1996-06-21 1998-01-16 Ebara Corp 流動層ガス化及び熔融燃焼方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153091B2 (ja) * 1994-03-10 2001-04-03 株式会社荏原製作所 廃棄物の処理方法及びガス化及び熔融燃焼装置
JPS58108317A (ja) * 1981-12-21 1983-06-28 Fuji Electric Co Ltd 流動床焼却炉の焼却材料供給装置
US4777889A (en) * 1987-05-22 1988-10-18 Smith Richard D Fluidized bed mass burner for solid waste
JPH07110122A (ja) * 1993-08-17 1995-04-25 Mitsubishi Heavy Ind Ltd 流動床燃焼装置
JP2639885B2 (ja) * 1993-08-18 1997-08-13 株式会社タクマ 廃棄物焼却方法及びその装置
JP2991639B2 (ja) * 1995-06-14 1999-12-20 日本碍子株式会社 廃棄物焼却装置
JP3037134B2 (ja) * 1996-04-26 2000-04-24 日立造船株式会社 流動床式焼却炉
JPH10318517A (ja) * 1997-05-20 1998-12-04 Nkk Corp 流動床焼却炉の燃焼制御方法および燃焼制御装置
JP3259831B2 (ja) * 1997-12-01 2002-02-25 川崎重工業株式会社 ガス化炉における未燃分再燃焼方法及び装置
AU2641999A (en) * 1998-02-27 1999-09-15 Ebara Corporation Fluidized bed gasification furnace
JP3542280B2 (ja) * 1998-08-19 2004-07-14 日立造船株式会社 流動床式焼却炉
JP4295291B2 (ja) * 2006-03-31 2009-07-15 三菱重工環境エンジニアリング株式会社 流動床ガス化炉及びその流動層監視・制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205720A (ja) * 1985-03-08 1986-09-11 Kobe Steel Ltd 横型流動床焼却炉
JPH07145921A (ja) * 1993-11-22 1995-06-06 Takuma Co Ltd 流動層式焼却炉
JPH09500714A (ja) * 1993-12-23 1997-01-21 コンバッション エンヂニアリング インコーポレーテッド 内部循環流動床燃焼システム
JPH109511A (ja) * 1996-06-21 1998-01-16 Ebara Corp 流動層ガス化及び熔融燃焼方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2587146A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109400B1 (ja) * 2016-12-01 2017-04-05 建十 鳥居 耐火物及び焼却炉
JP2018091538A (ja) * 2016-12-01 2018-06-14 建十 鳥居 耐火物及び焼却炉

Also Published As

Publication number Publication date
EP2587146A1 (en) 2013-05-01
EP2587146A4 (en) 2015-10-07
CN102947646A (zh) 2013-02-27
US20130092064A1 (en) 2013-04-18
EP2587146B1 (en) 2017-11-29
PL2587146T3 (pl) 2018-04-30
JP5694690B2 (ja) 2015-04-01
JP2012007763A (ja) 2012-01-12

Similar Documents

Publication Publication Date Title
WO2011161948A1 (ja) 流動層炉及び廃棄物処理方法
US5401130A (en) Internal circulation fluidized bed (ICFB) combustion system and method of operation thereof
WO2011161947A1 (ja) 流動層炉及び廃棄物処理方法
WO2012132279A1 (ja) 流動層炉
JP5744904B2 (ja) 流動床炉及び廃棄物の処理方法
US4777889A (en) Fluidized bed mass burner for solid waste
KR101273312B1 (ko) 계단형 공기주입기를 갖는 유동층연소장치
KR101063516B1 (ko) 경사푸셔식 폐기물 및 폐자원 고형연료 전용 연소 보일러 장치
US4744312A (en) Method of promoting secondary combustion in a fluidized bed incinerator
CA1279527C (en) Method of stable combustion for a fluidized bed incinerator
JP5694700B2 (ja) 流動層炉及び廃棄物処理方法
JP5898217B2 (ja) 流動床炉及び流動床炉を用いた廃棄物の処理方法
US5915309A (en) Fluidized bed incinerator
JP3535835B2 (ja) 流動層式焼却炉
JP2639885B2 (ja) 廃棄物焼却方法及びその装置
JP5766516B2 (ja) 円筒形流動床炉
JP2019070505A (ja) 流動床式ガス化炉への酸素含有ガス供給方法及び流動床式ガス化炉
EP1500875A1 (en) Method of operating waste incinerator and waste incinerator
JPH03244910A (ja) 流動焼却装置における散気管の配設構造
RU2576545C1 (ru) Способ сжигания пометно-подстилочной массы (ппм) и установка для его осуществления
JP2004301448A (ja) 流動層焼却炉及びその運転方法
JP2004077014A (ja) 廃棄物焼却炉の操業方法
JPH06241426A (ja) 廃棄物焼却炉
KR20240155283A (ko) 연소 설비, 및 제어 장치
JPH09236227A (ja) 流動層熱反応装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031121.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797836

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13805858

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1201006699

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011797836

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011797836

Country of ref document: EP