WO2011158803A1 - 半導体集積回路装置の検査方法及び半導体集積回路装置 - Google Patents

半導体集積回路装置の検査方法及び半導体集積回路装置 Download PDF

Info

Publication number
WO2011158803A1
WO2011158803A1 PCT/JP2011/063528 JP2011063528W WO2011158803A1 WO 2011158803 A1 WO2011158803 A1 WO 2011158803A1 JP 2011063528 W JP2011063528 W JP 2011063528W WO 2011158803 A1 WO2011158803 A1 WO 2011158803A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrated circuit
wiring
circuit layer
inspection
layer
Prior art date
Application number
PCT/JP2011/063528
Other languages
English (en)
French (fr)
Inventor
共則 中村
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201180029738.5A priority Critical patent/CN102947926B/zh
Priority to EP11795708.4A priority patent/EP2584600A4/en
Priority to KR1020127026320A priority patent/KR101878993B1/ko
Priority to US13/704,042 priority patent/US20130082260A1/en
Publication of WO2011158803A1 publication Critical patent/WO2011158803A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2884Testing of integrated circuits [IC] using dedicated test connectors, test elements or test circuits on the IC under test
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/117Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0817Thyristors only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • G01R31/311Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06596Structural arrangements for testing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the present invention relates to a semiconductor integrated circuit device inspection method and a semiconductor integrated circuit device.
  • Patent Document 1 discloses a semiconductor device having a so-called chip-on-chip structure in which a parent chip and a child chip are joined. The power supply unit and the ground unit of the parent chip and the child chip are electrically separated. A diode (protective diode or parasitic diode) is connected in the opposite direction between the ground wiring and the signal wiring of each chip and between the power supply wiring and the signal wiring.
  • a test probe is applied to the signal connection bump of the parent chip and the ground connection bump for supplying the ground potential to the child chip, respectively, and an inspection voltage is applied via the diode. Inspect whether the circuit is formed.
  • Patent Document 2 discloses a technique related to a stacked module configured by stacking a plurality of chips.
  • the stacked module includes a plurality of stacked chips and a substrate disposed below the plurality of chips.
  • Each chip has a mounting pad and a test conduction pad on the top surface thereof, a mounting terminal, a test conduction terminal electrically connected to the test conduction pad, and a test signal adjacent to the test conduction terminal.
  • a terminal is provided on the lower surface.
  • an inspection joint to be bonded to the inspection conductive terminal on the lower surface of the chip is disposed, and on the lower surface of the substrate, a mounting terminal and an inspection conductive terminal are disposed.
  • the inspection pad of the mounted chip and the inspection terminal of the stacked chip are joined, and an inspection signal is input from the inspection terminal of the mounted chip that is electrically connected to the inspection pad.
  • the continuity test is performed.
  • Patent Document 3 discloses a technology related to a memory system including a plurality of memory modules as memory subsystems.
  • This memory system includes a plurality of DRAM chips stacked on an IO chip, and through electrodes that connect each DRAM chip and the IO chip, and outputs a system data signal and an internal data signal in each DRAM chip. Mutual conversion with IO chip.
  • Patent Document 4 discloses a program such as a CAD tool for estimating a defect position that is a cause of a reaction from a reaction site detected using a light emission microscope or the like, and a technique relating to a defect analysis method using the program.
  • the failure location of a circuit is narrowed down by detecting light emission of a transistor formed in the circuit.
  • This semiconductor integrated circuit device in which a large number of substrates and layers on which integrated circuits are formed is stacked in the thickness direction is being developed.
  • This semiconductor integrated circuit device includes an electrical connection terminal such as a bump electrode between the integrated circuit layers because it is necessary to exchange signals between a plurality of integrated circuit layers.
  • connection terminal the larger the integrated circuit of each integrated circuit layer, the greater the number of connection terminals for connecting the integrated circuit layers. Accordingly, since the probability of occurrence of connection failure increases, a continuity test for the connection terminal is indispensable. In particular, if a continuity test can be performed every time one layer is stacked, waste of stacking a new integrated circuit layer on an integrated circuit layer having a connection failure portion can be effectively prevented.
  • the present invention relates to an inspection method and a semiconductor integrated circuit capable of inspecting in a short time each time one layer is laminated whether or not there is an interlayer connection failure in a semiconductor integrated circuit device in which a plurality of integrated circuit layers are laminated in the thickness direction.
  • An object is to provide an apparatus.
  • a plurality of integrated circuit layers each having a support layer having a front surface and a back surface, and a semiconductor element group and a wiring formed on the surface of the support layer are provided.
  • a method for inspecting a semiconductor integrated circuit device laminated in a thickness direction, wherein a plurality of connection terminals for electrically connecting to another integrated circuit layer when producing one integrated circuit layer When a plurality of first inspection rectifying element portions including a rectifying element and emitting light by current are formed on the surface and another integrated circuit layer is manufactured, one integrated circuit is connected between each of the first and second wirings.
  • a plurality of second test rectifier elements that are connected between each of the plurality of connection terminals to be electrically connected to the layer and the wiring and include a rectifier element and emit light by current; Laminating one integrated circuit layer and another integrated circuit layer on each other In this case, the surface of the other integrated circuit layer and one integrated circuit layer are opposed to each other, and the plurality of connection terminals of one integrated circuit layer and the plurality of connection terminals of another integrated circuit layer are electrically connected to each other. And then applying a bias voltage to the first and second test rectifier elements via the wiring of one integrated circuit layer and the wiring of another integrated circuit layer, and the back side of another integrated circuit layer Based on the light emission of the first and second test rectifier elements observed in FIG. 1, the connection state between the plurality of connection terminals of one integrated circuit layer and the plurality of connection terminals of another integrated circuit layer is inspected It is characterized by doing.
  • first inspection rectifier element when one integrated circuit layer is manufactured, a first inspection rectifier element is connected between each of a plurality of (interlayer) connection terminals and a wiring. Similarly, when another integrated circuit layer is manufactured, the second inspection rectifier element portion is connected between each of the plurality of (interlayer) connection terminals and the wiring.
  • first and second test rectifying element portions include a rectifying element, and emit light upon receiving a current. In the rectifying element for inspection, the rectifying element itself may emit light, or a light emitting element provided separately from the rectifying element may emit light.
  • the plurality of connection terminals of the one integrated circuit layer and the plurality of connection terminals of the other integrated circuit layer are electrically connected to each other by, for example, bumps, and then the wiring of the one integrated circuit layer Then, a bias voltage is applied to the first and second test rectifying element portions via the wiring of another integrated circuit layer.
  • a bias voltage is applied to the first and second test rectifying element portions via the wiring of another integrated circuit layer.
  • the connection terminal of one integrated circuit layer and the connection terminal of another integrated circuit layer are well connected, the wiring from one integrated circuit layer to the first rectifying element for inspection
  • a current path of a connection terminal of one integrated circuit layer, a connection terminal of another integrated circuit layer, a second rectifier element for inspection, and a wiring of another integrated circuit layer is formed.
  • the two inspection rectifier elements emit light.
  • the connection terminal of one integrated circuit layer and the connection terminal of another integrated circuit layer are defective in connection, the current path is interrupted between the connection terminals.
  • the second inspection rectifier element portion does not emit light or does not
  • a plurality of connection terminals of one integrated circuit layer are separated from at least one of the first and second inspection rectifier elements.
  • the connection state with a plurality of connection terminals of the integrated circuit layer can be inspected. Therefore, by observing collectively the presence or absence of light emission corresponding to each of a large number of connection terminals, it is possible to easily determine whether or not there is a connection failure. The presence or absence can be inspected in a short time.
  • the semiconductor integrated circuit device inspection method may be characterized in that the first and second inspection rectifier elements further include a light emitting element connected in series with the rectifier element.
  • the inspection method of the semiconductor integrated circuit device may be characterized in that the rectifying elements of the first and second inspection rectifying element portions emit light by current.
  • a voltage application unit that generates a bias voltage by energy input from the outside of the semiconductor integrated circuit device is further formed in at least one of the one integrated circuit layer and the other integrated circuit layer. It may be characterized by. As a result, it is not necessary to apply the bias voltage by using probing, so that it is possible to further reduce the number of probing times in inspection (or to eliminate probing).
  • the voltage application unit may include a photoelectric conversion element that generates an electromotive force by light irradiated from the outside of the semiconductor integrated circuit device. Thereby, a voltage application part is suitably realizable.
  • the inspection method of the semiconductor integrated circuit device is characterized in that one integrated circuit layer wiring is one of a positive power supply wiring and a ground wiring formed on the surface of the support layer for supplying a power supply voltage to the semiconductor element group.
  • a wiring of another integrated circuit layer is the other of the positive power supply wiring and the ground wiring formed on the surface of the support layer for supplying the power supply voltage to the semiconductor element group,
  • the rectifying element of the first inspection rectifying element portion is connected in the opposite direction to one of the positive power supply wiring and the ground wiring. No current flows through the rectifying element 1 for inspection.
  • the rectifying element of the second inspection rectifying element portion is connected in the opposite direction to the other of the positive power supply wiring and the ground wiring, the second rectifying element is connected during the normal operation. No current flows through the rectifying element for inspection.
  • the wirings of the plurality of integrated circuit layers may be provided for inspection independently of the semiconductor element group.
  • a semiconductor integrated circuit device is formed by laminating a plurality of integrated circuit layers each having a support layer having a front surface and a back surface, and a semiconductor element group and wiring formed on the surface of the support layer in the thickness direction.
  • a semiconductor integrated circuit device wherein one integrated circuit layer is electrically connected to another integrated circuit layer, a plurality of connection terminals, and a plurality of connection terminals formed on the surface and wired to each of the plurality of connection terminals
  • a plurality of first test rectifier elements that include a rectifier and emit light by current
  • another integrated circuit layer is electrically connected to one integrated circuit layer
  • a plurality of second test rectifier elements that are formed on the surface and connected between each of the plurality of connection terminals and the wiring and include a rectifier and emit light by current.
  • a plurality of connection terminals of one integrated circuit layer and a plurality of connection terminals of another integrated circuit layer are electrically connected to each other, and wiring of one integrated circuit layer and another integration And a voltage applying unit that applies a bias voltage to the first and second test rectifying element units via the wiring of the circuit layer.
  • one integrated circuit layer has a first inspection rectifier element portion connected between each of a plurality of (interlayer) connection terminals and a wiring.
  • another integrated circuit layer has a second test rectifying element portion connected between each of the plurality of (interlayer) connection terminals and the wiring.
  • These first and second test rectifying element portions include a rectifying element, and emit light upon receiving a current.
  • the plurality of connection terminals of the one integrated circuit layer and the plurality of connection terminals of the other integrated circuit layer are electrically connected to each other by, for example, bumps. Further, the voltage application unit applies a bias voltage to the first and second test rectifying element units via the wiring of one integrated circuit layer and the wiring of another integrated circuit layer. At this time, when the connection terminal of one integrated circuit layer and the connection terminal of another integrated circuit layer are well connected, as described in the inspection method described above, the first and second The inspection rectifier element emits light. However, when a connection failure occurs between the connection terminal of one integrated circuit layer and the connection terminal of another integrated circuit layer, the first and second test rectifying element portions do not emit light.
  • connection state with a plurality of connection terminals can be inspected. Therefore, by observing collectively the presence or absence of light emission corresponding to each of a large number of connection terminals, it is possible to easily determine whether or not there is a connection failure. The presence or absence can be inspected in a short time.
  • the semiconductor integrated circuit device may be characterized in that the first and second test rectifying element portions further include a light emitting element connected in series with the rectifying element.
  • the semiconductor integrated circuit device may be characterized in that the rectifying elements of the first and second test rectifying element portions emit light by current.
  • the voltage application unit is provided in at least one of the one integrated circuit layer and the other integrated circuit layer, and generates a bias voltage by energy input from the outside of the semiconductor integrated circuit device. It may be a feature. As a result, it is not necessary to apply the bias voltage by using probing, so that it is possible to further reduce the number of probing times in inspection (or to eliminate probing).
  • the voltage application unit may include a photoelectric conversion element that generates an electromotive force by light irradiated from the outside of the semiconductor integrated circuit device. Thereby, a voltage application part is suitably realizable.
  • the wiring of one integrated circuit layer is one of the positive power supply wiring and the ground wiring formed on the surface of the support layer for supplying the power supply voltage to the semiconductor element group.
  • the wiring of another integrated circuit layer is the other of the positive power supply wiring and the ground wiring formed on the surface of the support layer for supplying the power supply voltage to the semiconductor element group, and a plurality of first inspections
  • the rectifying element of the rectifying element unit for use is connected in the reverse direction to one wiring, and the rectifying elements of the plurality of second rectifying element units for testing are connected in the reverse direction to the other wiring. May be a feature.
  • the rectifying element of the first inspection rectifying element unit in one integrated circuit layer, is connected in the opposite direction to one of the positive power supply wiring and the ground wiring. During the operation, no current flows through the first rectifying element for inspection.
  • the rectifying element of the second inspection rectifying element unit in another integrated circuit layer, is connected in the opposite direction to the other of the positive power supply wiring and the ground wiring, so that the first rectifying element is connected during normal operation. No current flows through the test rectifier element 2.
  • the wirings of the plurality of integrated circuit layers may be provided for inspection independently of the semiconductor element group.
  • a semiconductor integrated circuit device in which a plurality of integrated circuit layers are laminated in the thickness direction can be inspected in a short time every time one layer is further laminated.
  • FIG. 1 is a sectional view showing a configuration of a first embodiment of a semiconductor integrated circuit device according to the present invention.
  • FIG. 2 is a diagram illustrating the configuration of the rectifying element unit for inspection.
  • FIG. 3 is a flowchart showing a method for inspecting a semiconductor integrated circuit device.
  • FIG. 4 is a diagram illustrating a configuration of the test rectifying element unit.
  • FIG. 5 is a diagram illustrating the configuration of the rectifying element unit for inspection.
  • FIG. 6 is a diagram illustrating the configuration of the rectifying element unit for inspection.
  • FIG. 7 is a cross-sectional view showing a configuration of a semiconductor integrated circuit device as the second embodiment.
  • FIG. 8 is a cross-sectional view showing the configuration of the semiconductor integrated circuit device as the third embodiment.
  • FIG. 9 is a cross-sectional view showing a configuration of a semiconductor integrated circuit device as the fourth embodiment.
  • FIG. 10 is a cross-sectional view showing a configuration of a semiconductor integrated circuit device as the fifth embodiment.
  • FIG. 11 is a cross-sectional view showing a configuration of a semiconductor integrated circuit device as the sixth embodiment.
  • FIG. 12 is a cross-sectional view showing the configuration of the semiconductor integrated circuit device as the seventh embodiment.
  • FIG. 13 is a diagram showing the configuration of the power supply wiring and the ground wiring as the eighth embodiment.
  • FIG. 14 is a diagram illustrating a configuration of a voltage application unit according to the ninth embodiment.
  • FIG. 15 is a diagram illustrating a configuration of an inspection apparatus according to the tenth embodiment.
  • FIG. 16 is a diagram illustrating the configuration of an inspection apparatus according to the eleventh embodiment.
  • FIG. 1 is a cross-sectional view showing a configuration of a first embodiment of a semiconductor integrated circuit device.
  • the semiconductor integrated circuit device 1 ⁇ / b> A of the present embodiment is formed by stacking a first integrated circuit layer 10 and a second integrated circuit layer 20 in the thickness direction.
  • the surface (device forming surface) 11a of the semiconductor substrate 11 included in the integrated circuit layer 10 and the surface (device forming surface) 21a of the semiconductor substrate 21 included in the integrated circuit layer 20 are opposed to each other.
  • the integrated circuit layers 10 and 20 are bonded to each other.
  • the integrated circuit layer 10 includes a semiconductor substrate 11 having a front surface 11a and a back surface 11b, a device layer 12 provided on the front surface 11a of the semiconductor substrate 11, a wiring layer 13 provided on the device layer 12, and an integrated circuit layer 20 And a plurality of connection terminals (electrodes) 14 for electrical connection.
  • the integrated circuit layer 20 includes a semiconductor substrate 21 having a front surface 21a and a back surface 21b, a device layer 22 provided on the front surface 21a of the semiconductor substrate 21, a wiring layer 23 provided on the device layer 22, and an integrated circuit layer. And a plurality of connection terminals (electrodes) 24 to be electrically connected to the circuit layer 10.
  • the semiconductor substrates 11 and 21 are made of, for example, silicon.
  • the semiconductor substrates 11 and 21 are support layers for the integrated circuit layers 10 and 20.
  • the device layers 12 and 22 include a semiconductor element group including a plurality of semiconductor elements such as transistors.
  • the plurality of semiconductor elements are formed through semiconductor processes such as ion implantation on the surfaces 11 a and 21 a of the semiconductor substrates 11 and 21. Note that the plurality of semiconductor elements may be formed by epitaxially growing a semiconductor crystal on the semiconductor substrates 11 and 21.
  • the plurality of semiconductor elements may be formed by a semiconductor process that does not use ion implantation, such as ALD (Atomic Layer Deposition).
  • the wiring layers 13 and 23 include a plurality of wirings for electrically connecting a plurality of semiconductor elements included in the device layers 12 and 22 to each other.
  • the plurality of wirings include positive power supply wirings 13a and 23a and ground wirings 13b and 23b for applying a power supply voltage to the plurality of semiconductor elements, in addition to signal wirings connecting the semiconductor elements.
  • the positive power supply wiring 13a and the ground wiring 13b of the integrated circuit layer 10 and the positive power supply wiring 23a and the ground wiring 23b of the integrated circuit layer 20 are arranged independently of each other, and are connected to each other at the time of inspection. Has not been made.
  • the plurality of connection terminals 14 and 24 are provided on the wiring layers 13 and 23, respectively.
  • Each of the plurality of connection terminals 14 of the integrated circuit layer 10 and each of the plurality of connection terminals 24 of the integrated circuit layer 20 are disposed at positions facing each other on the surface 11a and the surface 21a, and are in contact with each other. Electrically connected.
  • Each of the plurality of connection terminals 14 and 24 is preferably configured by, for example, a bump electrode.
  • the integrated circuit layer 10 further includes a plurality of first inspection rectifier elements 15.
  • Each of the plurality of test rectifying element portions 15 is formed in the device layer 12 and corresponds one-to-one to each of the plurality of connection terminals 14 for signal wiring.
  • the plurality of test rectifier elements 15 include rectifier elements 15a and 15b, respectively.
  • the rectifying elements 15a and 15b are, for example, diodes.
  • the rectifying element 15 a is connected in a reverse direction between the positive power supply wiring 13 a of the integrated circuit layer 10 and the connection terminal 14, and the rectifying element 15 b is connected between the ground wiring 13 b of the integrated circuit layer 10 and the connection terminal 14. There is a reverse connection in between.
  • the cathode of the rectifier element 15a and the positive power supply wiring 13a are connected to each other, and the anode of the rectifier element 15a and the connection terminal 14 are connected to each other.
  • the anode of the rectifying element 15b and the ground wiring 13b are connected to each other, and the cathode of the rectifying element 15b and the connection terminal 14 are connected to each other.
  • the circuit symbols of the rectifying elements (diodes) 15a and 15b are clearly shown for easy understanding.
  • the inspection rectifying element unit 15 has a configuration for emitting light by current. Such a configuration is suitably realized, for example, when the rectifying elements 15a and 15b themselves emit light by current. Alternatively, the test rectifying element unit 15 can be suitably realized by further including two light emitting elements connected in series with the rectifying elements 15a and 15b, respectively.
  • the integrated circuit layer 20 further includes a plurality of second inspection rectifier elements 25.
  • Each of the plurality of test rectifier elements 25 is formed in the device layer 22 and corresponds to each of the plurality of connection terminals 24 for signal wiring on a one-to-one basis.
  • the plurality of test rectifier elements 25 include rectifier elements 25a and 25b, respectively.
  • the rectifying elements 25a and 25b are, for example, diodes.
  • the rectifying element 25 a is connected in a reverse direction between the positive power supply wiring 23 a of the integrated circuit layer 20 and the connection terminal 24, and the rectifying element 25 b is connected between the ground wiring 23 b of the integrated circuit layer 20 and the connection terminal 24. There is a reverse connection in between.
  • the cathode of the rectifying element 25a and the positive power supply wiring 23a are connected to each other, and the anode of the rectifying element 25a and the connection terminal 24 are connected to each other.
  • the anode of the rectifying element 25b and the ground wiring 23b are connected to each other, and the cathode of the rectifying element 25b and the connection terminal 24 are connected to each other.
  • the circuit symbols of the rectifying elements (diodes) 25a and 25b are clearly shown for easy understanding.
  • the inspection rectifying element unit 25 has a configuration for emitting light by current. Such a configuration is suitably realized, for example, when the rectifying elements 25a and 25b themselves emit light by current.
  • the test rectifying element unit 25 can be preferably realized by further including two light emitting elements connected in series with the rectifying elements 25a and 25b, respectively.
  • FIG. 2 is a diagram illustrating a configuration of the test rectifying element unit 35A.
  • This inspection rectifier element portion 35A can be replaced with the inspection rectifier element portions 15 and 25 shown in FIG.
  • the test rectifying element portion 35A includes a rectifying element 35a connected in a reverse direction between the connection terminal 14 or 24 and the positive power supply wiring 13a or 23a, and the rectifying element 35a. And a light emitting diode 35c as a light emitting element connected in series. Further, the test rectifying element unit 35A includes a rectifying element 35b connected in a reverse direction between the connection terminal 14 or 24 and the ground wiring 13b or 23b, and a light emission connected in series to the rectifying element 35b. A light emitting diode 35d as an element.
  • the integrated circuit layer 20 includes a plurality of through wirings (Through Silicon Via) for connecting the wiring of the wiring layer 23 on the front surface 21a of the semiconductor substrate 21 and the plurality of connection terminals (electrodes) 26 on the back surface 21b to each other. : TSV) 27.
  • One connection terminal 26 a among the plurality of connection terminals 26 is electrically connected to the positive power supply wiring 23 a of the integrated circuit layer 20 through the through wiring 27.
  • One of the plurality of connection terminals 26 is electrically connected to the ground wiring 23 b of the integrated circuit layer 20 through the through wiring 27.
  • connection terminal 26 c among the plurality of connection terminals 26 is electrically connected to the positive power supply wiring 13 a of the integrated circuit layer 10 through the through wiring 27 and the connection terminals 24 and 14.
  • connection terminal 26 d among the plurality of connection terminals 26 is electrically connected to the ground wiring 13 b of the integrated circuit layer 10 through the through wiring 27 and the connection terminals 24 and 14.
  • the connection terminals 26a to 26d are provided in order to dispose the power supply systems of the integrated circuit layers 10 and 20 independently of each other.
  • connection terminals 26a to 26d and the through wiring 27 connected thereto connect the positive power supply wiring 13a (or ground wiring 13b) of the integrated circuit layer 10 and the ground wiring 23b (or positive power supply wiring 23a) of the integrated circuit layer 20.
  • a voltage applying unit for applying a bias voltage to the test rectifying element units 15 and 25 is configured.
  • the semiconductor integrated circuit device 1A further includes an adhesive layer 7a.
  • the adhesive layer 7a is provided in a gap between the integrated circuit layer 10 and the integrated circuit layer 20, and mechanically bonds the integrated circuit layer 10 and the integrated circuit layer 20 together.
  • the adhesive layer 7a preferably includes a material that can shield light from the rectifying element portion 15 for inspection.
  • FIG. 3 is a flowchart showing this inspection method.
  • each of the integrated circuit layers 10 and 20 is individually manufactured (integrated circuit layer forming step S11). Specifically, the semiconductor substrate 11 for the integrated circuit layer 10 is prepared, and the device layer 12 is formed on the surface 11 a of the semiconductor substrate 11. At this time, the test rectifying element portion 15 (rectifying elements 15 a and 15 b) is formed in the device layer 12 together with the semiconductor element group. Next, the wiring layer 13 is formed on the device layer 12. At this time, a plurality of connection terminals 14 to be electrically connected to the integrated circuit layer 20, the positive power supply wiring 13 a, and the ground wiring 13 b are formed in the wiring layer 13 or on the wiring layer 13.
  • step S11 it is desirable to test that there is no abnormality in the semiconductor element group of the device layer 12 by performing an operation test of the integrated circuit layer 10.
  • the integrated circuit layer 20 is formed in the same manner as the integrated circuit layer 10. That is, the semiconductor substrate 21 for the integrated circuit layer 20 is prepared, and the device layer 22 is formed on the surface 21 a of the semiconductor substrate 21. At this time, the test rectifying element portion 25 (rectifying elements 25a and 25b) is formed in the device layer 22 together with the semiconductor element group. Next, the wiring layer 23 is formed on the device layer 22. At this time, a plurality of connection terminals 24 to be electrically connected to the integrated circuit layer 10, a positive power supply wiring 23 a, and a ground wiring 23 b are formed in the wiring layer 23 or on the wiring layer 23.
  • step S11 it is desirable to test that there is no abnormality in the semiconductor element group of the device layer 22 by performing an operation test of the integrated circuit layer 20.
  • the integrated circuit layer 10 and the integrated circuit layer 20 are bonded to each other (bonding step S12). That is, the integrated circuit layer 10 and the integrated circuit layer 20 are bonded via the adhesive layer 7a so that the surface 11a of the semiconductor substrate 11 and the surface 21a of the semiconductor substrate 21 face each other. At the same time, each of the plurality of connection terminals 14 of the integrated circuit layer 10 and each of the plurality of connection terminals 24 of the integrated circuit layer 20 are joined to electrically connect them.
  • the integrated circuit layers 10 and 20 may be a single chip divided from the wafer, an aggregate including a plurality of chips, or the state of the wafer before the division. It may be.
  • a bias voltage is applied to the inspection rectifier elements 15 and 25 (first inspection voltage application step S13). That is, a probe bias is applied to the connection terminals 26 b and 26 c, and a bias voltage for inspection in which the ground wiring 23 b side has a positive potential between the positive power supply wiring 13 a of the integrated circuit layer 10 and the ground wiring 23 b of the integrated circuit layer 20. Is applied. As a result, a forward bias voltage is applied to the rectifying element 15 a of the test rectifying element unit 15 and the rectifying element 25 b of the test rectifying element unit 25.
  • the rectifying elements 15a and 25b (or the rectifying elements 15a and 25b are connected in series).
  • Another light emitting element emits light.
  • the connection state between the plurality of connection terminals 14 of the integrated circuit layer 10 and the plurality of connection terminals 24 of the integrated circuit layer 20 is inspected (first inspection step S14).
  • the semiconductor integrated circuit device 1 ⁇ / b> A is imaged from the back surface 21 b side of the integrated circuit layer 20 or from the back surface 11 b side of the integrated circuit layer 10.
  • the bright spot (light emission of the inspection rectifying element unit 15 or 25) included in the imaging data is compared with data relating to the light emission position of the inspection rectifying element unit 15 or 25 prepared in advance.
  • the connection corresponding to the inspection rectifier element 15 or 25 Terminals 14 and 24 are determined to be poorly connected.
  • a bias voltage is applied to the inspection rectifier elements 15 and 25 (second inspection voltage application step S15).
  • a probe is applied to the connection terminals 26a and 26d, and a bias voltage for inspection in which the ground wiring 13b side is at a positive potential between the ground wiring 13b of the integrated circuit layer 10 and the positive power supply wiring 23a of the integrated circuit layer 20. Is applied.
  • a forward bias voltage is applied to the rectifying element 15b of the test rectifying element unit 15 and the rectifying element 25a of the test rectifying element unit 25.
  • the rectifying elements 15b and 25a (or the rectifying elements 15b and 25a are connected in series).
  • Another light emitting element emits light.
  • the connection state between the plurality of connection terminals 14 of the integrated circuit layer 10 and the plurality of connection terminals 24 of the integrated circuit layer 20 is inspected (second inspection step S16).
  • the semiconductor integrated circuit device 1 ⁇ / b> A is imaged from the back surface 21 b side of the integrated circuit layer 20 or from the back surface 11 b side of the integrated circuit layer 10.
  • a bright spot (light emission of the inspection rectifier element 15 or 25) included in the imaging data is compared with a bright spot on the reference data regarding the light emission position of the inspection rectifier element 15 or 25 prepared in advance. To do.
  • the connection corresponding to the test rectifier element 15 or 25 Terminals 14 and 24 are determined to be poorly connected.
  • the light emission image from the test rectifying element unit 15 or 25 and the back surface pattern image of the integrated circuit included in the integrated circuit layer 10 or 20 are acquired sequentially or simultaneously, and the layout data and back surface pattern of the integrated circuit layer 10 or 20 are acquired. It is better to align with the image. Note that only the light emission image from the inspection rectifying element unit 15 or 25 may be acquired, and the alignment may be performed by comparing the light emission position with data relating to the characteristic arrangement of the light emission position.
  • test rectifying element portions 15 and 25 may include only the rectifying elements 15a and 25b, respectively, or may include only the rectifying elements 15b and 25a, respectively.
  • the imaging data obtained in step S13 and the imaging data obtained in step S14 are compared (or superimposed), and the comparison data (or superimposed data) is compared with the reference data to determine the presence or absence of a connection failure. You may inspect. For example, when the positions of the rectifying elements 15a and 15b are close to each other, the reliability of the imaging data can be improved by observing the light from the rectifying element 15a and the light from the rectifying element 15b together.
  • the semiconductor integrated circuit device includes electrical (interlayer) connection terminals such as bump electrodes between the integrated circuit layers.
  • the interlayer connection terminal is hidden inside the laminated structure, and it is not easy to specify the location where the connection failure occurs. Therefore, if the continuity test of the interlayer connection terminal can be performed every time one integrated circuit layer is stacked, the location where the connection failure occurs can be specified. Furthermore, it is possible to effectively prevent the waste of stacking a new integrated circuit layer on the integrated circuit layer having the connection failure portion.
  • the plurality of connection terminals 14 of the integrated circuit layer 10 and the plurality of connection terminals 24 of the integrated circuit layer 20 are electrically connected to each other by, for example, bumps or the like. Are connected to each other, and the test rectifying element portions 15 and 25 are connected via the positive power supply wiring 13a (or ground wiring 13b) of the integrated circuit layer 10 and the ground wiring 23b (or positive power supply wiring 23a) of the integrated circuit layer 20.
  • a bias voltage is applied to At this time, when the connection terminal 14 of the integrated circuit layer 10 and the connection terminal 24 of the integrated circuit layer 20 are well connected, the positive power supply wiring 13a (or ground wiring 13b) of the integrated circuit layer 10 to The test rectifier element 15 to the connection terminal 14 of the integrated circuit layer 10 to the connection terminal 24 of the integrated circuit layer 20 to the ground wiring 23b (or the positive power supply line 23a) of the test rectifier element 25 to the integrated circuit layer 20 A current path is constructed.
  • the magnitude of the current flowing through this current path is determined by the resistance values of the positive power supply wiring 13a (or ground wiring 13b) and the ground wiring 23b (or positive power supply wiring 23a), the resistance values of the connection terminals 14 and 24, and
  • the resistance values of the test rectifying element portions 15 and 25 are inversely proportional to the total resistance value.
  • the resistance value of the power supply wiring and the ground wiring is much smaller than the resistance value of the interlayer connection terminal, and the resistance value of the test rectifying element portion (rectifying element) is known.
  • the amount of light emitted from the test rectifying element portions 15 and 25 mainly depends on the resistance values of the connection terminals 14 and 24, and the connection terminals 14 and 24 are not connected to each other (that is, the resistance value is infinite). If so, the test rectifier elements 15 and 25 do not emit light. Accordingly, the connection rectifier elements 15 and 25 are observed to detect the presence or absence of light emission to detect a connection failure of the connection terminals 14 and 24, and the light emission amount is observed to detect the connection terminals 14 and 24. Can be estimated.
  • a plurality of connection portions of the integrated circuit layer 10 are connected based on light emission of at least one of the inspection rectifying element portions 15 and 25.
  • the connection state between the terminal 14 and the plurality of connection terminals 24 of the integrated circuit layer 20 can be inspected. Accordingly, by observing collectively the presence or absence of light emission corresponding to each of a large number of connection terminals 14 and 24, it is possible to easily determine the presence or absence of a connection failure. As compared with the method of sequentially inspecting, the presence / absence of a connection failure can be inspected in a short time each time an integrated circuit layer is stacked.
  • the number of probing per stack can be remarkably reduced or eliminated at all, so that poor connection can be reduced.
  • connection failure it is possible to easily inspect whether there is a connection failure every time an integrated circuit layer is stacked, so that a normal integrated circuit layer is stacked on the integrated circuit layer where the connection failure has occurred. Can prevent waste. Further, since the location of the connection failure can be easily detected in-line, the feedback for improving the integrated circuit layer can be accelerated and the yield can be improved.
  • the wiring for applying the inspection bias voltage to the inspection rectifying element portion 15 is the positive power supply wiring 13 a for supplying the power supply voltage to the semiconductor element group of the device layer 12.
  • the wiring for applying the inspection bias voltage to the inspection rectifying element section 25 is preferably a ground wiring 23 b for supplying a power supply voltage to the semiconductor element group of the device layer 22.
  • the rectifying element 15a of the test rectifying element unit 15 is connected in the reverse direction to the positive power supply wiring 13a, and the rectifying element 25b of the test rectifying element unit 25 is connected in the reverse direction to the ground wiring 23b. preferable.
  • the wiring for applying the inspection bias voltage to the inspection rectifier element portion 15 is the ground wiring 13b for supplying the power supply voltage to the semiconductor element group of the device layer 12, and the inspection rectifier element portion.
  • the wiring for applying a bias voltage for inspection to 25 is preferably a positive power supply wiring 23 a for supplying a power supply voltage to the semiconductor element group of the device layer 22.
  • the rectifying element 15b of the test rectifying element unit 15 is connected in the reverse direction to the ground wiring 13b, and the rectifying element 25a of the test rectifying element unit 25 is connected in the reverse direction to the positive power supply wiring 23a. preferable.
  • the rectifying elements 15a and 15b of the test rectifying element unit 15 are connected to the positive power supply wiring 13a and the ground wiring 13b in opposite directions, respectively.
  • the rectifying elements 25a and 25b of the test rectifying element unit 25 are connected in opposite directions to the positive power supply wiring 23a and the ground wiring 23b, respectively. No current flows through 25.
  • the inspection bias voltage which is forward with respect to the inspection rectifying element portions 15 and 25 (that is, opposite to the power supply voltage during normal operation) is connected to the positive power supply wiring 13a and By applying the voltage via the ground wiring 23b or via the ground wiring 13b and the positive power supply wiring 23a, current can be supplied to the test rectifying element portions 15 and 25 to emit light. Therefore, when the semiconductor integrated circuit device 1A has the above configuration, it is possible to inspect the presence or absence of an interlayer connection failure using the existing power supply wiring and ground wiring.
  • FIG. 4 is a diagram illustrating a configuration of the test rectifying element unit 35B.
  • This inspection rectifier element portion 35B can be replaced with the inspection rectifier element portions 15 and 25 shown in FIG.
  • the test rectifying element section 35B includes a rectifying element 35a and a light emitting transistor 35e as a light emitting element connected in series to the rectifying element 35a.
  • the inspection rectifying element section 35B includes a rectifying element 35b and a light emitting transistor 35f as a light emitting element connected in series to the rectifying element 35b.
  • FIG. 5 is a diagram showing a configuration of the rectifying element portion 35C for inspection.
  • the inspection rectifying element portion 35C can be replaced with the inspection rectifying element portions 15 and 25 shown in FIG.
  • the test rectifying element portion 35C is connected in series to the rectifying element 35a and the rectifying element 35a, and between the connection terminal 14 or 24 and the positive power supply wiring 13a or 23a.
  • a low breakdown voltage diode 35g as a light emitting element connected in the forward direction.
  • the test rectifying element portion 35C is a light emitting device connected in series to the rectifying element 35b and the rectifying element 35b and forward-connected between the connection terminal 14 or 24 and the ground wiring 13b or 23b.
  • a low breakdown voltage diode 35h as an element.
  • FIG. 6 is a diagram showing a configuration of the test rectifying element portion 35D.
  • This inspection rectifier element portion 35D can be replaced with the inspection rectifier element portions 15 and 25 shown in FIG.
  • the test rectifying element portion 35D includes a rectifying element 35a and a tunnel current capacitor 35i as a light emitting element connected in series to the rectifying element 35a.
  • the test rectifying element portion 35D includes a rectifying element 35b and a tunnel current capacitor 35j as a light emitting element connected in series to the rectifying element 35b.
  • the rectifying element In order to reduce the additional capacity due to the addition of the rectifying element for inspection, it is desirable to arrange the rectifying element in the immediate vicinity of the connection terminal and the through wiring.
  • the connection terminal and the through wiring may hinder detection of light emission. . Therefore, as shown in FIG. 2 and FIGS. 4 to 6, by providing the light emitting element separately from the rectifying element, the light emitting element can be arranged away from the through wiring and the connection terminal, and the light emission can be performed. It becomes easy to observe.
  • the light-emitting element all semiconductor elements that emit light according to current can be applied. Further, the light emission wavelengths of the light emitting elements may be different from each other.
  • the rectifying element here is an element (diode, transistor, thyristor, etc.) having a junction structure in which a current flows in response to a bias voltage in a non-linear manner.
  • a junction structure includes a PN junction that is a junction between a P-type semiconductor and an N-type semiconductor, a junction between a P-type semiconductor and an I (intrinsic) type semiconductor that does not contain impurities, and an I-type semiconductor and an N-type semiconductor.
  • a PN junction is most preferable.
  • light emission at forward bias in the PN junction and PIN junction is mainly recombination light emission
  • light emission at reverse bias in the PN junction and PIN junction and light emission from the channel of the MOS transistor are mainly hot carrier light emission.
  • the rectifying element in the present embodiment a PN diode that also has a light emitting function is most preferable.
  • the tunnel junction has a characteristic that no current flows when the bias is low and a large current flows when the bias is high. Therefore, current flows when a high bias voltage is applied during inspection, and current can be prevented from flowing under normal use conditions.
  • hot carrier light emission corresponding to a given voltage difference occurs in the tunnel junction portion, and recombination light emission occurs when one semiconductor constituting the tunnel junction portion is P-type and the other semiconductor is N-type. Arise. Therefore, it can be used as a rectifying element having a light emitting function, or can be used as a light emitting element.
  • the inspection rectifier element portion 15 of the integrated circuit layer 10 and the inspection rectifier element portion 25 of the integrated circuit layer 20 emit light simultaneously.
  • the wiring layers 13 and 23 of the integrated circuit layers 10 and 20 exist.
  • bumps or the like as connection terminals 14 and 24 exist between the integrated circuit layer 10 and the integrated circuit layer 20. Accordingly, since the light from the inspection rectifying element portions 15 and 25 is shielded by the wiring layers 13 and 23 and the connection terminals 14 and 24, the light from the inspection rectifying element portion 15 (or 25) is transmitted from each side. When observing, the light from the rectifying element portion 25 (or 15) for inspection is unlikely to hinder observation.
  • the wiring density distribution and the wiring shape of the wiring layers 13 and 23 may be devised so as to effectively shield these lights. Moreover, you may select the material and component of the contact bonding layer 7a so that these lights may be shielded effectively.
  • FIG. 7 is a cross-sectional view showing a configuration of a semiconductor integrated circuit device 1B as the second embodiment.
  • the semiconductor integrated circuit device 1B according to the present embodiment includes integrated circuit layers 20 and 30.
  • the integrated circuit layers 30 and 20 are bonded to each other so that the back surface 11b of the semiconductor substrate 11 included in the integrated circuit layer 30 and the front surface 21a of the semiconductor substrate 21 included in the integrated circuit layer 20 face each other.
  • the other configuration of the integrated circuit layer 30 except the configuration described below is the same as that of the integrated circuit layer 10 of the above embodiment.
  • the integrated circuit layer 30 includes a semiconductor substrate (support layer) 11 having a front surface 11a and a back surface 11b, a device layer 12 provided on the front surface 11a of the semiconductor substrate 11, a wiring layer 13 provided on the device layer 12, And a plurality of connection terminals (electrodes) 34 to be electrically connected to the integrated circuit layer 20.
  • the plurality of wirings of the wiring layer 13 includes a positive power supply wiring 13a and a ground wiring 13b for applying a power supply voltage to the plurality of semiconductor elements.
  • the plurality of connection terminals 34 are provided on the back surface 11 b of the semiconductor substrate 11.
  • Each of the plurality of connection terminals 34 of the integrated circuit layer 30 and each of the plurality of connection terminals 24 of the integrated circuit layer 20 are arranged at positions facing each other on the back surface 11b and the front surface 21a, and are in contact with each other. Electrically connected.
  • the plurality of connection terminals 34 are preferably configured by, for example, bump electrodes.
  • the integrated circuit layer 30 includes a plurality of first inspection rectifying element portions 15 corresponding one-to-one with the plurality of connection terminals 34 for signal wiring.
  • the configuration of the test rectifying element unit 15 is the same as that of the first embodiment.
  • the rectifying element 15a is connected in a reverse direction between the positive power supply wiring 13a of the integrated circuit layer 10 and the connection terminal 34, and the rectifying element 15b is connected to the ground wiring 13b of the integrated circuit layer 10 and the connection terminal 34. Is connected in the reverse direction.
  • the rectifying elements 15 a and 15 b and the connection terminal 34 are connected via a through wiring 37.
  • the through wiring 37 is a TSV for connecting the wiring of the wiring layer 13 and the plurality of connection terminals 34 on the back surface 11b.
  • the semiconductor integrated circuit device 1B further includes a handling substrate 8.
  • the handling substrate 8 is bonded to the surface 11a side of the integrated circuit layer 30 through the adhesive layer 7b.
  • connection state between the connection terminal 34 and the connection terminal 14 is suitably inspected by the inspection method shown in FIG.
  • the light from the inspection rectifier element 15 of the integrated circuit layer 30 is shielded by the wiring layer 13 and the handling substrate 8, the light from the inspection rectifier element 25 of the integrated circuit layer 20 is reflected from the back surface 21b side. It is good to observe. Thereby, the effect
  • FIG. 8 is a cross-sectional view showing a configuration of a semiconductor integrated circuit device 1C as the third embodiment.
  • the semiconductor integrated circuit device 1C according to the present embodiment is formed by stacking integrated circuit layers 10, 20 and 40 in the thickness direction.
  • the configurations and connection structures of the integrated circuit layers 10 and 20 are the same as those in the first embodiment, and the back surface 21b of the semiconductor substrate 21 included in the integrated circuit layer 20 and the semiconductor included in the integrated circuit layer 40.
  • the integrated circuit layers 20 and 40 are bonded to each other so that the surface 41a of the substrate 41 faces each other.
  • the integrated circuit layer 40 includes a semiconductor substrate (support layer) 41 having a front surface 41a and a back surface 41b, a device layer 42 provided on the front surface 41a of the semiconductor substrate 41, a wiring layer 43 provided on the device layer 42, And a plurality of connection terminals (electrodes) 44 to be electrically connected to the integrated circuit layer 20.
  • the device layer 42 includes a semiconductor element group composed of a plurality of semiconductor elements.
  • the wiring layer 43 includes a plurality of wirings for electrically connecting a plurality of semiconductor elements included in the device layer 42 to each other.
  • the plurality of wirings include a positive power supply wiring 43a and a ground wiring 43b for applying a power supply voltage to the plurality of semiconductor elements.
  • the positive power supply wiring 43a and the ground wiring 43b of the integrated circuit layer 40 and the positive power supply wirings 13a and 23a and the ground wiring 13b and 23b of the integrated circuit layers 10 and 20 are arranged independently of each other. There is no mutual connection.
  • a plurality of connection terminals 44 are provided on the wiring layer 43.
  • Each of the plurality of connection terminals 26 of the integrated circuit layer 20 and each of the plurality of connection terminals 44 are disposed at positions facing each other on the back surface 21b and the front surface 41a, and are electrically connected by being in contact with each other. ing.
  • Each of the plurality of connection terminals 44 is preferably configured by, for example, a bump electrode.
  • the integrated circuit layer 40 further includes a plurality of inspection rectifier elements 45.
  • Each of the plurality of test rectifying element portions 45 is formed in the device layer 42 and corresponds to each of the plurality of connection terminals 44 for signal wiring on a one-to-one basis.
  • the plurality of test rectifying element portions 45 include rectifying elements 45a and 45b, respectively.
  • the rectifying element 45 a is connected in a reverse direction between the positive power supply wiring 43 a of the integrated circuit layer 40 and the connection terminal 44, and the rectifying element 45 b is connected between the ground wiring 43 b of the integrated circuit layer 40 and the connection terminal 44. There is a reverse connection in between.
  • a detailed configuration example and a modification of the test rectifying element unit 45 are the same as those of the test rectifying element units 15 and 25 of the first embodiment.
  • the integrated circuit layer 40 includes a plurality of through wirings (TSV) 47 in order to connect the wiring of the wiring layer 43 on the front surface 41a of the semiconductor substrate 41 and the plurality of connection terminals (electrodes) 46 on the back surface 41b. It has further.
  • the plurality of connection terminals 46 include connection terminals 46a to 46f.
  • the connection terminals 46a and 46b are electrically connected to the positive power supply wiring 43a and the ground wiring 43b through the through wiring 47, respectively.
  • the connection terminal 46 c is electrically connected to the positive power supply wiring 23 a of the integrated circuit layer 20 through the through wiring 47, the connection terminal 44, the connection terminal 26 a, and the through wiring 27.
  • connection terminal 46 d is electrically connected to the ground wiring 23 b of the integrated circuit layer 20 through the through wiring 47, the connection terminal 44, the connection terminal 26 b, and the through wiring 27.
  • the connection terminal 46e is electrically connected to the positive power supply wiring 13a of the integrated circuit layer 10 through the through wiring 47, the connection terminal 44, the connection terminal 26c, the through wiring 27, and the connection terminals 24 and 14.
  • the connection terminal 46 f is electrically connected to the ground wiring 13 b of the integrated circuit layer 10 through the through wiring 47, the connection terminal 44, the connection terminal 26 d, the through wiring 27, and the connection terminals 24 and 14.
  • the connection terminals 46a to 46f are provided in order to dispose the power supply systems of the integrated circuit layers 10, 20, and 40 independently of each other.
  • the connection terminals 46a to 46f and the through wirings and connection terminals connected thereto constitute a voltage application unit for applying a bias voltage to the test rectifying element units 15, 25, and 45.
  • the semiconductor integrated circuit device 1 ⁇ / b> C further includes an adhesive layer 6.
  • the adhesive layer 6 is provided in a gap between the integrated circuit layer 20 and the integrated circuit layer 40 and mechanically bonds the integrated circuit layer 20 and the integrated circuit layer 40 together.
  • the adhesive layer 6 preferably includes a material that can shield light from the rectifying element portion 25 for inspection.
  • the integrated circuit layer 10 is replaced with the integrated circuit layer 20 and the integrated circuit layer 20 is replaced with the integrated circuit layer 40, respectively.
  • the connection state between the terminal 44 and the connection terminal 26 is suitably inspected.
  • the light from the inspection rectifier element portion 25 of the integrated circuit layer 20 is shielded by the wiring layer 43, the light from the inspection rectifier element portion 45 of the integrated circuit layer 40 may be observed from the back surface 41b side. Thereby, the effect
  • FIG. 9 is a cross-sectional view showing a configuration of a semiconductor integrated circuit device 1D as the fourth embodiment.
  • the semiconductor integrated circuit device 1D according to the present embodiment is formed by stacking integrated circuit layers 10, 50, and 40 in the thickness direction.
  • the configuration of the integrated circuit layer 10 is the same as that of the first embodiment, and the configuration of the integrated circuit layer 40 is the same as that of the third embodiment.
  • the front surface 11a of the semiconductor substrate 11 of the integrated circuit layer 10 and the back surface 51b of the semiconductor substrate 51 of the integrated circuit layer 50 face each other, and the front surface 51a of the semiconductor substrate 51 and the semiconductor substrate of the integrated circuit layer 40
  • the integrated circuit layers 10, 50, and 40 are bonded to each other so that the surface 41 a of 41 faces each other.
  • the integrated circuit layer 50 includes a semiconductor substrate (support layer) 51 having a front surface 51a and a back surface 51b, a device layer 52 provided on the front surface 51a of the semiconductor substrate 51, a wiring layer 53 provided on the device layer 52, And a plurality of connection terminals (electrodes) 54 to be electrically connected to the integrated circuit layer 40.
  • the device layer 52 includes a semiconductor element group including a plurality of semiconductor elements.
  • the wiring layer 53 includes a plurality of wirings for electrically connecting a plurality of semiconductor elements included in the device layer 52 to each other.
  • the plurality of wirings include a positive power supply wiring 53a and a ground wiring 53b for applying a power supply voltage to the plurality of semiconductor elements.
  • the positive power supply wires 13a, 43a and 53a and the ground wires 13b, 43b and 53b of the integrated circuit layers 10, 40 and 50 are arranged independently of each other and are not connected to each other. .
  • a plurality of connection terminals 54 are provided on the wiring layer 53.
  • Each of the plurality of connection terminals 54 and each of the plurality of connection terminals 44 of the integrated circuit layer 40 are disposed at positions facing each other on the surface 51a and the surface 41a, and are electrically connected by being in contact with each other. ing.
  • Each of the plurality of connection terminals 54 is preferably configured by, for example, a bump electrode.
  • the integrated circuit layer 50 further includes a plurality of inspection rectifying element portions 55.
  • Each of the plurality of test rectifying element portions 55 is formed in the device layer 52 and corresponds to each of the plurality of connection terminals 54 for signal wiring on a one-to-one basis.
  • the plurality of test rectifying element portions 55 include rectifying elements 55a and 55b, respectively.
  • the rectifying element 55 a is connected in the reverse direction between the positive power supply wiring 53 a of the integrated circuit layer 50 and the connection terminal 54, and the rectifying element 55 b is connected between the ground wiring 53 b of the integrated circuit layer 50 and the connection terminal 54. There is a reverse connection in between.
  • the detailed configuration example and the modification of the inspection rectifying element unit 55 are the same as those of the inspection rectifying element units 15 and 25 of the first embodiment.
  • the integrated circuit layer 50 includes a plurality of through wirings (TSV) 57 for connecting the wiring of the wiring layer 53 on the front surface 51a of the semiconductor substrate 51 and the plurality of connection terminals (electrodes) 56 on the back surface 51b to each other. It has further.
  • TSV through wirings
  • Each of the connection terminals 46 c and 46 d of the integrated circuit layer 40 is electrically connected to each of the positive power supply wiring 53 a and the ground wiring 53 b of the integrated circuit layer 50 through the through wiring 47, the connection terminal 44, and the connection terminal 54. It is connected.
  • connection terminals 46e and 46f of the integrated circuit layer 40 is connected to the integrated circuit layer via the through wiring 47, the connection terminal 44, the connection terminal 54, the through wiring 57, the connection terminal 56, and the connection terminal 14.
  • Each of the ten positive power supply wirings 13a and the ground wiring 13b is electrically connected.
  • the connection terminals 46a to 46f are provided in order to dispose the power supply systems of the integrated circuit layers 10, 50 and 40 independently of each other.
  • the connection terminals 46a to 46f and the through wires and connection terminals connected thereto constitute a voltage application unit for applying a bias voltage to the inspection rectifying element units 15, 55, and 45.
  • the integrated circuit layer 10 is replaced with the integrated circuit layer 50, and the integrated circuit layer 20 is replaced with the integrated circuit layer 40.
  • the connection state between the terminal 54 and the connection terminal 44 is suitably inspected.
  • the light from the inspection rectifier element portion 55 of the integrated circuit layer 50 is shielded by the wiring layers 43 and 53, when the light from the inspection rectifier element portion 45 of the integrated circuit layer 40 is observed from the back surface 41b side. Good. Thereby, the effect
  • FIG. 10 is a cross-sectional view showing a configuration of a semiconductor integrated circuit device 1E as the fifth embodiment.
  • the semiconductor integrated circuit device 1E according to the present embodiment is formed by stacking integrated circuit layers 10A, 20A, 10B, and 20B in the thickness direction.
  • the configuration of each of the integrated circuit layers 10A and 20A and the joint structure thereof are the same as those of the integrated circuit layers 10 and 20 of the first embodiment.
  • the configuration of each of the integrated circuit layers 10B and 20B and the junction structure with each other are the same as those of the integrated circuit layers 10 and 20 of the first embodiment except for the following points.
  • the integrated circuit layer 10B is bonded to the integrated circuit layer 20A via the adhesive layer 7c so that the back surface 11b of the semiconductor substrate 11 faces the back surface 21b of the semiconductor substrate 21 of the integrated circuit layer 20A.
  • the integrated circuit layer 10B has a plurality of through wirings (TSV) for connecting the wiring of the wiring layer 13 on the front surface 11a of the semiconductor substrate 11 and the plurality of connection terminals (electrodes) 16 on the back surface 11b to each other. ) 17.
  • the plurality of connection terminals 16 are arranged in one-to-one correspondence with the plurality of connection terminals 26 for signal wiring of the integrated circuit layer 20A, and the plurality of connection terminals 16 of the integrated circuit layer 10B and the integrated circuit layer 20A.
  • a plurality of connection terminals 26 are electrically connected to each other.
  • connection terminals 26 of the integrated circuit layer 20B include terminal electrodes 26a to 26f. Each of the connection terminals 26a and 26b is electrically connected to each of the positive power supply wiring 23a and the ground wiring 23b of the integrated circuit layer 20B through the through wiring 27.
  • the connection terminal 26c includes the through wiring 27 and the connection terminal 24 of the integrated circuit layer 20B, the connection terminal 14 of the integrated circuit layer 10B, the through wiring 17 and the connection terminal 16, and the connection terminal 26 of the integrated circuit layer 20A. It is electrically connected to the positive power supply wiring 23a of the integrated circuit layer 20A through the through wiring 27.
  • the connection terminal 26d is also electrically connected to the ground wiring 23b of the integrated circuit layer 20A with the same configuration.
  • the connection terminal 26e includes the through wiring 27 and connection terminal 24 of the integrated circuit layer 20B, the connection terminal 14 of the integrated circuit layer 10B, the through wiring 17 and the connection terminal 16, and the connection terminal 26 of the integrated circuit layer 20A.
  • the through wiring 27, the connection terminal 24, and the connection terminal 14 of the integrated circuit layer 10A are electrically connected to the positive power supply wiring 13a of the integrated circuit layer 10A.
  • the connection terminal 26f is also electrically connected to the ground wiring 13b of the integrated circuit layer 10A with the same configuration.
  • connection terminals 26a to 26f are provided on the integrated circuit layer 20B in order to dispose the power supply systems of the integrated circuit layers 10A, 20A, and 20B independently of each other.
  • the connection terminals 26a to 26f and the through wires and connection terminals connected thereto constitute a voltage application unit for applying a bias voltage to the test rectifying element units 15 and 25.
  • the integrated circuit layer 10 is replaced with the integrated circuit layer 20A, and the integrated circuit layer 20 is replaced with the integrated circuit layer 20B.
  • the connection state of the signal path from the connection terminal 24 of the layer 20B to the connection terminal 26 of the integrated circuit layer 20A is suitably inspected.
  • the test rectifier element 25 of the integrated circuit layer 20A is shielded by the wiring layer 13 of the integrated circuit layer 10B and the wiring layer 23 of the integrated circuit layer 20B, the test rectifier of the integrated circuit layer 20B.
  • the light from the portion 25 may be observed from the back surface 21b side of the integrated circuit layer 20B. Thereby, the effect
  • the uppermost integrated circuit in the case where three or more integrated circuit layers are stacked and inter-substrate wiring such as bus wiring provided in common between the integrated circuit layers is continuous over three or more layers, the uppermost integrated circuit as in this embodiment.
  • a test bias voltage between the layer 20B and the third and subsequent integrated circuit layers 20A, it is possible to detect a connection failure and estimate a resistance value over the three or more integrated circuit layers 20A, 10B, and 20B. It can be carried out.
  • this embodiment after individually inspecting a laminate in which the integrated circuit layers 10A and 20A are joined and a laminate in which the integrated circuit layers 10B and 20B are joined, on the one laminate.
  • the uppermost layer (integrated circuit layer 20B) and the second layer Interlayer connection with (integrated circuit layer 10B), interlayer connection between second layer (integrated circuit layer 10B) and third layer (integrated circuit layer 20A), and poor connection of TSV in second layer and third layer can be detected collectively.
  • the semiconductor integrated circuit device 1E of the present embodiment has a configuration in which two semiconductor integrated circuit devices 1A according to the first embodiment are joined.
  • the two semiconductor integrated circuit devices joined in this way are as follows. Any of the configurations of the first to fourth embodiments described above may be provided, and those having different configurations may be combined.
  • FIG. 11 is a cross-sectional view showing a configuration of a semiconductor integrated circuit device 1F as the sixth embodiment.
  • the semiconductor integrated circuit device 1F according to the present embodiment is formed by stacking integrated circuit layers 10C and 20C in the thickness direction.
  • the configurations of the integrated circuit layers 10C and 20C and the joint structures thereof are the same as the configurations of the integrated circuit layers 10 and 20 of the first embodiment, except for the following points.
  • connection terminals 14A and 24A respectively, instead of the connection terminals 14 and 24 of the first embodiment.
  • the connection terminal 14A is not a bump electrode as in the first embodiment but a pad-like electrode.
  • one end of the TSV 28a protrudes from the surface 21a of the integrated circuit layer 20C as the connection terminal 24A, and the one end is in contact with the connection terminal 14A.
  • the other end of the TSV 28a is in contact with a rewiring 29 provided on the back surface 21b of the semiconductor substrate 21, and is connected to the wiring of the wiring layer 23 via another TSV 28b in contact with the rewiring 29.
  • the other end of the TSV 28a is in contact with a connection terminal 26 provided on the back surface 21b of the semiconductor substrate 21 in the case of power supply wiring or ground wiring.
  • the integrated circuit layer 10C and the integrated circuit layer 20C are joined in a direction in which the front surfaces 11a and 21a face each other, and then the integrated circuit layer 10C is connected from the back surface 21b of the semiconductor substrate 21.
  • the first hole reaching the terminal 14A and the second hole reaching the wiring layer 23 from the back surface 21b are formed by etching or the like, and after the metal material is embedded in the first and second holes, rewiring is performed thereon. 29 is formed.
  • a hole reaching the connection terminal 14A from the back surface 21b is formed, and a metal material is embedded in the hole, and then the connection terminal 26 is formed thereon. It is produced by doing.
  • the operations and effects described in the first embodiment can be suitably obtained even in the interlayer connection structure as in the present embodiment.
  • FIG. 12 is a cross-sectional view showing a configuration of a semiconductor integrated circuit device 1G as the seventh embodiment.
  • the semiconductor integrated circuit device 1G according to the present embodiment is formed by stacking integrated circuit layers 20D and 30D in the thickness direction.
  • the configuration of each of the integrated circuit layers 20D and 30D and the junction structure with each other are the same as the configuration of each of the integrated circuit layers 20 and 30 of the first modification except for the following points.
  • the integrated circuit layers 20D and 30D of this embodiment are manufactured by removing a silicon layer from a substrate having a so-called SOI (Silicon On Insulator) structure, and have oxide film layers 21D and 11D as support layers, respectively.
  • the plurality of through wirings 27 of the integrated circuit layer 20D are formed so as to penetrate the oxide film layer 21D, and one end of the back surface 21b side is exposed from the oxide film layer 21D as a plurality of connection terminals 26A.
  • the plurality of through wirings 37 of the integrated circuit layer 30D are formed so as to penetrate the oxide film layer 11D, and one end of the back surface 31b side is exposed from the oxide film layer 11D as a plurality of connection terminals 34A.
  • Each of the plurality of connection terminals 34A is electrically connected to each of the plurality of connection terminals 24 of the integrated circuit layer 20D.
  • the plurality of through wires 27 and 37 are not via TSVs as in the above embodiments, but merely via contacts.
  • the operations and effects described in the first embodiment can be suitably obtained.
  • the bump electrode as the connection terminal may be a one-side bump, or a TSV may be used instead of the bump electrode.
  • the metal films as the connection terminals may be directly joined without providing the bump electrodes.
  • an adhesive layer is used for bonding the integrated circuit layers.
  • a metal film is formed in a region other than the connection terminal of each integrated circuit layer, and the metal films are directly connected to each other. May be joined together. Further, if the mechanical strength of each integrated circuit layer is sufficient, a gap may be provided between the two integrated circuit layers.
  • FIG. 13 is a diagram showing the configuration of the power supply wiring and the ground wiring as the eighth embodiment.
  • FIG. 13 in this embodiment, in order to apply a bias voltage to the plurality of test rectifier elements 65, at least two systems (two systems in this embodiment) of power supplies per integrated circuit layer 60. Wirings 63a and 63b are provided.
  • the plurality of connection terminals 64 of the integrated circuit layer 60 are two-dimensionally arranged along two directions orthogonal to each other.
  • FIG. 13 also shows a test rectifier element 66 and a ground wiring 67 in another integrated circuit layer.
  • One power supply wiring 63a applies a bias voltage to the inspection rectifier element portion 65 electrically connected to a part of the connection terminals 64 arranged in a checkered pattern among the plurality of connection terminals 64.
  • the other power supply wiring 63 b applies a bias voltage to the inspection rectifier element portion 65 electrically connected to the remaining connection terminals 64 among the plurality of connection terminals 64. Therefore, the connection terminal 64 connected to the inspection rectifier element portion 65 to which the bias voltage is applied from the power supply wiring 63a and the connection terminal connected to the inspection rectifier element portion 65 to which the bias voltage is applied from the power supply wiring 63b.
  • the terminal 64 is not adjacent in the two directions.
  • each inspection rectifier element portion 65 emits light only when a bias voltage is applied from the corresponding power supply wiring 63a or 63b, but the adjacent connection terminals 64 are short-circuited. In this case, the inspection rectifier element 65 emits light regardless of the bias voltage applied to either of the power supply wirings 63a and 63b. By observing this light emission, it can be detected that adjacent connection terminals 64 are short-circuited.
  • FIG. 14 is a diagram illustrating a configuration of the voltage application unit 68 according to the ninth embodiment.
  • the voltage application unit 68 is connected between the positive power supply wiring 23a of the integrated circuit layer 20 and the ground wiring 13b of the integrated circuit layer 10 shown in FIG. 1 (or between the positive power supply wiring 13a and the ground wiring 23b). Is done.
  • the voltage application unit 68 includes one or more photoelectric conversion elements (diodes) 68a. In the example shown in FIG. 14, two photoelectric conversion elements 68a are connected in series.
  • the anode side of the photoelectric conversion element 68a is connected to the positive power supply wiring 23a (or the positive power supply wiring 13a), and the cathode side of the photoelectric conversion element 68a is connected to the ground wiring 13b (or the ground wiring 23b).
  • the photoelectric conversion element 68a generates a bias voltage for inspection by energy input (light input) from the outside of the semiconductor integrated circuit device 1A.
  • an element that realizes such a voltage application unit is not limited to a photoelectric conversion element, and other types of elements can be used as long as an electromotive force can be generated by the incidence of external energy rays. May be.
  • a coil part as an electromotive force element may be provided in at least one of the integrated circuit layers 10 and 20. In this case, a bias voltage can be generated by irradiating the coil part with a magnetic field.
  • FIG. 15 is a diagram illustrating a configuration of an inspection apparatus 100A as the tenth embodiment.
  • This inspection apparatus 100A is preferably the above-described inspection method for the semiconductor integrated circuit device according to the first to ninth embodiments (in the drawing, the semiconductor integrated circuit device 1A according to the first embodiment is shown as a representative). It is an apparatus for implementing.
  • the inspection apparatus 100A includes a camera 101 that captures an image including the light emission, and a sufficiently large size for inspection in order to capture the light emission from the inspection rectifying element unit 15 or 25 of the semiconductor integrated circuit device 1A as an image.
  • a power supply 102 for generating a bias voltage probes (voltage applying means) 103a and 103b for applying the bias voltage to the test rectifying element unit 15 or 25 in the forward direction, and an image from the camera 101.
  • a control system 104 for inspecting whether there is a connection failure.
  • An objective lens 109 and an imaging lens 110 are provided between the camera 101 and the semiconductor integrated circuit device 1A.
  • the camera 101 emits light from the inspection rectifier element 15 or 25 via the objective lens 109 and the imaging lens 110. Take an image.
  • the camera 101 is electrically connected to the control system 104 via the camera cable 101 a, the operation of the camera 101 is controlled by the control system 104, and the imaging data is sent to the control system 104.
  • the inspection apparatus 100A further includes an illumination system 105 for observing the pattern of the integrated circuit.
  • the illumination system 105 includes a light guide 106, a lamp light source 107, and a beam splitter 108.
  • the light emitted from the lamp light source 107 passes through the light guide 106 and reaches the beam splitter 108.
  • the beam splitter 108 is disposed between the objective lens 109 and the imaging lens 110, reflects light from the lamp light source 107 toward the semiconductor integrated circuit device 1A, and outputs light from the semiconductor integrated circuit device 1A. Transparent.
  • the camera 101 can take an image of the integrated circuit pattern of the uppermost integrated circuit layer 20 in addition to the light emission from the inspection rectifying element unit 15 or 25.
  • the image including the integrated circuit pattern is used when alignment is performed between the layout data and the back surface pattern image when the imaging data and the reference data are compared.
  • the camera 101 is disposed above the semiconductor integrated circuit device 1A.
  • the camera 101 may be disposed below the semiconductor integrated circuit device 1A.
  • FIG. 16 is a diagram showing a configuration of an inspection apparatus 100B as the eleventh embodiment.
  • This inspection apparatus 100B is an apparatus for favorably implementing the above-described inspection method for the semiconductor integrated circuit device according to the first to ninth embodiments.
  • the inspection apparatus 100B includes a laser light source 112, a laser scanner 113, and a wavelength selection mirror 114 in addition to the configuration of the inspection apparatus 100A (FIG. 15) described above. These components are for irradiating a laser beam as an energy beam to a voltage application unit having the configuration shown in FIG. 14, for example.
  • the laser light source 112 generates laser light having a wavelength suitable for generating an electromotive force of the voltage application unit.
  • the laser light source 112 is electrically connected to the control system 104 by a laser control cable 112 a, and the emission timing and the like are controlled by the control system 104.
  • the laser scanner 113 receives laser light from the laser light source 112 via the optical fiber cable 113a, and changes the irradiation position of the laser light on the semiconductor integrated circuit device 1A.
  • the laser scanner 113 is electrically connected to the laser light source 112 by a scanner control cable 113b, and its scanning direction is controlled.
  • the wavelength selection mirror 114 is disposed between the beam splitter 108 and the imaging lens 110.
  • the wavelength selection mirror 114 reflects the laser light emitted from the laser scanner 113 toward the semiconductor integrated circuit device 1A.
  • the wavelength selection mirror 114 allows the optical image from the semiconductor integrated circuit device 1 ⁇ / b> A to pass toward the camera 101.
  • an inspection apparatus for inspecting a semiconductor integrated circuit device uses energy for generating an electromotive force of the semiconductor integrated circuit device in place of the probes 103a and 103b and the bias power source 102 shown in FIG. You may provide the structure which irradiates a line
  • a notch filter 115 is preferably provided between the wavelength selection mirror 114 and the camera 101 in order to prevent the reflected light of the laser light from entering the camera 101.
  • a sensor for detecting reflected light of the laser light may be provided separately.
  • the laser beam is irradiated from above the semiconductor integrated circuit device 1A (the same side as the camera 101), but the laser beam is irradiated from below the semiconductor integrated circuit device 1A (the side opposite to the camera 101). It is good also as a structure to irradiate.
  • reflection of the laser beam from the semiconductor integrated circuit device 1A may be used. Specifically, another optical fiber cable for connecting the laser scanner 113 and the laser light source 112 is prepared, and the reflected light from the semiconductor integrated circuit device 1A is transmitted to the laser light source 112 through this optical fiber cable, and scanner position information is obtained.
  • an appropriate irradiation position by combining and imaging.
  • an LSM laser scanning microscopy
  • the laser light source 112 the laser scanner 113, and the wavelength selection mirror 114 of the present embodiment
  • a reflected image from the semiconductor integrated circuit device 1A is acquired using the LSM.
  • An appropriate irradiation position position of the voltage application unit
  • the position may be irradiated with laser light.
  • the semiconductor integrated circuit device and the inspection method thereof according to the present invention are not limited to the above-described embodiments, and various other modifications are possible.
  • the power supply wiring and the ground wiring are used as the wiring for applying the bias voltage to the inspection rectifying element section.
  • the semiconductor integrated circuit device applies the bias voltage to the inspection rectifying element section. You may provide the exclusive wiring for applying. Even if the wiring for applying the bias voltage is provided for inspection independently from the semiconductor element group of each integrated circuit layer, the same effects as those of the above embodiments can be preferably obtained.
  • the semiconductor integrated circuit device according to each of the above embodiments can be used for OBIRCH (Optical Beam Resistance CHANGe) inspection, OBIC (Optical Beam Induced Current) inspection, and the like.
  • OBIRCH Optical Beam Resistance CHANGe
  • OBIC Optical Beam Induced Current
  • test rectifying element unit included in the semiconductor integrated circuit device of each embodiment described above may be provided in each integrated circuit layer only for testing, or a semiconductor element in the integrated circuit layer A rectifying element (such as a diode) formed parasitically on an integrated circuit including a group may be used.
  • the rectifying element of the inspection rectifying element unit included in the semiconductor integrated circuit device of each embodiment described above may have a configuration in which an insulating thin film and an electrode film are sequentially stacked on a silicon substrate.
  • the configuration in which the forward bias voltage is applied to the rectifying element of the rectifying element unit for inspection is exemplified.
  • the bias voltage to the rectifying element may be a reverse bias.
  • a power supply wiring of one integrated circuit layer and a power supply wiring of another integrated circuit layer may be used as wirings for applying a bias voltage to the test rectifying element portion.
  • a ground wiring of one integrated circuit layer and a ground wiring of another integrated circuit layer may be used as a wiring for applying a bias voltage to the inspection rectifier element portion.
  • the emission size can be reduced.
  • the light emission from the test rectifier element portion of one integrated circuit layer is shielded by the adhesive layer or the wiring layer, so that the light emission from the test rectifier element portion of the other integrated circuit layer is performed.
  • a light shielding means is not limited to the adhesive layer and the wiring layer, and other light shielding members may be used.
  • the inspection rectifying element portion has a structure for preventing carrier diffusion of the rectifying element (or the light emitting element provided separately from the rectifying element) of the inspection rectifying element portion.
  • the present invention relates to an inspection method and a semiconductor integrated circuit capable of inspecting in a short time each time one layer is laminated whether or not there is an interlayer connection failure in a semiconductor integrated circuit device in which a plurality of integrated circuit layers are laminated in the thickness direction. It can be used as a device.
  • bias power supply 103a, 103b ... probe, 104 ... control system, DESCRIPTION OF SYMBOLS 105 ... Illumination system, 107 ... Lamp light source, 108 ... Beam splitter, 109 ... Objective lens, 110 ... Imaging lens, 112 ... Laser light source, 113 ... Lasers Catcher Na, 114 ... wavelength-selective mirror, 115 ... notch filter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

 互いに積層される集積回路層10及び20に、複数の検査用整流素子部15及び25をそれぞれ形成する。複数の検査用整流素子部15(25)は、複数の接続用端子14(24)のそれぞれと正電源配線13a(23a)及び接地配線13b(23b)との間に接続され、整流素子15a,15b(25a,25b)を含み電流により発光する。複数の接続用端子14及び24を互いに電気的に接続したのち、正電源配線13a(又は接地配線13b)と接地配線23b(又は正電源配線23a)との間にバイアス電圧を印加し、検査用整流素子部15又は25の発光に基づいて、接続用端子14及び24の接続状態を検査する。これにより、複数の集積回路層が厚さ方向に積層されて成る半導体集積回路装置の層間接続不良の有無を、一層積層する毎に短時間で検査することが可能となる。

Description

半導体集積回路装置の検査方法及び半導体集積回路装置
 本発明は、半導体集積回路装置の検査方法及び半導体集積回路装置に関する。
 特許文献1には、親チップと子チップとが接合されて成る、いわゆるチップ・オン・チップ構造を有する半導体装置が開示されている。親チップおよび子チップの電源部および接地部は電気的に分離されている。各チップの接地配線と信号配線との間、および電源配線と信号配線との間にはダイオード(保護ダイオードまたは寄生ダイオード)が逆方向に接続されている。信号接続バンプ間の接合の良否を検査する際、親チップの信号接続バンプと子チップに接地電位を供給するための接地接続バンプとにそれぞれテストプローブを当てて検査電圧を印加し、ダイオードを介する回路が形成されているかどうかを検査する。
 特許文献2には、複数のチップを積層して構成する積層モジュールに関する技術が開示されている。この積層モジュールは、積層された複数のチップと、該複数のチップの下方に配置された基板とを有する。各チップは、実装用パッド及び検査用導通パッドをその上面に有し、実装用端子、検査用導通パッドと電気的に接続させた検査用導通端子、及び検査用導通端子に隣接した検査信号用端子をその下面に有する。基板の上面には、チップ下面の検査用導通端子と接合される検査用接合部が配置され、基板の下面には、実装用端子及び検査用導通端子が配置されている。この積層モジュールでは、実装済みのチップの検査用パッドと、積層するチップの検査用端子とを接合し、検査用パッドと電気的に導通した実装済みチップの検査用端子から検査用信号を入力して導通検査が行われる。
 特許文献3には、複数のメモリモジュールをそれぞれメモリサブシステムとして含むメモリシステムに関する技術が開示されている。このメモリシステムは、IOチップ上に積層された複数のDRAMチップと、各DRAMチップとIOチップとを接続する貫通電極とを備えており、システムデータ信号と各DRAMチップ内の内部データ信号とをIOチップで相互に変換する。
 特許文献4には、発光顕微鏡等を用いて検出した反応箇所から反応の要因である不良位置を推定するCADツール等のプログラム、及びこれを用いた不良解析方法に関する技術が開示されている。この不良解析方法では、回路内に形成されたトランジスタの発光を検出することにより、回路の故障箇所を絞り込む。
特開2001-135778号公報 特開2004-281633号公報 特開2004-327474号公報 特開2003-86689号公報
 現在、半導体集積回路の微細化技術は格段に進歩したが、更なる微細化は次第に困難になってきている。そこで、回路の集積密度を更に向上させるため、集積回路が形成された基板や層が厚さ方向に多数積層されて成る半導体集積回路装置が開発されつつある。この半導体集積回路装置は、複数の集積回路層間で信号の授受を行う必要性から、各集積回路層の間にバンプ電極等の電気的な接続用端子を備える。
 このような半導体集積回路装置では、各集積回路層の集積回路が大規模であるほど、集積回路層同士を接続するための接続用端子の数が多くなる。従って、接続不良が発生する確率が増すので、接続用端子に対する導通検査が不可欠である。特に、一層積層する毎に導通検査を行うことができれば、接続不良箇所を有する集積回路層の上に新たな集積回路層を積層する無駄を効果的に防ぐことが可能となる。
 しかしながら、例えば特許文献1に開示された方法のように接続用端子毎にプロービングを行う方法では、半導体集積回路装置が多数の接続用端子を有する場合には検査に多大な時間と手間を要してしまう。また、プロービングによってパッド表面に傷や塵が発生し、接続不良が生じるおそれがあるので、一層積層する毎に導通検査を行うインライン検査への適用は困難である。
 本発明は、複数の集積回路層が厚さ方向に積層されて成る半導体集積回路装置の層間接続不良の有無を、一層積層する毎に短時間で検査することが可能な検査方法及び半導体集積回路装置を提供することを目的とする。
 本発明の一実施形態に係る半導体集積回路装置の検査方法は、表面及び裏面を有する支持層と、該支持層の表面に形成された半導体素子群及び配線とを各々有する複数の集積回路層が厚さ方向に積層されて成る半導体集積回路装置を検査する方法であって、一の集積回路層を作製する際に、別の集積回路層に電気的に接続される為の複数の接続用端子のそれぞれと配線との間に接続され、整流素子を含み電流により発光する複数の第1の検査用整流素子部を表面に形成し、別の集積回路層を作製する際に、一の集積回路層に電気的に接続される為の複数の接続用端子のそれぞれと配線との間に接続され、整流素子を含み電流により発光する複数の第2の検査用整流素子部を表面に形成し、一の集積回路層と別の集積回路層とを互いに積層する際に、該別の集積回路層の表面と一の集積回路層とを対向させ、一の集積回路層の複数の接続用端子と別の集積回路層の複数の接続用端子とを互いに電気的に接続したのち、一の集積回路層の配線と別の集積回路層の配線とを介して第1及び第2の検査用整流素子部にバイアス電圧を印加し、別の集積回路層の裏面側において観察される第1及び第2の検査用整流素子部の発光に基づいて、一の集積回路層の複数の接続用端子と別の集積回路層の複数の接続用端子との接続状態を検査することを特徴とする。
 この半導体集積回路装置の検査方法では、一の集積回路層を作製する際に、複数の(層間)接続用端子のそれぞれと配線との間に、第1の検査用整流素子部を接続する。同様に、別の集積回路層を作製する際に、複数の(層間)接続用端子のそれぞれと配線との間に第2の検査用整流素子部を接続する。これら第1及び第2の検査用整流素子部は、整流素子を含んでおり、電流の供給を受けて発光する。なお、検査用整流素子部において、整流素子自体が発光してもよいし、整流素子とは別に設けられた発光素子が発光してもよい。
 そして、上記一の集積回路層の複数の接続用端子と、上記別の集積回路層の複数の接続用端子とを例えばバンプ等によって互いに電気的に接続したのち、一の集積回路層の配線と、別の集積回路層の配線とを介して、第1及び第2の検査用整流素子部にバイアス電圧を印加する。このとき、一の集積回路層の接続用端子と別の集積回路層の接続用端子とが良好に接続されている場合には、一の集積回路層の配線~第1の検査用整流素子部~一の集積回路層の接続用端子~別の集積回路層の接続用端子~第2の検査用整流素子部~別の集積回路層の配線という電流経路が構成されるので、第1及び第2の検査用整流素子部が発光することとなる。しかし、一の集積回路層の接続用端子と別の集積回路層の接続用端子とが接続不良を生じている場合には、上記電流経路が接続用端子間で遮断されるので、第1及び第2の検査用整流素子部は、発光しないか、或いは所定の発光量に達しない。
 すなわち、上述した半導体集積回路装置の検査方法によれば、第1及び第2の検査用整流素子部のうち少なくとも一方の発光に基づいて、一の集積回路層の複数の接続用端子と別の集積回路層の複数の接続用端子との接続状態を検査できる。従って、多数の接続用端子のそれぞれに対応する発光の有無を一括して観察することによって、接続不良の有無を容易に判断することができるので、集積回路層を一層積層する毎に接続不良の有無を短時間で検査することができる。
 また、半導体集積回路装置の検査方法は、第1及び第2の検査用整流素子部が、整流素子と直列に接続された発光素子を更に含むことを特徴としてもよい。或いは、半導体集積回路装置の検査方法は、第1及び第2の検査用整流素子部の整流素子が電流により発光することを特徴としてもよい。これらの何れかの構成によって、上述した第1及び第2の検査用整流素子部を好適に実現できる。
 また、半導体集積回路装置の検査方法は、一の集積回路層及び別の集積回路層の少なくとも一方に、当該半導体集積回路装置の外部からのエネルギー入力によってバイアス電圧を発生する電圧印加部を更に形成することを特徴としてもよい。これにより、バイアス電圧の印加をプロービングを用いて行わずに済むので、検査におけるプロービング回数を更に少なくする(或いは、プロービングを無くす)ことが可能になる。この場合、電圧印加部は、当該半導体集積回路装置の外部から照射される光によって起電力を発生する光電変換素子を含んでもよい。これにより、電圧印加部を好適に実現できる。
 また、半導体集積回路装置の検査方法は、一の集積回路層の配線が、半導体素子群に電源電圧を供給する為に支持層の表面上に形成された正電源配線及び接地配線のうち一方の配線であり、別の集積回路層の配線が、半導体素子群に電源電圧を供給する為に支持層の表面上に形成された正電源配線及び接地配線のうち他方の配線であり、一の集積回路層を作製する際に、複数の第1の検査用整流素子部の整流素子を一方の配線に対して逆方向に接続し、別の集積回路層を作製する際に、複数の第2の検査用整流素子部の整流素子を他方の配線に対して逆方向に接続することを特徴としてもよい。
 この検査方法では、一の集積回路層において、第1の検査用整流素子部の整流素子を正電源配線及び接地配線のうち一方の配線に対して逆方向に接続するので、通常の動作時には第1の検査用整流素子部に電流は流れない。同様に、別の集積回路層において、第2の検査用整流素子部の整流素子を正電源配線及び接地配線のうち他方の配線に対して逆方向に接続するので、通常の動作時には第2の検査用整流素子部にも電流は流れない。そして、検査の際に、一の集積回路層の上記一方の配線と、別の集積回路層の上記他方の配線との間に、第1及び第2の検査用整流素子部に対して順方向となる(すなわち、通常の動作時における電源電圧とは正負が逆の)検査用電圧を印加することにより、第1及び第2の検査用整流素子部に電流を供給して発光させることができる。従って、この検査方法によれば、既存の電源配線および接地配線を利用して層間接続不良の有無を検査することができる。但し、複数の集積回路層の配線は、半導体素子群から独立して検査用に設けられたものであってもよい。
 本発明による半導体集積回路装置は、表面及び裏面を有する支持層と、該支持層の表面に形成された半導体素子群及び配線とを各々有する複数の集積回路層が厚さ方向に積層されて成る半導体集積回路装置であって、一の集積回路層が、別の集積回路層に電気的に接続される為の複数の接続用端子と、表面に形成され、複数の接続用端子のそれぞれと配線との間に接続され、整流素子を含み電流により発光する複数の第1の検査用整流素子部とを有し、別の集積回路層が、一の集積回路層に電気的に接続される為の複数の接続用端子と、表面に形成され、複数の接続用端子のそれぞれと配線との間に接続され、整流素子を含み電流により発光する複数の第2の検査用整流素子部とを有し、別の集積回路層の表面と一の集積回路層とが互いに対向しており、一の集積回路層の複数の接続用端子と別の集積回路層の複数の接続用端子とが互いに電気的に接続されており、一の集積回路層の配線と別の集積回路層の配線とを介して第1及び第2の検査用整流素子部にバイアス電圧を印加する電圧印加部を更に備えることを特徴とする。
 この半導体集積回路装置においては、一の集積回路層が、複数の(層間)接続用端子のそれぞれと配線との間に接続された第1の検査用整流素子部を有する。同様に、別の集積回路層が、複数の(層間)接続用端子のそれぞれと配線との間に接続された第2の検査用整流素子部を有する。これら第1及び第2の検査用整流素子部は、整流素子を含んでおり、電流の供給を受けて発光する。
 そして、上記一の集積回路層の複数の接続用端子と、上記別の集積回路層の複数の接続用端子とは、例えばバンプ等によって互いに電気的に接続される。更に、電圧印加部が、一の集積回路層の配線と、別の集積回路層の配線とを介して、第1及び第2の検査用整流素子部にバイアス電圧を印加する。このとき、一の集積回路層の接続用端子と別の集積回路層の接続用端子とが良好に接続されている場合には、上述した検査方法において説明したように、第1及び第2の検査用整流素子部が発光することとなる。しかし、一の集積回路層の接続用端子と別の集積回路層の接続用端子とが接続不良を生じている場合には、第1及び第2の検査用整流素子部は発光しない。
 すなわち、上述した半導体集積回路装置によれば、第1及び第2の検査用整流素子部のうち少なくとも一方の発光に基づいて、一の集積回路層の複数の接続用端子と別の集積回路層の複数の接続用端子との接続状態を検査できる。従って、多数の接続用端子のそれぞれに対応する発光の有無を一括して観察することによって、接続不良の有無を容易に判断することができるので、集積回路層を一層積層する毎に接続不良の有無を短時間で検査することができる。
 また、半導体集積回路装置は、第1及び第2の検査用整流素子部が、整流素子と直列に接続された発光素子を更に含むことを特徴としてもよい。或いは、半導体集積回路装置は、第1及び第2の検査用整流素子部の整流素子が電流により発光することを特徴としてもよい。これらの何れかの構成によって、上述した第1及び第2の検査用整流素子部を好適に実現できる。
 また、半導体集積回路装置は、電圧印加部が、一の集積回路層及び別の集積回路層の少なくとも一方に設けられ、当該半導体集積回路装置の外部からのエネルギー入力によってバイアス電圧を発生することを特徴としてもよい。これにより、バイアス電圧の印加をプロービングを用いて行わずに済むので、検査におけるプロービング回数を更に少なくする(或いは、プロービングを無くす)ことが可能になる。この場合、電圧印加部は、当該半導体集積回路装置の外部から照射される光によって起電力を発生する光電変換素子を含んでもよい。これにより、電圧印加部を好適に実現できる。
 また、半導体集積回路装置は、一の集積回路層の配線が、半導体素子群に電源電圧を供給する為に支持層の表面上に形成された正電源配線及び接地配線のうち一方の配線であり、別の集積回路層の配線が、半導体素子群に電源電圧を供給する為に支持層の表面上に形成された正電源配線及び接地配線のうち他方の配線であり、複数の第1の検査用整流素子部の整流素子が一方の配線に対して逆方向に接続されており、複数の第2の検査用整流素子部の整流素子が他方の配線に対して逆方向に接続されていることを特徴としてもよい。
 この半導体集積回路装置では、一の集積回路層において、第1の検査用整流素子部の整流素子が正電源配線及び接地配線のうち一方の配線に対して逆方向に接続されているので、通常の動作時には第1の検査用整流素子部に電流は流れない。同様に、別の集積回路層において、第2の検査用整流素子部の整流素子が正電源配線及び接地配線のうち他方の配線に対して逆方向に接続されているので、通常の動作時には第2の検査用整流素子部にも電流は流れない。そして、検査の際に、一の集積回路層の上記一方の配線と、別の集積回路層の上記他方の配線との間に、第1及び第2の検査用整流素子部に対して順方向となる(すなわち、通常の動作時における電源電圧とは正負が逆の)検査用電圧が印加されることにより、第1及び第2の検査用整流素子部に電流を供給して発光させることができる。従って、この半導体集積回路装置によれば、既存の電源配線および接地配線を利用して層間接続不良の有無を検査することができる。但し、複数の集積回路層の配線は、半導体素子群から独立して検査用に設けられたものであってもよい。
 本発明によれば、複数の集積回路層が厚さ方向に積層されて成る半導体集積回路装置の層間接続不良の有無を、一層積層する毎に短時間で検査することができる。
図1は、本発明に係る半導体集積回路装置の第1実施形態の構成を示す断面図である。 図2は、検査用整流素子部の構成を示す図である。 図3は、半導体集積回路装置の検査方法を示すフローチャートである。 図4は、検査用整流素子部の構成を示す図である。 図5は、検査用整流素子部の構成を示す図である。 図6は、検査用整流素子部の構成を示す図である。 図7は、第2実施形態としての半導体集積回路装置の構成を示す断面図である。 図8は、第3実施形態としての半導体集積回路装置の構成を示す断面図である。 図9は、第4実施形態としての半導体集積回路装置の構成を示す断面図である。 図10は、第5実施形態としての半導体集積回路装置の構成を示す断面図である。 図11は、第6実施形態としての半導体集積回路装置の構成を示す断面図である。 図12は、第7実施形態としての半導体集積回路装置の構成を示す断面図である。 図13は、第8実施形態としての電源配線及び接地配線の構成を示す図である。 図14は、第9実施形態としての電圧印加部の構成を示す図である。 図15は、第10実施形態としての検査装置の構成を示す図である。 図16は、第11実施形態としての検査装置の構成を示す図である。
 以下、添付図面を参照しながら本発明による半導体集積回路装置の検査方法及び半導体集積回路装置の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 (第1の実施の形態)
図1は、半導体集積回路装置の第1実施形態の構成を示す断面図である。図1に示されるように、本実施形態の半導体集積回路装置1Aは、第1の集積回路層10と第2の集積回路層20とが厚さ方向に積層されて成る。なお、本実施形態では、集積回路層10が有する半導体基板11の表面(デバイス形成面)11aと、集積回路層20が有する半導体基板21の表面(デバイス形成面)21aとが互いに対向するように、集積回路層10,20が互いに接合されている。
 集積回路層10は、表面11a及び裏面11bを有する半導体基板11と、半導体基板11の表面11aに設けられたデバイス層12と、デバイス層12上に設けられた配線層13と、集積回路層20に電気的に接続される為の複数の接続用端子(電極)14とを有する。同様に、集積回路層20は、表面21a及び裏面21bを有する半導体基板21と、半導体基板21の表面21aに設けられたデバイス層22と、デバイス層22上に設けられた配線層23と、集積回路層10に電気的に接続される為の複数の接続用端子(電極)24とを有する。
 半導体基板11,21は、例えばシリコンからなる。半導体基板11,21は、集積回路層10,20の支持層である。デバイス層12,22は、例えばトランジスタ等の複数の半導体素子からなる半導体素子群を含む。複数の半導体素子は、半導体基板11,21の表面11a,21aにおいてイオン注入といった半導体プロセスを経て形成されたものである。なお、複数の半導体素子は、半導体基板11,21上に半導体結晶がエピタキシャル成長されることによって形成されたものであってもよい。また、複数の半導体素子は、例えばALD(Atomic Layer Deposition)といった、イオン注入を用いない半導体プロセスによって形成されたものであってもよい。
 配線層13,23は、デバイス層12,22に含まれる複数の半導体素子を電気的に相互に接続するための複数の配線を含む。これら複数の配線には、半導体素子同士を接続する信号配線の他、複数の半導体素子に電源電圧を印加するための正電源配線13a,23aおよび接地配線13b,23bも含まれる。本実施形態において、集積回路層10の正電源配線13aおよび接地配線13bと、集積回路層20の正電源配線23aおよび接地配線23bとは互いに独立して配置されており、検査時には、相互の接続はなされていない。
 複数の接続用端子14,24は、それぞれ配線層13,23上に設けられる。集積回路層10の複数の接続用端子14それぞれと、集積回路層20の複数の接続用端子24それぞれとは、表面11a上及び表面21a上において互いに対向する位置に配置され、且つ互いに接することにより電気的に接続されている。複数の接続用端子14,24のそれぞれは、例えばバンプ電極によって好適に構成される。
 また、集積回路層10は、複数の第1の検査用整流素子部15を更に有する。複数の検査用整流素子部15それぞれは、デバイス層12に形成され、信号配線用の複数の接続用端子14それぞれに一対一で対応する。複数の検査用整流素子部15は、整流素子15a及び15bをそれぞれ有する。整流素子15a及び15bは、例えばダイオードである。整流素子15aは、集積回路層10の正電源配線13aと接続用端子14との間に逆方向接続されており、整流素子15bは、集積回路層10の接地配線13bと接続用端子14との間に逆方向接続されている。より具体的には、整流素子15aのカソードと正電源配線13aとが互いに接続されており、整流素子15aのアノードと接続用端子14とが互いに接続されている。また、整流素子15bのアノードと接地配線13bとが互いに接続されており、整流素子15bのカソードと接続用端子14とが互いに接続されている。なお、図1では理解を容易にするため、整流素子(ダイオード)15a,15bの回路記号を明示している。
 検査用整流素子部15は、電流によって発光するための構成を有する。このような構成は、例えば整流素子15a及び15b自体が電流によって発光することにより好適に実現される。或いは、検査用整流素子部15が、整流素子15a及び15bとそれぞれ直列に接続された2つの発光素子を更に有することによっても好適に実現される。
 集積回路層20は、複数の第2の検査用整流素子部25を更に有する。複数の検査用整流素子部25それぞれは、デバイス層22に形成され、信号配線用の複数の接続用端子24それぞれに一対一で対応する。複数の検査用整流素子部25は、整流素子25a及び25bをそれぞれ有する。整流素子25a及び25bは、例えばダイオードである。整流素子25aは、集積回路層20の正電源配線23aと接続用端子24との間に逆方向接続されており、整流素子25bは、集積回路層20の接地配線23bと接続用端子24との間に逆方向接続されている。より具体的には、整流素子25aのカソードと正電源配線23aとが互いに接続されており、整流素子25aのアノードと接続用端子24とが互いに接続されている。また、整流素子25bのアノードと接地配線23bとが互いに接続されており、整流素子25bのカソードと接続用端子24とが互いに接続されている。なお、図1では理解を容易にするため、整流素子(ダイオード)25a,25bの回路記号を明示している。
 検査用整流素子部25は、電流によって発光するための構成を有する。このような構成は、例えば整流素子25a及び25b自体が電流によって発光することにより好適に実現される。或いは、検査用整流素子部25が、整流素子25a及び25bとそれぞれ直列に接続された2つの発光素子を更に有することによっても好適に実現される。
 ここで、整流素子と直列に接続された発光素子を有する検査用整流素子部を例示する。図2は、検査用整流素子部35Aの構成を示す図である。この検査用整流素子部35Aは、図1に示された検査用整流素子部15及び25と置き換えられることができる。
 図2に示されるように、検査用整流素子部35Aは、接続用端子14又は24と、正電源配線13a又は23aとの間に逆方向接続された整流素子35aと、この整流素子35aに対して直列に接続された発光素子としての発光用ダイオード35cとを有する。また、検査用整流素子部35Aは、接続用端子14又は24と、接地配線13b又は23bとの間に逆方向接続された整流素子35bと、この整流素子35bに対して直列に接続された発光素子としての発光用ダイオード35dとを有する。
 再び図1を参照する。集積回路層20は、半導体基板21の表面21a上の配線層23の配線と裏面21b上の複数の接続用端子(電極)26とを相互に接続するために、複数の貫通配線(Through Silicon Via:TSV)27を更に有する。複数の接続用端子26のうち一つの接続用端子26aは、貫通配線27を介して集積回路層20の正電源配線23aと電気的に接続されている。複数の接続用端子26のうち一つの接続用端子26bは、貫通配線27を介して集積回路層20の接地配線23bと電気的に接続されている。複数の接続用端子26のうち一つの接続用端子26cは、貫通配線27、接続用端子24及び14を介して集積回路層10の正電源配線13aと電気的に接続されている。複数の接続用端子26のうち一つの接続用端子26dは、貫通配線27、接続用端子24及び14を介して集積回路層10の接地配線13bと電気的に接続されている。このように、本実施形態では、集積回路層10及び20の電源系統を互いに独立して配設するために、接続用端子26a~26dが設けられている。接続用端子26a~26d及びこれらに接続された貫通配線27は、集積回路層10の正電源配線13a(又は接地配線13b)と集積回路層20の接地配線23b(又は正電源配線23a)とを介して検査用整流素子部15,25にバイアス電圧を印加するための電圧印加部を構成する。
 半導体集積回路装置1Aは、接着層7aを更に備える。接着層7aは、集積回路層10と集積回路層20との隙間に設けられており、集積回路層10及び集積回路層20を機械的に接合する。なお、この接着層7aは、検査用整流素子部15からの光を遮蔽し得る材料を含むことが好ましい。
 以上に説明した半導体集積回路装置1Aの検査方法について説明する。図3は、この検査方法を示すフローチャートである。
 まず、集積回路層10及び20の各々を個別に作製する(集積回路層形成ステップS11)。具体的には、集積回路層10のための半導体基板11を用意し、半導体基板11の表面11aにデバイス層12を形成する。このとき、半導体素子群と共に、検査用整流素子部15(整流素子15a,15b)をデバイス層12に形成する。次に、デバイス層12上に配線層13を形成する。このとき、集積回路層20に電気的に接続される為の複数の接続用端子14と、正電源配線13aと、接地配線13bとを配線層13の内部や配線層13上に形成する。また、接続用端子14と正電源配線13aとの間に整流素子15aを接続するための配線、並びに接続用端子14と接地配線13bとの間に整流素子15bを接続するための配線を形成する。なお、このステップS11において、集積回路層10の動作テストを行うことにより、デバイス層12の半導体素子群に異常がないことを検査しておくことが望ましい。
 集積回路層20も集積回路層10と同様に形成する。すなわち、集積回路層20のための半導体基板21を用意し、半導体基板21の表面21aにデバイス層22を形成する。このとき、半導体素子群と共に、検査用整流素子部25(整流素子25a,25b)をデバイス層22に形成する。次に、デバイス層22上に配線層23を形成する。このとき、集積回路層10に電気的に接続される為の複数の接続用端子24と、正電源配線23aと、接地配線23bとを配線層23の内部や配線層23上に形成する。また、接続用端子24と正電源配線23aとの間に整流素子25aを接続するための配線、並びに接続用端子24と接地配線23bとの間に整流素子25bを接続するための配線を形成する。なお、このステップS11において、集積回路層20の動作テストを行うことにより、デバイス層22の半導体素子群に異常がないことを検査しておくことが望ましい。
 続いて、集積回路層10と集積回路層20とを互いに接合する(接合ステップS12)。すなわち、半導体基板11の表面11aと半導体基板21の表面21aとが互いに対向するように、集積回路層10と集積回路層20とを接着層7aを介して貼り合わせる。同時に、集積回路層10の複数の接続用端子14それぞれと、集積回路層20の複数の接続用端子24それぞれとを接合することにより、これらを電気的に接続する。なお、この接合段階において、集積回路層10,20は、ウエハから分割された単一のチップであってもよく、複数のチップを含む集合体であってもよく、或いは分割前のウエハの状態であってもよい。
 続いて、検査用整流素子部15,25にバイアス電圧を印加する(第1の検査用電圧印加ステップS13)。すなわち、接続用端子26b及び26cにプローブを当て、集積回路層10の正電源配線13aと集積回路層20の接地配線23bとの間に、接地配線23b側が正の電位となる検査用のバイアス電圧を印加する。これにより、検査用整流素子部15の整流素子15a及び検査用整流素子部25の整流素子25bには、順方向のバイアス電圧が印加される。従って、整流素子15a及び25bに順方向電流が流れ、接続用端子14と接続用端子24との接続が正常であれば整流素子15a及び25b(或いは、整流素子15a及び25bと直列に接続された別の発光素子)が発光する。
 続いて、集積回路層20の裏面21b側において観察される検査用整流素子部25の発光、及び集積回路層10の裏面11b側において観察される検査用整流素子部15の発光のうち少なくとも一方に基づいて、集積回路層10の複数の接続用端子14と集積回路層20の複数の接続用端子24との接続状態を検査する(第1の検査ステップS14)。具体的には、集積回路層20の裏面21b側から若しくは集積回路層10の裏面11b側から半導体集積回路装置1Aを撮像する。そして、撮像データに含まれる輝点(検査用整流素子部15又は25の発光)と、予め準備しておいた検査用整流素子部15又は25の発光位置に関するデータとを比較する。この比較により、発光すべき位置において検査用整流素子部15又は25が発光していない場合、或いは所定の発光量に達していない場合には、該検査用整流素子部15又は25と対応する接続用端子14及び24が接続不良と判定される。
 続いて、検査用整流素子部15,25にバイアス電圧を印加する(第2の検査用電圧印加ステップS15)。すなわち、接続用端子26a及び26dにプローブを当て、集積回路層10の接地配線13bと集積回路層20の正電源配線23aとの間に、接地配線13b側が正の電位となる検査用のバイアス電圧を印加する。これにより、検査用整流素子部15の整流素子15b及び検査用整流素子部25の整流素子25aには、順方向のバイアス電圧が印加される。従って、整流素子15b及び25aに順方向電流が流れ、接続用端子14と接続用端子24との接続が正常であれば整流素子15b及び25a(或いは、整流素子15b及び25aと直列に接続された別の発光素子)が発光する。
 続いて、集積回路層20の裏面21b側において観察される検査用整流素子部25の発光、及び集積回路層10の裏面11b側において観察される検査用整流素子部15の発光のうち少なくとも一方に基づいて、集積回路層10の複数の接続用端子14と集積回路層20の複数の接続用端子24との接続状態を検査する(第2の検査ステップS16)。具体的には、集積回路層20の裏面21b側から若しくは集積回路層10の裏面11b側から半導体集積回路装置1Aを撮像する。そして、撮像データに含まれる輝点(検査用整流素子部15又は25の発光)と、予め準備しておいた検査用整流素子部15又は25の発光位置に関する基準データ上の輝点とを対比する。この対比により、発光すべき位置において検査用整流素子部15又は25が発光していない場合、或いは所定の発光量に達していない場合には、該検査用整流素子部15又は25と対応する接続用端子14及び24が接続不良と判定される。
 撮像データと基準データとを対比する際、これらの位置を合わせることが必要となる。そのため、検査用整流素子部15又は25からの発光像と、集積回路層10又は20が有する集積回路の裏面パターン像とを順に又は同時に取得し、集積回路層10又は20のレイアウトデータと裏面パターン像との間で位置合わせを行うとよい。なお、検査用整流素子部15又は25からの発光像のみ取得して、該発光位置と、発光位置の特徴的な配置に関するデータとを対比することにより、位置合わせを行ってもよい。
 本実施形態の検査方法においては、上述したステップS13及びS14と、ステップS15及びS16の組み合わせのうち、いずれか一方の組み合わせのみを行っても良い。換言すれば、検査用整流素子部15及び25は、それぞれ整流素子15a及び25bのみを有しても良く、或いはそれぞれ整流素子15b及び25aのみを有しても良い。また、ステップS13において得られる撮像データと、ステップS14において得られる撮像データとを比較(或いは重畳)し、その比較データ(或いは重畳データ)と基準データとを対比することにより、接続不良の有無を検査してもよい。例えば整流素子15a及び15bの位置が互いに近い場合などに、整流素子15aからの光と整流素子15bからの光とを合わせて観察することで、撮像データの信頼度を高めることができる。
 以上に説明した、本実施形態による半導体集積回路装置1Aの検査方法及び半導体集積回路装置1Aによって得られる効果を、従来技術の課題と共に述べる。
 近年、回路の集積密度を更に向上させるため、集積回路が形成された基板や層が厚さ方向に多数積層されて成る半導体集積回路装置が開発されつつある。この半導体集積回路装置は、各集積回路層の間にバンプ電極等の電気的な(層間)接続用端子を備える。各集積回路層の集積回路が大規模であるほど接続用端子の数は多くなるので、接続用端子に対する導通検査が不可欠である。また、半導体集積回路装置の製造と並行して接続不良の原因を分析し、これを製造技術にフィードバックすることが望ましい。
 しかし、半導体集積回路装置が完成した後では、層間接続用端子が積層構造の内部に隠れてしまい、接続不良の発生箇所を特定することは容易ではない。従って、集積回路層を一層積層する毎に層間接続用端子の導通検査を行うことができれば、接続不良の発生箇所を特定することができる。更には、接続不良箇所を有する集積回路層の上に新たな集積回路層を積層する無駄を効果的に防ぐことが可能となる。
 上述した本実施形態による半導体集積回路装置1Aの検査方法では、集積回路層10の複数の接続用端子14と、上記集積回路層20の複数の接続用端子24とを例えばバンプ等によって互いに電気的に接続したのち、集積回路層10の正電源配線13a(又は接地配線13b)と、集積回路層20の接地配線23b(又は正電源配線23a)とを介して、検査用整流素子部15,25にバイアス電圧を印加している。このとき、集積回路層10の接続用端子14と集積回路層20の接続用端子24とが良好に接続されている場合には、集積回路層10の正電源配線13a(又は接地配線13b)~検査用整流素子部15~集積回路層10の接続用端子14~集積回路層20の接続用端子24~検査用整流素子部25~集積回路層20の接地配線23b(又は正電源配線23a)という電流経路が構成される。
 従って、この電流経路を流れる電流の大きさは、正電源配線13a(又は接地配線13b)及び接地配線23b(又は正電源配線23a)が有する抵抗値、接続用端子14及び24の抵抗値、並びに検査用整流素子部15及び25の抵抗値を合計した抵抗値に反比例する。多くの場合、電源配線及び接地配線の抵抗値は層間接続用端子の抵抗値と比べて格段に小さく、また検査用整流素子部(整流素子)の抵抗値は既知である。従って、検査用整流素子部15,25の発光量は接続用端子14,24の抵抗値に主に依存し、接続用端子14,24が互いに非接続の状態(すなわち、抵抗値が無限大)であれば、検査用整流素子部15,25は発光しない。そこで、検査用整流素子部15,25の発光の有無を観察することによって接続用端子14,24の接続不良を検出し、また発光量を観察することによって接続用端子14と接続用端子24との間の抵抗値を推定できる。
 すなわち、上述した半導体集積回路装置1Aの検査方法、及び半導体集積回路装置1Aによれば、検査用整流素子部15,25のうち少なくとも一方の発光に基づいて、集積回路層10の複数の接続用端子14と集積回路層20の複数の接続用端子24との接続状態を検査できる。従って、多数の接続用端子14,24のそれぞれに対応する発光の有無を一括して観察することによって、接続不良の有無を容易に判断することができるので、従来のようにプロービングによって複数の端子を逐次的に検査する方法と比較して、集積回路層を一層積層する毎に接続不良の有無を短時間で検査することができる。
 また、3層以上の集積回路層を積層する場合、集積回路層を一層積層する毎にプロービングによる検査を行うと、パッドの傷や凹凸、塵などがその後の積層工程において不良の原因と成り得る。本実施形態によれば、積層毎のプロービング本数を格段に低減し、または全く無くすこともできるので、接続不良を低減できる。
 また、本実施形態によれば、集積回路層を一層積層する毎に接続不良の有無を検査することが容易にできるので、接続不良が生じた集積回路層の上に正常な集積回路層を積層する無駄を防ぐことができる。また、接続不良の箇所をインラインで簡易に検出できるので、集積回路層の改良のためのフィードバックを早め、歩留まりの向上に繋げることが可能となる。
 また、本実施形態のように、検査用整流素子部15に検査用のバイアス電圧を印加するための配線が、デバイス層12の半導体素子群に電源電圧を供給する為の正電源配線13aであり、且つ、検査用整流素子部25に検査用のバイアス電圧を印加するための配線が、デバイス層22の半導体素子群に電源電圧を供給する為の接地配線23bであることが好ましい。そして、検査用整流素子部15の整流素子15aを正電源配線13aに対して逆方向に接続し、検査用整流素子部25の整流素子25bを接地配線23bに対して逆方向に接続することが好ましい。
 或いは、検査用整流素子部15に検査用のバイアス電圧を印加するための配線が、デバイス層12の半導体素子群に電源電圧を供給する為の接地配線13bであり、且つ、検査用整流素子部25に検査用のバイアス電圧を印加するための配線が、デバイス層22の半導体素子群に電源電圧を供給する為の正電源配線23aであることが好ましい。そして、検査用整流素子部15の整流素子15bを接地配線13bに対して逆方向に接続し、検査用整流素子部25の整流素子25aを正電源配線23aに対して逆方向に接続することが好ましい。
 半導体集積回路装置1Aが上記構成を有する場合、集積回路層10において、検査用整流素子部15の整流素子15a及び15bを正電源配線13a及び接地配線13bに対してそれぞれ逆方向に接続するので、通常の動作時には検査用整流素子部15に電流は流れない。同様に、集積回路層20において、検査用整流素子部25の整流素子25a,25bを正電源配線23a及び接地配線23bに対してそれぞれ逆方向に接続するので、通常の動作時には検査用整流素子部25にも電流は流れない。そして、検査の際に、検査用整流素子部15,25に対して順方向となる(すなわち、通常の動作時における電源電圧とは正負が逆の)検査用バイアス電圧を、正電源配線13a及び接地配線23bを介して、或いは接地配線13b及び正電源配線23aを介して印加することにより、検査用整流素子部15,25に電流を供給して発光させることができる。従って、半導体集積回路装置1Aが上記構成を有することにより、既存の電源配線および接地配線を利用して層間接続不良の有無を検査することができる。
 なお、検査用整流素子部15及び25に関し、整流素子と直列に接続された発光素子を有する構成の例を図2に示したが、発光素子は発光用ダイオード以外のものであってもよい。例えば、図4は、検査用整流素子部35Bの構成を示す図である。この検査用整流素子部35Bは、図1に示された検査用整流素子部15及び25と置き換えられることができる。図4に示されるように、検査用整流素子部35Bは、整流素子35aと、この整流素子35aに対して直列に接続された発光素子としての発光用トランジスタ35eとを有する。また、検査用整流素子部35Bは、整流素子35bと、この整流素子35bに対して直列に接続された発光素子としての発光用トランジスタ35fとを有する。
 図5は、検査用整流素子部35Cの構成を示す図である。この検査用整流素子部35Cは、図1に示された検査用整流素子部15及び25と置き換えられることができる。図5に示されるように、検査用整流素子部35Cは、整流素子35aと、この整流素子35aに対して直列に接続され、且つ接続用端子14又は24と正電源配線13a又は23aとの間に順方向接続された発光素子としての低耐圧ダイオード35gとを有する。また、検査用整流素子部35Cは、整流素子35bと、この整流素子35bに対して直列に接続され、且つ接続用端子14又は24と接地配線13b又は23bとの間に順方向接続された発光素子としての低耐圧ダイオード35hとを有する。
 図6は、検査用整流素子部35Dの構成を示す図である。この検査用整流素子部35Dは、図1に示された検査用整流素子部15及び25と置き換えられることができる。図6に示されるように、検査用整流素子部35Dは、整流素子35aと、この整流素子35aに対して直列に接続された発光素子としてのトンネル電流コンデンサ35iとを有する。また、検査用整流素子部35Dは、整流素子35bと、この整流素子35bに対して直列に接続された発光素子としてのトンネル電流コンデンサ35jとを有する。
 検査用の整流素子の追加による付加容量を低減するためには、接続用端子や貫通配線の直近に整流素子を配置することが望ましいが、接続用端子や貫通配線が発光検出の妨げに成り得る。したがって、図2及び図4~図6に示したように、発光素子を整流素子とは別に設けることによって、この発光素子を貫通配線や接続用端子から離して配置することが可能となり、発光を観察し易くなる。なお、発光素子としては、電流に応じて発光する全ての半導体素子を適用できる。また、各発光素子の発光波長を互いに異ならせてもよい。
 整流素子15a及び15b、25a及び25b、並びに35a及び35bとしては、次に挙げる各素子が好適である。すなわち、ここでいう整流素子とは、バイアス電圧に対して非線形に応答して電流が流れる接合構造を有する素子(ダイオード、トランジスタ、サイリスタ等)である。この様な接合構造としては、P型半導体とN型半導体との接合であるPN接合、P型半導体と不純物を含まないI(イントリンジック)型半導体との接合、I型半導体とN型半導体との接合、P型半導体とN型半導体との間にI型半導体が挟まれたPIN接合、半導体と金属との接合であるショットキー接合、および、境界部分にトンネル電流が流れる薄い絶縁膜や空隙、点接触部分を挟んだトンネル接合が挙げられる。この中では、PN接合が最も好適である。なお、PN接合及びPIN接合における順バイアス時の発光は再結合発光が主であり、PN接合及びPIN接合における逆バイアス時の発光、並びにMOSトランジスタのチャネルからの発光はホットキャリア発光が主である。トンネル接合においては、ホットキャリア発光および再結合発光の双方が生じ得る。本実施形態における整流素子としては、発光機能も兼ね備えるPNダイオードが最も好ましい。
 なお、トンネル接合素子には、その順方向電流の大きさと逆方向電流の大きさとが殆ど等しい場合がある。しかし、トンネル接合には、低バイアス時には電流が流れず、高バイアス時には大きな電流を流す特性がある。従って、検査の際に高いバイアス電圧を印加したときに電流が流れ、通常の使用条件では電流が流れないようにすることが可能である。また、トンネル接合部分には与えられた電圧差に応じたホットキャリア発光が生じ、且つ、トンネル接合部分を構成する一方の半導体がP型であり他方の半導体がN型であれば再結合発光も生じる。従って、発光機能を兼ねる整流素子として用いることができ、或いは発光素子として用いることもできる。
 また、本実施形態による半導体集積回路装置1Aの検査方法では、集積回路層10の検査用整流素子部15と集積回路層20の検査用整流素子部25とが同時に発光するが、これらの検査用整流素子部15と検査用整流素子部25との間には各集積回路層10,20の配線層13,23が存在する。また、集積回路層10と集積回路層20との間には、接続用端子14,24としてのバンプ等も存在する。従って、検査用整流素子部15,25からの光は配線層13,23や接続用端子14,24によって遮蔽されるので、検査用整流素子部15(又は25)からの光をそれぞれの側から観察する際に、検査用整流素子部25(又は15)からの光は観察の妨げとなりにくい。なお、これらの光を効果的に遮蔽するように、配線層13,23の配線密度分布や配線形状を工夫してもよい。また、これらの光を効果的に遮蔽するように、接着層7aの材料や成分を選択してもよい。
 (第2の実施の形態)
図7は、第2実施形態としての半導体集積回路装置1Bの構成を示す断面図である。本実施形態に係る半導体集積回路装置1Bは、集積回路層20及び30を備える。なお、本実施形態では、集積回路層30が有する半導体基板11の裏面11bと、集積回路層20が有する半導体基板21の表面21aとが互いに対向するように、集積回路層30,20が互いに接合されている。集積回路層30において、以下に述べる構成を除く他の構成は、上記実施形態の集積回路層10と同様である。
 集積回路層30は、表面11a及び裏面11bを有する半導体基板(支持層)11と、半導体基板11の表面11aに設けられたデバイス層12と、デバイス層12上に設けられた配線層13と、集積回路層20に電気的に接続される為の複数の接続用端子(電極)34とを有する。配線層13の複数の配線には、複数の半導体素子に電源電圧を印加するための正電源配線13aおよび接地配線13bも含まれる。
 複数の接続用端子34は、半導体基板11の裏面11b上に設けられる。集積回路層30の複数の接続用端子34それぞれと、集積回路層20の複数の接続用端子24それぞれとは、裏面11b上及び表面21a上において互いに対向する位置に配置され、且つ互いに接することにより電気的に接続されている。複数の接続用端子34は、例えばバンプ電極によって好適に構成される。
 また、集積回路層30は、信号配線用の複数の接続用端子34それぞれと一対一で対応する複数の第1の検査用整流素子部15を有する。検査用整流素子部15の構成は、第1実施形態と同様である。但し、整流素子15aは、集積回路層10の正電源配線13aと接続用端子34との間に逆方向接続されており、整流素子15bは、集積回路層10の接地配線13bと接続用端子34との間に逆方向接続されている。整流素子15a及び15bと、接続用端子34とは貫通配線37を介して接続されている。貫通配線37は、配線層13の配線と裏面11b上の複数の接続用端子34とを相互に接続するためのTSVである。
 半導体集積回路装置1Bは、ハンドリング基板8を更に備える。ハンドリング基板8は、接着層7bを介して集積回路層30の表面11a側に接合されている。
 本実施形態に係る半導体集積回路装置1Bでは、図3に示された検査方法によって、接続用端子34と接続用端子14との接続状態が好適に検査される。但し、集積回路層30の検査用整流素子部15からの光は、配線層13及びハンドリング基板8によって遮蔽されるので、集積回路層20の検査用整流素子部25からの光を裏面21b側から観察するとよい。これにより、上記第1実施形態と同様の作用及び効果を得ることができる。
 (第3の実施の形態)
図8は、第3実施形態としての半導体集積回路装置1Cの構成を示す断面図である。本実施形態に係る半導体集積回路装置1Cは、集積回路層10、20及び40が厚さ方向に積層されて成る。なお、本実施形態では、集積回路層10及び20の各構成および接続構造は第1実施形態と同様であり、集積回路層20が有する半導体基板21の裏面21bと、集積回路層40が有する半導体基板41の表面41aとが互いに対向するように、集積回路層20,40が互いに接合されている。
 集積回路層40は、表面41a及び裏面41bを有する半導体基板(支持層)41と、半導体基板41の表面41aに設けられたデバイス層42と、デバイス層42上に設けられた配線層43と、集積回路層20に電気的に接続される為の複数の接続用端子(電極)44とを有する。デバイス層42は、複数の半導体素子からなる半導体素子群を含む。
 配線層43は、デバイス層42に含まれる複数の半導体素子を電気的に相互に接続するための複数の配線を含む。これら複数の配線には、複数の半導体素子に電源電圧を印加するための正電源配線43aおよび接地配線43bが含まれる。本実施形態において、集積回路層40の正電源配線43aおよび接地配線43bと、集積回路層10,20の正電源配線13a,23aおよび接地配線13b,23bとは互いに独立して配置されており、相互の接続はなされていない。
 複数の接続用端子44は、配線層43上に設けられる。集積回路層20の複数の接続用端子26それぞれと、複数の接続用端子44それぞれとは、裏面21b上及び表面41a上において互いに対向する位置に配置され、且つ互いに接することにより電気的に接続されている。複数の接続用端子44のそれぞれは、例えばバンプ電極によって好適に構成される。
 また、集積回路層40は、複数の検査用整流素子部45を更に有する。複数の検査用整流素子部45それぞれは、デバイス層42に形成され、信号配線用の複数の接続用端子44それぞれに一対一で対応する。複数の検査用整流素子部45は、整流素子45a及び45bをそれぞれ有する。整流素子45aは、集積回路層40の正電源配線43aと接続用端子44との間に逆方向接続されており、整流素子45bは、集積回路層40の接地配線43bと接続用端子44との間に逆方向接続されている。なお、検査用整流素子部45の詳細な構成例及び変形例は、第1実施形態の検査用整流素子部15,25と同様である。
 集積回路層40は、半導体基板41の表面41a上の配線層43の配線と裏面41b上の複数の接続用端子(電極)46とを相互に接続するために、複数の貫通配線(TSV)47を更に有する。複数の接続用端子46は、接続用端子46a~46fを含む。接続用端子46a及び46bは、それぞれ貫通配線47を介して正電源配線43a及び接地配線43bと電気的に接続されている。接続用端子46cは、貫通配線47、接続用端子44、接続用端子26a、及び貫通配線27を介して集積回路層20の正電源配線23aと電気的に接続されている。接続用端子46dは、貫通配線47、接続用端子44、接続用端子26b、及び貫通配線27を介して集積回路層20の接地配線23bと電気的に接続されている。接続用端子46eは、貫通配線47、接続用端子44、接続用端子26c、貫通配線27、接続用端子24及び14を介して集積回路層10の正電源配線13aと電気的に接続されている。接続用端子46fは、貫通配線47、接続用端子44、接続用端子26d、貫通配線27、接続用端子24及び14を介して集積回路層10の接地配線13bと電気的に接続されている。このように、集積回路層10、20及び40の各電源系統を互いに独立して配設するために、接続用端子46a~46fが設けられている。接続用端子46a~46f及びこれらに接続された貫通配線や接続用端子は、検査用整流素子部15,25及び45にバイアス電圧を印加するための電圧印加部を構成する。
 半導体集積回路装置1Cは、接着層6を更に備える。接着層6は、集積回路層20と集積回路層40との隙間に設けられており、集積回路層20及び集積回路層40を機械的に接合する。なお、この接着層6は、検査用整流素子部25からの光を遮蔽し得る材料を含むことが好ましい。
 本実施形態に係る半導体集積回路装置1Cでは、図3に示された検査方法において、集積回路層10を集積回路層20に、集積回路層20を集積回路層40にそれぞれ置き換えることによって、接続用端子44と接続用端子26との接続状態が好適に検査される。但し、集積回路層20の検査用整流素子部25からの光は、配線層43によって遮蔽されるので、集積回路層40の検査用整流素子部45からの光を裏面41b側から観察するとよい。これにより、上記第1実施形態と同様の作用及び効果を得ることができる。
 (第4の実施の形態)
図9は、第4実施形態としての半導体集積回路装置1Dの構成を示す断面図である。本実施形態に係る半導体集積回路装置1Dは、集積回路層10、50及び40が厚さ方向に積層されて成る。なお、本実施形態では、集積回路層10の構成は第1実施形態と同様であり、集積回路層40の構成は第3実施形態と同様である。本実施形態では、集積回路層10の半導体基板11の表面11aと、集積回路層50の半導体基板51の裏面51bとが互いに対向し、半導体基板51の表面51aと、集積回路層40の半導体基板41の表面41aとが互いに対向するように、集積回路層10,50及び40が互いに接合されている。
 集積回路層50は、表面51a及び裏面51bを有する半導体基板(支持層)51と、半導体基板51の表面51aに設けられたデバイス層52と、デバイス層52上に設けられた配線層53と、集積回路層40に電気的に接続される為の複数の接続用端子(電極)54とを有する。デバイス層52は、複数の半導体素子からなる半導体素子群を含む。
 配線層53は、デバイス層52に含まれる複数の半導体素子を電気的に相互に接続するための複数の配線を含む。これら複数の配線には、複数の半導体素子に電源電圧を印加するための正電源配線53aおよび接地配線53bが含まれる。本実施形態において、集積回路層10,40及び50の各正電源配線13a,43a及び53a、並びに各接地配線13b,43b及び53bは互いに独立して配置されており、相互の接続はなされていない。
 複数の接続用端子54は、配線層53上に設けられる。複数の接続用端子54それぞれと、集積回路層40の複数の接続用端子44それぞれとは、表面51a上及び表面41a上において互いに対向する位置に配置され、且つ互いに接することにより電気的に接続されている。複数の接続用端子54のそれぞれは、例えばバンプ電極によって好適に構成される。
 また、集積回路層50は、複数の検査用整流素子部55を更に有する。複数の検査用整流素子部55それぞれは、デバイス層52に形成され、信号配線用の複数の接続用端子54それぞれに一対一で対応する。複数の検査用整流素子部55は、整流素子55a及び55bをそれぞれ有する。整流素子55aは、集積回路層50の正電源配線53aと接続用端子54との間に逆方向接続されており、整流素子55bは、集積回路層50の接地配線53bと接続用端子54との間に逆方向接続されている。なお、検査用整流素子部55の詳細な構成例及び変形例は、第1実施形態の検査用整流素子部15,25と同様である。
 集積回路層50は、半導体基板51の表面51a上の配線層53の配線と裏面51b上の複数の接続用端子(電極)56とを相互に接続するために、複数の貫通配線(TSV)57を更に有する。集積回路層40の接続用端子46c及び46dのそれぞれは、貫通配線47、接続用端子44、接続用端子54を介して集積回路層50の正電源配線53a及び接地配線53bのそれぞれと電気的に接続されている。また、集積回路層40の接続用端子46e及び46fのそれぞれは、貫通配線47、接続用端子44、接続用端子54、貫通配線57、接続用端子56、接続用端子14を介して集積回路層10の正電源配線13a及び接地配線13bのそれぞれと電気的に接続されている。このように、集積回路層10、50及び40の各電源系統を互いに独立して配設するために、接続用端子46a~46fが設けられている。接続用端子46a~46f及びこれらに接続された貫通配線や接続用端子は、検査用整流素子部15,55及び45にバイアス電圧を印加するための電圧印加部を構成する。
 本実施形態に係る半導体集積回路装置1Dでは、図3に示された検査方法において、集積回路層10を集積回路層50に、集積回路層20を集積回路層40にそれぞれ置き換えることによって、接続用端子54と接続用端子44との接続状態が好適に検査される。但し、集積回路層50の検査用整流素子部55からの光は、配線層43及び53によって遮蔽されるので、集積回路層40の検査用整流素子部45からの光を裏面41b側から観察するとよい。これにより、上記第1実施形態と同様の作用及び効果を得ることができる。
 (第5の実施の形態)
図10は、第5実施形態としての半導体集積回路装置1Eの構成を示す断面図である。本実施形態に係る半導体集積回路装置1Eは、集積回路層10A、20A、10B、及び20Bが厚さ方向に積層されて成る。本実施形態では、集積回路層10A及び20Aそれぞれの構成及び互いの接合構造は、第1実施形態の集積回路層10及び20と同様である。また、集積回路層10B及び20Bそれぞれの構成及び互いの接合構造は、下記の点を除いて第1実施形態の集積回路層10及び20と同様である。
 すなわち、集積回路層10Bは、その半導体基板11の裏面11bが集積回路層20Aの半導体基板21の裏面21bと対向するように、接着層7cを介して集積回路層20Aと接合されている。
 また、集積回路層10Bは、半導体基板11の表面11a上の配線層13の配線と裏面11b上の複数の接続用端子(電極)16とを相互に接続するために、複数の貫通配線(TSV)17を有する。複数の接続用端子16は、集積回路層20Aの信号配線用の複数の接続用端子26と一対一で対応して配置され、集積回路層10Bの複数の接続用端子16と集積回路層20Aの複数の接続用端子26とが互いに電気的に接続される。
 集積回路層20Bの複数の接続用端子26は、端子電極26a~26fを含む。接続用端子26a及び26bのそれぞれは、貫通配線27を介して集積回路層20Bの正電源配線23a及び接地配線23bのそれぞれと電気的に接続されている。接続用端子26cは、集積回路層20Bの貫通配線27及び接続用端子24、集積回路層10Bの接続用端子14、貫通配線17及び接続用端子16、並びに集積回路層20Aの接続用端子26及び貫通配線27を介して、集積回路層20Aの正電源配線23aと電気的に接続されている。接続用端子26dも同様の構成により、集積回路層20Aの接地配線23bと電気的に接続されている。また、接続用端子26eは、集積回路層20Bの貫通配線27及び接続用端子24、集積回路層10Bの接続用端子14、貫通配線17及び接続用端子16、集積回路層20Aの接続用端子26、貫通配線27及び接続用端子24、並びに集積回路層10Aの接続用端子14を介して、集積回路層10Aの正電源配線13aと電気的に接続されている。接続用端子26fも同様の構成により、集積回路層10Aの接地配線13bと電気的に接続されている。
 このように、本実施形態では、集積回路層10A、20A及び20Bの各電源系統を互いに独立して配設するために、集積回路層20Bに接続用端子26a~26fが設けられている。接続用端子26a~26f及びこれらに接続された貫通配線や接続用端子は、検査用整流素子部15及び25にバイアス電圧を印加するための電圧印加部を構成する。
 本実施形態に係る半導体集積回路装置1Eでは、図3に示された検査方法において、集積回路層10を集積回路層20Aに、集積回路層20を集積回路層20Bにそれぞれ置き換えることによって、集積回路層20Bの接続用端子24から集積回路層20Aの接続用端子26に至る信号経路の接続状態が好適に検査される。但し、集積回路層20Aの検査用整流素子部25からの光は、集積回路層10Bの配線層13及び集積回路層20Bの配線層23によって遮蔽されるので、集積回路層20Bの検査用整流素子部25からの光を集積回路層20Bの裏面21b側から観察するとよい。これにより、上記第1実施形態と同様の作用及び効果を得ることができる。
 特に、集積回路層が3層以上積層され、且つ集積回路層間に共通して設けられるバス配線といった基板間配線が3層以上にわたって連続する場合には、本実施形態のように最上部の集積回路層20Bと3層目以降の集積回路層20Aとの間に検査用のバイアス電圧を印加することによって、3層以上の集積回路層20A、10B及び20Bにわたる接続不良の検出や抵抗値の推測を行うことができる。本実施形態では、集積回路層10A及び20Aが接合されて成る積層物と、集積回路層10B及び20Bが接合されて成る積層物とで個別に検査を行ったのち、一の積層物の上に他の積層物を積層し、接続用端子26a及び26dの間、または接続用端子26b及び26cの間に検査用のバイアス電圧を印加することにより、最上層(集積回路層20B)と第2層(集積回路層10B)との層間接続、第2層(集積回路層10B)と第3層(集積回路層20A)との層間接続、並びに第2層内及び第3層内のTSVの接続不良を一括して検出することが可能となる。
 なお、本実施形態の半導体集積回路装置1Eは第1実施形態に係る2個の半導体集積回路装置1Aを接合した構成を備えているが、このように接合される2個の半導体集積回路装置は、上述した第1実施形態ないし第4実施形態のいずれの構成を備えてもよく、また互いに異なる構成のものを組み合わせてもよい。
 (第6の実施の形態)
図11は、第6実施形態としての半導体集積回路装置1Fの構成を示す断面図である。本実施形態に係る半導体集積回路装置1Fは、集積回路層10C及び20Cが厚さ方向に積層されて成る。本実施形態において、集積回路層10C及び20Cそれぞれの構成及び互いの接合構造は、下記の点を除いて第1実施形態の集積回路層10及び20それぞれの構成と同様である。
 本実施形態の集積回路層10C及び20Cは、第1実施形態の接続用端子14及び24に代えて、接続用端子14A及び24Aをそれぞれ有する。接続用端子14Aは、第1実施形態のようなバンプ電極ではなく、パッド状の電極である。また、接続用端子24AとしてTSV28aの一端が集積回路層20Cの表面21aから突出しており、該一端が接続用端子14Aと接している。TSV28aの他端は、信号配線の場合には半導体基板21の裏面21b上に設けられた再配線29と接しており、この再配線29と接する別のTSV28bを介して配線層23の配線に接続されている。また、TSV28aの他端は、電源配線または接地配線の場合には、半導体基板21の裏面21b上に設けられた接続用端子26と接している。
 本実施形態のような層間接続構造は、例えば表面11a及び21aが互いに対向する向きで集積回路層10Cと集積回路層20Cとを接合したのち、半導体基板21の裏面21bから集積回路層10Cの接続用端子14Aに達する第1の孔、および裏面21bから配線層23に達する第2の孔をエッチング等により形成し、第1及び第2の孔に金属材料を埋め込んだのち、その上に再配線29を形成することによって作製される。或いは、集積回路層10Cと集積回路層20Cとを接合したのち、裏面21bから接続用端子14Aに達する孔を形成し、この孔に金属材料を埋め込んだのち、その上に接続用端子26を形成することによって作製される。第1実施形態において説明した作用及び効果は、本実施形態のような層間接続構造においても好適に得ることができる。
 (第7の実施の形態)
図12は、第7実施形態としての半導体集積回路装置1Gの構成を示す断面図である。本実施形態に係る半導体集積回路装置1Gは、集積回路層20D及び30Dが厚さ方向に積層されて成る。本実施形態において、集積回路層20D及び30Dそれぞれの構成及び互いの接合構造は、下記の点を除いて第1変形例の集積回路層20及び30それぞれの構成と同様である。
 本実施形態の集積回路層20D及び30Dは、いわゆるSOI(Silicon On Insulator)構造を有する基板からシリコン層を除去して作製されたものであり、支持層として酸化膜層21D及び11Dをそれぞれ有する。集積回路層20Dの複数の貫通配線27は酸化膜層21Dを貫通して形成されており、それらの裏面21b側の一端は、複数の接続用端子26Aとして酸化膜層21Dから露出している。同様に、集積回路層30Dの複数の貫通配線37は酸化膜層11Dを貫通して形成されており、それらの裏面31b側の一端は、複数の接続用端子34Aとして酸化膜層11Dから露出している。複数の接続用端子34Aのそれぞれは、集積回路層20Dの複数の接続用端子24のそれぞれと電気的に接続されている。なお、複数の貫通配線27及び37は、上記各実施形態のようなTSVではなく、単なるビアコンタクトとなる。
 本実施形態のように、集積回路層20D及び30Dが支持層として酸化膜層21D及び11Dを有する場合であっても、第1実施形態において説明した作用及び効果を好適に得ることができる。
 なお、上述した第1実施形態ないし第7実施形態において、接続用端子としてのバンプ電極は片側バンプであってもよいし、バンプ電極に代えてTSVを用いてもよい。また、バンプ電極を設けずに、接続用端子としての金属膜同士を直接的に接合してもよい。また、上記各実施形態では集積回路層同士の接合のために接着層が用いられているが、各集積回路層の接続用端子以外の領域に金属膜をそれぞれ形成し、この金属膜同士を直接的に接合してもよい。また、各集積回路層の機械的強度が十分であるなら、2つの集積回路層の間を空隙としてもよい。
 (第8の実施の形態)
図13は、第8実施形態としての電源配線及び接地配線の構成を示す図である。図13に示されるように、本実施形態では、複数の検査用整流素子部65にバイアス電圧を印加するために、一つの集積回路層60につき少なくとも2系統(本実施形態では2系統)の電源配線63a及び63bが設けられている。また、集積回路層60の複数の接続用端子64は、互いに直交する二方向に沿って二次元状に配列されている。なお、図13には、別の集積回路層の検査用整流素子部66及び接地配線67が併せて示されている。
 一方の電源配線63aは、複数の接続用端子64のうち、格子縞状に配置される一部の接続用端子64と電気的に接続された検査用整流素子部65にバイアス電圧を印加する。また、他方の電源配線63bは、複数の接続用端子64のうち、残りの接続用端子64と電気的に接続された検査用整流素子部65にバイアス電圧を印加する。従って、電源配線63aからバイアス電圧が印加される検査用整流素子部65に接続された接続用端子64と、電源配線63bからバイアス電圧が印加される検査用整流素子部65に接続された接続用端子64とは、上記二方向において隣り合うことはない。
 本実施形態のように電源配線を構成することによって、上記一部の接続用端子64に接続された検査用整流素子部65からの発光と、残りの接続用端子64に接続された検査用整流素子部65からの発光とを分けて観察することができる。隣り合う接続用端子64同士の短絡がなければ、各検査用整流素子部65は対応する電源配線63a又は63bからバイアス電圧が印加されたときのみ発光するが、隣り合う接続用端子64同士が短絡している場合には、当該検査用整流素子部65は電源配線63a及び63bの何れにバイアス電圧を印加しても発光する。この発光を観察することによって、隣り合う接続用端子64同士が短絡していることを検出することができる。
 なお、電源配線を少なくとも2系統設ける例について説明したが、接地配線を少なくとも2系統設けるか、或いは各2系統以上の電源配線及び接地配線を組み合わせることによって、上記と同様の効果を奏することができる。
 (第9の実施の形態)
図14は、第9実施形態としての電圧印加部68の構成を示す図である。電圧印加部68は、図1に示された集積回路層20の正電源配線23aと集積回路層10の接地配線13bとの間(もしくは、正電源配線13aと接地配線23bとの間)に接続される。この電圧印加部68は、一つ以上の光電変換素子(ダイオード)68aを含む。図14に示される例では、2つの光電変換素子68aが直列に接続されている。光電変換素子68aのアノード側は正電源配線23a(又は正電源配線13a)と接続され、光電変換素子68aのカソード側は接地配線13b(又は接地配線23b)と接続される。光電変換素子68aは、半導体集積回路装置1Aの外部からのエネルギー入力(光入力)によって、検査用のバイアス電圧を発生する。
 本実施形態のような電圧印加部68を、集積回路層10及び20のうち少なくとも一層に設けることにより、検査用整流素子部15,25へのバイアス電圧の印加をプロービングを用いずに行うことができるので、検査におけるプロービング回数を更に少なくする(或いは、プロービングを無くす)ことが可能になる。なお、このような電圧印加部を実現する素子は光電変換素子に限られるものではなく、外部からのエネルギー線の入射によって起電力を発生し得るものであれば、他の種類の素子を適用してもよい。例えば、起電力素子としてのコイル部を集積回路層10及び20のうち少なくとも一層に設けてもよい。この場合、コイル部に磁場を照射することによりバイアス電圧を発生させることができる。
 (第10の実施の形態)
図15は、第10実施形態としての検査装置100Aの構成を示す図である。この検査装置100Aは、上述した第1実施形態ないし第9実施形態に係る半導体集積回路装置(図中には第1実施形態に係る半導体集積回路装置1Aを代表して示す)の検査方法を好適に実施するための装置である。
 検査装置100Aは、半導体集積回路装置1Aの検査用整流素子部15又は25からの発光を画像として撮像するために、該発光を含む像を撮像するカメラ101と、検査用の十分な大きさのバイアス電圧を発生する電源102と、このバイアス電圧を検査用整流素子部15又は25に対して順方向に印加するためのプローブ(電圧印加手段)103a及び103bと、カメラ101からの画像に基づいて接続不良の有無を検査する制御システム104とを備える。カメラ101と半導体集積回路装置1Aとの間には対物レンズ109及び結像レンズ110が設けられ、カメラ101は検査用整流素子部15又は25からの発光を対物レンズ109及び結像レンズ110を介して撮像する。カメラ101は、カメラケーブル101aを介して制御システム104と電気的に接続されており、制御システム104によってその動作が制御されるとともに、撮像データを制御システム104へ送る。
 また、検査装置100Aは、集積回路のパターンを観察するための照明系105を更に備える。照明系105は、ライトガイド106、ランプ光源107、及びビームスプリッタ108を含む。ランプ光源107から出射された光は、ライトガイド106を通ってビームスプリッタ108に達する。ビームスプリッタ108は、対物レンズ109と結像レンズ110との間に配置されており、ランプ光源107からの光を半導体集積回路装置1Aへ向けて反射するとともに、半導体集積回路装置1Aから出た光を透過する。この照明系105により、カメラ101は、検査用整流素子部15又は25からの発光に加えて、最上層の集積回路層20の集積回路パターンを撮像することができる。この集積回路パターンを含む画像は、撮像データと基準データとを対比する際に、レイアウトデータと裏面パターン像との間で位置合わせを行う際に使用される。
 なお、上述した検査装置100Aの構成要素のうち、制御システム104及びランプ光源107を除く構成要素は、暗箱120の内部に収容されていることが好ましい。本実施形態ではカメラ101が半導体集積回路装置1Aの上方に配置されているが、カメラ101は、半導体集積回路装置1Aの下方に配置されてもよい。
 (第11の実施の形態)
図16は、第11実施形態としての検査装置100Bの構成を示す図である。この検査装置100Bは、上述した第1実施形態ないし第9実施形態に係る半導体集積回路装置の検査方法を好適に実施するための装置である。
 この検査装置100Bは、上述した検査装置100A(図15)の構成に加えて、レーザ光源112、レーザスキャナ113、及び波長選択ミラー114を備える。これらの構成要素は、例えば図14に示した構成を有する電圧印加部にエネルギー線としてのレーザ光を照射するためのものである。レーザ光源112は、電圧印加部の起電力発生に好適な波長のレーザ光を生成する。このレーザ光源112はレーザコントロールケーブル112aによって制御システム104と電気的に接続されており、その出射タイミング等が制御システム104によって制御される。レーザスキャナ113は、レーザ光源112から光ファイバケーブル113aを介してレーザ光を受け、半導体集積回路装置1Aへのレーザ光の照射位置を変更する。レーザスキャナ113は、スキャナコントロールケーブル113bによってレーザ光源112と電気的に接続されており、そのスキャン方向が制御される。
 波長選択ミラー114は、ビームスプリッタ108と結像レンズ110との間に配置されている。波長選択ミラー114は、レーザスキャナ113から出射されたレーザ光を、半導体集積回路装置1Aへ向けて反射する。また、波長選択ミラー114は、半導体集積回路装置1Aからの光像を、カメラ101へ向けて通過させる。
 本実施形態のように、半導体集積回路装置を検査するための検査装置は、図15に示されたプローブ103a及び103b並びにバイアス電源102に代えて、半導体集積回路装置の起電力発生のためのエネルギー線を照射する構成を備えても良い。なお、レーザ光の反射光がカメラ101に入射することを防ぐため、ノッチフィルタ115を波長選択ミラー114とカメラ101との間に設けるとよい。或いは、レーザ光をレーザ顕微鏡としても用いるために、レーザ光の反射光を検出するセンサを別途設けてもよい。また、本実施形態では、半導体集積回路装置1Aの上方(カメラ101と同じ側)からレーザ光を照射しているが、半導体集積回路装置1Aの下方(カメラ101とは反対側)からレーザ光を照射する構成としてもよい。また、レーザ光の照射位置(電圧印加部の位置)を特定するために、半導体集積回路装置1Aからのレーザ光の反射を利用してもよい。具体的には、レーザスキャナ113とレーザ光源112とを接続する別の光ファイバケーブルを用意し、この光ファイバケーブルにより半導体集積回路装置1Aからの反射光をレーザ光源112に伝達し、スキャナ位置情報と組み合わせて画像化することにより適切な照射位置を判断するとよい。或いは、本実施形態のレーザ光源112、レーザスキャナ113、及び波長選択ミラー114によってLSM(レーザスキャニングマイクロスコピー)を構成し、このLSMを用いて半導体集積回路装置1Aからの反射画像を取得し、この反射画像に基づいて適切な照射位置(電圧印加部の位置)を検出し、当該位置にレーザ光を照射してもよい。
 本発明による半導体集積回路装置及びその検査方法は、上述した各実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上述した各実施形態では、検査用整流素子部にバイアス電圧を印加するための配線として電源配線および接地配線を用いているが、半導体集積回路装置は、検査用整流素子部にバイアス電圧を印加するための専用配線を備えても良い。バイアス電圧を印加するための配線が各集積回路層の半導体素子群から独立して検査用に設けられたものであっても、上記各実施形態と同様の効果を好適に得ることができる。また、上記各実施形態による半導体集積回路装置をOBIRCH(Optical Beam Induced Resistance CHange)検査やOBIC(Optical Beam Induced Current)検査などに用いることもできる。
 また、上述した各実施形態の半導体集積回路装置が備える検査用整流素子部は、検査のためだけに各集積回路層に設けられたものであってもよく、或いは、集積回路層内の半導体素子群を含む集積回路に寄生して形成される整流素子(ダイオード等)を利用したものであってもよい。
 また、上述した各実施形態の半導体集積回路装置が備える検査用整流素子部の整流素子は、シリコン基板上に絶縁薄膜及び電極膜が順に積層された構成を有しても良い。電極膜とシリコン基板との間にバイアス電圧を印加した際の絶縁薄膜におけるトンネル効果と、絶縁薄膜を電流が通過する際の発光とを利用することによって、上記各実施形態に係る検査用整流素子部を好適に実現することができる。
 また、上述した各実施形態では、検査用整流素子部の整流素子に順バイアス電圧を印加する構成を例示しているが、整流素子の逆バイアス耐圧を低くすることにより、検査時及び通常動作時の双方において整流素子へのバイアス電圧が逆バイアスとなるようにしてもよい。この場合、検査用整流素子部にバイアス電圧を印加するための配線として、一の集積回路層の電源配線と、別の集積回路層の電源配線とを用いるとよい。或いは、検査用整流素子部にバイアス電圧を印加するための配線として、一の集積回路層の接地配線と、別の集積回路層の接地配線とを用いるとよい。観察側の整流素子が逆バイアスとなるようにバイアス電圧を印加し、ホットキャリア発光もしくはトンネル電流による発光を観察することによって、ダイオードに順方向電流を流した場合の再結合発光と比較して、発光サイズを小さくできる。
 また、上述した各実施形態では、一方の集積回路層の検査用整流素子部からの発光を接着層や配線層によって遮光することにより、他方の集積回路層の検査用整流素子部からの発光を観察し易くしているが、このような遮光手段は接着層や配線層に限られず、他の遮光部材を用いても良い。
 また、上述した各実施形態において、一つの検査用整流素子部当たりの発光範囲を小さくすることで、複数の検査用整流素子部からの発光が観察し易くなる。そのため、例えば検査用整流素子部の整流素子(或いは整流素子とは別に設けられた発光素子)のキャリア拡散を防ぐための構造を検査用整流素子部が有することが好ましい。
 本発明は、複数の集積回路層が厚さ方向に積層されて成る半導体集積回路装置の層間接続不良の有無を、一層積層する毎に短時間で検査することが可能な検査方法及び半導体集積回路装置として利用可能である。
 1A~1G…半導体集積回路装置、6,7a~7c…接着層、8…ハンドリング基板、10,20…集積回路層、11,21…半導体基板、12,22…デバイス層、13,23…配線層、13a,23a…正電源配線、13b,23b…接地配線、14,24…接続用端子、15,25…検査用整流素子部、15a,15b,25a,25b…整流素子、16,26…接続用端子、17,27…貫通配線、68…電圧印加部、68a…光電変換素子、100A,100B…検査装置、101…カメラ、102…バイアス電源、103a,103b…プローブ、104…制御システム、105…照明系、107…ランプ光源、108…ビームスプリッタ、109…対物レンズ、110…結像レンズ、112…レーザ光源、113…レーザスキャナ、114…波長選択ミラー、115…ノッチフィルタ。

Claims (14)

  1.  表面及び裏面を有する支持層と、該支持層の前記表面に形成された半導体素子群及び配線とを各々有する複数の集積回路層が厚さ方向に積層されて成る半導体集積回路装置を検査する方法であって、
     一の前記集積回路層を作製する際に、別の前記集積回路層に電気的に接続される為の複数の接続用端子のそれぞれと前記配線との間に接続され、整流素子を含み電流により発光する複数の第1の検査用整流素子部を前記表面に形成し、
     前記別の集積回路層を作製する際に、前記一の集積回路層に電気的に接続される為の複数の接続用端子のそれぞれと前記配線との間に接続され、整流素子を含み電流により発光する複数の第2の検査用整流素子部を前記表面に形成し、
     前記一の集積回路層と前記別の集積回路層とを互いに積層する際に、該別の集積回路層の前記表面と前記一の集積回路層とを対向させ、
     前記一の集積回路層の前記複数の接続用端子と前記別の集積回路層の前記複数の接続用端子とを互いに電気的に接続したのち、前記一の前記集積回路層の前記配線と前記別の前記集積回路層の前記配線とを介して前記第1及び第2の検査用整流素子部にバイアス電圧を印加し、
     前記別の集積回路層の前記裏面側において観察される前記第1及び第2の検査用整流素子部のうち少なくとも一方の発光に基づいて、前記一の集積回路層の前記複数の接続用端子と前記別の集積回路層の前記複数の接続用端子との接続状態を検査する
     ことを特徴とする、半導体集積回路装置の検査方法。
  2.  前記第1及び第2の検査用整流素子部が、前記整流素子と直列に接続された発光素子を更に含むことを特徴とする、請求項1に記載の半導体集積回路装置の検査方法。
  3.  前記第1及び第2の検査用整流素子部の前記整流素子が電流により発光することを特徴とする、請求項1に記載の半導体集積回路装置の検査方法。
  4.  前記一の集積回路層及び前記別の集積回路層の少なくとも一方に、当該半導体集積回路装置の外部からのエネルギー入力によって前記バイアス電圧を発生する電圧印加部を更に形成することを特徴とする、請求項1~3のいずれか一項に記載の半導体集積回路装置の検査方法。
  5.  前記電圧印加部は、当該半導体集積回路装置の外部から照射される光によって起電力を発生する光電変換素子を含むことを特徴とする、請求項4に記載の半導体集積回路装置の検査方法。
  6.  前記一の集積回路層の前記配線が、前記半導体素子群に電源電圧を供給する為に前記支持層の前記表面上に形成された正電源配線及び接地配線のうち一方の配線であり、
     前記別の集積回路層の前記配線が、前記半導体素子群に電源電圧を供給する為に前記支持層の前記表面上に形成された正電源配線及び接地配線のうち他方の配線であり、
     前記一の集積回路層を作製する際に、前記複数の第1の検査用整流素子部の前記整流素子を前記一方の配線に対して逆方向に接続し、
     前記別の集積回路層を作製する際に、前記複数の第2の検査用整流素子部の前記整流素子を前記他方の配線に対して逆方向に接続する
    ことを特徴とする、請求項1~5のいずれか一項に記載の半導体集積回路装置の検査方法。
  7.  前記複数の集積回路層の前記配線が、前記半導体素子群から独立して検査用に設けられたものであることを特徴とする、請求項1~5のいずれか一項に記載の半導体集積回路装置の検査方法。
  8.  表面及び裏面を有する支持層と、該支持層の前記表面に形成された半導体素子群及び配線とを各々有する複数の集積回路層が厚さ方向に積層されて成る半導体集積回路装置であって、
     一の前記集積回路層が、
     別の前記集積回路層に電気的に接続される為の複数の接続用端子と、
     前記表面に形成され、前記複数の接続用端子のそれぞれと前記配線との間に接続され、整流素子を含み電流により発光する複数の第1の検査用整流素子部とを有し、
     前記別の集積回路層が、
     前記一の集積回路層に電気的に接続される為の複数の接続用端子と、
     前記表面に形成され、前記複数の接続用端子のそれぞれと前記配線との間に接続され、整流素子を含み電流により発光する複数の第2の検査用整流素子部とを有し、
     前記別の集積回路層の前記表面と前記一の集積回路層とが互いに対向しており、
     前記一の集積回路層の前記複数の接続用端子と前記別の集積回路層の前記複数の接続用端子とが互いに電気的に接続されており、
     前記一の前記集積回路層の前記配線と前記別の前記集積回路層の前記配線とを介して前記第1及び第2の検査用整流素子部にバイアス電圧を印加する電圧印加部を更に備える
     ことを特徴とする、半導体集積回路装置。
  9.  前記第1及び第2の検査用整流素子部が、前記整流素子と直列に接続された発光素子を更に含むことを特徴とする、請求項8に記載の半導体集積回路装置。
  10.  前記第1及び第2の検査用整流素子部の前記整流素子が電流により発光することを特徴とする、請求項8に記載の半導体集積回路装置。
  11.  前記電圧印加部は、一の集積回路層及び前記別の集積回路層の少なくとも一方に設けられ、当該半導体集積回路装置の外部からのエネルギー入力によって前記バイアス電圧を発生することを特徴とする、請求項8~10のいずれか一項に記載の半導体集積回路装置。
  12.  前記電圧印加部は、当該半導体集積回路装置の外部から照射される光によって起電力を発生する光電変換素子を含むことを特徴とする、請求項11に記載の半導体集積回路装置。
  13.  前記一の集積回路層の前記配線が、前記半導体素子群に電源電圧を供給する為に前記支持層の前記表面上に形成された正電源配線及び接地配線のうち一方の配線であり、
     前記別の集積回路層の前記配線が、前記半導体素子群に電源電圧を供給する為に前記支持層の前記表面上に形成された正電源配線及び接地配線のうち他方の配線であり、
     前記複数の第1の検査用整流素子部の前記整流素子が前記一方の配線に対して逆方向に接続されており、
     前記複数の第2の検査用整流素子部の前記整流素子が前記他方の配線に対して逆方向に接続されている
    ことを特徴とする、請求項8~12のいずれか一項に記載の半導体集積回路装置。
  14.  前記複数の集積回路層の前記配線が、前記半導体素子群から独立して検査用に設けられたものであることを特徴とする、請求項8~12のいずれか一項に記載の半導体集積回路装置。
PCT/JP2011/063528 2010-06-17 2011-06-13 半導体集積回路装置の検査方法及び半導体集積回路装置 WO2011158803A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180029738.5A CN102947926B (zh) 2010-06-17 2011-06-13 半导体集成电路装置的检查方法及半导体集成电路装置
EP11795708.4A EP2584600A4 (en) 2010-06-17 2011-06-13 INSPECTION PROCEDURE FOR INTEGRATED SEMICONDUCTOR SWITCHES AND INTEGRATED SEMICONDUCTOR SWITCHING DEVICE
KR1020127026320A KR101878993B1 (ko) 2010-06-17 2011-06-13 반도체 집적 회로 장치의 검사 방법 및 반도체 집적 회로 장치
US13/704,042 US20130082260A1 (en) 2010-06-17 2011-06-13 Semiconductor integrated circuit device inspection method and semiconductor integrated circuit device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010138554A JP5399982B2 (ja) 2010-06-17 2010-06-17 半導体集積回路装置の検査方法及び半導体集積回路装置
JP2010-138554 2010-06-17

Publications (1)

Publication Number Publication Date
WO2011158803A1 true WO2011158803A1 (ja) 2011-12-22

Family

ID=45348202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063528 WO2011158803A1 (ja) 2010-06-17 2011-06-13 半導体集積回路装置の検査方法及び半導体集積回路装置

Country Status (7)

Country Link
US (1) US20130082260A1 (ja)
EP (1) EP2584600A4 (ja)
JP (1) JP5399982B2 (ja)
KR (1) KR101878993B1 (ja)
CN (1) CN102947926B (ja)
TW (1) TW201216392A (ja)
WO (1) WO2011158803A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101949503B1 (ko) * 2012-04-18 2019-02-18 에스케이하이닉스 주식회사 적층형 반도체 장치, 그 제조 방법 및 테스트 방법
JP6128787B2 (ja) 2012-09-28 2017-05-17 キヤノン株式会社 半導体装置
JP5971208B2 (ja) * 2013-07-17 2016-08-17 信越半導体株式会社 半導体素子の評価方法及び半導体素子の評価装置
JP2015176958A (ja) 2014-03-14 2015-10-05 株式会社東芝 半導体装置及びその製造方法
KR102360381B1 (ko) * 2014-12-01 2022-02-11 삼성전자주식회사 적층 구조를 갖는 반도체 소자 및 그 제조방법
KR102345675B1 (ko) * 2015-07-13 2021-12-31 에스케이하이닉스 주식회사 스위치드-커패시터 디시-디시 컨버터 및 그 제조방법
US10720465B2 (en) * 2016-03-31 2020-07-21 Nikon Corporation Image sensor and image capture device
US10431614B2 (en) * 2017-02-01 2019-10-01 Semiconductor Components Industries, Llc Edge seals for semiconductor packages
JP6496389B2 (ja) * 2017-11-28 2019-04-03 東芝メモリ株式会社 半導体装置及びその製造方法
KR102674029B1 (ko) 2018-10-26 2024-06-13 삼성전자주식회사 테스트 패드를 포함하는 반도체 패키지
KR102611983B1 (ko) * 2018-10-29 2023-12-08 삼성전자주식회사 배선 회로 테스트 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144867A (ja) * 1988-11-24 1990-06-04 Nec Corp 不完全実装判別用接点付きパッケージ
JP2001135778A (ja) 1999-11-04 2001-05-18 Rohm Co Ltd 半導体装置
JP2003021666A (ja) * 2001-07-09 2003-01-24 Matsushita Electric Ind Co Ltd マルチチップモジュール及びその接続テスト方法
JP2003086689A (ja) 2001-06-27 2003-03-20 Hitachi Ltd 半導体の不良解析用cadツール及び半導体の不良解析方法
JP2004281633A (ja) 2003-03-14 2004-10-07 Olympus Corp 積層モジュール
JP2004327474A (ja) 2003-04-21 2004-11-18 Elpida Memory Inc メモリモジュール及びメモリシステム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203656A (ja) * 1985-03-06 1986-09-09 Nec Corp 集積回路ケ−ス
JPH01301188A (ja) * 1988-05-30 1989-12-05 Sony Corp 半導体装置の検査方法
GB2249428A (en) * 1988-08-11 1992-05-06 Plessey Co Plc Connections for led arrays
US5198963A (en) * 1991-11-21 1993-03-30 Motorola, Inc. Multiple integrated circuit module which simplifies handling and testing
KR100961483B1 (ko) * 2004-06-30 2010-06-08 서울옵토디바이스주식회사 다수의 셀이 결합된 발광 소자 및 이의 제조 방법 및 이를이용한 발광 장치
WO2007013386A1 (ja) * 2005-07-26 2007-02-01 Matsushita Electric Industrial Co., Ltd. 半導体装置の検査方法、半導体装置、半導体集積回路、半導体集積回路のテスト方法およびテスト装置
US7598523B2 (en) * 2007-03-19 2009-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Test structures for stacking dies having through-silicon vias
KR100997272B1 (ko) * 2008-07-17 2010-11-29 주식회사 동부하이텍 반도체칩 및 반도체칩 적층 패키지
TW201129228A (en) * 2010-02-09 2011-08-16 Everlight Electronics Co Ltd Light emitting diode lighting apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144867A (ja) * 1988-11-24 1990-06-04 Nec Corp 不完全実装判別用接点付きパッケージ
JP2001135778A (ja) 1999-11-04 2001-05-18 Rohm Co Ltd 半導体装置
JP2003086689A (ja) 2001-06-27 2003-03-20 Hitachi Ltd 半導体の不良解析用cadツール及び半導体の不良解析方法
JP2003021666A (ja) * 2001-07-09 2003-01-24 Matsushita Electric Ind Co Ltd マルチチップモジュール及びその接続テスト方法
JP2004281633A (ja) 2003-03-14 2004-10-07 Olympus Corp 積層モジュール
JP2004327474A (ja) 2003-04-21 2004-11-18 Elpida Memory Inc メモリモジュール及びメモリシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2584600A4

Also Published As

Publication number Publication date
JP2012004383A (ja) 2012-01-05
EP2584600A4 (en) 2016-05-18
CN102947926B (zh) 2015-09-23
CN102947926A (zh) 2013-02-27
EP2584600A1 (en) 2013-04-24
JP5399982B2 (ja) 2014-01-29
US20130082260A1 (en) 2013-04-04
KR101878993B1 (ko) 2018-07-16
KR20130083824A (ko) 2013-07-23
TW201216392A (en) 2012-04-16

Similar Documents

Publication Publication Date Title
JP5399982B2 (ja) 半導体集積回路装置の検査方法及び半導体集積回路装置
JP5349410B2 (ja) 半導体集積回路装置の検査方法及び半導体集積回路装置
JP7411712B2 (ja) 検査システム、画像センサ、及び、画像センサを製造する方法。
US20110267087A1 (en) Apparatus and method for wafer level classification of light emitting device
JP6984075B1 (ja) 半導体故障解析装置及び半導体故障解析方法
CN111123075B (zh) 封装器件的失效分析方法
Jacobs et al. Optical beam-based defect localization methodologies for open and short failures in micrometer-scale 3-D TSV interconnects
US9229052B2 (en) Stack including inspection circuit, inspection method and inspection apparatus
CN112385025B (zh) 层叠型半导体装置及用于其的多个芯片
Van Huylenbroeck et al. Multi-tier $\mathrm {N}= 4$ Binary Stacking, combining Face-to-Face and Back-to-Back Hybrid Wafer-to-Wafer Bonding Technology
US20120080595A1 (en) Non-contact determination of joint integrity between a tsv die and a package substrate
US6177989B1 (en) Laser induced current for semiconductor defect detection
WO2018079657A1 (ja) 太陽電池の検査方法および検査装置、太陽電池の製造方法および太陽電池モジュールの製造方法、ならびに検査用プログラムおよび記憶媒体
US8268669B2 (en) Laser optical path detection
CN112018084B (zh) 半导体测试结构及半导体器件的失效分析方法
CN105023897B (zh) 对预制的封装结构进行钻孔的方法及钻孔装置
Sun et al. PEM/OBIRCH in failure localization of flip-chip
JPH041560A (ja) 半導体装置の破壊個所解析装置
JP2011029364A (ja) 電子素子の検査装置および検査方法
KR20040069818A (ko) 전/후면 겸용 불량 위치 검출 장치 및 방법
JP2011054752A (ja) 欠陥検査パターン回路、半導体ウェーハ及び欠陥検査方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029738.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127026320

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13704042

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011795708

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011795708

Country of ref document: EP