WO2011155536A1 - 蛋白質固定化用担体、固定化蛋白質及びそれらの製造方法 - Google Patents

蛋白質固定化用担体、固定化蛋白質及びそれらの製造方法 Download PDF

Info

Publication number
WO2011155536A1
WO2011155536A1 PCT/JP2011/063160 JP2011063160W WO2011155536A1 WO 2011155536 A1 WO2011155536 A1 WO 2011155536A1 JP 2011063160 W JP2011063160 W JP 2011063160W WO 2011155536 A1 WO2011155536 A1 WO 2011155536A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
enzyme
immobilized
porous silica
group
Prior art date
Application number
PCT/JP2011/063160
Other languages
English (en)
French (fr)
Inventor
達朗 角田
貴幸 奈良
世吾 小野
千里 関川
水上 富士夫
秀蔵 小島
直樹 田原
秀彰 冨樫
美紀 江上
Original Assignee
日揮触媒化成株式会社
独立行政法人産業技術総合研究所
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社, 独立行政法人産業技術総合研究所, 日揮株式会社 filed Critical 日揮触媒化成株式会社
Priority to US13/702,308 priority Critical patent/US20130109072A1/en
Priority to EP11792493.6A priority patent/EP2592140A4/en
Publication of WO2011155536A1 publication Critical patent/WO2011155536A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/14Peptides being immobilised on, or in, an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a protein immobilization carrier having a predetermined organic group on the surface of porous silica particles having mesopores, a method for producing the protein immobilization carrier, and immobilizing a protein on the protein immobilization carrier.
  • the present invention relates to an immobilized protein formed and a method for producing the immobilized protein.
  • the reaction by the enzyme is expected to contribute to the simplification of the synthetic reaction route because it exhibits substrate specificity and stereospecificity different from those of the inorganic catalyst.
  • enzymes are expensive and not easy to use repeatedly.
  • the environment temperature range or target substrate type
  • the necessary activity can be maintained is narrow. It has already been reported that the above problem can be solved by immobilizing an enzyme on a carrier material.
  • the enzyme since the enzyme has high substrate specificity, it is necessary to select a suitable enzyme for each reaction. In addition, since the tendency of the enzyme to be immobilized is influenced by the carrier structure, it is necessary to develop a method for immobilizing the enzyme on each carrier or a new carrier.
  • FSM porous silica particles
  • porous silica particles are characterized by having pores with a diameter of 2 to 50 nm, and an enzyme can be introduced or immobilized inside the pores. Therefore, the porous silica particles can be regarded as a promising carrier material having many surfaces effective for adsorption or immobilization of an enzyme having a size of several nm to several tens of nm, that is, a protein.
  • Patent Document 1 is a silica-based porous body made of a sphere having a diameter of 2 mm or less and having a large number of pores.
  • a spherical shape characterized in that the total pore volume of pores having a pore diameter in the range of 10 nm and having a pore diameter in the range of D-2.5 to D + 2.5 nm is 60% or more of the total pore volume
  • An invention relating to a mesoporous material is disclosed.
  • Patent Document 2 discloses an invention relating to a mesoporous inorganic porous material comprising an aggregate of tabular grains mainly composed of silica and having a specific surface area of 1200 m 2 / g or more.
  • Suitable conditions for the mesoporous inorganic porous material include a specific surface area of 1400 m 2 / g or more, an aspect ratio of the tabular grains of 5 to 100, and a peak half-value width of the pore diameter distribution of the mesopores. It is within ⁇ 30% of the peak pore diameter (d 0 ).
  • Patent Document 3 discloses porous silica spherical primary particles exhibiting an X-ray diffraction pattern having one or more diffraction lines in a diffraction angle range (2 ⁇ / °) corresponding to a lattice spacing (d) of 1 nm or more.
  • a porous silica aggregated particle formed by agglomerating particles, wherein pores are formed in the porous silica spherical primary particles, and a void layer is formed between these porous silica spherical primary particles.
  • An invention relating to porous silica aggregated particles is disclosed. Similar to Patent Document 2, this invention can be said to be common in that silica fine particles (primary particles) are aggregated to form porous silica particles.
  • Patent Document 4 discloses that the material is alumina, but the central pore diameter is within the range of 2 to 100 nm of the mesopore region.
  • the distribution of the pores is an alumina-based porous material in which 70% or more of the mesopore volume (the volume of the pores in the region having a pore diameter of 2 to 100 nm) is the pores existing in the mesopore region.
  • the oxide porous body is an oxide porous body formed by agglomerating particles having an aspect ratio of 3 or less, and has pores in the gaps between the particles.
  • porous silica particles When porous silica particles are used as a carrier for immobilizing enzymes, it is possible to prevent agglomeration of enzymes present at high density, and it is considered possible to achieve high integration of active enzymes. This is expected to allow the enzyme to exist beyond the amount that causes aggregation in the solution in the reaction system using the enzyme.
  • an enzyme immobilized on a carrier has been performed for a long time, its purpose is mostly related to the separation and reuse of the enzyme.
  • the enzyme is often used by dissolving it in water.
  • the product and the enzyme are separated. Manipulation is indispensable, and the separated enzyme is generally discarded.
  • enzyme immobilization technology for immobilizing the enzyme on a carrier has been actively researched and developed.
  • the enzyme immobilization method for example, a method of directly immobilizing on resin beads, a microencapsulation with a polymer coating, a surface modification method of modifying and stabilizing the enzyme protein surface, and the like have been proposed.
  • the enzyme is only immobilized on the surface of the immobilization carrier, and the surface area of the carrier for immobilization of the enzyme is not large, and the enzyme function is improved by high integration and immobilization of the enzyme.
  • the reality is not aimed at.
  • Enzyme immobilization for the purpose of enzyme reuse is also being studied. In this case as well, there is no significant difference from the method aiming at elimination of the separation step, and many are simply fixed to the surface of various carriers.
  • a method of fixing to a polymer foam is also used. In this case, operations such as separation of a solution containing a product are performed by compressing the foam.
  • Patent Document 5 discloses a heme protein-encapsulating complex having a heme protein inside the pores of a silica-based mesoporous material, wherein (1) the heme protein forms a multimer inside the pores.
  • An invention relating to a heme protein complex is disclosed in which the multimer is adsorbed on the inner wall of the pore of the silica-based mesoporous material as a highly dense protein.
  • the present invention has been found to improve the thermal stability of proteins and the resistance to organic solvents by immobilizing enzymes, ie, proteins, into the pores of silica mesoporous materials.
  • silica-based mesoporous material materials such as MCM, FSM, and SBA types are generally known. These silica-based mesoporous materials are characterized by having pores with a diameter of 2 to 50 nm.
  • the enzyme that is, the protein has a size of several nm to several tens of nm, and has a distribution having the same size as the pore diameter of the silica-based mesoporous material. From this, it is considered that when a silica-based mesoporous material is used as an enzyme immobilization carrier, the enzyme can be immobilized not only on the surface but also in the pores.
  • the silica-based mesoporous material has an effective surface area for immobilizing the enzyme much larger than that obtained by the conventional technology, and can immobilize a large amount of enzyme.
  • an enzyme can be immobilized in the pores, It is also possible to
  • silica mesoporous materials for adsorbing proteins such as enzymes include, for example, spherical silica having radial pores having an average particle diameter of 0.01 to 3 ⁇ m and a central pore diameter of 1 nm or more in Patent Document 7.
  • Patent Document 7 There is disclosed an invention relating to a spherical silica mesoporous material, wherein the spherical silica mesoporous material is modified with an organic functional group containing a cyano group or a carboxyl group
  • organically modified silica mesoporous material exhibits high adsorption properties for basic dyes, proteins, metals and the like.
  • the volume of pores existing in the range of 45 to 70 angstroms, the average pore diameter of 50 to 100 angstroms, and ⁇ 10% of the mode of pore diameters measured with a mercury porosimeter is 0.00.
  • An invention of a porous spherical silica characterized by being 40 ml / g or more is disclosed.
  • the porous silica can be produced by firing a porous spherical silica precursor having a BET specific surface area of 400 m 2 / g or more and a pore volume of 0.9 ml / g or less at a temperature of 600 ° C. or more. Is disclosed. It is described that the porous silica is useful as an immobilization support for immobilizing a catalyst, an enzyme or a microorganism.
  • Patent Document 9 discloses a complex of an enzyme that hydrolyzes starch and a silica-based mesoporous material on which the starch-hydrolyzing enzyme is immobilized, and an enzyme that is immobilized on the silica-based mesoporous material.
  • An invention relating to a silica-based mesoporous material-starch hydrolyzing enzyme complex characterized by having an activity of catalyzing the hydrolysis of starch is disclosed.
  • the silica-based mesoporous material is preferably an MCM, FSM, or SBA type silica-based mesoporous material.
  • the silica-based mesoporous material is characterized by a pore diameter of 2 to 50 nm and a total pore volume of 0. It is described that a range of 1 to 3.5 ml / g and a specific surface area of 200 to 1500 m 2 / g are suitable.
  • Patent Document 10 as a method for immobilizing an enzyme in a porous silica particle porous body, a porous structural unit in a porous silica particle porous body having an internal diameter 1.2 times or more of the enzyme diameter and having structural stability is disclosed.
  • Immobilization of an enzyme characterized by improving the stability of the immobilized enzyme by forming a network structure of a gelled substance by a sol-gel method in the opening and / or internal void of the structural unit after immobilizing the enzyme
  • An invention relating to the method is disclosed.
  • Patent Document 11 discloses that an internal structure involved in an enzyme function of an oxidase is stabilized by means such as conversion of an unstable specific amino acid, and the oxidase has a predetermined structure stability.
  • An invention relating to a method for immobilizing an enzyme, which is immobilized in a pore structure unit in a porous porous silica particle having an inner diameter and also stabilizes the enzyme surface, is disclosed.
  • JP 2009-73681 A JP 2001-170500 A JP 2007-51076 A JP 2009-125006 A JP 2008-24567 A JP 2007-76941 A JP 2009-153448 A JP 2001-178457 A JP 2002-262863 A
  • the enzyme immobilization carrier according to the present invention has been developed to solve the above problems. Specifically, the following problems have been solved.
  • an enzyme immobilization carrier it is possible to respond by selecting the particle size of the silica particles used as a raw material or adjusting the surface treatment stage without changing the basic structure of the carrier for each type of enzyme. It is an object of the present invention to provide such an enzyme immobilization carrier and a method for producing the same. More specifically, for the purpose of providing a carrier for enzyme immobilization suitable for immobilization of various enzymes having different molecular sizes and different isoelectric points, the pore size, pore size distribution of porous silica particles, The problem is to optimize the pore volume or pore structure to support the immobilization of enzymes of various molecular sizes, and to support the immobilization of various enzymes by modifying the surface silanol groups of porous silica particles. To do.
  • the enzyme is immobilized on the carrier.
  • An enzyme immobilization carrier that suppresses changes in the three-dimensional structure of the enzyme, which is the main cause of a decrease in reaction activity, and secures a minute enzyme reaction space required for improving the reaction activity of the immobilized enzyme. The challenge is to design.
  • An object of the present invention is to provide an immobilized enzyme having excellent resistance to the reaction temperature when the immobilized enzyme reacts with the substrate or the solvent used in the reaction.
  • the object of the present invention is achieved by the following means [1] to [17].
  • [1] It consists of porous silica particles having an interparticle void structure inside, The carrier for protein immobilization, wherein the porous silica particles satisfy the following (1) to (6) and have a silanol group, an anion exchange group or a cation exchange group on the surface: (1) An average particle diameter (Da) in the range of 0.5 to 100 ⁇ m; (2) a specific surface area in the range of 10 to 250 m 2 / g; (3) pore volume (Pv) in the range of 0.10 to 0.32 ml / g; (4) The range of the pore size (Pms) of the peak value in the pore size distribution (X axis: pore size [Ps], Y axis: value obtained by differentiating the pore volume with the pore size) in the range of 2 to 200 nm; (5) The total pore volume of pores having pore diameters in the range of (Pms) ⁇ 0.75 to (Pms) ⁇ 1.25 nm is 70% or
  • the porous silica particles are Spherical silica fine particles having an average particle size (Db) of 10 to 500 nm, a sphericity of 0.9 to 1 and a particle size variation coefficient (CV value) of 2 to 10%, and having a single particle size distribution.
  • [3] consisting of porous silica particles having an interparticle void structure inside,
  • the carrier for protein immobilization wherein the porous silica particles satisfy the following (1) to (6) and have a silanol group, an anion exchange group or a cation exchange group on the surface: (1) Average particle diameter (Da) in the range of 0.5 to 50 ⁇ m; (2) a specific surface area in the range of 10 to 250 m 2 / g; (3) pore volume (Pv) in the range of 0.10 to 0.32 ml / g; (4) The range of the pore size (Pms) of the peak value in the pore size distribution (X axis: pore size [Ps], Y axis: value obtained by differentiating the pore volume with the pore size) in the range of 2 to 50 nm; (5) The total pore volume of pores having a pore diameter in the range of (Pms) ⁇ 0.75 to (Pms) ⁇ 1.25 nm is 80%
  • the porous silica particles are Spherical silica fine particles having an average particle size (Db) of 10 to 50 nm, a sphericity of 0.9 to 1, and a particle size variation coefficient (CV value) of 2 to 10%, and having a single particle size distribution.
  • porous silica particles are those obtained by further treating the porous silica particles treated with an amino group-containing silane coupling agent with an organic acid.
  • the protein immobilization carrier according to any one of the above.
  • the protein immobilization carrier according to any one of [1] to [8], which is used for immobilization of a complex enzyme.
  • a method for producing an immobilized protein comprising a step of adsorbing the protein to the protein immobilization support according to any one of [1] to [8].
  • the protein immobilization carrier according to the present invention is a porous silica particle having an interparticle void structure inside and a high uniformity of pore diameter, and has a silanol group, an anion exchange group or a cation exchange on the surface thereof. It has a group. Since the uniformity of the pore size is particularly high, the protein is uniformly immobilized on the enzyme-immobilized carrier by selecting a protein-immobilizing carrier having a pore size suitable for the molecular size of the protein, particularly the enzyme. Moreover, the protein is stably immobilized on the enzyme immobilization carrier by selecting the type of substituent on the surface for protein immobilization according to the type of protein such as an enzyme.
  • the protein immobilization carrier according to the present invention is usually a spherical aggregate of spherical silica fine particles.
  • the particle size distribution of the spherical silica fine particles shows a monodisperse phase, and it can be said that the uniformity of the pore size of the protein immobilization support according to the present invention is achieved.
  • the protein immobilization carrier according to the present invention is hardly deteriorated or disintegrated because the protein immobilization carrier has a stable structure composed of an aggregate of uniform spherical silica fine particles.
  • the protein immobilization carrier according to the present invention can be adapted to immobilize proteins of various molecular sizes, particularly enzymes, simply by selecting the particle size of the spherical silica fine particles in the production stage. Become.
  • the surface of the porous silica particles constituting the protein immobilization support has an anion exchange group or a cation exchange group.
  • the anion exchange group has a substituent containing an amino group or a quaternary ammonium group in the structure, or the cation exchange group is selected from a carboxyl group, a phosphate group and a sulfoxyl group. Having a substituent containing such a group in the structure is advantageous because the protein, particularly the enzyme, can be immobilized through a strong bond such as a covalent bond.
  • Such a substituent is typically obtained by treating porous silica particles with a silane coupling agent to modify the silanol groups on the surface thereof.
  • the carrier for protein immobilization according to the present invention in the production stage thereof, in addition to the selection of the particle size of the spherical silica fine particles, the selection of substituents introduced by a drug such as a silane coupling agent allows the protein immobilization. Depending on the type, an optimum carrier for protein immobilization can be obtained.
  • the immobilized protein according to the present invention is structurally stable because the protein immobilization support used for protein immobilization is a spherical aggregate of highly uniform spherical silica particles, and also has a uniform pore size distribution. high. Further, since the surface of the protein immobilization carrier has a substituent corresponding to the surface charge of the protein, the protein adsorbed on the protein immobilization carrier can exist stably. Due to these characteristics, the immobilized protein according to the present invention can be used for immobilization of various proteins by selecting the pore diameter and the type of the surface substituent within the range of the design. Further, the immobilized protein according to the present invention is hardly deteriorated or disintegrated even by repeated use due to its structural stability, and is hardly affected by the temperature or the solvent during the reaction with the substrate.
  • an immobilized enzyme that employs an enzyme as a protein can exhibit a reaction activity equal to or higher than that of the enzyme before immobilization.
  • the method for producing an immobilized enzyme according to the present invention is highly practical and has few conditions to be managed, and therefore can be said to be suitable for mass production.
  • the carrier for protein immobilization according to the first aspect of the present invention is porous silica particles having an interparticle void structure and high pore diameter uniformity, and has silanol groups, anion exchange groups or It has a cation exchange group. Since the uniformity of the pore size is particularly high, the protein is uniformly immobilized on the protein-immobilized carrier by selecting a protein-immobilizing carrier having a pore size suitable for the molecular size of the protein, particularly the enzyme. In addition, the protein is stably immobilized on the protein immobilization carrier by selecting the type of substituent on the surface of the protein immobilization carrier according to the type of protein. When such a protein-immobilizing carrier is applied to, for example, the development of a new immobilized protein, particularly an immobilized enzyme, there are the following advantages.
  • the carrier for enzyme immobilization is made of porous silica particles and has a stable structure, the mechanical strength of the immobilized enzyme is high and it can be used repeatedly.
  • the development period for immobilizing the target enzyme can be shortened and easily linked to industrialization.
  • acidic, basic, neutral or hydrophobic enzymes can be immobilized by modifying the surface of the porous silica particles with a hydroxyl group, amino group, carboxyl group or phenylamino group. .
  • the immobilized protein according to the second aspect of the present invention is a protein immobilized on the protein immobilization carrier.
  • Such an immobilized protein has the following advantages, for example.
  • an immobilized protein obtained by immobilizing an enzyme selected from racemase, glucoamylase, amylase or laccase is excellent in heat resistance.
  • carrier for protein immobilization The figure which shows the change of the specific activity in various fixed racemase by repeated use.
  • Figure showing the pore size distribution of various protein immobilization carriers (the curve connecting the circles shows the pore size distribution measured by the nitrogen adsorption method, and the curve connecting the triangles shows the pore size distribution measured by the mercury intrusion method. (The value written in the vicinity of the peak of each curve represents the pore size of the protein immobilization support.)
  • the present invention is a porous silica particle having an aggregate of fine particles and having a mesopore or a treatment for imparting a predetermined functional group to the surface of the porous silica particle using a silane coupling agent or the like. Utilizing the phenomenon of protein adsorption to porous silica particles as a method for immobilizing the protein, the protein is stably immobilized in the pores or on the surface of the porous silica particles, and the function of the immobilized protein is sufficiently It can be used for
  • the present invention since an enzyme is preferably selected as the protein immobilized on the porous silica particles, the present invention includes an enzyme immobilization carrier or an immobilized enzyme.
  • the protein immobilization carrier according to the present invention comprises specific porous silica particles having an interparticle void structure inside.
  • the porous silica particles used in the present invention satisfy the following (1) to (6) and have a silanol group, an anion exchange group or a cation exchange group on the surface: (1) An average particle diameter (Da) in the range of 0.5 to 100 ⁇ m; (2) a specific surface area in the range of 10 to 250 m 2 / g; (3) pore volume (Pv) in the range of 0.10 to 0.32 ml / g; (4) The range of the pore size (Pms) of the peak value in the pore size distribution (X axis: pore size [Ps], Y axis: value obtained by differentiating the pore volume with the pore size) in the range of 2 to 200 nm; (5) The total pore volume of pores having a pore diameter in the range of (Pms) ⁇ 0.75 to (Pms)
  • the carrier for protein immobilization according to the present invention is used as a carrier for immobilizing a protein in an immobilized protein described later. Since the protein immobilization carrier according to the present invention is used as a carrier for immobilizing an enzyme in a preferred embodiment, it is sometimes called an “enzyme immobilization carrier” in the sense of emphasizing this aspect. .
  • Porous silica particles The porous silica particles in the present invention are porous silica particles having an interparticle void structure inside, 1) The average particle diameter (Da) of the porous silica particles is in the range of 0.5 to 100 ⁇ m; 2) Specific surface area in the range of 10 to 250 m 2 / g; 3) pore volume in the range of 0.10 to 0.32 ml / g; 4) The pore diameter (Pms) of the peak value in the pore diameter distribution (X axis: pore diameter [Ps], Y axis: value obtained by differentiating the pore volume with the pore diameter) is in the range of 2 to 200 nm; 5) The total pore volume of pores having a pore diameter in the range of (Pms) ⁇ 0.75 to (Pms) ⁇ 1.25 nm is 70% or more of the total pore volume; 6) Porous silica particles satisfying the requirement of porosity in the range of 5 to 50% and having silano
  • the interparticle void structure is usually constituted by self-assembly and / or self-assembly of particles.
  • the porous silica particles used in the present invention are usually in the range of an average particle size of 10 to 500 nm and a sphericity of 0.9 to 1, preferably an average particle size of 10 to 50 nm and a sphericity of 0.9 to 1.
  • the inter-particle void structure of the porous silica particles according to the present invention has a peak pore size (Pms) in the pore size distribution (X axis: pore size, Y axis: value obtained by differentiating pore volume with pore size).
  • Pms peak pore size
  • reaction selectivity can be imparted to the catalyst carrier on which the catalyst is supported. This is due to the fact that the shape of the particles forming the pores is spherical and the particle diameter is uniform, and the pores formed are also present in a dispersed state with a uniform pore diameter. It is guessed.
  • the average particle diameter (Da) of the porous silica particles according to the present invention is preferably in the range of 0.5 to 100 ⁇ m, and more preferably in the range of 0.5 to 50 ⁇ m. According to the production method of the present invention described later, spherical and uniform porous silica particles can be obtained within this range. According to the production method of the present invention, it is not easy to prepare porous silica particles having an average particle diameter of less than 0.5 ⁇ m. When the average particle diameter exceeds 50 ⁇ m, particularly when the average particle diameter exceeds 100 ⁇ m, irregular shapes are easily generated according to the production method of the present invention, which is not desirable.
  • the average particle diameter of the porous silica particles is preferably in the range of 5 to 50 ⁇ m, particularly in the range of 5 to 30 ⁇ m.
  • the average particle diameter of the porous silica particles is measured by a centrifugal sedimentation method. Specific measurement methods are as follows. (B) “Measurement method of average particle diameter by centrifugal sedimentation method”.
  • the specific surface area of the porous silica particles according to the present invention is preferably in the range of 10 to 250 m 2 / g.
  • the specific surface area is less than 30 m 2 / g, particularly when it is less than 10 m 2 / g, in many cases, it is necessary to use a large amount of the carrier, which is economically disadvantageous.
  • the specific surface area exceeds 250 m 2 / g, the reaction product may be re-adsorbed and the reaction efficiency may be lowered, and the strength of the spherical aggregate becomes insufficient, which is not preferable.
  • a range of 30 to 250 m 2 / g is recommended.
  • the porous silica particles according to the present invention have a pore volume in the range of 0.10 to 0.32 ml / g.
  • the pore volume is less than 0.10 ml / g, when used as a carrier, the amount of supported metal fine particles that act as a catalyst is reduced, and in many cases, it is necessary to use a large amount of the carrier. Disadvantageous.
  • the pore volume exceeds 0.32 ml / g, the strength of the spherical aggregate may be insufficient.
  • a preferable range of the pore volume is 0.10 to 0.25 ml / g, more preferably 0.12 to 0.20 ml / g.
  • the pore volume can be obtained by a constant volume gas adsorption method using nitrogen, and the pore distribution and pore diameter (peak value) can be obtained by the BJH method. Further, as a method for measuring these values, a mercury intrusion method can be used.
  • the intergranular void structure of the porous silica particles according to the present invention has a pore size distribution (X axis: pore diameter [Ps], Y axis: pore volume in terms of pore diameter).
  • the pore volume needs to be 70% or more of the total pore volume.
  • the pore diameter (Pms) When the pore diameter (Pms) is less than 2 nm, it is not easy to ensure the necessary pore volume. When the pore diameter (Pms) exceeds 25 nm, particularly when it exceeds 200 nm, a decrease in particle strength may become a practical problem. Regarding the range of the pore diameter (Pms), a range of 2 to 50 nm is recommended. More preferably, the range of 3 to 15 nm is recommended.
  • the total pore volume of pores having a pore diameter in the range of (Pms) ⁇ 0.75 to (Pms) ⁇ 1.25 nm is less than 80% of the total pore volume, particularly less than 70%
  • the pore diameter distribution is uneven, stress is concentrated on relatively large pores, and problems such as practically low strength are likely to occur.
  • a preferable ratio of the total pore volume to the total pore volume is 80% or more, and a more preferable ratio is 85% or more.
  • the porous silica particles used in the present invention preferably have a porosity in the range of 5 to 50%.
  • the porous silica particles of the present invention can exhibit excellent particle breaking strength even with a porosity in this range. If the porosity is less than 5%, the amount of the substance that can be supported becomes small, which is not practical. If the porosity exceeds 50%, the strength of the particles may not be maintained, which is not desirable.
  • the porosity is preferably in the range of 10-30%.
  • the porous silica particles according to the present invention are composed of a spherical aggregate of spherical silica fine particles as described above.
  • the average particle diameter (Db) of the spherical silica fine particles is preferably in the range of 10 to 500 nm.
  • the average particle size is less than 10 nm, the particle size is too small and the pore volume due to the gaps between the inorganic silica fine particles is reduced, and the practicality of the supporting particles is reduced.
  • a more preferable average particle diameter of the spherical silica fine particles is in the range of 10 to 300 nm. Further, a range of an average particle size of 10 to 50 nm is more preferable, and a range of an average particle size of 10 to 48 nm is particularly preferable.
  • the average particle size of the spherical silica fine particles means an average particle size measured by a dynamic light scattering method or an average particle size measured by an image analysis method.
  • the spherical silica fine particles need to have a high sphericity without containing irregular shaped particles such as rod-like, slanted, elongated, beaded, or egg-like particles.
  • the term “spherical” means that the sphericity is in the range of 0.90 to 1.00.
  • the sphericity is the maximum diameter (DL) and the short diameter (DS) orthogonal to each of any 50 particles in a photographic projection obtained by photographing with a transmission electron microscope. Mean ratio (DS / DL).
  • DS / DL Mean ratio
  • porous silica particles of the present invention using spherical silica fine particles having a sphericity of 0.90 to 1.00 as the spherical silica fine particles can exhibit excellent particle breaking strength.
  • aligning the sphericity of spherical silica fine particles at 0.90 or more greatly affects the strength of the porous silica particles.
  • Examples of the spherical silica fine particles include silica fine particles such as oxide sol disclosed in JP-A-5-132309, composite silica fine particles containing an organic group disclosed in JP-A-10-454043, and JP-A-7-7. It is possible to apply composite silica fine particles having voids inside the particles disclosed in Japanese Patent No. 133105, but when the sphericity is not reached, so-called hydrothermal treatment is performed to reduce the sphericity to 0. After adjusting to the range of .90 to 1.00, it can be used as spherical silica fine particles.
  • Examples of the hydrothermal treatment conditions include a method of performing treatment at a temperature of 100 to 200 ° C. for 1 to 24 hours. It is also recommended to use an autoclave for the hydrothermal treatment.
  • the particle size variation coefficient (CV value) of the spherical silica fine particles is desirably in the range of 2 to 10%.
  • the particle size variation coefficient is less than 2%, it is more desirable for the present invention, but it is not easy to obtain spherical silica fine particles having a particle size distribution of that level.
  • the particle diameter variation coefficient exceeds 10%, the degree of monodispersion decreases, and the effect of the present invention decreases.
  • the range of the particle variation coefficient is preferably 2 to 7%.
  • a conventionally known method can be employed, and examples thereof include a microcapsule method, an emulsification method, an oil method, and a spray method.
  • the method for producing true spherical fine particles disclosed in Japanese Patent Publication No. 3-43201, Japanese Patent Publication No. 2-61406, etc. filed by the applicant of the present application is true spherical even when the starting inorganic silica fine particles are not spherical. Inorganic silica fine particle aggregates can be obtained, and the production process is not complicated and the economy is excellent. This preferable manufacturing method will be described later.
  • Porous silica particles used in the functional groups present invention as the functional group of the surface has silanol groups, anion exchange groups or the cation-exchange groups.
  • porous silica particles having silanol groups are used.
  • the porous silica particles have silanol groups on their surfaces, it can be said that the porous silica particles are included in the protein immobilization carrier according to the present invention.
  • porous silica particles having an anion exchange group or a cation exchange group are used.
  • “having an anion exchange group” or “having a cation exchange group” means that the porous silica particles contain an anion exchange group or a cation exchange group in the functional group on the surface. It does not require that all silanol groups be modified with anion exchange groups or cation exchange groups.
  • the embodiment of the porous silica particles in the protein immobilization carrier of the present invention includes (i) those containing silanol groups but containing neither anion exchange groups nor cation exchange groups, (ii) anion exchange groups And (iii) those containing a cation exchange group and no anion exchange group, and in some cases, (iv) a cation exchange group with a cation exchange group. Mention may also be made of those containing both groups.
  • the anion exchange group is a group that can adsorb an anion or can be anionized by reacting with an acid to express hydrophilicity.
  • a basic group examples thereof include a group containing an amino group in the structure or a group containing a quaternary ammonium group in the structure.
  • Examples of the group containing an amino group in the structure include —CH 2 CH 2 CH 2 NH 2 , —CH 2 CH 2 CH 2 CH 2 NH 2 and other primary amino groups represented by aminoalkyl groups Group; a group containing a secondary amino group such as a phenylamino group; —CH 2 N (CH 3 ) 2 , —CH 2 CH 2 N (CH 3 ) 2 , —CH 2 CH 2 N (CH 2 CH 2 ) 2 A group containing a tertiary amino group such as —CH 2 CH 2 CH 2 N (CH 2 CH 2 ) 2 ; and —CH 2 N + (CH 3 ) 3 , —CH 2 CH 2 N + (CH 3 ) 3 , —CH 2 CH 2 N + (CH 2 CH 2 ) 3 , —CH 2 CH 2 CH 2 N + (CH 2 CH 2 ) 3 , —CH 2 CH 2 N + (CH 2 CH 3 ) 2 CH 2 those CH (OH) CH 3, may be a group containing an
  • a cation exchange group is a group capable of adsorbing a cation or reacting with a base to be cationized to express hydrophilicity, and is an anionic group, An acidic group is mentioned.
  • a silanol group may also adsorb a cation
  • the term “cation exchange group” in the present invention strictly means a cation exchange group other than a silanol group.
  • a group containing in the structure a group selected from a carboxyl group, a phosphate group or a sulfoxyl group can be mentioned.
  • Examples of groups containing a carboxyl group in the structure include carboxyalkyl groups such as —CH 2 COOH, —CH 2 CH 2 COOH, —CH 2 CH 2 CH 2 COOH, —CH 2 CH 2 CH 2 CH 2 COOH, —CH 2 CH 2 CH 2 CH 2 COOH, — Examples of the phosphoric acid group include —PO 4 H 2 , and examples of the sulfoxyl group include sulfoalkyl groups such as —CH 2 CH 2 SO 3 H, —CH 2 CH 2 CH 2 SO 3 H, and the like. However, it is not limited to these.
  • these anion exchange groups and cation exchange groups are usually introduced onto the surface of the porous silica particles via a binding functional group to the porous silica particles. Yes.
  • the anion exchange group and the cation exchange group are bonded to the surface of the porous silica particle by treating the silanol group on the surface of the porous silica particle with a silane coupling agent or an organic acid.
  • desired anion exchange groups and cation exchange groups are introduced by hydrolysis reaction between the surface silanol groups of the porous silica particles and the silane coupling agent, The anion exchange group and the cation exchange group are bonded to the surface of the porous silica particle through the silicon atom of the silane coupling agent.
  • anion exchange group and “cation exchange group” may be used for a partial molecular structure including a binding functional group.
  • group containing an amino group in the structure may be used in the meaning including a binding functional group derived from a silyl coupling agent such as —Si—CH 2 CH 2 N (CH 3 ) 2. .
  • the porous silica particles used in the present invention are preferably a silanol group, an anion exchange group or a cation exchange group as a functional group on the surface thereof.
  • a hydrophobic organic group is also preferably used. Can do. Examples of such a hydrophobic organic group include, but are not limited to, a methyl group and a ⁇ -methacryloxypropyl group.
  • the porous silica particles used in the present invention may be further subjected to a surface treatment if desired, in addition to the introduction of the “functional group”, a spherical aggregate formed by agglomeration of the spherical silica fine particles. .
  • the surface treatment needs to be performed within a range in which the pore volume range and the pore diameter range can be maintained. By such surface treatment, the strength of the particles can be improved.
  • When used as a carrier it has the effect of increasing affinity with the substance to be carried and enhancing the carrying power.
  • silica-based coating layer having an organic functional group is formed.
  • R n Si (OR ′) 4-n [Wherein R and R ′ are hydrocarbon groups selected from alkyl groups having 1 to 18 carbon atoms, aryl groups having 1 to 18 carbon atoms, vinyl groups or acrylic groups, and n is 0, 1, 2, or 3] Is an integer. ] 1-2.
  • Method for Producing Porous Silica Particles The method for producing porous silica particles used in the present invention is not particularly limited as long as the object of the present invention can be achieved and desired functions and effects can be obtained. However, the porous silica particles used in the present invention are preferably produced as spherical porous particles, and are usually produced by the method described below.
  • Such a method for producing porous silica particles includes the following steps (A), (B) and (C) as a method for producing spherical porous particles.
  • (A) Centrifugation treatment A dispersion of spherical silica fine particles having an average particle size of 10 to 500 nm, preferably an average particle size of 10 to 50 nm, is prepared, and centrifugal treatment is performed to separate coarse particles.
  • the (CV value) By adjusting the (CV value) to a range of 2 to 10%, a spherical silica fine particle dispersion in which the particle size distribution exhibits a monodisperse phase is prepared.
  • the spherical silica fine particle dispersion has a solid content concentration of 1 to 50% by mass and a centrifugal force of 500 to 20000 ⁇ g.
  • the unit “ ⁇ g” represents a relative centrifugal acceleration (RCF) expressed as a ratio to the gravitational acceleration of the earth, and may be represented by “G”.
  • (B) Preparation of spherical silica fine particle aggregate A spray liquid containing a spherical silica fine particle dispersion is sprayed in an air stream to prepare a spherical silica fine particle aggregate.
  • the solvent of the spherical silica fine particle dispersion water or an organic solvent is used.
  • the organic solvent monohydric alcohols such as ethanol, propanol and butanol, polyhydric alcohols such as ethylene glycol, and the like can be used.
  • the spray liquid may contain a silicic acid liquid as desired in addition to the spherical silica fine particle dispersion.
  • a silicic acid solution By adding a silicic acid solution to the spherical silica fine particle dispersion as a spray solution, there is an effect of increasing the strength of the particles.
  • the addition amount of the silicic acid solution is preferably 1.3 or more in [mass of spherical silica fine particles] / silicic acid solution (in terms of silica). If it is less than 1.3, the ratio of the silica derived from the silicic acid solution becomes excessive, and the tendency for the porosity to decrease increases.
  • the concentration of the spray solution is preferably in the range of 2 to 60% by weight, particularly 4 to 50% by weight in terms of solid content.
  • the concentration of the spray solution is less than 2% by weight, it is difficult to obtain an aggregate.
  • the concentration of the spray solution exceeds 60% by weight, the spray solution becomes unstable and it becomes difficult to obtain a spherical aggregate.
  • the spray-drying mentioned later cannot be performed continuously, and the yield of an assembly falls.
  • the spray-drying method of the spray liquid is not particularly limited as long as the above-described aggregate can be obtained, and conventionally known methods such as a rotating disk method, a pressurized nozzle method, and a two-fluid nozzle method can be employed.
  • the two-fluid nozzle method disclosed in Japanese Examined Patent Publication No. 2-61406 is preferable because it can obtain spherical silica fine particle aggregates with a uniform particle size distribution and can easily control the average particle size. .
  • the drying temperature at this time varies depending on the concentration of the spherical silica fine particle dispersion, the processing speed, and the like, but when a spray dryer is used, for example, the inlet temperature of the spray dryer is 100 to 300 ° C., and the outlet temperature is 40 to 100 ° C. Etc. are preferable. More preferably, an inlet temperature of 210 to 250 ° C. and an outlet temperature of 50 to 55 ° C. are recommended.
  • the spraying speed depends on the shape or scale of the spraying device, but is performed, for example, in the range of 0.1 L / hour to 3 L / hour.
  • (C) Heat treatment of spherical silica fine particle aggregate
  • the spherical silica fine particle aggregate obtained in the step (B) is heated in a temperature range of 150 to 600 ° C. in order to increase the binding force between the spherical silica fine particles or gel components. Heat treatment.
  • the heat treatment temperature is less than 150 ° C., the effect of improving the bonding strength may not be recognized.
  • the temperature exceeds 600 ° C., the spherical silica fine particle aggregate may shrink, and the voids of the finally obtained spherical porous particles may be small, which is not preferable.
  • steps (A), (B) and (C) Following the steps (A), (B) and (C), the following steps (D), (E) and (F) may be performed as desired.
  • step (D) Preparation of spherical silica fine particle aggregate dispersion
  • the spherical silica fine particle aggregate obtained in step (C) is allowed to cool or cool to room temperature to 40 ° C. and dispersed in water and / or an organic solvent to disperse the spherical silica fine particle aggregate dispersion.
  • the organic solvent monohydric alcohols such as ethanol, propanol and butanol, polyhydric alcohols such as ethylene glycol, and the like can be used.
  • the concentration of the dispersion is preferably in the range of 0.1 to 40% by weight, particularly 0.5 to 20% by weight, as the concentration of the spherical silica fine particle aggregate converted to oxide. On the other hand, when the concentration exceeds 40% by weight, the aggregates easily aggregate in the step (D), which is not preferable.
  • R n Si (OR ′) 4-n (However, R and R ′ may be substituted with a group not containing an ion-exchange group selected from an alkyl group having 1 to 18 carbon atoms, an aryl group having 1 to 18 carbon atoms, a vinyl group or an acrylic group. Good hydrocarbon group, n is an integer of 0, 1, 2 or 3. ] In the case of i), an acid or alkali aqueous solution is usually used.
  • the “acid” used in i) differs from the organic acid used in the production of the protein immobilization carrier described later, and does not introduce a cation exchange group into the outer surface of the spherical silica fine particle aggregate.
  • the type of acid or alkali is not particularly limited, and examples include an aqueous hydrochloric acid solution, an aqueous boric acid solution, and an aqueous ammonium solution.
  • the acid or alkali in the case of ii) is defined as in the case of i).
  • the “organosilicon compound” used in the above ii) is different from the silane coupling agent used in the production of the protein immobilization carrier described later, and an anion exchange group or Those which do not introduce a cation exchange group are used.
  • Specific examples of the organosilicon compound represented by the general formula include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, and methyltrimethylsilane.
  • the acid or alkali added together with the organosilicon compound and / or its partial hydrolyzate also functions as a catalyst for hydrolysis, but a catalyst for hydrolysis may be added if desired.
  • a basic catalyst such as an alkali metal hydroxide, aqueous ammonia, or an amine
  • these basic catalysts can be removed after hydrolysis and used as an acidic solution.
  • acidic catalysts such as an organic acid and an inorganic acid
  • the aqueous solution means a state in which the hydrolyzate has transparency without being clouded as a gel.
  • hydrolysis a well-known method can be adopted as a hydrolysis method of these organosilicon compounds.
  • a precursor metal salt of an inorganic oxide other than the oxide described above is added to form an oxide and an inorganic oxide other than the oxide.
  • An oxide-based layer can also be formed.
  • an alkali-soluble inorganic compound is preferably used as the raw material of the inorganic oxide other than the oxide.
  • a protein immobilization carrier comprising porous silica particles having silanol groups on the surface is the above-mentioned 1-2.
  • the porous silica particles produced by the above-described method can be used as they are.
  • the porous silica particles obtained from the steps (A), (B) and (C) are particularly preferable.
  • Such porous silica particles inherently have silanol groups on their surfaces.
  • such porous silica particles can be used for immobilizing proteins such as enzymes as a protein immobilization carrier of the present invention.
  • the carrier for protein immobilization comprising porous silica particles having an anion exchange group or a cation exchange group on the surface is the above-mentioned 1-2.
  • the porous silica particles produced by the above-described method are produced by introducing an anion exchange group or a cation exchange group.
  • the porous silica particles having an anion exchange group or a cation exchange group on the surface are porous having a silanol group on the surface obtained from the steps (A), (B) and (C). It is obtained by treating silica particles with a silane coupling agent or an organic acid.
  • silane coupling agent or organic acid what has an anion exchange group or a cation exchange group is used.
  • the protein immobilization carrier comprising porous silica particles having a hydrophobic organic group on the surface is obtained by using the porous silica particles obtained from the steps (A), (B) and (C) as silane coupling agents. It is obtained by treating with (having a hydrophobic organic group).
  • the silane coupling agent used is 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltributoxysilane, 4- Silane coupling agent having an aminoalkyl group such as aminobutyltriethoxysilane; Silane coupling agent having a phenylalkyl group such as N-phenyl-3-aminopropyltrimethoxysilane; Diethylaminomethyltriethoxysilane, (N, N Silane coupling agent having a dialkylaminoalkyl group such as -diethyl-3-aminopropyl) trimethoxysilane; Silane cup having a quaternary ammonium group such as N-trimethoxysilylpropyl-N, N, N-trimethylammonium chloride Ring agent; Carboxe Silane coupling agents having a carboxy
  • the treatment of the porous silica particles with the silane coupling agent is not particularly limited, and a known treatment method can be applied.
  • a carrier for protein immobilization can be obtained by adding a required silane coupling agent to powdered porous silica particles, stirring while heating if necessary, and then filtering and drying. .
  • an appropriate base such as aqueous ammonia may be added to the reaction mixture in the treatment reaction.
  • an appropriate acid such as acetic acid may be added to the reaction mixture in the treatment reaction.
  • the raw material porous silica particles may be used for the treatment once dispersed in an appropriate polar solvent such as ethanol.
  • an appropriate polar solvent such as ethanol.
  • Such porous silica particles can be treated in the air in many cases, but this does not prevent the treatment in an inert gas atmosphere as necessary.
  • Various conditions such as heating temperature and treatment time can be appropriately set according to the properties of the porous silica particles and the organic acid.
  • a silane coupling agent and an acid or a base may be added to an aqueous dispersion of porous silica particles, and an acid or a base may be added if necessary.
  • Porous silica particles or a dispersion thereof may be added to the ring agent-containing aqueous solution.
  • organic acids used include dicarboxylic acids such as adipic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid. Can be mentioned.
  • the treatment of the porous silica particles with the organic acid is not particularly limited, and a known treatment method can be applied.
  • the required organic acid is added to porous silica particles (powder) having an amino group on the surface dispersed in an appropriate aqueous solvent, and the mixture is stirred while heating, and then filtered, dried, etc.
  • a protein immobilization carrier can be obtained.
  • the raw material porous silica particles may be used in the treatment once dispersed in a suitable polar solvent such as ethanol.
  • the porous silica particles having an amino group on the surface can be obtained by treating the porous silica particles having a silanol group on the surface with a silane coupling agent having an amino group.
  • porous silica particles can be treated in the air in many cases, but this does not prevent the treatment in an inert gas atmosphere as necessary.
  • Various conditions such as heating temperature and treatment time can be appropriately set according to the properties of the porous silica particles and the organic acid.
  • the protein immobilization carrier is used in the form of an immobilized protein by immobilizing the protein. That is, the immobilized protein according to the present invention is obtained by immobilizing a protein on the above-described protein immobilization carrier.
  • the immobilized protein is an immobilized enzyme in which an enzyme is immobilized as a protein.
  • an immobilized protein obtained by immobilizing another type of protein such as an antibody on the protein immobilization carrier. It may be.
  • Protein used in the immobilized protein according to the present invention is not particularly limited in type. However, from the viewpoint of application to industrial uses such as use in catalysis, enzymes may be mentioned as suitable proteins.
  • Examples of the enzyme applied to the immobilized protein according to the present invention include oxidoreductase that catalyzes redox reaction, transferase that transfers functional groups or atomic groups between molecules, hydrolase that catalyzes hydrolysis reaction, elimination reaction, or Examples include, but are not limited to, lyases that catalyze addition reactions, isomerases that catalyze the transformation of isomers, and ligases that bind two molecules using the hydrolysis energy of adenosine triphosphate. is not.
  • oxidoreductases examples include alcohol dehydrogenase involved in the reaction from alcohol to aldehyde, aldehyde dehydrogenase and aldehyde oxidase involved in the reaction from aldehyde to carboxylic acid, carbon monoxide involved in the reaction from carbon monoxide to carbon dioxide
  • oxidases and reductases such as dehydrogenase, L-amino acid oxidase involved in the interconversion of L-amino acid and 2-oxo acid, aldose reductase involved in the reaction from aldose to sugar alcohol, and the like can be mentioned.
  • transferases examples include methyltransferases involved in rearrangement of methyl groups, carboxyltransferases involved in rearrangement of carboxyl groups, transaldolases involved in rearrangement of aldehyde groups and keto groups, acyltransferases involved in rearrangement of acyl groups, glycosylases Examples thereof include glycosyltransferases involved in group rearrangement, aminotransferases involved in amino group rearrangement, phosphotransferases involved in phosphate group rearrangement, and sulfotransferases involved in sulfur group rearrangement.
  • hydrolases examples include esterases involved in ester hydrolysis, proteases involved in peptide bond hydrolysis, glycosidases involved in saccharide hydrolysis, and the like.
  • esterase is lipase
  • glycosidase is amylase, lactase, maltase, saccharase, lysozyme and the like.
  • Examples of the lyase include carboxylase or decarboxylase involved in the addition or elimination of a carboxyl group, aldehyde lyase involved in aldol condensation and its reverse reaction, and dehydratase.
  • examples of the aldehyde lyase include deoxyriboaldolase.
  • isomerase examples include epimerase and racemase involved in isomerization of an asymmetric center in a substrate.
  • racemase is amino acid racemase involved in the conversion between L-amino acid and D-amino acid.
  • ligases include asparagine synthetase involved in the reaction to synthesize L-asparagine from L-aspartic acid and ammonia.
  • the protein immobilized in the protein immobilization carrier according to the present invention may be other types of proteins such as antibodies in addition to the above-mentioned enzymes. Further, it may be a complex enzyme composed of a plurality of polypeptide chains. Examples of such complex enzymes include, but are not limited to, proteasomes and cellulosomes.
  • the protein immobilization carrier according to the present invention can immobilize known proteins or enzymes. However, as described above, the carrier for protein immobilization has a peak pore size in the pore size distribution in the range of 2 to 200 nm, preferably in the range of 2 to 50 nm, so that the size of the protein or enzyme to be immobilized is also large. Those within this range are more preferred. Further, a range of 3 to 90 nm, more preferably a range of 3 to 45 nm is recommended.
  • the protein immobilization carrier or enzyme immobilization carrier is on the acidic side.
  • the protein immobilization carrier or enzyme immobilization carrier is on the acidic side.
  • the protein immobilization carrier or enzyme immobilization carrier when the surface of the protein immobilization carrier or enzyme immobilization carrier according to the present invention has an anion exchange group, the protein immobilization carrier or enzyme immobilization carrier is on the basic side. It is particularly suitable for immobilizing proteins or enzymes in a basic pH environment from the isoelectric point of the protein.
  • the surface of the protein immobilization carrier or enzyme immobilization carrier according to the present invention has a hydrophobic organic group, it is suitable for immobilization of a highly hydrophobic protein or enzyme.
  • the immobilized protein according to the present invention can be produced by adsorbing the protein to the protein immobilization carrier.
  • the protein can be immobilized by the simplest procedure, so that industrial mass production is possible, and a wide variety of functional groups exist on the surface of the protein immobilization carrier. Therefore, there is an advantage that it can cope with various kinds of protein immobilization.
  • the protein can be produced by adsorbing the protein on a protein immobilization carrier in an appropriate buffer solution. At this time, the reaction conditions such as pH and temperature can be appropriately adjusted according to the properties of the protein and the porous silica particles constituting the protein immobilization carrier.
  • the temperature may be 0 to 10 ° C., for example, around 4 ° C. from the viewpoint of minimizing protein alteration, or 20 to 20 ° C. from the viewpoint of promptly carrying out the reaction within a range where protein denaturation does not occur. It may be 40 ° C., for example, around 30 to 37 ° C. However, in many cases, the adsorption of the protein to the protein immobilization carrier is performed at around room temperature, and typically in the range of 4 to 25 ° C.
  • adsorption is a concept indicating that immobilization by hydrogen bonding, electrostatic interaction, interaction related to affinity and other non-covalent interactions may be included.
  • the immobilization is probably performed because a hydrogen bond is interposed between the silanol group on the surface of the protein immobilization support and the protein.
  • electrostatic interaction can also be used for protein immobilization, which is advantageous.
  • the carrier for protein immobilization is composed of porous silica particles having functional groups on the surface that can form covalent bonds with proteins such as amino groups and carboxyl groups, even stronger immobilization is achieved.
  • the protein may be immobilized on the protein immobilization carrier by forming a covalent bond by a conventional method within a range not impairing the function of the protein.
  • the immobilized protein of the present invention is mainly used as an immobilized enzyme.
  • the reaction activity of the immobilized enzyme with respect to the substrate is a corresponding free enzyme, that is, a corresponding unsupported free enzyme. It is equivalent to the type of enzyme, and the decrease in activity due to repeated use is less than that of the corresponding free enzyme.
  • free enzyme when used as the protein to be immobilized, it is used for the same application as the corresponding unsupported free enzyme (hereinafter sometimes referred to as “free enzyme”).
  • an immobilized enzyme in which the oxidoreductase, transferase, hydrolase, lyase, isomerase, and ligase described above are immobilized.
  • it can be used for an isomerization reaction of an amino acid or the like as an immobilized enzyme in which an isomerase such as racemase is immobilized, or can be used in an aldol reaction or the like as an immobilized enzyme in which an aldehyde lyase such as deoxyriboaldolase is immobilized. it can.
  • Average particle diameter measurement method Average particle diameter measurement by image analysis method As for the average particle diameter of the spherical silica fine particles, as described later in the section “5. Measurement of particle size distribution”, scanning electron microscope and image analysis Measurement was performed using an apparatus.
  • (B) Method for measuring average particle diameter by centrifugal sedimentation method Regarding the average particle diameter of the porous silica particles first, a dispersion of porous silica particles (water or 40% by mass glycerin solvent, solid concentration 0.1 to 5). % By weight) is dispersed in an ultrasonic generator (Iuch, US-2) for 5 minutes. Further, from a dispersion whose concentration has been adjusted moderately by adding water or glycerin, the dispersion is taken into a glass cell (size of 10 mm in length, 10 mm in width, and 45 cm in height), and a centrifugal sedimentation type particle size distribution analyzer (Horiba) The average particle size was measured using a CAPA-700 manufactured by Seisakusho.
  • Coefficient of variation (particle diameter standard deviation ( ⁇ ) / average particle diameter (Dn)) ⁇ 100 (%) 6).
  • Method for measuring pore volume and pore diameter As a method for measuring the pore volume and pore diameter of porous silica particles, a gas adsorption method and a mercury intrusion method were used. Here, in each of the following Examples, Reference Examples and Comparative Examples, measurement was performed using a gas adsorption method unless otherwise specified.
  • the measurement of the pore volume and the pore diameter by the gas adsorption method was performed according to the following procedure.
  • pore volume of the porous silica particles 10 g of a sample was taken in a crucible, dried at 300 ° C. for 1 hour, then placed in a desiccator and cooled to room temperature. 0.15g was sampled in a glass cell, and nitrogen gas was adsorbed to the sample while vacuum degassing using Belsorp mini II (manufactured by Nippon Bell Co., Ltd.), followed by desorption. The pore volume at this point was determined, and the pore diameter (peak value) was calculated by the BJH method.
  • porous silica particles (hereinafter referred to as “raw material porous silica particles”) P1, P2, P3, and P4, which are raw materials for the enzyme immobilization carrier, were manufactured by JGC Catalysts & Chemicals, Inc. SILICA MICRO BEAD. P-7H, P-12H, P-4H, P-20H were used.
  • the raw material porous silica particles P1, P2, P3 and P4 are manufactured by a spray drying method.
  • These raw material porous silica particles are produced by the following procedure.
  • a spherical silica fine particle dispersion (silica concentration 30% by mass) formed by dispersing spherical silica fine particles in water was centrifuged to prepare a spherical silica fine particle dispersion from which coarse particles were removed.
  • the solid content concentration of the spherical silica fine particle dispersion was adjusted to 15% by mass to obtain a spray solution. And it spray-dried on the conditions of inlet temperature 220 degreeC and outlet temperature 50 degreeC, and obtained the raw material porous silica particle.
  • the raw material porous silica particles G1 are produced by crushing silica and then micronizing it by a spray drying method.
  • Example 1 [Preparation of enzyme immobilization carrier (amino group-modified)] 1. Preparation of Enzyme Immobilization Support P-3N 40 g of powdery porous silica particles P3 were dispersed in 155 g of ethanol in the air and stirred for 5 minutes. Then, 13 g of pure water was added and stirred for another 30 minutes.
  • Table 1 shows the characteristics of the prepared carriers for enzyme immobilization (P-1N, P-2N, P-3N, P-4N and G-1N).
  • adipic acid manufactured by Kanto Chemical Co., Inc.
  • adipic acid manufactured by Kanto Chemical Co., Inc.
  • the temperature was raised to 50 ° C., and stirring was continued at 50 ° C. for 20 hours.
  • the reaction mixture was cooled to room temperature, the solid part was recovered by filtration, and this solid part was dried at 150 ° C. for 2 hours. As a result, about 35 g of enzyme immobilization carrier P-3C was obtained.
  • Table 1 shows the characteristics of the prepared enzyme immobilization carriers (P-1C, P-2C, P-3C, P-4C and G-1C).
  • Example 3 [Preparation of enzyme immobilization carrier (phenylamino group-modified)] 1. Preparation of Enzyme Immobilization Support P-3Ph 40 g of powdery porous silica particles P3 was dispersed in 155 g of ethanol in the air and stirred for 5 minutes, and then 13 g of pure water was added and stirred for another 30 minutes.
  • Table 1 shows the characteristics of each of the prepared enzyme immobilization carriers (P-1Ph, P-2Ph, P-3Ph, P-4Ph, and G-1Ph).
  • the FSM type porous silica particles having a pore size of 4.0 nm, 4.2 nm, 7.5 nm, 8.0 nm, 8.5 nm, and 9.2 nm are obtained by using 1, 3, 5-triisopropylbenzene as a swelling agent.
  • 1, 3, 5-triisopropylbenzene as a swelling agent.
  • each FSM type porous silica particle used as a comparative example is also shown in Table 1. These FSM type porous silica particles were used as they were as a carrier for enzyme immobilization without any surface modification treatment with a chemical such as a silane coupling agent.
  • Example 4 Preparation of immobilized enzyme (racemase adsorption type) and measurement of enzyme adsorption amount Buffer solution (mixture of 20 mM potassium phosphate and 50 mM potassium chloride, pH 7.5), and racemase solution in which racemase is dissolved in buffer solution (racemase concentration) Prepared 2 mg / ml).
  • the mixed solution is centrifuged with a centrifugal separator (Eppendorf, product number: centrifuge 5417R) (21000G, 1 minute) to precipitate the immobilized enzyme, and the amount of racemase in the supernatant is bicinchoninic acid. (BCA method), and the value was defined as the amount of unadsorbed racemase.
  • a value obtained by subtracting the amount of unadsorbed racemase from the amount of racemase initially charged (2 mg) was used as the amount of racemase adsorbed on the enzyme immobilization carrier.
  • the ellipticity at a wavelength of 204 nm of circularly polarized light of L-alanine in a circular dichroism dispersometer was measured at 1 second intervals for 5 minutes.
  • L-alanine concentration in the suspension was measured with a molar ellipticity of L-alanine of 23 mdeg / mM, and the activity was calculated from the amount of alanine converted per unit time.
  • the specific activity was determined from the following formula.
  • FIG. 1 also shows the specific activities of the following immobilized enzymes as a comparative example.
  • the amount of racemase adsorbed on the enzyme immobilization carrier was measured under the same conditions as described above.
  • Immobilized enzyme (“Ni Seph.”) In which racemase was immobilized on a carrier (“Ni Sepharose 6 Fast Flow”, manufactured by GE Healthcare Japan) by a metal chelate method.
  • Immobilized enzyme in which racemase is immobilized on a carrier (“NHS-activated Sepharose 4 Fast Flow”, manufactured by GE Healthcare Japan) by a covalent bond method.
  • FSM-4.2 An immobilized enzyme in which racemase is immobilized on FSM having a pore diameter of 4.2 nm.
  • FSM-8.5 An immobilized enzyme in which racemase is immobilized on FSM having a pore diameter of 8.5 nm.
  • FSM-9.2 An immobilized enzyme in which racemase is immobilized on FSM having a pore diameter of 9.2 nm.
  • the immobilized enzymes according to the present invention are all immobilized enzymes of comparative examples. In comparison, it can be seen that the specific activity is equivalent or equivalent.
  • this suspension was centrifuged (21000 G, 1 minute) with a centrifugal separator (Eppendorf, product number: centrifuge 5417R) to precipitate the immobilized enzyme, the supernatant was removed, and the same conditions The supernatant was completely removed and the immobilized enzyme was recovered.
  • a centrifugal separator Eppendorf, product number: centrifuge 5417R
  • the recovered immobilized enzyme and 1 ml of the same substrate solution as described above are mixed in a test tube, and subjected to a suspension reaction at 1800 rpm for 2 minutes with a Deepwell® Maximizer (manufactured by Taitec Corporation) under a temperature of 30 ° C. Got.
  • the suspension was centrifuged (21000 G, 1 minute) with a centrifugal separator to precipitate the immobilized enzyme.
  • the supernatant was separated, and the amount of D-Ala in the supernatant was measured to determine the activity.
  • the above operation was repeated 20 times, the activity of each immobilized enzyme was measured, the specific activity was calculated, and the result is shown in FIG.
  • the immobilized enzymes (P-2N, P-4N, P-2, P-1N, P-1, P-4, P-3, and P-3N) according to the present invention are excellent by repeated use. It was found that the specific activity can be maintained.
  • Example 5 KpDERA adsorption-type immobilized enzyme performance test
  • DERA Deoxyriboaldolase
  • the reaction for converting 2-deoxyribose-5-phosphate (DR5P) to acetaldehyde and glyceraldehyde triphosphate (G3P) is the forward reaction
  • the reaction for converting G3P and acetaldehyde to DR5P is the reverse reaction.
  • This DERA is also an enzyme expected as an enzyme that synthesizes a lactone, which is a pharmaceutical intermediate, by the tandem aldol reaction shown in FIG.
  • it is a reaction that has not been put to practical use so far due to inactivation by aldehyde.
  • KpDERA Klebsiella pneumoniae
  • KpDERA Klebsiella pneumoniae
  • the enzyme immobilization carrier P2 20 mg is mixed with 1 ml of a buffer solution and 1 ml of a KpDERA solution, respectively, and stored at a temperature of 4 ° C. for 24 hours, and an immobilized enzyme (KpDERA / enzyme immobilization carrier system) consisting of a suspension is obtained. Obtained.
  • the said immobilized enzyme was prepared also about P4 or G1N as an enzyme fixed support
  • an immobilized enzyme (KpDERA / FSM system) consisting of a suspension was obtained in the same manner as above except that 20 mg of the above enzyme immobilization support was replaced with 10 mg of FSM-4.0. Similarly, an immobilized enzyme was prepared for FSM 8.0, FSM 8.5, or FSM 9.2.
  • This reaction solution contains triphosphate phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, and 0.2 mM NADH.
  • UV-Vis spectrophotometer manufactured by Shimadzu Corporation, model number: UV-2450.
  • Immobilized Enzyme and Substrate Reaction of Immobilized Enzyme and Substrate [DG3P] Immobilized enzyme (1.05 ⁇ g of KpDERA was adsorbed to 18.4 ⁇ g of each enzyme immobilization carrier) was added to 350 ⁇ l of substrate solution [100 mM triethanolamine (pH 7 5), 100 mM DL-glycerol triphosphate, 300 mM acetaldehyde] at 25 ° C. for 20 minutes to obtain reaction solutions.
  • substrate solution 100 mM triethanolamine (pH 7 5), 100 mM DL-glycerol triphosphate, 300 mM acetaldehyde
  • the immobilized enzyme according to the present invention to which 0.2 unit of KpDERA was adsorbed was incubated with 300 mM acetaldehyde at 4 ° C. for a fixed time. After washing the carrier with 50 mM TEA (pH 7.5), the remaining activity was determined by measuring the forward reaction.
  • both DERA immobilized on FSM-9.2 and DERA immobilized on P-4 have improved acetaldehyde resistance compared to free DERA not supported on the carrier.
  • reaction solution 25 ⁇ l was transferred to a new tube, and the carrier was precipitated by centrifugation (21000 G, 2 minutes). 20 ⁇ l of the supernatant was transferred to a new tube, 8 ⁇ l of 60% perchloric acid was added and treated on ice for 10 minutes. After neutralization by adding 13.4 ⁇ l of 1M sodium hydroxide and 179 ⁇ l of 1M triethanolamine pH 7.5, the amount of DR5P produced was measured by the cysteine-sulfuric acid method.
  • Lactone is an important substance as a pharmaceutical intermediate, and lactone synthesis by tandem aldol synthesis reaction by DERA shown in Fig. 2.2 is expected to simplify the synthesis route. Therefore, this reaction has not been put into practical use. Therefore, the amount of lactone precursor (2,4,6-trideoxy-D-erythro-hexapyranoside) produced by a tandem aldol reaction from acetaldehyde was compared.
  • FSM adsorbed with 50 ⁇ g of KpDERA or mesoporous silica of the immobilized enzyme according to the present invention was added to 1 ml of 500 mM acetaldehyde solution and reacted at 25 ° C. for 24 hours.
  • Example 6 Performance test of nitrile hydratase adsorption type immobilized enzyme.
  • Buffer solution mixture of 20 mM potassium phosphate and 50 mM potassium chloride, pH 7.5
  • nitrile hydratase solution in which nitrile hydratase (NHase) is dissolved in buffer solution (nitrile hydratase concentration is 2 mg / Ml) was prepared.
  • G-1N showed a high specific activity corresponding to a free enzyme (“free”) not supported on a carrier.
  • FIG. 11 is a diagram in which the isoelectric points are mapped. In the figure, the subunits of the enzyme are also expressed numerically. Thus, it was confirmed that high activity was obtained by immobilizing all the various enzymes.
  • Example 7 By varying the average particle size of the primary particles, the pore size distribution of each protein immobilization support (porous silica particles) synthesized was measured.
  • Protein immobilization support used for measurement (porous silica particles)
  • the production method of each protein immobilization carrier (porous silica particles) used for the measurement of pore size distribution in this example is described below.
  • the protein immobilization support (porous silica particle “X1”) having a pore size of 34 nm is a water-diluted product of silica sol (“SI-80P” manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle size 80 nm, concentration 40% by mass).
  • SI-80P silica sol
  • pH 2.0
  • silicic acid solution sica concentration: 4.8% by mass
  • the solid content concentration of the spherical silica fine particle dispersion was adjusted to 15% by mass to obtain a spray solution. It was obtained by spray drying under conditions of an inlet temperature of 220 ° C. and an outlet temperature of 50 ° C.
  • a carrier for protein immobilization (porous silica particle “X2”) having a pore size of 57 nm is a water-diluted product of silica sol (“SS-160” manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle size 160 nm, concentration 40% by mass).
  • silica sol (“SS-160” manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle size 160 nm, concentration 40% by mass).
  • the solid content concentration of the spherical silica fine particle dispersion was adjusted to 15% by mass to obtain a spray solution. It was obtained by spray drying under conditions of an inlet temperature of 220 ° C. and an outlet temperature of 50 ° C.
  • a carrier for protein immobilization (porous silica particles “X3”) having a pore size of 95 nm is a water-diluted product of silica sol (“SS-300” manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle size 300 nm, concentration 40% by mass).
  • silica sol SS-300 manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle size 300 nm, concentration 40% by mass.
  • the solid content concentration of the spherical silica fine particle dispersion was adjusted to 15% by mass to obtain a spray solution. It was obtained by spray drying under conditions of an inlet temperature of 220 ° C. and an outlet temperature of 50 ° C.
  • porous silica particles P3, P1, P2 and P4 were used as protein-immobilizing carriers (porous silica particles) having pore sizes of 4 nm, 7 nm, 12 nm and 20 nm, respectively.
  • porous silica particles X1 to X3 and the porous silica particles P1 to P4 all have silanol groups on the particle surface.
  • the pore size distribution obtained by the measurement is shown in FIG.
  • the pore distribution by the nitrogen adsorption method represented by a curve connecting points represented by circles is Log differential pore volume distribution, that is, differential nitrogen gas adsorption with respect to the pore diameter d (nm). This is indicated by the relationship of the amount ⁇ V / ⁇ (log (d)) (in FIG. 12, for convenience, it is described as “dV / dlogd”, where V represents the nitrogen gas adsorption volume).
  • the pore distribution by the mercury intrusion method represented as a curve connecting the points represented by triangles is represented by the relationship of ⁇ Vd (indicated as “dVd” for convenience in FIG. 12) with respect to the pore diameter d. It is shown.
  • Most enzyme molecules can be immobilized in pores having a pore diameter of about 20 nm. However, some types of enzymes that form multimers and exhibit activity have a size exceeding 20 nm. Since the carrier for protein immobilization of the present invention can have a pore diameter larger than 20 nm as described above, an enzyme that forms a multimer exceeding 20 nm can be immobilized. Therefore, the above results indicate that the present invention can provide a protein immobilization support (porous silica particles) having pores having a size suitable for immobilization of these enzymes.
  • the protein immobilization carrier according to the present invention is useful as a carrier for enzymes and the like.
  • the immobilized protein according to the present invention is a synthetic reaction using an enzyme, for example, in the technical fields such as chemical synthesis, fine chemical synthesis, pharmaceutical synthesis or food production, the stability or durability of the enzyme applied to various synthetic reactions. Improvement of productivity, improvement of productivity of the target product, realization of continuous production of the target substance, or omission of the step of separating the enzyme from the product.
  • the immobilized protein according to the present invention can be applied to various enzymes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 本発明は、多様な分子サイズの酵素の固定化に対応し、多孔質シリカ粒子の表面シラノール基の改質により、多様な酵素の固定化に対応するとともに、対応する非固定化酵素と同等の活性を示し且つ繰り返し使用にも耐えうる固定化酵素の設計を可能とする酵素固定化用担体及びその製造方法を提供することを課題とする。本発明は、内部に粒子間空隙構造を有する多孔質シリカ粒子からなり、該多孔質シリカ粒子が、特定の平均粒子径、比表面積、細孔容積、細孔径分布および空隙率を有し且つ表面に有機基又はアミノ基を含む置換基を有するものであることを特徴とする蛋白質固定化用担体、並びに、該蛋白質固定化用担体に蛋白質を固定化してなる固定化蛋白質を提供する。

Description

蛋白質固定化用担体、固定化蛋白質及びそれらの製造方法
 本発明は、メソ孔を有する多孔質シリカ粒子の表面に所定の有機基を有してなる蛋白質固定化用担体、該蛋白質固定化用担体の製造方法、該蛋白質固定化用担体に蛋白質を固定化してなる固定化蛋白質及び該固定化蛋白質の製造方法に関するものである。
 酵素による反応は、無機触媒と異なる基質特異性や立体特異性を示すことから、合成反応ルートの簡略化に寄与することが期待されている。しかしながら、酵素は、高コストで反復利用が容易ではない。また、必要な活性を維持できる環境(温度範囲又は対象となる基質の種類)が狭いといった問題が知られている。既に、担体物質への酵素の固定化によって、前記問題の解決が図れることが報告されている。
 しかし、酵素は基質特異性が高いため、反応毎に適した酵素を選択する必要がある。また、酵素が固定化する傾向は担体構造により影響されるため、酵素ひとつごとに担体への固定化方法又は新たな担体を開発する必要がある。
 これらの課題を解決する例として、界面活性剤等を用いて層状シリカの層構造を変化させることにより得られる多孔質シリカ粒子(FSM)による内包型固体化法が実験室レベルにおいて報告されているが、機械的強度が弱く、工業化は困難であった。そこで、工業化が可能でFSM 同様に様々な酵素を内包的に固定化できる担体が求められていた。
 一般に、酵素を用いたバイオマスの分解や、繊維、食品製造等の技術分野においては、従来、酵素を水に溶解させて用いる操作をすることが多い。しかし、この操作法では、蛋白質である酵素の溶解度に限界があり、ある一定濃度以上の酵素が存在すると、凝集を起こし、活性を失うことがしばしばである。一方、酵素反応を用いた反応系では、酵素の存在量が多いほど、反応速度、ひいては生成物の生産速度を高められることが予想されている。
 その一方で、多孔質シリカ粒子は、2~50nmの直径の細孔を有することを特徴としており、その細孔内部に酵素の導入又は酵素の固定が可能である。したがって、多孔質シリカ粒子は、数nmから十数nmの大きさを有する酵素、すなわち蛋白質の吸着又は固定に対して有効な表面を多く有している有望な担体材料と見なすことができる。
 多孔質シリカ粒子の例としては、例えば、特許文献1に直径が2mm以下の球体よりなり,多数の細孔を有するシリカ系多孔体であって,上記細孔の中心細孔直径Dは1~10nmの範囲内にあり,かつD-2.5~D+2.5nmの範囲内の細孔直径を有する細孔の合計細孔容積は全細孔容積の60%以上であることを特徴とする球状メソ多孔体に関する発明が開示されている。
 特許文献2には、シリカを主成分とする平板状粒子の凝集体からなり、1200m2/g以上の比表面積を有することを特徴とするメソ細孔無機多孔体に関する発明が開示されている。該メソ細孔無機多孔体の好適な条件として、比表面積が1400m2/g以上、該平板状粒子のアスペクト比が5~100の範囲内、該メソ細孔の細孔径分布のピーク半値幅がピーク細孔径(d0)の±30%以内が挙げられている。
 また、特許文献3には、1nm以上の格子面間隔(d)に対応する回折角(2θ/°)の範囲に1つ以上の回折線を有するX線回折パターンを示す多孔質シリカ球状一次粒子を集合してなる多孔質シリカ凝集粒子であって、前記多孔質シリカ球状一次粒子内に細孔を形成するとともに、これらの多孔質シリカ球状一次粒子間に空隙層を形成してなることを特徴とする多孔質シリカ凝集粒子に関する発明が開示されている。この発明は、特許文献2と同様に、シリカ微粒子(一次粒子)が凝集して多孔質シリカ粒子を形成している点で共通するものといえる。
 粒子の凝集体からなる多孔質粒子からなるメソ多孔体の例として、この他に特許文献4には、材質がアルミナではあるが、中心細孔径がメソ細孔領域の2~100nmの範囲内にあるアルミナ系多孔体であり、該細孔の分布は、メソ細孔容積(細孔径2~100nmの領域にある細孔の容積)の70%以上が、メソ細孔領域に存在する細孔の中心細孔径の±5nm以内の領域にあり、細孔の少なくとも一部は、三次元の網目状に連通し、該連通経路がランダムで三次元網目構造を有し、かつ実質的に繊維状構造を有しない酸化物多孔体であり、しかも、該酸化物多孔体は、アスペクト比が3以下の粒子が凝集してなる酸化物多孔体であって、該粒子間の間隙に細孔を有することを特徴とする酸化物多孔体を開示しており、その用途のひとつとして酵素用担体がある旨が記載されている。
 多孔質シリカ粒子を酵素の固定化のための担体として用いた場合、高密度に存在する酵素の凝集を防ぐことが可能となり、活性を有する酵素の高集積化が可能となると考えられる。このことは、酵素を用いた反応系において、溶液においては凝集を起こしてしまう量を越えて、酵素を存在させることが可能になることが期待される。
 担体に酵素を固定化して用いることは、従前より行われてきたことであるが、その目的は、酵素の分離、及び再利用に関するものがほとんどである。例えば、従来の酵素を用いたバイオマスの分解や、繊維、食品製造等の技術分野においては、酵素を水に溶解させて用いる操作をすることが多く、この操作法では、生成物と酵素の分離操作が必要不可欠であり、また、分離された酵素は廃棄されることが一般的である。この酵素の分離工程を省く目的で、酵素を担体に固定化して用いるための酵素の固定化技術が盛んに研究、開発されている。
 酵素の固定化法としては、例えば、樹脂ビーズ等に直接固定化する方法や、ポリマーの被覆によるマイクロカプセル化、酵素タンパク質表面を修飾して安定化させる表面修飾法等が提案されている。しかしながら、これらの方法は、酵素が固定化担体の表面上に固定されているだけで、酵素の固定化に対する担体の表面積が大きなものではなく、酵素の高集積化や固定化による酵素機能の向上を目指したものではないのが実情である。
 酵素の再利用を目的とした酵素の固定化も検討されている。この場合も、分離工程の排除を目的とした方法と大きな差はなく、各種担体表面への単純な固定を行っているものが多い。高分子発泡体に固定化する方法も用いられており、この場合は、発泡体を圧縮することにより、生成物を含む溶液を分離すること等の操作が行われている。
 酵素の固定化法の開発により、酵素を用いた生産プロセスにおいて、反応後の酵素の分離回収や、その再利用が可能となり、生産プロセスの効率化に貢献していることは事実である。しかし、酵素の固定化による、一層の酵素の高集積化や酵素機能そのものの向上が求められている。
 特許文献5には、シリカ系メソ多孔体の細孔内部にヘム蛋白質を備えるヘム蛋白質内包複合体であって、(1)前記ヘム蛋白質は、前記細孔内部で多量体を形成している、(2)該多量体は、高密度集積した蛋白質として、前記シリカ系メソ多孔体の細孔内壁に吸着されていることを特徴とするヘム蛋白質複合体に関する発明が開示されている。この発明は、酵素、すなわち蛋白質のシリカ系メソ多孔体の細孔内への固定による蛋白質の熱安定性向上や有機溶媒耐性の向上を見出したものである。
 シリカ系メソ多孔体としては、一般に、MCM、FSM、SBAタイプ等の材料系が知られている。これらのシリカ系メソ多孔体は、2~50nmの直径の細孔を有することを特徴としている。酵素、すなわちタンパク質は、数nmから十数nmの大きさを有しており、シリカ系メソ多孔体の有する細孔径と同程度の大きさの分布を有している。このことから、シリカ系メソ多孔体を酵素の固定化担体として用いた場合、酵素を表面のみならず、細孔内にも固定化することができると考えられる。
 シリカ系メソ多孔体は、その酵素の固定化に対する有効な表面積が、従来の技術によるものより極めて大きく、大量の酵素を固定化することができる。例えば、特許文献6に記載されているように、シリカ系メソ多孔体-セルロース乃至ヘミセルロースの加水分解酵素複合体においても、その細孔内に酵素を固定化することが可能であり、また、集積化することも可能である。
 酵素等の蛋白質を吸着させるためのシリカ径メソ多孔体として、例えば、特許文献7に、平均粒径が0.01~3μmであり、中心細孔直径が1nm以上の放射状細孔を有する球状シリカ系メソ多孔体であって、前記球状シリカ系メソ多孔体がシアノ基又はカルボキシル基を含有する有機官能基で修飾されていることを特徴とする球状シリカ系メソ多孔体に関する発明が開示されており、このような有機修飾されたシリカ径メソ多孔体は、塩基性色素、蛋白質、金属等に高度な吸着特性を示す旨の記載がある。
 特許文献8には、水銀ポロシメーターで測定した最頻細孔径が45~70オングストローム、平均細孔径が50~100オングストローム、最頻細孔径の±10%の範囲に存在する細孔の容積が0.40ml/g以上であることを特徴とする多孔質球状シリカの発明が開示されている。また、当該多孔質状シリカは、BET比表面積が400m2/g以上、細孔容積が0.9ml/g以下である多孔質球状シリカ前駆体を600℃以上の温度で焼成することによって製造できることが開示されている。当該多孔質状シリカは、触媒、酵素又は微生物固定化するための固定化担体として有用であることが記載されている。
 特許文献9には、澱粉の加水分解を行う酵素と該澱粉の加水分解酵素を固定化させたシリカ系メソ多孔体との複合体であって、シリカ系メソ多孔体へ固定化された酵素が澱粉の加水分解を触媒する活性を有していることを特徴とするシリカ系メソ多孔体-澱粉の加水分解酵素複合体に関する発明が開示されている。該シリカ系メソ多孔体として、MCM、FSM、又はSBAタイプのシリカ系メソ多孔体が、好適であること、シリカ系メソ多孔体の特徴として、細孔直径2~50nm、全細孔容積0.1~3.5ml/gの範囲及び比表面積200~1500m2/gの範囲が好適であることが記載されている。
 特許文献10には、多孔質シリカ粒子多孔体への酵素の固定化方法として、酵素直径の1.2倍以上の内径を備え構造安定性を有する多孔質シリカ粒子多孔体における細孔構造ユニットに酵素を固定化した後、前記構造ユニットの開口部及び/又は内部空隙にゾルゲル法によるゲル化物質の網状構造を形成して固定化酵素の安定性を向上させることを特徴とする酵素の固定化方法に関する発明が開示されている。
 特許文献11には、酸化酵素に対して、その酵素機能に関与する内部構造を不安定な特定アミノ酸の変換等の手段により安定化させ、かつ、該酸化酵素を構造安定性を備えた所定の内径を有する多孔質シリカ粒子多孔体における細孔構造ユニット中に固定化して、酵素表面をも安定化させてなる酵素の固定化方法に関する発明が開示されている。
特開平10-328558号公報 特開2006-232594号公報 特開2009-73681号公報 特開2001-170500号公報 特開2007-51076号公報 特開2009-125006号公報 特開2008-24567号公報 特開2007-76941号公報 特開2009-153448号公報 特開2001-178457号公報 特開2002-262863号公報
 従来技術に係る多孔質シリカ粒子担体に酵素の固定化を図る場合、固定化される酵素の種類、分子の大きさ及び/又は等電点に応じて、適した特徴(細孔径分布又は細孔径など)を有する多孔質シリカ粒子を用いる必要があった。対象とする酵素の固定化に適さない多孔質シリカ粒子を担体に用いた場合、多孔質シリカ粒子担体からの酵素の脱離により、酵素の繰り返し利用に支障が生じることがあった。また、そのような酵素の脱離が生じない場合でも、酵素としての性能((i) 基質との反応温度に対する耐性、(ii) 基質に対する反応活性、(iii) 基質との反応時に用いる溶媒に対する耐性、(iv) 基質との反応に関する反復利用性)を充分に示すことができない場合があった。
 また、特定の酵素に対して、固定化に適した多孔質シリカ粒子担体をその都度、設計し開発することは、大きな負担となっていた。
 本発明に係る酵素固定化用担体は、前記問題点を解決するために開発されたものである。具体的には次の課題を解決したものである。
 (1)酵素固定化用担体の開発にあたり、酵素の種類毎に担体の基本構成を改めることなく、原料となるシリカ粒子の粒径等の選択又は表面処理段階の調整等で対応が可能となるような酵素固定化用担体及びその製造方法を提供することを課題とする。より具体的には、分子サイズが異なり、等電点も異なる多様な酵素の固定化に適した酵素固定化用担体を提供することを目的として、多孔質シリカ粒子の細孔径、細孔径分布、細孔容積又は細孔構造を最適化し、多様な分子サイズの酵素の固定化に対応し、多孔質シリカ粒子の表面シラノール基の改質により、多様な酵素の固定化に対応することを課題とする。
 (2)酵素固定化用担体の製造方法及び固定化酵素の製造方法(酵素の固定化方法)として、工業的に量産が可能な方法を提供することを課題とする。
 (3)酵素固定化用担体に固定化された酵素の基質に対する反応活性が、固定化前の反応活性に較べて、同等又はそれ以上となることを目的として、担体への酵素の固定化により、反応活性が低下する主原因となる酵素の立体構造の変化を抑制し、また、固定化酵素の反応活性向上に必要とされる微小な酵素反応空間を確保できるような酵素固定化用担体を設計することを課題とする。
 (4)固定化酵素を繰り返し使用しても、反応活性が実用的な水準を維持し、繰り返し使用に耐え得る機械強度を示すことを目的として、酵素固定化用担体からの酵素の脱離を抑制することを目的とする多孔質シリカ粒子担体の表面処理と、固定化酵素の繰り返し使用で、劣化又は崩壊し難い多孔質シリカ粒子の構造を設計することを課題とする。
 (5)固定化酵素と基質が反応する時の反応温度又は反応に用いる溶媒に対する耐性に優れた固定化酵素を提供することを課題とする。
 本発明の課題は、下記[1]~[17]の手段により達成される。
 [1] 内部に粒子間空隙構造を有する多孔質シリカ粒子からなり、
 該多孔質シリカ粒子が、下記(1)~(6)を満たし且つ表面にシラノール基、陰イオン交換基又は陽イオン交換基を有するものである
ことを特徴とする蛋白質固定化用担体:
 (1) 平均粒子径(Da)が0.5~100μmの範囲;
 (2) 比表面積が10~250m2/gの範囲;
 (3) 細孔容積(Pv)が0.10~0.32ml/gの範囲;
 (4) 細孔径分布(X軸:細孔径[Ps]、Y軸:細孔容積を細孔径で微分した値)におけるピーク値の細孔径(Pms)が2~200nmの範囲;
 (5)(Pms)×0.75~(Pms)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の70%以上;
 (6) 空隙率が5~50%の範囲。
 [2] 前記多孔質シリカ粒子が、
 平均粒子径(Db)10~500nm、真球度0.9~1の範囲、粒子径変動係数(CV値)が2~10%の範囲にある球状シリカ微粒子であって、粒子径分布が単分散相を示す球状シリカ微粒子が集合した球状集合体からなる前記[1]に記載の蛋白質固定化用担体。
 [3] 内部に粒子間空隙構造を有する多孔質シリカ粒子からなり、
 該多孔質シリカ粒子が、下記(1)~(6)を満たし且つ表面にシラノール基、陰イオン交換基又は陽イオン交換基を有するものである
ことを特徴とする蛋白質固定化用担体:
 (1) 平均粒子径(Da)が0.5~50μmの範囲;
 (2) 比表面積が10~250m2/gの範囲;
 (3) 細孔容積(Pv)が0.10~0.32ml/gの範囲;
 (4) 細孔径分布(X軸:細孔径[Ps]、Y軸:細孔容積を細孔径で微分した値)におけるピーク値の細孔径(Pms)が2~50nmの範囲;
 (5)(Pms)×0.75~(Pms)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の80%以上;
 (6) 空隙率が5~50%の範囲。
 [4] 前記多孔質シリカ粒子が、
 平均粒子径(Db)10~50nm、真球度0.9~1の範囲、粒子径変動係数(CV値)が2~10%の範囲にある球状シリカ微粒子であって、粒子径分布が単分散相を示す球状シリカ微粒子が集合した球状集合体からなることを特徴とする前記[3]に記載の蛋白質固定化用担体。
 [5] 前記陰イオン交換基が、アミノ基又は第4級アンモニウム基を構造中に含む置換基であることを特徴とする前記[1]~[4]の何れかに記載の蛋白質固定化用担体。
 [6] 前記陽イオン交換基が、カルボキシル基、リン酸基及びスルホキシル基から選ばれる何れかの基を構造中に含む置換基であることを特徴とする前記[1]~[4]の何れかに記載の蛋白質固定化用担体。
 [7] 前記多孔質シリカ粒子が、シランカップリング剤又は有機酸で表面処理されたものであることを特徴とする前記[1]~[6]の何れかに記載の蛋白質固定化用担体。
 [8] 前記多孔質シリカ粒子が、アミノ基含有シランカップリング剤で処理された多孔質シリカ粒子を、さらに有機酸で表面処理したものであることを特徴とする前記[1]~[7]の何れかに記載の蛋白質固定化用担体。
 [9] 酵素の固定化に用いられる前記[1]~[8]の何れかに記載の蛋白質固定化用担体。
 [10] 複合酵素の固定化に用いられる前記[1]~[8]の何れかに記載の蛋白質固定化用担体。
 [11] 前記[1]~[8]の何れかに記載の蛋白質固定化用担体に、蛋白質を固定化してなる固定化蛋白質。
 [12] 前記蛋白質が酵素である、前記[11]に記載の固定化蛋白質。
 [13] 前記酵素がラセマーゼである前記[12]に記載の固定化蛋白質。
 [14] 前記酵素がデオキシリボアルドラーゼである前記[12]に記載の固定化蛋白質。
 [15] 前記[1]~[8]の何れかに記載の蛋白質固定化用担体に、蛋白質を吸着させる工程を含む固定化蛋白質の製造方法。
 [16] 前記蛋白質が酵素である、前記[15]に記載の固定化蛋白質の製造方法。
 [17] バッファー溶液中にて、4~25℃の範囲で、蛋白質固定化用担体に蛋白質を吸着させることを特徴とする前記[15]又は[16]に記載の固定化蛋白質の製造方法。

 本発明に係る蛋白質固定化用担体は、内部に粒子間空隙構造を有し且つ細孔径の均一性が高い多孔質シリカ粒子であって、その表面にシラノール基、陰イオン交換基又は陽イオン交換基を有するものである。特に細孔径の均一性が高いので、蛋白質、特に酵素の分子サイズに適した細孔径を有する蛋白質固定化用担体を選ぶことにより、当該蛋白質は該酵素固定化担体に均一に固定化される。また、蛋白質固定化用担体表面の置換基の種類を酵素などの蛋白質の種類に応じて選択することにより、当該蛋白質は酵素固定化用担体に安定に固定化される。
 本発明に係る蛋白質固定化用担体は、通常、球状シリカ微粒子の球状集合体である。該球状シリカ微粒子の粒子径分布は単分散相を示すものであり、このことにより、本発明に係る蛋白質固定化用担体の細孔径の均一性が達成されるものといえる。本発明に係る蛋白質固定化用担体が、劣化又は崩壊し難いことは、蛋白質固定化用担体が均一な球状シリカ微粒子の集合体からなる安定な構造をとることによるものである。また、本発明に係る蛋白質固定化用担体は、その製造段階において、前記球状シリカ微粒子の粒径を選択するだけで、多様な分子サイズの蛋白質、特に酵素の固定化に適応することが可能となる。
 本発明に係る蛋白質固定化用担体の好適な態様では、蛋白質固定化用担体を構成する多孔質シリカ粒子の表面に陰イオン交換基または陽イオン交換基を有している。特に、陰イオン交換基として、アミノ基又は第4級アンモニウム基を構造中に含む置換基を有しているか、あるいは、陽イオン交換基として、カルボキシル基、リン酸基及びスルホキシル基から選ばれる何れかの基を構造中に含む置換基を有していると、蛋白質、特に酵素の固定化を、共有結合などの強固な結合を介して行うことができるので有利である。このような置換基は、典型的には多孔質シリカ粒子をシランカップリング剤で処理し、その表面のシラノール基を改質したものである。本発明に係る蛋白質固定化用担体は、その製造段階において、球状シリカ微粒子の粒径の選択に加えて、シランカップリング剤等の薬剤により導入される置換基の選択を行うことにより、蛋白質の種類に応じて最適な蛋白質固定化用担体とすることができる。
 本発明に係る固定化蛋白質は、蛋白質の固定化に用いる蛋白質固定化用担体が均一性の高い球状シリカ微粒子の球状集合体であることから構造的に安定であり、細孔径分布の均一性も高い。また、蛋白質の表面電荷に応じた置換基を蛋白質固定化用担体の表面に有するので、蛋白質固定化用担体に吸着した蛋白質は安定に存在することができる。これらの特徴により、本発明に係る固定化蛋白質は、その設計の範囲内で、細孔径と表面置換基の種類を選択することにより、多様な蛋白質の固定化に供することが可能である。また、本発明に係る固定化蛋白質は、その構造の安定性により、繰返し使用によっても劣化又は崩壊を招き難く、基質との反応の際の温度による影響又は溶媒による影響を受け難いものとなる。
 本発明に係る固定化蛋白質は、このような優れた特徴を有するため、蛋白質として酵素を採用してなる固定化酵素では、固定化前の酵素同等またはそれ以上の反応活性を示すことができる。
 また、本発明に係る固定化酵素の製造方法は、実用性が高く、管理すべき条件も少ないので、大量生産にも適したものと言える。
 第1の本発明に係る蛋白質固定化用担体は、内部に粒子間空隙構造を有し且つ細孔径の均一性が高い多孔質シリカ粒子であって、その表面にシラノール基、陰イオン交換基又は陽イオン交換基を有するものである。特に細孔径の均一性が高いので、蛋白質、特に酵素の分子サイズに適した細孔径を有する蛋白質固定化用担体を選ぶことにより、蛋白質は該蛋白質固定化担体に均一に固定化される。また、蛋白質固定化用担体表面の置換基の種類を蛋白質の種類に応じて選択することにより、蛋白質は蛋白質固定化用担体に安定に固定化される。このような蛋白質固定化用担体を、例えば、新たな固定化蛋白質、特に固定化酵素の開発に適用した場合、次のような利点がある。
 (1)様々な酵素を担体に固定化することが可能である。
 (2)酵素の固定化方法が容易なものである。
 (3)フリーの酵素と同等以上の反応活性を維持した状態で酵素を固定化することが可能である。
 (4)酵素固定化用担体が多孔質シリカ粒子を原料としており、かつ安定な構造をとるので、固定化酵素の機械的強度が高く、繰り返し使用が容易である。
 (5)固定化酵素の工業的な大量生産が可能である。
 (6)開発対象酵素の固定化に関する開発期間を短縮し、容易に工業化に結び付けることができる。
 (7)固定化後の活性が高いため、固定化による酵素の損失を抑制できる。
 (8)例えば、多孔質シリカ粒子の表面を水酸基、アミノ基、カルボシキル基又はフェニルアミノ基などで修飾することにより、酸性、塩基性、中性又は疎水性の何れの酵素も固定化可能である。
 また、第2の本発明に係る固定化蛋白質は、上記蛋白質固定化用担体に蛋白質を固定化したものである。このような固定化蛋白質は、例えば、次のような利点がある。
 (a)固定化酵素として用いたときに、フリーの酵素と同等又は同等以上の反応活性を示すことができる。
 (b)機械的強度が高く、繰り返し使用が容易である。
 (c)工業的な大量生産が可能である。
 (d)固定化酵素として用いたときに、活性が高いため、固定化による酵素のロスを抑制できる。
 (e)固定化酵素として用いたときに、固定化酵素と基質との反応時において、耐熱性及び耐溶剤性に優れる。
 (f)特にラセマーゼ、グルコアミラーゼ、アミラーゼ又はラッカーゼから選ばれる酵素が固定化されてなる固定化蛋白質は、耐熱性に優れる。
 (g)特にDERAが固定化されてなる固定化蛋白質は、耐基質性及び平衡のシフトに優れる。
各種蛋白質固定化用担体に固定化したラセマーゼの比活性を示す図。 繰り返し利用による各種固定化ラセマーゼにおける比活性の変化を示す図。 繰り返し利用による各種固定化ラセマーゼにおける比活性の変化を示す図。 デオキシリボアルドラーゼ(DERA)が介在する反応を示した模式図。 タンデムアルドール反応によるラクトン合成反応を示した模式図。 各種蛋白質固定化用担体に固定化したDERAについての、順反応に対する比活性を示す図。 アセトアルデヒド中における、固定化DERAの順反応に対する比活性の経時変化をフリーのDERAと比較して示す図。 アセトアルデヒド中における、固定化DERAの逆反応生成物量の経時変化をフリーのDERAと比較して示す図。 固定化DERAについてのラクトン生成量をフリーのDERAと比較して示す図。 各種蛋白質固定化用担体に固定化したニトリルヒドラーゼ(NHase)の比活性を示す図。 本発明の固定化酵素を含む各種酵素についての等電点と分子量の分布を示す図。 各種蛋白質固定化用担体の細孔径分布を示す図(丸印を結ぶカーブは、窒素吸着法により測定した細孔径分布を示し、三角印を結ぶカーブは、水銀圧入法により測定した細孔径分布を示す。各カーブのピーク付近に記した値は、蛋白質固定化用担体の細孔径を表す。)
 本発明は、微小粒子の集合体からなり、メソ孔を有する多孔質シリカ粒子、あるいは、該多孔質シリカ粒子の表面にシランカップリング剤等を用いて所定の官能基を付与する処理を施した多孔質シリカ粒子への蛋白質の吸着現象を、該蛋白質の固定化法として利用し、多孔質シリカ粒子の細孔内若しくは表面に蛋白質を安定に固定して、固定化された蛋白質の機能を充分に発揮できるようにしたものである。
 本発明において、多孔質シリカ粒子に固定化される蛋白質として、好適には酵素が選択されるため、本発明は、酵素固定化用担体又は固定化酵素を包含するものである。
 1.蛋白質固定化用担体
 本発明に係る蛋白質固定化用担体は、内部に粒子間空隙構造を有する特定の多孔質シリカ粒子からなるものである。ここで、本発明で用いられる多孔質シリカ粒子は、下記(1)~(6)を満たし、且つ表面にシラノール基、陰イオン交換基又は陽イオン交換基を有するものである:
 (1) 平均粒子径(Da)が0.5~100μmの範囲;
 (2) 比表面積が10~250m2/gの範囲;
 (3) 細孔容積(Pv)が0.10~0.32ml/gの範囲;
 (4) 細孔径分布(X軸:細孔径[Ps]、Y軸:細孔容積を細孔径で微分した値)におけるピーク値の細孔径(Pms)が2~200nmの範囲;
 (5) (Pms)×0.75~(Pms)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の70%以上;
 (6) 空隙率が5~50%の範囲。
 本発明に係る蛋白質固定化用担体は、後述する固定化蛋白質において、蛋白質を固定化させるための担体として用いられるものである。本発明に係る蛋白質固定化用担体は、好適な態様においては酵素を固定化させるための担体として用いられることから、この側面を強調する意味で特に「酵素固定化用担体」と呼ばれることもある。
 1-1.多孔質シリカ粒子
 本発明における多孔質シリカ粒子は、内部に粒子間空隙構造を有する多孔質シリカ粒子であって、
 1)該多孔質シリカ粒子の平均粒子径(Da)が0.5~100μmの範囲;
 2)比表面積が10~250m2/gの範囲;
 3)細孔容積が0.10~0.32ml/gの範囲;
 4)細孔径分布(X軸:細孔径[Ps]、Y軸:細孔容積を細孔径で微分した値)におけるピーク値の細孔径(Pms)が2~200nmの範囲;
 5)(Pms)×0.75~(Pms)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の70%以上;
 6)空隙率が5~50%の範囲
の要件を満たし、且つ
 表面にシラノール基、陰イオン交換基又は陽イオン交換基を有する
多孔質シリカ粒子である。
 本発明で用いられる多孔質シリカ粒子において、前記粒子間空隙構造は、通常、粒子の自己集積および/または自己組織化により構成されるものである。本発明で用いられる多孔質シリカ粒子は、通常、平均粒子径10~500nm、真球度0.9~1の範囲、好ましくは平均粒子径10~50nm、真球度0.9~1の範囲にあり、粒子径の均一性の高いる球状シリカ微粒子が集合してなる球状集合体からなるものである。
 本発明に係る多孔質シリカ粒子の粒子間空隙構造は、特に細孔径分布(X軸:細孔径、Y軸:細孔容積を細孔径で微分した値)におけるピーク値の細孔径(Pms)が2~200nmの範囲、望ましくは2~50nmの範囲であり、さらに(Pms)×0.75~(Pms)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の70%以上、好ましくは80%以上をとるものである。これにより、触媒等が充分に分散して多孔質シリカ粒子に担持する傾向が促進される。また、触媒が担持した触媒担体に反応選択性を付与することができる。これについては、細孔を形成する粒子の形状が真球状で、かつ、粒子径が均一であり、形成される細孔も、細孔径が均一で、分散した状態で存在することが原因するものと推察される。
 本発明に係る多孔質シリカ粒子の平均粒子径(Da)については、0.5~100μmの範囲が好ましく、0.5~50μmの範囲がより好ましい。後で述べる本発明の製造方法によれば、この範囲であれば、球状で均一な多孔質シリカ粒子を得ることが可能である。平均粒子径が0.5μm未満の多孔質シリカ粒子については、本発明の製造方法によれば、調製することが容易ではない。平均粒子径が50μmを超える場合、特に平均粒子径が100μmを超える場合は、本発明の製造方法によれば、異形粒子が発生し易くなるため望ましくない。なお、多孔質シリカ粒子の平均粒子径については、好適には5~50μmの範囲、特に5~30μmの範囲が推奨される。前記多孔質シリカ粒子の平均粒子径については、遠心沈降法により測定されるものであり、具体的な測定方法については、実施例の[各種物性の測定方法]中、1.(B)「遠心沈降法による平均粒子径の測定方法」に記した。
 本発明に係る多孔質シリカ粒子の比表面積については、10~250m2/gの範囲が好ましい。比表面積が30m2/g未満の場合、特に10m2/g未満の場合は担体として使用する場合には、多くの場合、大量に担体を使用する必要があり、経済的に不利である。また、比表面積が250m2/gを越える場合は反応生成物の再吸着などが起こり反応効率が低下する恐れがあり、また、球状集合体の強度が不充分となるため好ましくない。比表面積のより好ましい範囲としては、30~250m2/gの範囲が推奨される。
 本発明に係る多孔質シリカ粒子は、0.10~0.32ml/gの範囲の細孔容積を有している。細孔容積が0.10ml/g未満の場合には、担体として使用した場合、触媒としてはたらく金属微粒子などの担持量が少なくなるため、多くの場合、担体を大量に使用する必要があり、経済的に不利である。細孔容積が0.32ml/gを越えると、球状集合体の強度が不充分となる場合がある。細孔容積の好ましい範囲は、0.10~0.25ml/g、より好ましくは0.12~0.20ml/gである。
 なお、当該細孔容積は、窒素を用いた定容量式ガス吸着法により、また、細孔分布、細孔径(ピーク値)は BJH法によって求めることができる。また、これらの値を測定する方法として、水銀圧入法を用いることもできる。

 本発明に係る多孔質シリカ粒子においては、本発明に係る多孔質シリカ粒子の粒子間空隙構造は、特に細孔径分布(X軸:細孔径[Ps]、Y軸:細孔容積を細孔径で微分した値)におけるピーク値の細孔径(Pms)が2~200nmの範囲であり、さらに(Pms)×0.75~(Pms)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の70%以上であることが必要である。
 前記細孔径(Pms)が2nm未満の場合、必要な細孔容積を確保することが容易ではない。細孔径(Pms)が25nmを超える場合、特に200nmを超える場合は、粒子強度の低下が実用上問題となる場合がある。細孔径(Pms)の範囲については、望ましくは2~50nmの範囲が推奨される。また、更に望ましくは、3~15nmの範囲が推奨される。
 (Pms)×0.75~(Pms)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の80%未満の場合、特に70%未満の場合は、細孔径分布が不均一であり、応力が比較的大きな細孔に集中し、実用上強度が弱くなるなどの問題が生じ易くなる。前記全細孔容積に対する合計細孔容積の好ましい割合は80%以上であり、更に好適な割合として85%以上が推奨される。
 本発明で用いられる多孔質シリカ粒子は、その空隙率が5~50%の範囲にあるものが好ましい。本発明の多孔質シリカ粒子は、この範囲の空隙率であっても、優れた粒子破壊強度を示すことができる。空隙率が5%未満では、担持できる物質の量が僅かとなり、実用的ではない。空隙率が50%を超える場合は、粒子の強度を保てなくなる場合があり、望ましくない。空隙率については、望ましくは10~30%の範囲が推奨される。
 球状集合体
 本発明に係る多孔質シリカ粒子は、前記の通り球状シリカ微粒子の球状集合体から構成される。ここで球状シリカ微粒子の平均粒子径(Db)としては、10~500nmの範囲が好適である。平均粒子径が10nm未満の場合は、粒子径が小さすぎて無機シリカ微粒子の間隙による細孔容積が低下し、担持用粒子としては、実用性が低下する。平均粒子径が50nmを超える場合、特に平均粒子径が500nmを越えると、細孔容積は大きくなるものの、微粒子同士の結合力が弱く、球状シリカ微粒子の集合体が得られ難い。球状シリカ微粒子の更に好ましい平均粒子径は10~300nmの範囲である。また、より好ましくは平均粒子径10~50nmの範囲、特に好ましくは平均粒子径10~48nmの範囲が推奨される。
 なお、本願において、球状シリカ微粒子の平均粒子径については、動的光散乱法により測定された平均粒子径または画像解析法により測定された平均粒子径を意味する。
 また、後記の「球状シリカ微粒子(a)」および「球状シリカ微粒子(b)」の場合も同様である。画像解析法による平均粒子径測定方法については、実施例の[各種物性の測定方法]中「5.粒度分布の測定」にて記載した平均粒子径の測定方法により測定した。
 前記球状シリカ微粒子は、棒状、勾玉状、細長い形状、数珠状、卵状などの異形粒子を含まず、真球度が高いものであることが必要である。本発明において球状とは、真球度が0.90~1.00の範囲にあるものを言う。ここで真球度とは、透過型電子顕微鏡により写真撮影して得られる写真投影図における任意の50個の粒子について、それぞれその最大径(DL)と、これと直交する短径(DS)との比(DS/DL)の平均値を意味する。真球度が0.90未満の場合は、微粒子が球状であるとは云えず、前記の異形粒子に該当するものを含む場合が生じる。
 球状シリカ微粒子として真球度が0.90~1.00の球状シリカ微粒子を使用してなる本発明の多孔質シリカ粒子は、優れた粒子破壊強度を示すことが可能となる。特に球状シリカ微粒子の真球度を0.90以上で揃えることは多孔質シリカ粒子の強度に大きな影響を与えるものとなる。
 球状シリカ微粒子としては、例えば、特開平5-132309号公報等に開示した酸化物ゾルなどのシリカ微粒子、特開平10-454043号公報に開示された有機基を含む複合シリカ微粒子、特開平7-133105号公報に開示された粒子内部に空隙を有した複合シリカ微粒子などを適用することが可能であるが、前記真球度に満たない場合は、いわゆる水熱処理を行って、真球度を0.90~1.00の範囲に調整してから、球状シリカ微粒子として使用することができる。水熱処理の条件としては、温度100~200℃にて、1~24時間の処理を行う方法を挙げることができる。また、水熱処理には、オートクレーブを使用することも推奨される。
 球状シリカ微粒子の粒子径分布が単分散である場合については、望ましくは球状シリカ微粒子の粒子径変動係数(CV値)が2~10%の範囲にあることが推奨される。粒子径変動係数2%未満の場合は、本発明にとってより望ましいものの、そのレベルの粒子径分布の球状シリカ微粒子を得ることは容易ではない。粒子径変動係数が10%を超える場合は単分散の程度が低下するため、本発明の効果が低下する。粒子変動係数の範囲については、好適には2~7%の範囲が推奨される。
 このような球状シリカ微粒子の球状集合体の製造方法としては、従来公知の方法を採用することができ、例えば、マイクロカプセル法、乳化法、オイル法、噴霧法などが挙げられる。中でも本願出願人の出願による特公平3-43201号公報、特公平2-61406号公報等に開示した真球状微粒子粉末の製造方法は、出発無機シリカ微粒子が球状で無い場合であっても真球状の無機シリカ微粒子集合体が得られ、製造工程が複雑でなく経済性にも優れている。この好ましい製造方法については後述する。
 官能基
 本発明で用いられる多孔質シリカ粒子は、その表面の官能基として、シラノール基、陰イオン交換基又は陽イオン交換基を有している。
 すなわち、本発明の蛋白質固定化用担体において、一つの態様では多孔質シリカ粒子としてシラノール基を有するものが用いられる。ここで、多孔質シリカ粒子は、その表面にシラノール基を有するものなので、前記多孔質シリカ粒子は本発明に係る蛋白質固定化用担体に含まれるものと言える。
 また、別の態様では、多孔質シリカ粒子として陰イオン交換基または陽イオン交換基を有するものが用いられる。本発明で「陰イオン交換基を有する」または「陽イオン交換基を有する」というときには、多孔質シリカ粒子において、表面の官能基に陰イオン交換基又は陽イオン交換基が含まれているということを意味し、すべてのシラノール基が陰イオン交換基又は陽イオン交換基で修飾されていることまでを要するものではない。
 したがって、本発明の蛋白質固定化用担体における多孔質シリカ粒子の態様としては、(i) シラノール基は含むが、陰イオン交換基も陽イオン交換基も含まないもの、(ii) 陰イオン交換基を含み、陽イオン交換基を含まないもの、(iii) 陽イオン交換基を含み、陰イオン交換基を含まないものが主として挙げられ、場合によっては、(iv) 陰イオン交換基と陽イオン交換基を両方含むものも挙げることができる。
 本発明で、陰イオン交換基とは、陰イオンを吸着可能であるか、酸と反応して陰イオン化して、親水性を発現することが可能な基のことであり、陽イオン性の基か、塩基性の基のことを言う。このような例としては、アミノ基を構造中に含む基又は第4級アンモニウム基を構造中に含む基を挙げることができる。アミノ基を構造中に含む基の例としては、-CH2CH2CH2NH2、-CH2CH2CH2CH2NH2その他のアミノアルキル基に代表される第1級アミノ基を含む基;フェニルアミノ基など第2級アミノ基を含む基;-CH2N(CH32、-CH2CH2N(CH32、-CH2CH2N(CH2CH22、-CH2CH2CH2N(CH2CH22など第3級アミノ基を含む基;並びに、-CH2+(CH33、-CH2CH2+(CH33、-CH2CH2+(CH2CH23、-CH2CH2CH2+(CH2CH23、-CH2CH2+(CH2CH32CH2CH(OH)CH3、-N+(CH33など第4級アンモニウム基を含む基を挙げることができるが、これらに限定されるものではない。
 一方、陽イオン交換基とは、陽イオンを吸着可能であるか、塩基と反応して陽イオン化して、親水性を発現することが可能な基のことであり、陰イオン性の基か、酸性基が挙げられる。ここで、シラノール基も陽イオンを吸着する可能性があるものの、本発明で「陽イオン交換基」というときは、厳密にはシラノール基以外の陽イオン交換基を意味する。このような陽イオン交換基の例としては、カルボキシル基、リン酸基又はスルホキシル基から選ばれる基を構造中に含む基を挙げることができる。カルボキシル基を構造中に含む基の例として、-CH2COOH、-CH2CH2COOH、-CH2CH2CH2COOH、-CH2CH2CH2CH2COOHなどのカルボキシアルキル基、-リン酸基の例としては、―PO42、スルホキシル基の例として、-CH2CH2SO3H、-CH2CH2CH2SO3H、などのスルホアルキル基がそれぞれ挙げられるが、これらに限定されるものではない。
 本発明の蛋白質固定化用担体においては、これらの陰イオン交換基及び陽イオン交換基は、通常、多孔質シリカ粒子への結合性官能基を介して、多孔性シリカ粒子の表面に導入されている。典型的な場合において、上記陰イオン交換基及び陽イオン交換基は、多孔質シリカ粒子表面のシラノール基をシランカップリング剤又は有機酸で処理することにより、多孔質シリカ粒子表面に結合する。ここで、シランカップリング剤で処理した場合は、多孔質シリカ粒子の表面シラノール基とシランカップリング剤との加水分解反応によって所望の陰イオン交換基及び陽イオン交換基が導入され、その場合は、陰イオン交換基及び陽イオン交換基が、シランカップリング剤の珪素原子を介して多孔質シリカ粒子表面と結合することになる。
 なお、本明細書では、「陰イオン交換基」及び「陽イオン交換基」という語を、結合性官能基を含めた部分分子構造について用いることがある。例えば、「アミノ基を構造中に含む基」を、-Si-CH2CH2N(CH32などのようにシリルカップリング剤由来の結合性官能基を含めた意味で用いることがある。
 なお、本発明で用いられる多孔質シリカ粒子は、その表面の官能基として、シラノール基、陰イオン交換基又は陽イオン交換基が望ましいが、この他に疎水性の有機基も好適に使用することができる。このような疎水性の有機基としては、メチル基、γ-メタクリロキシプロピル基等を挙げることができるが、これらに限定されるものではない。
 表面処理
 本発明で用いられる多孔質シリカ粒子は、上記「官能基」の導入とは別に、前記球状シリカ微粒子が集合してなる球状集合体が、所望により、さらに表面処理されていても構わない。表面処理については、前記細孔容積範囲、細孔径範囲を維持できる範囲で行われる必要がある。この様な表面処理により、粒子の強度を向上させることができる。担体として使用する場合には、担持する物質との親和性を高め、担持力を高める効果がある。
 球状シリカ微粒子に酸またはアルカリと下記一般式で表される有機ケイ素化合物および/またはその部分加水分解物を添加して、表面処理した場合は、有機官能基を有するシリカ系被覆層が形成される。
 一般式: RnSi(OR′)4-n
〔但し、RおよびR′は、炭素数1~18のアルキル基、炭素数1~18のアリール基、ビニル基またはアクリル基から選ばれる炭化水素基であり、nは0、1、2または3の整数である。〕
 1-2.多孔質シリカ粒子の製造方法
 本発明で用いられる多孔質シリカ粒子の製造方法は、本発明の目的が達せられ、かつ所期の作用・効果を得ることができる限り特に制限されるわけではない。しかし、本発明で用いられる多孔質シリカ粒子は、球状多孔質粒子として製造されることが好ましく、これにあたり、通常、以下に述べる方法により製造される。
 このような多孔質シリカ粒子の製造方法は、球状多孔質粒子の製造方法として、以下に述べる(A)、(B)および(C)の各工程を含むことを特徴とする。
 (A)遠心分離処理
 平均粒子径10~500nm、好ましくは平均粒子径10~50nmの球状シリカ微粒子の分散液を調製し、遠心分離処理を行って、粗大粒子を分離し、粒子径変動係数(CV値)を2~10%の範囲に調整することにより、粒子径分布が単分散相を示す球状シリカ微粒子分散液を調製する。
 遠心分離処理条件については、通常は、球状シリカ微粒子分散液の固形分濃度が1~50質量%で、遠心力が500~20000×gの範囲が推奨される。ここで、単位「×g」は、地球の重力加速度との比で表した相対遠心加速度(RCF:Rerative Centrifugal Force)を表し、「G」で表記される場合もある。
 なお、予め粒子径変動係数(CV値)が2~10%の範囲にあり、粒子径分布が単分散相である球状シリカ微粒子分散液を原料として入手して使用する場合においては、省略可能となる。
 (B)球状シリカ微粒子集合体の調製
 球状シリカ微粒子分散液を含む噴霧液を気流中に噴霧して球状シリカ微粒子集合体を調製する。該球状シリカ微粒子分散液の溶媒については、水または有機溶媒が使用される。有機溶媒としては、エタノール、プロパノール、ブタノールなどの1価アルコール、エチレングリコール等の多価アルコール等を用いることができる。
 前記噴霧液については、前記球状シリカ微粒子分散液の他に、所望により珪酸液を含んでいても良い。噴霧液として、前記球状シリカ微粒子分散液に珪酸液を添加することにより、粒子の強度が増加する効果がある。珪酸液の添加量については、[球状シリカ微粒子の質量]/珪酸液(シリカ換算)で、1.3以上が望ましい。1.3未満では、珪酸液に由来するシリカの割合が過剰になり空隙率が低下する傾向が強まる。
 前記噴霧液の濃度については、固形分換算で2~60重量%、特に、4~50重量%の範囲にあることが好ましい。噴霧液の固形分濃度が2重量%未満の場合は、集合体が得られ難い。噴霧液の濃度が60重量%を越えると、噴霧液が不安定になり球状の集合体が得難くなる。また、後述する噴霧乾燥を連続的に行えず、集合体の収率が低下する。
 前記噴霧液の噴霧乾燥方法としては、前記した集合体が得られれば特に制限はなく、回転ディスク法、加圧ノズル法、2流体ノズル法など従来公知の方法を採用することができる。特に、特公平2-61406号公報に開示された2流体ノズル方法は、粒子径分布の均一な球状シリカ微粒子集合体を得ることができ、また平均粒子径をコントロールすることが容易であるので好ましい。
 このときの乾燥温度は、球状シリカ微粒子分散液の濃度、処理速度等によっても異なるが、スプレードライヤーを使用する場合、例えば、スプレードライヤーの入口温度としては100~300℃、出口温度40~100℃などの条件が好ましい。また、更に好適には、入口温度210~250℃、出口温度50~55℃の範囲が推奨される。
 噴霧速度については、噴霧装置の形状またはスケールにも依存するが、例えば、0.1L/時間~3L/時間の範囲で行われる。
 (C)球状シリカ微粒子集合体の加熱処理
 (B)工程で得られた球状シリカ微粒子集合体を、球状シリカ微粒子同士またはゲル成分との結合力を高めるために、150~600℃の温度範囲で加熱処理する。加熱処理温度が150℃未満では結合力の向上効果が認められない場合がある。一方、600℃を越えると球状シリカ微粒子集合体が収縮するおそれがあり、最終的に得られる球状多孔質粒子の空隙が小さくなる場合があり、好ましくない。
 前記(A)、(B)および(C)工程に続いて、所望により以下の(D)、(E)および(F)工程による処理を行っても構わない。
 (D)球状シリカ微粒子集合体分散液の調製
  (C)工程で得られた球状シリカ微粒子集合体を、室温~40℃まで放冷または冷却し、水および/または有機溶媒に分散させてその分散液を調製する。有機溶媒としては、エタノール、プロパノール、ブタノールなどの1価アルコール、エチレングリコール等の多価アルコール等を用いることができる。分散液の濃度は、球状シリカ微粒子集合体を酸化物に換算した濃度で0.1~40重量%、特に0.5~20重量%の範囲にあることが好ましい。他方、濃度が40重量%を越えると(D)工程において集合体同士が凝集し易くなるので好ましくない。
 (E)表面処理
 (D)工程で得られた集合体分散液に、次のi)またはii)を添加して球状シリカ微粒子集合体の外表面の表面処理を行う。
 i) 酸またはアルカリ
 ii) 酸またはアルカリと次の一般式で表される有機ケイ素化合物および/またはその部分加水分解物
 一般式: RnSi(OR′)4-n
〔但し、RおよびR′は、炭素数1~18のアルキル基、炭素数1~18のアリール基、ビニル基またはアクリル基から選ばれる、イオン交換性基を含まない基で置換されていても良い炭化水素基であり、nは0、1、2または3の整数である。〕
 前記i)の場合の酸またはアルカリについては、通常は酸またはアルカリの水溶液が使用される。ここで、前記i)で用いられる「酸」は、後述する蛋白質固定化用担体の製造に用いられる有機酸とは異なり、球状シリカ微粒子集合体の外表面に陽イオン交換性基を導入しないものが用いられる。酸またはアルカリの種類については格別制限されるものではないが、塩酸水溶液、ホウ酸水溶液、アンモニウム水溶液などを挙げることができる。
 前記ii)の場合の酸またはアルカリについては、i)の場合と同様に定義される。ここで、前記ii)で用いられる「有機ケイ素化合物」は、後述する蛋白質固定化用担体の製造に用いられるシランカップリング剤とは異なり、球状シリカ微粒子集合体の外表面に陰イオン交換基や陽イオン交換性基を導入しないものが用いられる。前記一般式で表される有機ケイ素化合物としては、具体的に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、メチル-3,3,3-トリフルオロプロピルジメトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシトリプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、トリメチルシラノール、メチルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、ビニルトリクロルシラン、トリメチルブロモシラン、ジエチルシラン等が挙げられる。
 なお、有機ケイ素化合物および/またはその部分加水分解物と共に添加される酸またはアルカリは、加水分解のための触媒としても機能するが、所望により加水分解用の触媒を添加しても良い。加水分解触媒として、アルカリ金属の水酸化物や、アンモニア水、アミン等の塩基性のものを用いた場合、加水分解後これらの塩基性触媒を除去して、酸性溶液にして用いることもできる。また、有機酸や無機酸などの酸性触媒を用いて加水分解物を調製した場合、加水分解後、イオン交換等によって酸性触媒を除去することが好ましい。なお、得られた有機ケイ素化合物の加水分解物は、水溶液の形態で使用することが望ましい。ここで水溶液とは加水分解物がゲルとして白濁した状態になく透明性を有している状態を意味する。
 なお、有機ケイ素化合物でnが0の化合物はそのまま用いることができるが、nが1~3の化合物は親水性に乏しいので、予め加水分解しておくことにより、反応系に均一に混合できるようにすることが好ましい。加水分解には、これら有機ケイ素化合物の加水分解法として周知の方法を採用することができる。
 なお、上記機ケイ素化合物および/またはその部分加水分解物あるいは珪酸液と共に、前述した酸化物以外の無機酸化物の前駆体金属塩を添加して酸化物と酸化物以外の無機酸化物とからなる酸化物系層を形成することもできる。酸化物以外の無機酸化物の原料としては、アルカリ可溶の無機化合物を用いることが好ましく、前記した金属または非金属のオキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができる。
 (F)加熱処理
 さらに(E)工程で得られた球状シリカ微粒子集合体の分散液から、球状シリカ微粒子集合体分離し、乾燥した後、大気圧下または減圧下、100~300℃で加熱処理して、多孔質シリカ粒子を得る。
 1-3.蛋白質固定化用担体の製造方法
 シラノール基を表面に有する多孔質シリカ粒子からなる蛋白質固定化用担体は、上記1-2.で上述した方法により製造された多孔質シリカ粒子をそのまま使用することができる。このうち特に前記(A)、(B)及び(C)工程から得られた多孔質シリカ粒子が好ましい。このような多孔質シリカ粒子は、本来的にその表面にシラノール基を有するものである。言い換えれば、このような多孔質シリカ粒子は、本発明の蛋白質固定化用担体として、酵素などの蛋白質の固定化に用いることができる。
 一方、陰イオン交換基または陽イオン交換基を表面に有する多孔質シリカ粒子からなる蛋白質固定化用担体は、上記1-2.で上述した方法により製造された多孔質シリカ粒子に対して、陰イオン交換基または陽イオン交換基を導入することにより製造される。なお、好適には、陰イオン交換基又は陽イオン交換基を表面に有する多孔質シリカ粒子は、前記(A)、(B)及び(C)工程から得られた表面にシラノール基を有する多孔質シリカ粒子をシランカップリング剤又は有機酸で処理することにより得られる。なお、ここで使用するシランカップリング剤又は有機酸としては、陰イオン交換基又は陽イオン交換基を有するものが使用される。
 また、疎水性の有機基を表面に有する多孔質シリカ粒子からなる蛋白質固定化用担体は、前記(A)、(B)及び(C)工程から得られた多孔質シリカ粒子をシランカップリング剤(疎水性の有機基を有するもの)で処理することにより得られる。
 本発明に係る蛋白質固定化用担体の製造方法において、使用されるシランカップリング剤としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリブトキシシラン、4-アミノブチルトリエトキシシラン等のアミノアルキル基を有するシランカップリング剤;N-フェニル-3-アミノプロピルトリメトキシシラン等のフェニルアルキル基を有するシランカップリング剤;ジエチルアミノメチルトリエトキシシラン、(N,N-ジエチル-3-アミノプロピル)トリメトキシシラン等のジアルキルアミノアルキル基を有するシランカップリング剤;塩化N-トリメトキシシリルプロピル-N,N,N-トリメチルアンモニウム等の4級アンモニウム基を有するシランカップリング剤;カルボキシエチルシラントリオール、トリエトキシシリルプロピルマレアミン酸、N-(トリメトキシシリルプロピル)エチレンジアミン三酢酸等のカルボキシル基を有するシランカップリング剤;3-(トリヒドロキシシリル)-1-プロパンスルホン酸等のスルホキシル基を有するシランカップリング剤などが挙げられる。
 シランカップリング剤による多孔質シリカ粒子の処理については、格別制限されるものではなく、公知の処理方法を適用することができる。例えば、粉体状の多孔質シリカ粒子に、所要のシランカップリング剤を加え、必要に応じて加熱しながら攪拌し、その後濾過・乾燥等することにより、蛋白質固定化用担体を得ることができる。
 ここで、アミノ基や4級アンモニウム基など陰イオン交換基を含むシランカップリング剤による処理に際してはアンモニア水等の適当な塩基を、処理反応における反応混合液に加えても良い。また、カルボキシル基など陽イオン交換基を含むシランカップリング剤による処理に際しては酢酸等の適当な酸を、それぞれ処理反応における反応混合液に加えても良い。
 また、原料の多孔質シリカ粒子は、一旦エタノール等の適当な極性溶媒に分散させた状態で処理に用いてもよい。このような多孔質シリカ粒子の処理にあたっては、多くの場合空気中で行うことができるが、必要に応じて不活性気体雰囲気下で処理を行うことを妨げるものではない。加熱温度、処理時間などの諸条件について、多孔質シリカ粒子や有機酸の性状に応じて適宜設定することができる。
 処理の態様としては、多孔質シリカ粒子の水系分散液にシランカップリング剤と、必要な場合に酸又は塩基とを加えても良いし、あるいは、必要に応じて酸又は塩基を添加したシランカップリング剤含有水溶液に、多孔質シリカ粒子もしくはその分散液を加えても良い。
 また、本発明に係る蛋白質固定化用担体の製造方法において、使用される有機酸としては、アジピン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸などのジカルボン酸などを挙げることができる。
 有機酸による多孔質シリカ粒子の処理については、格別制限されるものではなく、公知の処理方法を適用することができる。例えば、適当な水系溶媒に分散させた表面にアミノ基を有する多孔質シリカ粒子(粉体状)に、所要の有機酸を加え、必要に応じて加熱しながら攪拌し、その後濾過・乾燥等することにより、蛋白質固定化用担体を得ることができる。ここで原料の多孔質シリカ粒子は、一旦エタノール等の適当な極性溶媒に分散させた状態で処理に用いてもよい。なお、前記表面にアミノ基を有する多孔質シリカ粒子は、表面にシラノール基を有する多孔質シリカ粒子をアミノ基を有するシランカップリング剤で処理することにより得られる。このような多孔質シリカ粒子の処理にあたっては、多くの場合空気中で行うことができるが、必要に応じて不活性気体雰囲気下で処理を行うことを妨げるものではない。加熱温度、処理時間などの諸条件について、多孔質シリカ粒子や有機酸の性状に応じて適宜設定することができる。
 2.固定化蛋白質
 2-1.固定化蛋白質
 本発明において、上記蛋白質固定化用担体は、蛋白質を固定化させて固定化蛋白質の形で用いられる。すなわち、本発明に係る固定化蛋白質は、上述した蛋白質固定化用担体に、蛋白質を固定化してなるものである。
 本発明の好適な態様では、この固定化蛋白質は、蛋白質として酵素が固定化されている固定化酵素である。ただ、このことは、固定化酵素を構成する蛋白質が酵素に限定されることを意味するものではなく、例えば抗体など他の種類の蛋白質を上記蛋白質固定化用担体に固定してなる固定化蛋白質であっても良い。
 蛋白質
 本発明に係る固定化蛋白質に用いられる蛋白質は、特にその種類に限りがあるわけでない。ただ、触媒反応での使用など工業的な用途への適用という観点からは、好適な蛋白質として酵素が挙げられる。
 本発明に係る固定化蛋白質に適用する酵素としては、例えば、酸化還元反応を触媒するオキシドレダクターゼ、官能基あるいは原子団を分子間で転移するトランスフェラーゼ、加水分解反応を触媒するヒドロラーゼ、脱離反応あるいは付加反応を触媒するリアーゼ、異性体の構造転換を触媒するイソメラーゼ、アデノシン三リン酸の加水分解エネルギーを利用して2つの分子を結合させるリガーゼなどを挙げることがでるが、これらに限定されるものではない。
 オキシドレダクターゼの例としては、アルコールからアルデヒドへの反応に関与するアルコールデヒドロゲナーゼ、アルデヒドからカルボン酸への反応に関与するアルデヒドデヒドロゲナーゼ及びアルデヒドオキシダーゼ、一酸化炭素から二酸化炭素への反応に関与する一酸化炭素デヒドロゲナーゼ、L-アミノ酸と2-オキソ酸との相互変換に関与するL-アミノ酸オキシダーゼ、アルドースから糖アルコールへの反応に関与するアルドースレダクターゼ等、各種オキシダーゼ及びレダクターゼが挙げられる。
 トランスフェラーゼの例としては、メチル基の転位に関与するメチルトランスフェラーゼ、カルボキシル基の転位に関与するカルボキシルトランスフェラーゼ、アルデヒド基・ケト基の転位に関与するトランスアルドラーゼ、アシル基の転位に関与するアシルトランスフェラーゼ、グリコシル基の転位に関与するグリコシルトランスフェラーゼ、アミノ基の転位に関与するアミノトランスフェラーゼ、リン酸基の転位に関与するホスホトランスフェラーゼ、硫黄基の転位に関与するスルホトランスフェラーゼなどが挙げられる。
 ヒドロラーゼの例としては、エステルの加水分解に関与するエステラーゼ、ペプチド結合の加水分解に関与するプロテアーゼ、糖類の加水分解に関与するグリコシダーゼなどが挙げられる。ここで、エステラーゼの代表例としてリパーゼが挙げられ、グリコシダーゼの代表例として、アミラーゼ、ラクターゼ、マルターゼ、サッカラーゼ、リゾチームなどが挙げられる。
 リアーゼの例としては、カルボキシル基の付加または脱離に関与するカルボキシラーゼあるいはデカルボキシラーゼ、アルドール縮合およびその逆反応に関与するアルデヒドリアーゼ、およびデヒドラターゼなどが挙げられる。ここで、アルデヒドリアーゼの例としては、デオキシリボアルドラーゼなどが挙げられる。
 イソメラーゼの例としては、基質内の不斉中心の異性化に関与するエピメラーゼおよびラセマーゼなどが挙げられる。ここで、ラセマーゼの代表例としてL-アミノ酸とD-アミノ酸との相互間の変換に関与するアミノ酸ラセマーゼが挙げられる。
 リガーゼの例としては、L-アスパラギン酸とアンモニアからL-アスパラギンを合成する反応に関与するアスパラギンシンテターゼなどが挙げられる。
 また、本発明に係る蛋白質固定化用担体において固定化されている蛋白質は、上記酵素のほかに、抗体など他の種類の蛋白質であっても良い。また、複数のポリペプチド鎖から構成される複合酵素であっても良い。このような複合酵素の例としては、プロテアソーム、セルロソームなどを挙げることができるが、これらに限定されるものではない。

 本発明に係る蛋白質固定化用担体は、公知の蛋白質又は酵素が固定化可能である。しかしながら、前記のとおり蛋白質固定化用担体は、その細孔径分布におけるピーク値の細孔径が2~200nmの範囲、好ましくは2~50nmの範囲にあるので、固定化される蛋白質又は酵素の大きさもこの範囲内であるものがより好ましい。また、更に好適には3~90nmの範囲、より好ましくは3~45nmの範囲のものが推奨される。
 また、本発明に係る蛋白質固定化用担体又は酵素固定化用担体の表面がシラノール基又は陽イオン交換基を有する場合は、該蛋白質固定化用担体又は酵素固定化用担体は酸性側にあるので、蛋白質の総電荷とpHとの相関図で表される該蛋白質固有の荷電曲線における該蛋白質の等電点(総電荷が0になるpH)より酸性のpH環境における蛋白質又は酵素の固定化に特に好適である。
 他方、本発明に係る蛋白質固定化用担体又は酵素固定化用担体の表面が陰イオン交換基を有する場合は、該蛋白質固定化用担体又は酵素固定化用担体は塩基性側にあるので、該蛋白質の等電点より塩基性のpH環境における、蛋白質又は酵素の固定化に特に好適である。
 また、本発明に係る蛋白質固定化用担体又は酵素固定化用担体の表面が疎水性の有機基を有する場合は、疎水性の高い蛋白質又は酵素の固定化に好適である。
 2-2.固定化蛋白質の製造方法
 本発明に係る固定化蛋白質の製造方法としては、本発明の目的が達せられる限り、特に制限があるわけではないが、通常は、上記蛋白質固定化用担体に所要の蛋白質を固定化させることにより製造することができる。
 その好適な方法において、本発明に係る固定化蛋白質は、上記蛋白質固定化用担体に、蛋白質を吸着させることによって製造することができる。この方法によれば、最も単純な手順で蛋白質の固定化を行うことができるので、工業的な量産が可能であり、また、蛋白質固定化用担体表面に存在する官能基として幅広い種類の官能基を用いうるため、多様な種類の蛋白質固定化に対応できる利点がある。典型的には、適当なバッファー溶液中で、蛋白質固定化用担体に、蛋白質を吸着させることによって製造することができる。このときpHや温度などの反応条件は、蛋白質、および蛋白質固定化用担体を構成する多孔質シリカ粒子の性状に応じて適宜調整することができる。例えば、温度については、蛋白質の変質を最小限に抑える観点から0~10℃、例えば4℃付近であっても良いし、蛋白質の変性が生じない範囲で反応を速やかに行う観点から、20~40℃、例えば、30~37℃付近であっても良い。ただ、多くの場合、蛋白質固定化用担体への蛋白質の吸着は常温付近で行われ、典型的には4~25℃の範囲で行われる。
 ここで、「吸着」とあるのは、水素結合、静電的相互作用、アフィニティが関係する相互作用その他の非共有結合的相互作用による固定化も含まれうることを示す概念である。
 ここで、本発明の固定化蛋白質においては、おそらく蛋白質固定化用担体表面のシラノール基と蛋白質との間に水素結合が介在するため固定化が行われていると考えられるが、陰イオン交換基または陽イオン交換基を表面に有する多孔質シリカ粒子からなる場合には、蛋白質の固定化にあたり静電的相互作用をも利用することができるので、有利である。
 一方、蛋白質固定化用担体が、アミノ基やカルボキシル基など蛋白質と共有結合の形成が可能であるような官能基を表面に有する多孔質シリカ粒子からなる場合には、さらに強固な固定化がなされるよう、蛋白質の機能を害さない範囲で、常法により共有結合を形成させることにより蛋白質を蛋白質固定化用担体に固定化させても良い。
 2-3.固定化蛋白質の使用
 本発明の固定化蛋白質は、主として固定化酵素として使用されるものである。ここで、本発明の固定化蛋白質を固定化酵素として用いたときの利点としては、基質に対する、固定化された酵素の反応活性が、対応するフリーの酵素、すなわち、対応する担持されていない遊離型の酵素と同等であり、また、繰り返し使用による活性の低下が、対応するフリーの酵素と比べて少ないことが挙げられる。
 ここで、固定化する蛋白質として酵素を用いたときには、対応する担持されていない遊離型の酵素(以下「フリーの酵素」という場合がある。)と同様の用途に用いられる。
 例えば、上記記載のオキシドレダクターゼ、トランスフェラーゼ、ヒドロラーゼ、リアーゼ、イソメラーゼ、リガーゼを固定化した固定化酵素として、工業的用途を含む各種用途に用いうる。例えば、ラセマーゼなどのイソメラーゼを固定化した固定化酵素として、アミノ酸などの異性化反応に用いることができるし、デオキシリボアルドラーゼなどのアルデヒドリアーゼを固定化した固定化酵素として、アルドール反応等に用いることができる。
 [各種物性の測定方法]
 1.平均粒径の測定方法
 (A) 画像解析法による平均粒子径測定
 球状シリカ微粒子の平均粒子径については、「5.粒度分布の測定」の項で後述するように、走査型電子顕微鏡及び画像解析装置を用いて測定した。
 (B) 遠心沈降法による平均粒子径の測定方法
 多孔質シリカ粒子の平均粒子径については、まず、多孔質シリカ粒子の分散液(水または40質量%グリセリン溶媒、固形分濃度0.1~5質量%)を超音波発生機(iuch社製、US-2型)に5分間分散する。更に、水またはグリセリンを加えて適度に濃度を調節した分散液より、ガラスセル(長さ10mm、幅10mm、高さ45cmのサイズ)に当該分散液を取り、遠心沈降式粒度分布測定装置(堀場製作所製:CAPA-700)を用いて平均粒子径を測定した。
 2.比重の測定方法
 多孔質シリカ粒子の比重については、以下の要領で測定を行った。
 まず、試料10gをルツボに採取し、110℃で2時間乾燥させた。次いで、この乾燥試料を、デシケーターにて冷却後、25mlピクノメーターに3~4g入れ、蒸留水を加えて懸濁し、60mmHgにて1時間真空脱気を行った後に、25℃恒温槽にて温度調整した。ピクノメーターの標線まで蒸留水を加えて容量を調整し、ピクノメーターの容量(25ml)と蒸留水の容量(ml)の差から試料の容量(ml)を算出した。加えた試料の重量(g)とこのように算出された容量(ml)とから、比重を求めた。
 3.空隙率の測定方法
 多孔質シリカ粒子の空隙率については、前記2.で求めた比重と、シリカの比重(すなわち、内部にある空隙を考慮しない見かけ上のシリカの比重)とを用いて、以下の式から算出した。
 100-[前記2.で求めた多孔質シリカ粒子の比重]/[シリカの比重]×100=空隙率(%)
 4.真球度の測定方法
 透過型電子顕微鏡(株式会社日立製作所製、H-800)により、試料酸化物ゾルを倍率25万倍で写真撮影して得られる写真投影図における、任意の50個の粒子について、それぞれその最大径(DL)と、これと直交する短径(DS)との比(DS/DL)を測定し、それらの平均値を真球度とした。
 5.粒度分布の測定
 走査型電子顕微鏡(日本電子株式会社製、JSM-5300型)を用いて粒子を撮影(倍率250,000倍)し、この画像の250個の粒子について、画像解析装置(旭化成株式会社製、IP-1000)を用いて、平均粒子径を測定し、粒子径分布に関する変動係数(CV値)を算定した。具体的には、粒子250個について、それぞれの粒子径を測定し、その値から平均粒子径および粒子径の標準偏差を求め、下記式から算定した。
 変動係数(CV値)=(粒子径標準偏差(σ)/平均粒子径(Dn))×100(%)
 6.細孔容積・細孔径の測定方法
 多孔質シリカ粒子の細孔容積及び細孔径を測定する方法として、ガス吸着法と水銀圧入法を用いた。ここで、下記の各実施例、参考例および比較例において、特に別の記載がない限りガス吸着法を用いて測定を行った。
 ガス吸着法による細孔容積及び細孔径の測定は、以下の手順に従って行った。
 多孔質シリカ粒子の細孔容積については、試料10gをルツボに取り、300℃で1時間乾燥後、デシケーターに入れて室温まで冷却した。ガラスセルに0.15g採取し、Belsorp  mini  II(日本ベル株式会社製)を使用して真空脱気しながら試料に窒素ガスを吸着後、脱着させ、得られた吸着等温線から、相対圧0.990の点での細孔容積を求め、またBJH法により、細孔径(ピーク値)を算出した。
 また、水銀圧入法による細孔容積及び細孔径の測定については、試料10gをルツボに取り、300℃で1時間乾燥後、デシケーターに入れて室温まで冷却し、PM-33(QuantaChrome社製)を用いて行った。このとき、水銀を3.5kPa~231MPa(0.5~33000psi)で圧入し、圧力と細孔径と圧入量の関係から細孔分布を求めた。この方法によれば、約5.4nmから約5.4μmまでの細孔に水銀が圧入され、計測されるため、多孔質シリカ粒子の内部に存在する細孔と、多孔質シリカ粒子の粒子間の空隙の両方が計測される。多孔質シリカ粒子内部の細孔のみの容積は、細孔径200nmまでの細孔についての計測結果をもとに、細孔容積と細孔径を算出した。
 [原料多孔質シリカ粒子]
 本発明の実施例では、酵素固定化用担体の原料である多孔質シリカ粒子(以下、「原料多孔質シリカ粒子」)P1,P2,P3およびP4として、それぞれ日揮触媒化成株式会社製 SILICA MICRO BEAD P-7H,P-12H,P-4H,P-20Hを使用した。
 ここで、原料多孔質シリカ粒子P1,P2,P3およびP4は、スプレードライ法により製造されたものである。
 これらの原料多孔質シリカ粒子は、以下の手順により製造されたものである。
 球状シリカ微粒子が水に分散してなる球状シリカ微粒子分散液(シリカ濃度30質量%)を遠心分離し、粗大粒子を除去した球状シリカ微粒子分散液を調製した。この球状シリカ微粒子分散液の固形分濃度を15質量%に調整し、噴霧液とした。そして、入口温度220℃、出口温度50℃の条件下で噴霧乾燥して、原料多孔質シリカ粒子を得た。
 一方、原料多孔質シリカ粒子G1は、シリカを破砕後、スプレードライ法により微粒子化することにより製造されたものである。
 各原料多孔質シリカ粒子(P1~P4及びG1)の特徴を表1に記す。
 [実施例1]
 〔酵素固定化用担体(アミノ基修飾型)の調製〕
 1.酵素固定化用担体P-3Nの調製
 粉体状の多孔質シリカ粒子P3の40gを空気中にて、エタノール155gに分散させ5分間攪拌後、純水13gを加えてさらに30分攪拌した。
 次に、空気中にて、シランカップリング剤(信越化学工業株式会社製「KBM-903」(3-アミノプロピルトリメトキシシラン))を6g加えて30分攪拌した後、29%アンモニア水を0.36g加えて30分攪拌し、引き続いて50℃に昇温し、50℃で20時間攪拌を続けた。その後、反応混合物を室温まで冷却し、濾過によって固体部分を回収し、この固体部分を150℃で2時間乾燥したところ、酵素固定化用担体P-3Nが約35g得られた。
 2.酵素固定化用担体P-1N、P-2N、P-4N及びG-1Nの調製
 酵素固定化用担体P-1N、P-2N、P-4N及びG-1Nの調製は、上記多孔質シリカ粒子P3に代えて、多孔質シリカ粒子P1、P2、P4及びG1を原料としてそれぞれ用いたことを除き、上記酵素固定化用担体P-3Nの調製の場合と同様の方法によって行った。
 調製した各酵素固定化用担体(P-1N,P-2N,P-3N,P-4N及びG-1N)の特徴を表1に記す。
 [実施例2]
 〔酵素固定化用担体(カルボキシル基修飾型)の調製〕
 1.酵素固定化用担体P-3Cの調製
 粉体状の多孔質シリカ粒子P-3Nの40gを空気中にて、エタノール155gに分散させ5分間攪拌後、純水13gを加えてさらに30分攪拌した。
 次に、空気中にて、アジピン酸〔関東化学株式会社製〕を6g加えて30分攪拌し、引き続いて50℃に昇温し、50℃で20時間攪拌を続けた。その後、反応混合物を室温まで冷却し、濾過によって固体部分を回収し、この固体部分を150℃で2時間乾燥したところ、酵素固定化用担体P-3Cが約35g得られた。
 2.酵素固定化用担体P-1C、P-2C、P-4C及びG-1Cの調製
 酵素固定化用担体P-1C、P-2C、P-4C及びG-1Cの調製は、上記多孔質シリカ粒子P3に代えて、多孔質シリカ粒子P1、P2、P4及びG1を原料としてそれぞれ用いたことを除き、上記酵素固定化用担体P-3Cの調製の場合と同様の方法によって行った。
 調製した各酵素固定化用担体(P-1C,P-2C,P-3C,P-4C及びG-1C)の特徴を表1に記す。
 [実施例3]
 〔酵素固定化用担体(フェニルアミノ基修飾型)の調製〕
 1.酵素固定化用担体P-3Phの調製
 粉体状の多孔質シリカ粒子P3の40gを空気中にて、エタノール155gに分散させ5分間攪拌後、純水13gを加えてさらに30分攪拌した。
 次に、空気中にて、シランカップリング剤(信越化学工業株式会社製「KBM-573」(N-フェニル-3-アミノプロピルトリメトキシシラン))を6g加えて30分攪拌した後、29%アンモニア水を0.36g加えて、30分攪拌し、引き続いて50℃に昇温し、50℃で20時間攪拌を続けた。その後、反応混合物を室温まで冷却し、濾過によって固体部分を回収し、この固体部分を150℃で2時間乾燥したところ、酵素固定化用担体P-3Phが約35g得られた。
 2.酵素固定化用担体P-1Ph、P-2Ph、P-4Ph及びG-1Phの調製
 酵素固定化用担体P-1Ph、P-2Ph、P-4Ph及びG-1Phの調製は、上記多孔質シリカ粒子P3に代えて、多孔質シリカ粒子P1、P2、P4及びG1を原料としてそれぞれ用いたことを除き、上記酵素固定化用担体P-3Phの調製の場合と同様の方法によって行った。
 調製した各酵素固定化用担体(P-1Ph,P-2Ph,P-3Ph,P-4Ph及びG-1Ph)の特徴を表1に記す。
 [参考例1]
 〔酵素固定化用担体(シラノール基未処理型)〕
 シラノール基未処理型の酵素固定化用担体については、多孔質シリカ粒子P1、P2、P3、P4及びG1に対してシランカップリング剤等の薬剤による表面修飾処理を行うことなく、そのままの状態で、それぞれ酵素固定化用担体P-1、P-2、P-3、P-4及びG-1として用いた。
 [比較例1]
 比較例として使用したFSM型多孔質シリカ粒子については、文献公知の方法(例えば、特開2004-83501号公報に記載の方法)を用いて、δ-Na2Si25(カネマイト)の水系分散液に適当な界面活性剤(膨潤剤)を加えて加熱下反応させ、濾過後水洗し、風乾後焼成することにより調製した。ここで、細孔径が4.0nm、4.2nm、7.5nm、8.0nm、8.5nm、9.2nmのFSM型多孔質シリカ粒子は、1, 3,5-トリイソプロピルベンゼンを膨潤剤として、それぞれ、0ml、0ml、4.5ml、5.5ml、6.0ml、11.2mlを用いることにより得られた。
 比較例として使用した各FSM型多孔質シリカ粒子の特徴も表1に記す。これらのFSM型多孔質シリカ粒子は、特にシランカップリング剤等の薬剤による表面修飾処理を行うことなく、そのままの状態で、酵素固定化用担体として用いた。
Figure JPOXMLDOC01-appb-T000001
 [実施例4]
 1.固定化酵素(ラセマーゼ吸着型)の調製及び酵素吸着量の測定
 バッファー溶液(20mMのリン酸カリウムと50mMの塩化カリウムの混合物、pH7.5)と、ラセマーゼをバッファー溶液に溶かしたラセマーゼ溶液(ラセマーゼ濃度は2mg/ml)を用意した。
 次に、バッファー溶液1ml、ラセマーゼ溶液1ml及び酵素固定化用担体10mgを混合し、混合溶液とした。この混合溶液をインキュベータにて、温度4℃で24時間保管することにより、酵素固定化用担体にラセマーゼが吸着してなる固定化酵素を調製した。
 続いて、この混合溶液を遠心分離処理装置[エッペンドルフ社製、品番:centrifuge 5417R](21000G、1分間)にて遠心分離処理し、固定化酵素を沈殿させ、上澄み液中のラセマーゼ量をビシンコニン酸法(BCA法)を用いて測定し、その値を未吸着のラセマーゼ量とした。そして、最初に投入したラセマーゼ量(2mg)から未吸着のラセマーゼ量を差し引いた値を酵素固定化用担体に吸着したラセマーゼ量とした。
 この実験を実施例1~3で調製した各酵素固定化用担体毎に行った。
 2.ビシンコニン酸法(BCA法)による蛋白質の定量方法
 ラセマーゼの定量は、市販の定量試薬キット(サーモフィッシャーサイエンティフィック社、「BCA PROTEIN ASSAY REAGENT」)を使用して行った。
 3.固定化酵素(ラセマーゼ)の比活性試験
 〔試料〕
 固定化酵素(酵素固定化用担体に2μgのラセマーゼを吸着してなる相当量)と、基質溶液(10mM L-アラニン、10mM リン酸カリウム、pH7.5)の2.5mlとを試験管中にて混合し、温度30℃の条件下で反応させ、透明な水溶液中にごく少量のシリカ粒子が浮遊している状態の懸濁液を得た。この懸濁液を試料とした。
 〔L―Alaの円二色性の時間による変化率に基づく比活性の測定〕
 前記懸濁液からなる試料を1cm角の石英セルに入れ、円二色性分散計(日本分光株式会社製、「J-820」)にセットした。セル中の懸濁液はマグネティックスターラーによって攪拌し、セルはペルチェ式温度制御装置により30℃に保った。
 次に円二色性分散計のL-アラニンの円偏光の波長204nmにおける楕円率を1秒間隔で5分間測定した。L-アラニンのモル楕円率を23mdeg/mMとして懸濁液中のL-アラニン濃度を計測し、単位時間当たりに転換されるアラニン量から活性を計算した。比活性は次の式から求めた。
 比活性=[メソポーラスシリカに固定化した酵素の活性]/[固定化前酵素の活性]
 各固定化酵素(P-2、P-4、P-2N、P-4N、P-1N、P-3N及びG-1N)についての比活性を図1に示す。
 また、図1には、比較例として、下記固定化酵素の比活性を併せて示した。なお、酵素固定化用担体に対するラセマーゼの吸着量をはじめ、前記と同様の条件で測定した。
 1)ラセマーゼをイオン交換法で担体(「DEAE Sepharose」、GEヘルスケア・ジャパン社製)に固定化させた固定化酵素(「DEAE」)。
 2)ラセマーゼを金属キレート法で担体(「Ni Sepharose 6 Fast Flow」、GEヘルスケア・ジャパン社製)に固定化させた固定化酵素(「Ni Seph.」)。
 3)ラセマーゼを共有結合法で担体(「NHS-activated Sepharose 4 Fast Flow」、GEヘルスケア・ジャパン社製)に固定化させた固定化酵素(「NHS」)。
 4)ラセマーゼを細孔径4.2nmのFSMに固定化させた固定化酵素(「FSM-4.2」)。
 5)ラセマーゼを細孔径8.5nmのFSMに固定化させた固定化酵素(「FSM-8.5」)。
 6)ラセマーゼを細孔径9.2nmのFSMに固定化させた固定化酵素(「FSM-9.2」)。
 図1から、本発明に係る固定化酵素(P-2、P-4、P-2N、P-4N、P-1N、P-3N及びG-1Nは、何れも比較例の固定化酵素に比べて、同等又は同等以上の比活性を示していることがわかる。
 4.固定化酵素(ラセマーゼ)の繰返し利用時の比活性試験
 (1)固定化酵素(酵素固定化用担体3gにラセマーゼ2μgを吸着させてなる)と、基質溶液(5mML-Ala、pH8.5)の1mlを試験管中にて混合し、温度30℃の条件下、DeepWell Maximizer(タイテック株式会社製)にて1800rpmで2分間懸濁反応させ、懸濁液を得た。
 続いて、この懸濁液を遠心分離処理装置[エッペンドルフ社製、品番:centrifuge 5417R]で遠心分離処理(21000G、1分間)し、固定化酵素を沈殿させ、上澄を除去し、さらに同じ条件で遠心分離処理して、上澄を完全に除去し、固定化酵素を回収した。
 回収した固定化酵素と前記と同様の基質溶液1mlを試験管中で混合し、温度30℃の条件下、DeepWell Maximizer(タイテック株式会社製)にて1800rpmで2分間懸濁反応させ、懸濁液を得た。
 続いて、この懸濁液を遠心分離処理装置で遠心分離処理(21000G、1分間)し、固定化酵素を沈殿させた。ここで上澄液を分離し、上澄液中のD-Ala量を測定し、活性を求めた。以上の操作を20回繰返し行い、各固定化酵素の活性を測定し、比活性を算定し、その結果を図2に示した。
 その結果、本発明に係る固定化酵素(P-2N、P-4N、P-2、P-1N、P-1、P-4、P-3及びP-3N)は、繰返し利用によっても優れた比活性を維持できることが分かった。
 (2)固定化酵素の繰り返し活性を80回まで観察した結果を図3に示す。比較例であるFSM8.5に比較し、繰り返し利用時の活性維持性が高いことが確認できた。これは、遠心分離時にFSM8.5が機械的に破壊されることに対して、本発明に係る固定化酵素では、そのような破壊が生じないため最終的に安定した活性が得られるものといえる。
 [実施例5](KpDERA吸着型の固定化酵素の性能試験)
 実施例4と同様に準備した担体に対して、デオキシリボアルドラーゼ(DERA)を固定化した。DERAは図4に示す反応を介在する酵素である。
 ここで、2-デオキシリボース-5-リン酸(DR5P)をアセトアルデヒドとグリセロアルデヒド三リン酸(G3P)に転換する反応を順反応、G3PとアセトアルデヒドをDR5Pに転換する反応を逆反応とする。なお、このDERAは医薬中間体であるラクトンを図5に示すタンデムアルドール反応により合成する酵素として期待されている酵素でもある。しかしながら、アルデヒドによる失活のため、これまでに実用化されていない反応である。
 1.固定化酵素の調製
 バッファー溶液(50mMトリエタノールアミン、pH7.5)と、Klebsiella pneumoniae (Kp) 由来のデオキシリボアルドラーゼ(以下、「KpDERA」)をバッファー溶液に溶かしたKpDERA溶液(KpDERA濃度2mg/ml)を用意した。
 酵素固定化用担体P2の20mgに、それぞれバッファー溶液1mlとKpDERA溶液1mlを混合し、温度4℃で24時間保管し、懸濁液からなる固定化酵素(KpDERA/酵素固定化用担体系)を得た。なお、酵素固定化用担体として、P4又はG1Nについても、上記固定化酵素を調製した。
 比較例として、上記の酵素固定化用担体20mgをFSM-4.0の10mgに代えた他は上記と同様にして、懸濁液からなる固定化酵素(KpDERA/FSM系)を得た。
また、FSM8.0、FSM8.5又はFSM9.2についても同様に固定化酵素を調製した。
 2.固定化酵素における酵素吸着量の測定
 上記1.で得られた各固定化酵素(懸濁液)を遠心処理装置[メーカー:エッペンドルフ社、品番:centrifuge5417R](21000G、1分間)にて遠心分離処理し、固定化酵素を沈殿させ、上澄液中のKpDERA量を[ビシンコニン酸(BCA)法]を用いて測定し、この値を未吸着のKpDERA量とした。ここで、最初に投入したKpDERA量(2mg)から未吸着のKpDERA量を差し引いた値を酵素固定化用担体に吸着したKpDERA量とした。
 3.固定化酵素と基質[DR5P]との反応
 固定化酵素(KpDERAの5μgを酵素固定化用担体37.5μgに吸着させてなる)と、基質溶液(1mM 2-デオキシリボース-5-リン酸 [DR5P])の2.0mlを試験管中にて、温度30℃で反応させ、反応液を得た。
 この反応液には、トリオースフォスフェートイソメラーゼとグリセルアルデヒド-3-リン酸デヒドロゲナーゼと0.2mMのNADHが含まれており、カップリング反応をNADHの吸光度(波長340nm)変化から測定することで、間接的にDR5Pの変化量を算出した(順反応)。1分間に1μモルの基質を分解する活性を1ユニットとした。
 吸光度の測定には、UV-Vis分光光度計(メーカー:島津製作所、型番:UV-2450)を用いた。
 4.固定化酵素と基質[DG3P]との反応
 固定化酵素(KpDERAの1.05μgを各酵素固定化用担体18.4μgに吸着させてなる)を、それぞれ350μlの基質溶液〔100mM トリエタノールアミン(pH7.5)、100mM DL-グリセロール三リン酸、300mMアセトアルデヒド〕と25℃で20分間反応させ、それぞれ反応液を得た。
 次に各反応液40μlを別のチューブに移し、遠心分離処理(21000G、2分間)して各固定化酵素を沈殿させた。
 上澄液20μlを新しいチューブに移し、8μlの60%過塩素酸を加え10分間氷上で処理した。
 続いて、13.4μlの1M水酸化ナトリウムと 179μlの1M トリエタノールアミン(pH7.5)を加えて中和後、生じたDR5P量をシステインー硫酸法によって測定した(逆反応)。
 図6に示すようにP-4、 P-2、 G-1Nに固定化したDERAは、順反応に対して各FSMの場合に比較し高い比活性を示した。一方、逆反応に対しては表2に示す通り、P-4は比較的高い比活性を維持しており、FSM-9.2と比べてやや高い比活性を示した。
Figure JPOXMLDOC01-appb-T000002
 5.固定化したDERAのアセトアルデヒドに対する耐性の確認
 固定化したDERAのアセトアルデヒドに対する耐性の向上を確認するため、まず、担体に担持されていないフリーの酵素(「Free」)の順反応に対するアセトアルデヒドの影響を評価した。
 0.2ユニットのKpDERAを300mMのアセトアルデヒドで4℃で、一定時間インキュベーションした。Spin Column (サーモフィッシャーサイエンティフック)に通してアルデヒドを除いた後、残った活性を、順反応を測定することにより求めた。
 図7に示すように、アセトアルデヒド濃度300mM以上では1時間でほぼ失活した。
 6.固定化酵素の順反応におけるアセトアルデヒドの影響の確認
 固定化酵素の順反応におけるアセトアルデヒドの影響を評価した。
 0.2ユニットのKpDERAを吸着させた本発明に係る固定化酵素を300mMアセトアルデヒドで4℃、一定時間インキュベーションした。50mMのTEA(pH7.5)で担体を洗浄後、残った活性を、順反応を測定することにより求めた。
 図7に示すように、FSM-9.2に固定化したDERA及びP-4に固定化したDERAはともに、担体に担持されていないフリーのDERAと比較してアセトアルデヒド耐性が向上した。
 7.固定化酵素の逆反応におけるアセトアルデヒドの影響の確認
 固定化酵素の逆反応におけるアセトアルデヒドの影響を評価した。
 0.2ユニットのKpDERAを吸着させた本発明に係る固定化酵素を350μlの基質溶液(100mMのトリエタノールアミン[pH7.5]、100mMのDL-グリセロール三リン酸、300mMの アセトアルデヒド)と25℃で一定反応させた。
 25μlの反応液を新しいチューブに移し、遠心(21000G、2分間)で担体を沈殿させた。20μlの上清を新しいチューブに移し、8μlの60%過塩素酸を加え10分間氷上で処理した。13.4μlの1M水酸化ナトリウムと 179μlの1MトリエタノールアミンpH7.5を加えて中和後、生じたDR5P量をシステインー硫酸法によって測定した。
 図8に示すように、逆反応に対してはP-4における耐性の向上が顕著であった。
 8.ラクトン合成反応への適用
 ラクトンは医薬品中間体として重要な物質であり、合成ルート簡略化のため図2.2に示すDERAによるタンデムアルドール合成反応によるラクトン合成が期待されているが、アルデヒドによる失活のため実用化されていない反応である。そこで、アセトアルデヒドからのタンデムアルドール反応によるラクトン前駆体(2,4,6-トリデオキシ-D-エリスロ-ヘキサピラノシド)生成量を比較した。
 50μgのKpDERAを吸着させたFSMまたは本発明に係る固定化酵素のメソポーラスシリカを1mlの500mMのアセトアルデヒド溶液に加え、25℃、24時間反応させた。反応混合物を遠心分離(21000G、1分間)し、4μlの上清を薄層クロマトグラフィープレート(Silica Gel60、メルク)にスポットし、1-ブタノール:酢酸:水=4:1:1(vol/vol/vol)で展開後、p-アニスアルデヒドエタノール液で発色した。その結果を図9に示す。
 P-4に固定化したDERAを用いた系では、担体に担持されていないフリーのDERAと比較して4倍量の2,4,6-トリデオキシ-D-エリスロ-ヘキサピラノシドを生成した。このことからP-4に固定化することにより基質であるアルデヒド耐性が向上することが確認できた。
 [実施例6](ニトリルヒドラターゼ吸着型の固定化酵素の性能試験)
 1.固定化酵素の調製
 バッファー溶液(20mMのリン酸カリウムと50mMの塩化カリウムの混合物、pH7.5)と、ニトリルヒドラターゼ(NHase)をバッファー溶液に溶かしたニトリルヒドラターゼ溶液(ニトリルヒドラターゼ濃度は2mg/ml)を用意した。
 バッファー溶液1ml、ラセマーゼ溶液1ml及び酵素固定化用担体10mgを混合し、混合溶液とした。混合溶液をインキュベータにて、温度4℃で24時間保管することにより、酵素固定化用担体にラセマーゼが吸着してなる固定化酵素を調製した。
 2.固定化酵素におけるニトリルヒドラターゼの比活性測定
 得られた固定化酵素を0.1Mのリン酸緩衝液(pH7.5)2mlに懸濁した。次にメタクリロニトリル20mMを含むリン酸緩衝液(活性測定溶液)の2mlを、石英製キュベットに入れ、紫外分光光度計にセットした。
 活性測定溶液に10μg相当のニトリルヒドラターゼを含む担体懸濁液を添加するのと同時に、波長224nmの吸光度増加の記録を開始した。生成されるメタクリルアミドの吸光係数をε=2.52mM-1cm-1、1分間に1μmolの基質を触媒する活性を1ユニットとして、1mgのNHaseが持つ比活性を計算した。各種担体に固定化したNHaseの比活性を図10に示す。
 G-1Nは、担体に担持されていないフリーの酵素(「free」)に相当する高い比活性を示した。
 実施例4~6の酵素、およびこれらの実施例に記載の方法と同様の手法により固定化されたラッカーゼ、グルコアミラーゼ、アミラーゼおよびプロテアーゼについて、他の酵素とともに、酵素の特性を示す指標である分子量と等電点でマッピングした図を図11に示す。同図には酵素のサブユニットも数字で表現した。このように様々な酵素をすべて固定化し高い活性が得られることを確認できた。
 [実施例7]
 一次粒子の平均粒子径の大きさを変えて、それぞれ合成した各蛋白質固定化用担体(多孔質シリカ粒子)の細孔径分布を測定した。
 1.測定に用いた蛋白質固定化用担体(多孔質シリカ粒子)
 本実施例で細孔径分布の測定に使用した各蛋白質固定化用担体(多孔質シリカ粒子)の製造方法等を以下に記す。
 細孔径34nmの蛋白質固定化用担体(多孔質シリカ粒子「X1」)は、シリカゾル(日揮触媒化成(株)製「SI-80P」、平均粒子径80nm、濃度40質量%)の水希釈品(シリカ濃度15質量%)2000gを陽イオン交換し、pH=2.0に調整した後、珪酸液(シリカ濃度4.8質量%)を、[シリカゾル中のシリカ]/[珪酸液中のシリカ]=9/1の比率になるように加え、攪拌してスラリーを調製した。この球状シリカ微粒子分散液の固形分濃度を15質量%に調整し、噴霧液とした。そして、入口温度220℃、出口温度50℃の条件下で噴霧乾燥して得た。
 細孔径57nmの蛋白質固定化用担体(多孔質シリカ粒子「X2」)は、シリカゾル(日揮触媒化成(株)製「SS-160」、平均粒子径160nm、濃度40質量%)の水希釈品(シリカ濃度15質量%)2000gを陽イオン交換し、pH=2.0に調整した後、珪酸液(シリカ濃度4.8質量%)を、[シリカゾル中のシリカ]/[珪酸液中のシリカ]=9/1の比率になるように加え、攪拌してスラリーを調製した。この球状シリカ微粒子分散液の固形分濃度を15質量%に調整し、噴霧液とした。そして、入口温度220℃、出口温度50℃の条件下で噴霧乾燥して得た。
 細孔径95nmの蛋白質固定化用担体(多孔質シリカ粒子「X3」)は、シリカゾル(日揮触媒化成(株)製「SS-300」、平均粒子径300nm、濃度40質量%)の水希釈品(シリカ濃度15質量%)2000gを陽イオン交換し、pH=2.0に調整した後、珪酸液(シリカ濃度4.8質量%)を、[シリカゾル中のシリカ]/[珪酸液中のシリカ]=9/1の比率になるように加え、攪拌してスラリーを調製した。この球状シリカ微粒子分散液の固形分濃度を15質量%に調整し、噴霧液とした。そして、入口温度220℃、出口温度50℃の条件下で噴霧乾燥して得た。
 得られた多孔質シリカ粒子X1、X2及びX3の特徴を表3に記す。
Figure JPOXMLDOC01-appb-T000003
 また、細孔径が4nm,7nm,12nmおよび20nmの蛋白質固定化用担体(多孔質シリカ粒子)として、前記多孔質シリカ粒子P3,P1,P2およびP4をそれぞれ使用した。
 なお、前記多孔質シリカ粒子X1~X3及び前記多孔質シリカ粒子P1~P4は何れも粒子表面にシラノール基を有するものである。
 2.各多孔質シリカ粒子についての細孔径分布の測定
 上記蛋白質固定化用担体(多孔質シリカ粒子)X1~X3及びP1~P4について、それぞれ細孔径分布を測定した。ここで、細孔径が20nmまでの担体については窒素吸着法により細孔容積及び細孔径を測定し、細孔径が20nmより大きい担体については水銀圧入法により細孔容積及び細孔径を測定した。
 測定により得られた細孔径分布を図12に示す。ここで、図12において、丸印で表される点を結ぶ曲線として表される窒素吸着法による細孔分布は、Log微分細孔容積分布、すなわち、細孔径d(nm)に対する微分窒素ガス吸着量ΔV/Δ(log(d))(図12中では、便宜上「dV/dlogd」と表記している。ここで、Vは窒素ガス吸着容積を表す。)の関係によって示してある。また、三角印で表される点を結ぶ曲線として表される水銀圧入法による細孔分布は、細孔径dに対するΔVd(図12中では、便宜上「dVd」と表記している。)の関係によって示してある。
 なお、図12のグラフのピークに記した値は、各担体の細孔径の平均値である。
 大半の酵素分子は、細孔径20nm程度の細孔内に固定化することが可能である。しかし、多量体を形成して活性を発揮するタイプの酵素の中には、20nmを超える大きさのものもある。本発明の蛋白質固定化用担体は、上記のように、細孔径を20nmより大きくすることができるので、20nmを超える多量体を形成する酵素を固定化できる。したがって、上記結果は、本発明によって、これらの酵素の固定化に適した大きさの細孔を有する蛋白質固定化用担体(多孔質シリカ粒子)を提供できることを示すものである。
 本発明に係る蛋白質固定化用担体は、酵素などの担体として有用である。
 また、本発明に係る固定化蛋白質は、酵素を利用した合成反応、例えば、化学合成、ファインケミカルの合成、医薬品合成又は食品製造等の技術分野において、各種合成反応に適用した酵素の安定性又は耐久性の改善、目的生産物の生産性の向上、目的物質の連続生産の実現又は生産物からの酵素の分離工程の省略などを実現するものである。また、本発明に係る固定化蛋白質は、各種酵素に適用可能である。

Claims (17)

  1.  内部に粒子間空隙構造を有する多孔質シリカ粒子からなり、
     該多孔質シリカ粒子が、下記(1)~(6)を満たし且つ表面にシラノール基、陰イオン交換基又は陽イオン交換基を有するものである
    ことを特徴とする蛋白質固定化用担体:
     (1) 平均粒子径(Da)が0.5~100μmの範囲;
     (2) 比表面積が10~250m2/gの範囲;
     (3) 細孔容積(Pv)が0.10~0.32ml/gの範囲;
     (4) 細孔径分布(X軸:細孔径[Ps]、Y軸:細孔容積を細孔径で微分した値)におけるピーク値の細孔径(Pms)が2~200nmの範囲;
     (5)(Pms)×0.75~(Pms)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の70%以上;
     (6) 空隙率が5~50%の範囲。
  2.  前記多孔質シリカ粒子が、
     平均粒子径(Db)10~500nm、真球度0.9~1の範囲、粒子径変動係数(CV値)が2~10%の範囲にある球状シリカ微粒子であって、粒子径分布が単分散相を示す球状シリカ微粒子が集合した球状集合体からなる請求項1に記載の蛋白質固定化用担体。
  3.  内部に粒子間空隙構造を有する多孔質シリカ粒子からなり、
     該多孔質シリカ粒子が、下記(1)~(6)を満たし且つ表面にシラノール基、陰イオン交換基又は陽イオン交換基を有するものである
    ことを特徴とする蛋白質固定化用担体:
     (1) 平均粒子径(Da)が0.5~50μmの範囲;
     (2) 比表面積が10~250m2/gの範囲;
     (3) 細孔容積(Pv)が0.10~0.32ml/gの範囲;
     (4) 細孔径分布(X軸:細孔径[Ps]、Y軸:細孔容積を細孔径で微分した値)におけるピーク値の細孔径(Pms)が2~50nmの範囲;
     (5)(Pms)×0.75~(Pms)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の80%以上;
     (6) 空隙率が5~50%の範囲。
  4.  前記多孔質シリカ粒子が、
     平均粒子径(Db)10~50nm、真球度0.9~1の範囲、粒子径変動係数(CV値)が2~10%の範囲にある球状シリカ微粒子であって、粒子径分布が単分散相を示す球状シリカ微粒子が集合した球状集合体からなることを特徴とする請求項3に記載の蛋白質固定化用担体。
  5.  前記陰イオン交換基が、アミノ基又は第4級アンモニウム基を構造中に含む置換基であることを特徴とする請求項1~4の何れかに記載の蛋白質固定化用担体。
  6.  前記陽イオン交換基が、カルボキシル基、リン酸基及びスルホキシル基から選ばれる何れかの基を構造中に含む置換基であることを特徴とする請求項1~4の何れかに記載の蛋白質固定化用担体。
  7.  前記多孔質シリカ粒子が、シランカップリング剤又は有機酸で表面処理されたものであることを特徴とする請求項1~6の何れかに記載の蛋白質固定化用担体。
  8.  前記多孔質シリカ粒子が、アミノ基含有シランカップリング剤で処理された多孔質シリカ粒子を、さらに有機酸で表面処理したものであることを特徴とする請求項1~7の何れかに記載の蛋白質固定化用担体。
  9.  酵素の固定化に用いられる請求項1~8の何れかに記載の蛋白質固定化用担体。
  10.  複合酵素の固定化に用いられる請求項1~8の何れかに記載の蛋白質固定化用担体。
  11.  請求項1~8の何れかに記載の蛋白質固定化用担体に、蛋白質を固定化してなる固定化蛋白質。
  12.  前記蛋白質が酵素である、請求項11に記載の固定化蛋白質。
  13.  前記酵素がラセマーゼである請求項12に記載の固定化蛋白質。
  14.  前記酵素がデオキシリボアルドラーゼである請求項12に記載の固定化蛋白質。
  15.  請求項1~8の何れかに記載の蛋白質固定化用担体に、蛋白質を吸着させる工程を含む固定化蛋白質の製造方法。
  16.  前記蛋白質が酵素である、請求項15に記載の固定化蛋白質の製造方法。
  17.  バッファー溶液中にて、4~25℃の範囲で、蛋白質固定化用担体に蛋白質を吸着させることを特徴とする請求項15又は16に記載の固定化蛋白質の製造方法。
PCT/JP2011/063160 2010-06-09 2011-06-08 蛋白質固定化用担体、固定化蛋白質及びそれらの製造方法 WO2011155536A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/702,308 US20130109072A1 (en) 2010-06-09 2011-06-08 Support for protein immobilization, immobilized protein, and methods for producing the same
EP11792493.6A EP2592140A4 (en) 2010-06-09 2011-06-08 SUPPORT FOR IMMOBILIZATION OF A PROTEIN, IMMOBILIZED PROTEIN AND PRODUCTION METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010132375 2010-06-09
JP2010-132375 2010-06-09

Publications (1)

Publication Number Publication Date
WO2011155536A1 true WO2011155536A1 (ja) 2011-12-15

Family

ID=45098140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063160 WO2011155536A1 (ja) 2010-06-09 2011-06-08 蛋白質固定化用担体、固定化蛋白質及びそれらの製造方法

Country Status (5)

Country Link
US (1) US20130109072A1 (ja)
EP (1) EP2592140A4 (ja)
JP (1) JP5734106B2 (ja)
TW (1) TWI494429B (ja)
WO (1) WO2011155536A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090767A (ja) * 2016-10-20 2018-06-14 国立研究開発法人産業技術総合研究所 ミクロないしメソポーラス微粒子の多孔質成形体、酵素担持用担体、その酵素複合体及びこれらの製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387975A (zh) * 2012-05-11 2013-11-13 上海天伟生物制药有限公司 一种固定化环脂肽酰基转移酶及其制备方法和用途
PL2812091T3 (pl) 2012-09-17 2021-07-19 W.R. Grace & Co. - Conn. Podłoża chromatograficzne i urządzenia
JP6152554B2 (ja) * 2012-11-28 2017-06-28 国立研究開発法人産業技術総合研究所 Dna合成酵素−シリカ系ナノ空孔材料複合体、その製造方法及び用途
JP6323861B2 (ja) * 2013-09-04 2018-05-16 リコーイメージング株式会社 表面修飾メソポーラスシリカナノ粒子の製造方法
US11229896B2 (en) 2014-01-16 2022-01-25 W.R. Grace & Co.—Conn. Affinity chromatography media and chromatography devices
PL3137209T3 (pl) 2014-05-02 2023-01-02 W.R. Grace & Co. - Conn. Funkcjonalizowany materiał nośnikowy i sposoby wytwarzania oraz stosowania funkcjonalizowanego materiału nośnikowego
CN104293763B (zh) * 2014-08-28 2017-12-26 四川大学 脂肪酶固定化载体及其固定脂肪酶的方法
JP2016088862A (ja) * 2014-10-31 2016-05-23 国立大学法人京都大学 人工分子シャペロン、カラム及びタンパク質のリフォールディング方法
JP2018517559A (ja) 2015-06-05 2018-07-05 ダブリュー・アール・グレース・アンド・カンパニー−コーンW R Grace & Co−Conn 吸着性バイオプロセス清澄化剤並びにその製造及び使用方法
US10261430B2 (en) * 2016-01-14 2019-04-16 Samsung Electronics Co., Ltd. Photoreceptor for electrophotography and image forming apparatus employing the same
KR102066151B1 (ko) * 2017-08-22 2020-01-14 고려대학교 산학협력단 단백질 및 효소 안정화용 다공성 실리카 담지체, 이의 제조방법 및 용도
US10520884B2 (en) * 2017-12-15 2019-12-31 Canon Kabushiki Kaisha Cartridge and image forming apparatus
CN108977433A (zh) * 2018-08-21 2018-12-11 青岛农业大学 一种固定化木质素过氧化物酶的制备方法及应用
DE102022204390A1 (de) * 2022-05-04 2023-11-09 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zum Sammeln von Atemluftkondensat
WO2023227795A1 (en) * 2022-05-27 2023-11-30 Enginzyme Ab Biocatalysts for organic synthesis

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168503A (ja) * 1985-01-23 1986-07-30 Shokubai Kasei Kogyo Kk 複合無機酸化物からなる真球状微粒子粉末の製造法
JPS61174103A (ja) * 1985-01-23 1986-08-05 Shokubai Kasei Kogyo Kk 金属酸化物からなる多孔質真球状微粒子粉末の製造法
JPH05132309A (ja) 1991-03-23 1993-05-28 Catalysts & Chem Ind Co Ltd 複合酸化物ゾルおよびその製造法
JPH07133105A (ja) 1993-11-04 1995-05-23 Catalysts & Chem Ind Co Ltd 複合酸化物ゾル、その製造方法および基材
JPH10328558A (ja) 1997-05-30 1998-12-15 Toyota Central Res & Dev Lab Inc 球状メソ多孔体及びその製造方法
JP2001170500A (ja) 1999-01-12 2001-06-26 Toyota Central Res & Dev Lab Inc 多孔体及びその製造方法、並びに、該多孔体を用いた排ガス浄化用触媒
JP2001178457A (ja) 1999-12-24 2001-07-03 Toyota Central Res & Dev Lab Inc 酵素の固定化方法及び固定化酵素
JP2002262863A (ja) 2001-03-09 2002-09-17 Toyota Central Res & Dev Lab Inc 酸化酵素の安定化方法及び安定化酸化酵素
JP2004083501A (ja) 2002-08-28 2004-03-18 Toyota Central Res & Dev Lab Inc 安定化抗体とこれを利用する免疫反応法及び免疫反応装置
JP2006232594A (ja) 2005-02-23 2006-09-07 Tokyo Institute Of Technology メソ細孔無機多孔体およびその製造方法
JP2007051076A (ja) 2005-08-16 2007-03-01 National Institute Of Advanced Industrial & Technology ミオグロビン複合体
JP2007076941A (ja) 2005-09-13 2007-03-29 Tosoh Corp 多孔質球状シリカ及びその製造方法
JP2008024567A (ja) 2006-07-24 2008-02-07 Toyota Central Res & Dev Lab Inc 球状シリカ系メソ多孔体及びその製造方法、並びにそれを用いた塩基性色素吸着材
JP2009073681A (ja) 2007-09-19 2009-04-09 Tohoku Univ 多孔質シリカ凝集粒子
JP2009125006A (ja) 2007-11-24 2009-06-11 National Institute Of Advanced Industrial & Technology シリカ系メソ多孔体−セルロース、ヘミセルロースの加水分解酵素複合体
JP2009153448A (ja) 2007-12-26 2009-07-16 National Institute Of Advanced Industrial & Technology シリカ系メソ多孔体−澱粉の加水分解酵素複合体
JP2010138021A (ja) * 2008-12-10 2010-06-24 Jgc Catalysts & Chemicals Ltd 多孔質シリカ粒子及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567505B1 (fr) * 1984-07-11 1986-11-21 Rhone Poulenc Chim Base Silice a prise d'huile elevee et a structure primaire controlee et procede pour son obtention
JP2676849B2 (ja) * 1988-11-19 1997-11-17 三菱化学株式会社 シリカ質複合微粒子
JPH02180706A (ja) * 1988-12-31 1990-07-13 Tonen Corp リン酸化合物粒子集合体及びその製造方法
EP1859035B1 (en) * 2005-03-08 2016-01-13 Agency for Science, Technology and Research Immobilised enzymes
EP1979746A2 (en) * 2005-12-20 2008-10-15 The Ohio State University Research Foundation Nanoporous substrates for analytical methods
JP4981510B2 (ja) * 2007-04-27 2012-07-25 古河電気工業株式会社 逆ミセル分散系を用いてなるシリカナノ粒子の製造方法、該方法により得られたシリカナノ粒子、及びそれを用いた標識試薬
JP5132193B2 (ja) * 2007-06-02 2013-01-30 日揮触媒化成株式会社 多孔質シリカ粒子およびその製造方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168503A (ja) * 1985-01-23 1986-07-30 Shokubai Kasei Kogyo Kk 複合無機酸化物からなる真球状微粒子粉末の製造法
JPS61174103A (ja) * 1985-01-23 1986-08-05 Shokubai Kasei Kogyo Kk 金属酸化物からなる多孔質真球状微粒子粉末の製造法
JPH0261406B2 (ja) 1985-01-23 1990-12-20 Catalysts & Chem Ind Co
JPH0343201B2 (ja) 1985-01-23 1991-07-01 Catalysts & Chem Ind Co
JPH05132309A (ja) 1991-03-23 1993-05-28 Catalysts & Chem Ind Co Ltd 複合酸化物ゾルおよびその製造法
JPH07133105A (ja) 1993-11-04 1995-05-23 Catalysts & Chem Ind Co Ltd 複合酸化物ゾル、その製造方法および基材
JPH10328558A (ja) 1997-05-30 1998-12-15 Toyota Central Res & Dev Lab Inc 球状メソ多孔体及びその製造方法
JP2001170500A (ja) 1999-01-12 2001-06-26 Toyota Central Res & Dev Lab Inc 多孔体及びその製造方法、並びに、該多孔体を用いた排ガス浄化用触媒
JP2001178457A (ja) 1999-12-24 2001-07-03 Toyota Central Res & Dev Lab Inc 酵素の固定化方法及び固定化酵素
JP2002262863A (ja) 2001-03-09 2002-09-17 Toyota Central Res & Dev Lab Inc 酸化酵素の安定化方法及び安定化酸化酵素
JP2004083501A (ja) 2002-08-28 2004-03-18 Toyota Central Res & Dev Lab Inc 安定化抗体とこれを利用する免疫反応法及び免疫反応装置
JP2006232594A (ja) 2005-02-23 2006-09-07 Tokyo Institute Of Technology メソ細孔無機多孔体およびその製造方法
JP2007051076A (ja) 2005-08-16 2007-03-01 National Institute Of Advanced Industrial & Technology ミオグロビン複合体
JP2007076941A (ja) 2005-09-13 2007-03-29 Tosoh Corp 多孔質球状シリカ及びその製造方法
JP2008024567A (ja) 2006-07-24 2008-02-07 Toyota Central Res & Dev Lab Inc 球状シリカ系メソ多孔体及びその製造方法、並びにそれを用いた塩基性色素吸着材
JP2009073681A (ja) 2007-09-19 2009-04-09 Tohoku Univ 多孔質シリカ凝集粒子
JP2009125006A (ja) 2007-11-24 2009-06-11 National Institute Of Advanced Industrial & Technology シリカ系メソ多孔体−セルロース、ヘミセルロースの加水分解酵素複合体
JP2009153448A (ja) 2007-12-26 2009-07-16 National Institute Of Advanced Industrial & Technology シリカ系メソ多孔体−澱粉の加水分解酵素複合体
JP2010138021A (ja) * 2008-12-10 2010-06-24 Jgc Catalysts & Chemicals Ltd 多孔質シリカ粒子及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2592140A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090767A (ja) * 2016-10-20 2018-06-14 国立研究開発法人産業技術総合研究所 ミクロないしメソポーラス微粒子の多孔質成形体、酵素担持用担体、その酵素複合体及びこれらの製造方法
JP6990906B2 (ja) 2016-10-20 2022-02-03 国立研究開発法人産業技術総合研究所 メソポーラス微粒子の多孔質成形体、酵素担持用担体、その酵素複合体及びこれらの製造方法

Also Published As

Publication number Publication date
US20130109072A1 (en) 2013-05-02
JP5734106B2 (ja) 2015-06-10
JP2012016351A (ja) 2012-01-26
TW201204829A (en) 2012-02-01
EP2592140A4 (en) 2014-08-13
EP2592140A1 (en) 2013-05-15
TWI494429B (zh) 2015-08-01

Similar Documents

Publication Publication Date Title
JP5734106B2 (ja) 蛋白質固定化用担体、固定化蛋白質及びそれらの製造方法
Hartmann et al. Immobilization of enzymes on porous silicas–benefits and challenges
Cao et al. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal–organic framework material: a biocatalyst for esterification
Gao et al. Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization
Shah et al. Structural features of Penicillin acylase adsorption on APTES functionalized SBA-15
Zhao et al. Encapsulation of lipase in mesoporous silica yolk–shell spheres with enhanced enzyme stability
Galarneau et al. Immobilization of lipase on silicas. Relevance of textural and interfacial properties on activity and selectivity
Zhou et al. Comparative studies on catalytic properties of immobilized Candida rugosa lipase in ordered mesoporous rod-like silica and vesicle-like silica
Lin et al. Magnetic enzyme nanogel (MENG): a universal synthetic route for biocatalysts
Bolivar et al. Oriented coimmobilization of oxidase and catalase on tailor-made ordered mesoporous silica
Bernal et al. Application of Hierarchical porous silica with a stable large porosity for β‐galactosidase immobilization
Jiang et al. Enzyme@ silica hybrid nanoflowers shielding in polydopamine layer for the improvement of enzyme stability
Bai et al. Immobilization of lipase on aminopropyl-grafted mesoporous silica nanotubes for the resolution of (R, S)-1-phenylethanol
Sigurdardóttir et al. Alcohol dehydrogenase on inorganic powders: Zeta potential and particle agglomeration as main factors determining activity during immobilization
Song et al. Multifunctional magnetic particles for effective suppression of non-specific adsorption and coimmobilization of multiple enzymes by DNA directed immobilization
Bernal et al. Design of β‐galactosidase/silica biocatalysts: I mpact of the enzyme properties and immobilization pathways on their catalytic performance
Chen et al. Activity enhancement and stabilization of lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica
Singh et al. Polyvinyl alcohol–silica nanohybrids: An efficient carrier matrix for amylase immobilization
Wang et al. Biocatalytic esterification of caprylic acid with caprylic alcohol by immobilized lipase on amino-functionalized mesoporous silica
Cui et al. Enzyme shielding in a large mesoporous hollow silica shell for improved recycling and stability based on CaCO3 microtemplates and biomimetic silicification
Li et al. Immobilization of Candida sp. 99-125 lipase onto silanized SBA-15 mesoporous materials by physical adsorption
Li et al. Immobilization of porcine pancreas lipase on fiber-like SBA-15 mesoporous material
Lee et al. Synthesis of hybrid Fe 3 O 4–silica–NiO superstructures and their application as magnetically separable high-performance biocatalysts
Bernardino et al. Optimization in the immobilization of penicillin G acylase by entrapment in xerogel particles with magnetic properties
Kawachi et al. Enzyme encapsulation in silica gel prepared by polylysine and its catalytic activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792493

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011792493

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011792493

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13702308

Country of ref document: US