TWI494429B - 蛋白質固定化用載體、固定化蛋白質及其製造方法 - Google Patents

蛋白質固定化用載體、固定化蛋白質及其製造方法 Download PDF

Info

Publication number
TWI494429B
TWI494429B TW100120178A TW100120178A TWI494429B TW I494429 B TWI494429 B TW I494429B TW 100120178 A TW100120178 A TW 100120178A TW 100120178 A TW100120178 A TW 100120178A TW I494429 B TWI494429 B TW I494429B
Authority
TW
Taiwan
Prior art keywords
protein
carrier
immobilization
enzyme
cerium oxide
Prior art date
Application number
TW100120178A
Other languages
English (en)
Other versions
TW201204829A (en
Inventor
Tatsuo Tsunoda
Takayuki Nara
Seigo Ono
Chisato Sekikawa
Fujio Mizukami
Shuzo Kojima
Naoki Tahara
Hideaki Togashi
Miki Egami
Original Assignee
Jgc Catalysts & Chemicals Ltd
Nat Inst Of Advanced Ind Scien
Jgc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jgc Catalysts & Chemicals Ltd, Nat Inst Of Advanced Ind Scien, Jgc Corp filed Critical Jgc Catalysts & Chemicals Ltd
Publication of TW201204829A publication Critical patent/TW201204829A/zh
Application granted granted Critical
Publication of TWI494429B publication Critical patent/TWI494429B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/14Peptides being immobilised on, or in, an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Peptides Or Proteins (AREA)

Description

蛋白質固定化用載體、固定化蛋白質及其製造方法
本發明有關一種在具中孔的多孔二氧化矽粒子表面有預定的有機基而成的蛋白質固定化用載體、此蛋白質固定化用載體的製造方法、於此蛋白質固定化用載體上固定蛋白質而成的固定化蛋白質,及此固定化蛋白質的製造方法。
利用酶的反應因表現出與無機觸媒不同的基質專一性或立體專一性,故可望有助於合成反應路徑的簡化。然而,酶的成本高,不易重複使用,且已知可維持必需活性的環境(溫度範圍或作為對象之基質的種類)狹窄等問題。已報告有將酶固定於載體物質上來解決上述問題的作法。
但是,由於酶的基質專一性高,故須選擇適合各種反應的酶。另外,酶固定化的傾向受載體結構的影響,故須針對每種酶來開發固定於載體上的方法或者新的載體。
解決該些課題的例子有,實驗室階段報告的利用多孔二氧化矽粒子(摺疊片狀材料,FSM)的內包型固體化法,此FSM是用界面活性劑等改變層狀二氧化矽的層結構而得。但此法的機械強度弱,工業化困難。因此,須謀求可工業化且可與FSM同樣地將各種酶內包性固定化的載體。
通常,於使用酶的生質分解或纖維、食品製造等技術領域中,先前多使酶溶於水中來使用。但是,該操作法中為蛋白質的酶溶解度有限,在一定濃度以上則常凝集而失去活性。然而,於利用酶反應的反應系統中,預計酶的存 在量愈多,反應速度及生成物的生產速度愈高。
另一方面,多孔二氧化矽粒子的特徵在具有直徑2~50nm的孔隙,可於該孔隙內部導入或固定酶,故可視為有潛力的載體材料,其具有大量的可有效吸附或固定幾nm至十幾nm大小的酶即蛋白質的表面。
作為多孔二氧化矽粒子的例子,例如專利文獻1揭示有如下球狀多中孔體的發明,其是直徑2mm以下具大量孔隙的球體狀二氧化矽系多孔體,特徵在:孔隙的中心孔隙直徑D在1~10nm範圍內,且直徑在D-2.5nm~D+2.5nm範圍內的孔隙的合計孔隙體積為總孔隙體積的60%以上。
專利文獻2揭示有如下中孔無機多孔體的發明,其特徵在包含以二氧化矽為主成分的平板狀粒子的凝集體,且比表面積在1200m2/g以上。其較佳條件例如:比表面積1400m2/g以上,平板狀粒子的長寬比為5~100,且中孔洞的孔徑分佈的波峰半寬為波峰孔徑(d0)的±30%以內。
另外,專利文獻3揭示如下多孔二氧化矽凝集粒子的發明,其是將表現出在1nm以上的晶格面間隔(d)對應之繞射角(2θ/°)的範圍內有1條以上繞射線的X射線繞射圖案的多孔二氧化矽球狀一次粒子集合而成,特徵在於:於上述多孔二氧化矽球狀一次粒子內形成孔隙,並於該些多孔二氧化矽球狀一次粒子間形成空隙層而成。該發明與專利文獻2同樣地,在二氧化矽微粒子(一次粒子)凝集而形成多孔二氧化矽粒子的方面是共通的。
此外,作為包含由粒子的凝集體構成的多孔粒子的多 中孔體的例子,專利文獻4揭示有如下的氧化物多孔體,其材質為氧化鋁,是中心孔徑在中孔區域的2~100nm範圍內的氧化鋁系多孔體,孔隙分佈如下:中孔體積(孔徑為2~100nm區域內的孔隙的體積)的70%以上在中孔區域的孔隙的中心孔徑的±5nm以內區域,孔隙的至少一部分連通為三維網狀,該連通路徑隨機具有三維網狀結構,且實質上不具纖維狀結構。該氧化物多孔體特徵在由長寬比3以下的粒子凝集而成,且粒子的間隙中有孔隙。專利文獻4也記載上述氧化物多孔體的用途之一是酶用載體。
將多孔二氧化矽粒子用作酶固定化用的載體時,一般認為可防止高密度存在的酶的凝集,而可使具活性的酶高聚集化。該現象對於使用酶的反應系統而言,可望使存在於溶液中的酶的量超過會導致凝集產生的量。
將酶固定於載體上使用是先前以來一直實行的,其目的大體上是關於酶的分離及再利用。例如,於先前使用酶的生質分解或纖維、食品製造等技術領域中,大多使酶溶於水中來使用,該操作法中生成物與酶的分離操作不可欠缺,且分離的酶常被丟棄。為省去酶分離步驟,而對用於將酶固定於載體上使用的酶固定化技術作積極研究、開發。
酶的固定化法例如提出有:直接固定於樹脂珠等上的方法、以聚合物包覆而微膠囊化、對酶蛋白質表面改質而穩定化的表面修飾法等。然而,該些方法實際上僅將酶固定於固定化載體的表面,固定酶用的載體表面積不大,其目的並非藉由酶的高聚集化或固定化來提高酶的功能。
以酶的再利用為目的的酶固定化的研究也在進行,其與以分離步驟的排除為目的者無大差異,大多進行各種載體表面上的單純固定。也有固定於高分子發泡體的方法,其進行壓縮發泡體而將包含生成物的溶液分離等的操作。
事實上,藉由酶固定化法的開發,於使用酶的生產過程中,可對反應後的酶進行分離回收或再利用,以提高生產過程的效率。但是,仍須謀求藉由酶的固定化來實現進一步的酶的高聚集化或酶功能本身的提高。
專利文獻5揭示有如下血紅素蛋白(heme protein)複合體的發明,其是於二氧化矽系多中孔體的孔隙內部具有血紅蛋白的血紅蛋白內包複合體,特徵在於:(1)上述血紅蛋白在上述孔隙內部形成多聚體,(2)該多聚體為高密度聚集的蛋白質而吸附於上述二氧化矽系多中孔體的孔隙內壁。該發明發現,將酶即蛋白質固定於二氧化矽系多中孔體的孔隙內,可提高蛋白質的熱穩定性或有機溶劑耐性。
二氧化矽系多中孔體通常已知MCM、FSM、SBA類型等的材料系列。該些二氧化矽系多中孔體特徵在具有直徑2~50nm的孔隙。酶即蛋白質有幾nm至十幾nm的大小,且具有與二氧化矽系多中孔體的孔徑相同程度的大小分布。因此認為,將二氧化矽系多中孔體用作酶的固定化載體時,可將酶不僅固定於表面,且亦固定於孔隙內。
二氧化矽系多中孔體可固定酶的有效表面積與先前技術的載體相較下極大,可固定大量的酶。例如,如專利文獻6所述,於二氧化矽系多中孔體-纖維素或半纖維素的水 解酶複合體中,亦可於其孔隙內固定酶,且亦可聚集化。
作為用於吸附酶等蛋白質的二氧化矽系多中孔體,例如,專利文獻7揭示有如下球狀二氧化矽系多中孔體的發明,其具有平均粒徑0.01~3μm且中心孔隙直徑1nm以上的放射狀孔隙,特徵在於經含氰基或羧基的有機官能基修飾。專利文獻7還記載,此種經有機改質的二氧化矽系中孔體對鹼性色素、蛋白質、金屬等表現出高度的吸附性。
專利文獻8揭示多孔球狀二氧化矽的發明,其特徵在於:以水銀測孔儀測得的最多數孔徑為45~70埃,平均孔徑為50~100埃,最多數孔徑的±10%範圍內的孔隙的體積為0.40ml/g以上。專利文獻8並揭示:該多孔狀二氧化矽可藉由將BET比表面積為400m2/g以上且孔隙體積為0.9ml/g以下的多孔球狀二氧化矽前驅物於600℃以上的溫度下煅燒來製造。如記載,該多孔狀二氧化矽可用作用於觸媒、酶或微生物固定化的固定化載體。
專利文獻9揭示有二氧化矽系多中孔體-澱粉水解酶複合體的發明,其是澱粉的水解酶與固定有該澱粉水解酶的二氧化矽系多中孔體的複合體,特徵在於:固定於二氧化矽系多中孔體上的酶有催化澱粉水解的活性。如記載,該二氧化矽系多中孔體較佳為MCM、FSM或SBA型二氧化矽系多中孔體,其特徵較佳為:孔隙直徑為2~50nm、總孔隙體積為0.1~3.5ml/g、比表面積為200~1500m2/g。
專利文獻10揭示有酶固定化方法的發明作為將酶固定於多孔二氧化矽粒子多孔體上的方法,其特徵在於:於 內徑為酶直徑的1.2倍以上且結構穩定的多孔二氧化矽粒子多孔體的孔隙結構單元上固定酶後,於結構單元的開口部及/或內部空隙中形成由溶膠凝膠法形成的凝膠化物質的網狀結構,使固定化酶的穩定性提高。
專利文獻11揭示有酶固定化方法的發明,其是對氧化酶用不穩定的特定胺基酸的轉變等方法使參與該酶功能的內部結構穩定化,且將該氧化酶固定於結構穩定且具有預定內徑的多孔二氧化矽粒子多孔體的孔隙結構單元中,使酶表面亦穩定化。
[先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開平10-328558號公報
[專利文獻2]日本專利特開2006-232594號公報
[專利文獻3]日本專利特開2009-73681號公報
[專利文獻4]日本專利特開2001-170500號公報
[專利文獻5]日本專利特開2007-51076號公報
[專利文獻6]日本專利特開2009-125006號公報
[專利文獻7]日本專利特開2008-24567號公報
[專利文獻8]日本專利特開2007-76941號公報
[專利文獻9]日本專利特開2009-153448號公報
[專利文獻10]日本專利特開2001-178457號公報
[專利文獻11]日本專利特開2002-262863號公報
要在先前技術的多孔二氧化矽粒子載體上固定酶時,必需根據欲固定的酶的種類、分子大小及/或等電點使用具 適合特徵(孔徑分布或孔徑等)的多孔二氧化矽粒子。將對作對象的酶的固定化不適合的多孔二氧化矽粒子用於載體時,會因酶自多孔二氧化矽粒子載體上脫離而妨礙酶的重複利用。另外,即便於不產生上述酶的脫離時,也有無法充分表現出酶的性能((i)對與基質的反應溫度的耐性、(ii)對基質的反應活性、(iii)對與基質的反應時所使用的溶劑的耐性、(iv)關於與基質的反應的重複利用性)的情況。
另外,針對特定的酶來分別設計、開發適合於固定化的多孔二氧化矽粒子載體的作法成為大的負擔。
本發明的酶固定化用載體是為了解決上述問題而開發出的。具體而言是解決以下課題:
(1)提供如下的酶固定化用載體及其製造方法:開發酶固定化用載體時,並不根據各酶的種類來改變載體的基本構成,可選擇作為原料的二氧化矽粒子的粒徑等或調整表面處理階段等來對應。更具體而言,是提供適於固定分子尺寸不同等電點亦不同的多種酶的酶固定化用載體,使多孔二氧化矽粒子的孔徑、孔徑分布、孔隙體積或孔隙結構最佳化來對應多種分子尺寸的酶的固定化,且以多孔二氧化矽粒子的表面矽烷醇基的改質來對應各種酶的固定化。
(2)提供一種可工業量產的方法來作為酶固定化用載體的製造方法及固定化酶的製造方法(酶的固定化方法)。
(3)為使固定於酶固定化用載體上的酶對基質的反應活性與固定化前的反應活性相比為同級以上,而設計一種 酶固定化用載體,藉由酶於其上的固定化來抑制為反應活性下降的主要原因的酶立體結構的變化,並可確保為提高固定化酶的反應活性所必需的微小的酶反應空間。
(4)為了即便重複使用固定化酶,亦使反應活性維持在實用的水準,表現出可耐受重複使用的機械強度,而設計以抑制酶自酶固定化用載體上脫離為目的的多孔二氧化矽粒子載體的表面處理,以及於固定化酶的重複使用下難以劣化或崩解的多孔二氧化矽粒子的結構。
(5)提供對於固定化酶與基質反應時的反應溫度或者反應所使用的溶劑的耐性優良的固定化酶。
本發明的課題是藉由下述[1]~[17]的手段來達成。
[1]一種蛋白質固定化用載體,其特徵在於:包含內部具有粒子間空隙結構的多孔二氧化矽粒子,此多孔二氧化矽粒子滿足下述(1)~(6),且表面有矽烷醇基、陰離子交換基或陽離子交換基:(1)平均粒徑(Da)為0.5~100μm;(2)比表面積為10~250m2/g;(3)孔隙體積(Pv)為0.10~0.32ml/g;(4)孔徑分布(X軸為孔徑[Ps],Y軸為將孔隙體積對孔徑微分而得的值)中的峰值孔徑(Pms)為2~200nm;(5)孔徑在Pms×0.75~Pms×1.25nm範圍內的孔隙的合計孔隙體積為總孔隙體積的70%以上;(6)空隙率為5~50%。
[2]如[1]所述之蛋白質固定化用載體,其中多孔二氧化 矽粒子包含球狀二氧化矽微粒子集合而成的球狀集合體,此球狀二氧化矽微粒子的平均粒徑(Db)為10~500nm,圓球度為0.9~1,粒徑變動係數(CV值)為2~10%,且粒徑分布表現出單分散相。
[3]一種蛋白質固定化用載體,其特徵在於:包含內部具有粒子間空隙結構的多孔二氧化矽粒子,此多孔二氧化矽粒子滿足下述(1)~(6),且表面有矽烷醇基、陰離子交換基或陽離子交換基:(1)平均粒徑(Da)為0.5~50μm;(2)比表面積為10~250m2/g;(3)孔隙體積(Pv)為0.10~0.32ml/g;(4)孔徑分布(X軸為孔徑[Ps],Y軸為將孔隙體積對孔徑微分而得的值)中的峰值孔徑(Pms)為2~50nm;(5)孔徑在Pms×0.75~Pms×1.25nm範圍內的孔隙的合計孔隙體積為總孔隙體積的80%以上;(6)空隙率為5~50%。
[4]如[3]所述之蛋白質固定化用載體,其中多孔二氧化矽粒子包含球狀二氧化矽微粒子集合而成的球狀集合體,此球狀二氧化矽微粒子的平均粒徑(Db)為10~50nm,圓球度為0.9~1,粒徑變動係數(CV值)為2~10%,且粒徑分佈表現出單分散相。
[5]如[1]~[4]中任一項所述之蛋白質固定化用載體,其中陰離子交換基是結構中含胺基或四級銨基的取代基。
[6]如[1]~[4]中任一項所述之蛋白質固定化用載體,其 中陽離子交換基是結構中包含選自羧基、磷酸基及磺酸基(sulfoxyl)中的任一基團的取代基。
[7]如[1]~[6]中任一項所述之蛋白質固定化用載體,其中多孔二氧化矽粒子經矽烷偶合劑或有機酸之表面處理。
[8]如[1]~[7]中任一項所述之蛋白質固定化用載體,其中多孔二氧化矽粒子是將經含胺基的矽烷偶合劑處理的多孔二氧化矽粒子,進一步以有機酸作表面處理而成。
[9]如[1]~[8]中任一項所述之蛋白質固定化用載體,其用於酶的固定化。
[10]如[1]~[8]中任一項所述之蛋白質固定化用載體,其用於複合酶(multi enzyme)的固定化。
[11]一種固定化蛋白質,於如[1]~[8]中任一項所述之蛋白質固定化用載體上固定蛋白質而成。
[12]如[11]所述之固定化蛋白質,其中該蛋白質為酶。
[13]如[12]所述之固定化蛋白質,其中該酶為消旋酶。
[14]如[12]所述之固定化蛋白質,其中上述酶為去氧核糖醛縮酶(deoxyriboaldolase)。
[15]一種固定化蛋白質的製造方法,包括使蛋白質吸附於[1]~[8]中任一項之蛋白質固定化用載體上的步驟。
[16]如[15]所述之固定化蛋白質的製造方法,其中上述蛋白質為酶。
[17]如[15]或[16]所述之固定化蛋白質的製造方法,其中於緩衝溶液中,在4℃~25℃的範圍內使蛋白質吸附於蛋白質固定化用載體上。
本發明的蛋白質固定化用載體是內部具有粒子間空隙結構且孔徑均勻性高的多孔二氧化矽粒子,且於其表面具有矽烷醇基、陰離子交換基或陽離子交換基。尤其因孔徑均勻性高,故藉由選擇具有對蛋白質,尤其是酶的分子尺寸適合的孔徑的蛋白質固定化用載體,可使該蛋白質均勻地固定於酶固定化載體上。另外,根據酶等蛋白質的種類來選擇蛋白質固定化用載體表面的取代基的種類,可使該蛋白質穩定地固定於酶固定化用載體上。
本發明的蛋白質固定化用載體常為球狀二氧化矽微粒子的球狀集合體。此球狀二氧化矽微粒子的粒徑分佈表現出單分散相,而達成本發明的蛋白質固定化用載體的孔徑均勻性。本發明的蛋白質固定化用載體難以劣化或崩解,是因其採取由均勻的球狀二氧化矽微粒子的集合體所構成的穩定結構。另外,本發明的蛋白質固定化用載體在其製造階段中,僅藉由選擇上述球狀二氧化矽微粒子的粒徑,便可適應多種分子尺寸的蛋白質,尤其是酶的固定化。
本發明的蛋白質固定化用載體的較佳態樣中,於構成其的多孔二氧化矽粒子的表面具有陰離子交換基或陽離子交換基。尤其是若具有結構中含胺基或四級銨基的取代基作為陰離子交換基,或具有結構中含選自羧基、磷酸基及磺酸基的任一基團的取代基作為陽離子交換基,則可經由共價鍵等牢固的鍵來進行蛋白質,尤其是酶的固定化,因此有利。上述取代基通常是利用矽烷偶合劑處理多孔二氧化矽粒子以改質其表面的矽烷醇基。本發明的蛋白質固定 化用載體在其製造階段中,除了選擇球狀二氧化矽微粒子的粒徑以外,還選擇由矽烷偶合劑等藥劑導入的取代基,可依照蛋白質種類而製成最佳的蛋白質固定化用載體。
由於用於蛋白質固定化的蛋白質固定化用載體是均勻性高的球狀二氧化矽微粒子的球狀集合體,故本發明的固定化蛋白質在結構上穩定,孔徑分佈的均勻性亦高。另外,由於在蛋白質固定化用載體的表面具有對應於蛋白質的表面電荷的取代基,故吸附於其上的蛋白質可穩定存在。由於該些特徵,本發明的固定化蛋白質可藉由在其設計的範圍內選擇孔徑及表面取代基的種類,提供於多種蛋白質的固定化。另外,本發明的固定化蛋白質由於其結構的穩定性,故即便重複使用亦難以導致劣化或崩解,且難以受到由與基質反應時的溫度造成的影響或由溶劑造成的影響。
本發明的固定化蛋白質由於具有上述優良特徵,故採用酶作為蛋白質而成的固定化酶可表現出與固定化前的酶同級以上的反應活性。
另外,本發明的固定化酶的製造方法由於實用性高,且需要管理的條件亦少,故可以說亦適合於大量生產。
本發明第一面向的蛋白質固定化用載體是內部具有粒子間空隙結構且孔徑均勻性高的多孔二氧化矽粒子,且於表面具有矽烷醇基、陰離子交換基或陽離子交換基。尤其因孔徑均勻性高,故藉由選擇具有對蛋白質,尤其是酶的分子尺寸適合的孔徑的蛋白質固定化用載體,可使蛋白質 穩定固定於蛋白質固定化載體上。另外,藉由根據蛋白質的種類來選擇蛋白質固定化用載體表面的取代基的種類,可使蛋白質穩定固定於蛋白質固定化用載體上。將上述蛋白質固定化用載體應用於例如新的固定化蛋白質,尤其是固定化酶的開發時,具有以下優點。
(1)可將各種酶固定於載體上。
(2)酶的固定化方法容易。
(3)可於維持與游離的酶同級以上的反應活性的狀態下固定酶。
(4)由於酶固定化用載體是以多孔二氧化矽粒子為原料,且採取穩定的結構,故固定化酶的機械強度高,容易重複使用。
(5)可在工業上大量生產固定化酶。
(6)可縮短與開發對象的酶的固定化相關的開發時間,容易與工業化結合。
(7)由於固定化後的活性高,故可抑制由固定化引起的酶的損失。
(8)例如,藉由將多孔二氧化矽粒子的表面以羥基、胺基、羧基或苯胺基等進行修飾,則酸性、鹼性、中性或疏水性中的任一種酶均可固定化。
另外,本發明第二面向的固定化蛋白質是於上述蛋白質固定化用載體上固定有蛋白質,其例如具有以下優點:
(a)當用作固定化酶時,可表現出與游離的酶同級以上的反應活性。
(b)機械強度高,容易反覆使用。
(c)可在工業上大量生產。
(d)當用作固定化酶時,由於活性高,故可抑制由固定化引起的酶的損失。
(e)當用作固定化酶時,在固定化酶與基質反應時,耐熱性及耐溶劑性優良。
(f)尤其是選自消旋酶(racemase)、葡萄糖澱粉酶(glucoamylase)、澱粉酶(amylase)或蟲漆酶(laccase)的酶經固定化而成的固定化蛋白質的耐熱性優良。
(g)尤其是去氧核糖醛縮酶(deoxyriboaldolase,DERA)固定化成的固定化蛋白質的耐基質性及平衡的偏移優良。
為讓本發明之上述和其他目的、特徵和優點更明顯易懂,下文特舉較佳實施例,並配合所附圖式詳細說明如下。
本發明是利用蛋白質對於包含微小粒子的集合體且具有中孔洞的多孔二氧化矽粒子,或者對此多孔二氧化矽粒子的表面使用矽烷偶合劑等來給予預定官能基而成的多孔二氧化矽粒子的吸附現象,來作為該蛋白質的固定化法,於多孔二氧化矽粒子的孔隙內或表面上穩定地固定蛋白質,可充分發揮經固定化的蛋白質的功能。
本發明較佳選用酶作為固定於多孔二氧化矽粒子上的蛋白質,因此本發明包括酶固定化用載體或固定化酶。
1.蛋白質固定化用載體
本發明的蛋白質固定化用載體包含內部具有粒子間空 隙結構的特定的多孔二氧化矽粒子。此處,本發明所使用的多孔二氧化矽粒子滿足下述(1)~(6),且表面具有矽烷醇基、陰離子交換基或陽離子交換基:(1)平均粒徑(Da)為0.5~100μm;(2)比表面積為10~250m2/g;(3)孔隙體積(Pv)為0.10~0.32ml/g;(4)孔徑分布(X軸為孔徑[Ps],Y軸為將孔隙體積對孔徑微分而得的值)中的峰值孔徑(Pms)為2~200nm;(5)孔徑在Pms×0.75~Pms×1.25nm範圍內的孔隙的合計孔隙體積為總孔隙體積的70%以上;(6)空隙率為5~50%。
本發明的蛋白質固定化用載體是在後述的固定化蛋白質中,用作使蛋白質固定化用的載體,其由於在較佳態樣中是用作使酶固定化用的載體,故亦有以強調該方面的含義而特別稱為「酶固定化用載體」的情況。
1-1.多孔二氧化矽粒子
本發明中的多孔二氧化矽粒子是內部具有粒子間空隙結構的多孔二氧化矽粒子,其滿足以下的必要條件:1)平均粒徑(Da)為0.5~100μm;2)比表面積為10~250m2/g;3)孔隙體積為0.10~0.32ml/g;4)孔徑分布(X軸為孔徑[Ps],Y軸為將孔隙體積對孔徑微分而得的值)中的峰值孔徑(Pms)為2~200nm;5)孔徑在Pms×0.75~Pms×1.25nm範圍內的孔隙的合 計孔隙體積為總孔隙體積的70%以上;6)空隙率為5~50%;並且上述多孔二氧化矽粒子於表面具有矽烷醇基、陰離子交換基或陽離子交換基。
本發明使用的多孔二氧化矽粒子中,上述粒子間空隙結構通常藉由粒子的自組裝及/或自組化而構成。本發明使用的多孔二氧化矽粒子通常包含球狀二氧化矽微粒子集合成的球狀集合體,此球狀二氧化矽微粒子的平均粒徑為10~500nm,圓球度為0.9~1,較佳是平均粒徑為10~50nm,圓球度為0.9~1,且粒徑的均勻性高。
本發明的多孔二氧化矽粒子的粒子間空隙結構中,尤其孔徑分佈(X軸為孔徑,Y軸為將孔隙體積對孔徑微分而得的值)中的峰值孔徑(Pms)為2~200nm,較理想為2~50nm,又,孔徑在Pms×0.75~Pms×1.25nm範圍內的孔隙的合計孔隙體積為總孔隙體積的70%以上,較佳80%以上。藉此,觸媒等充分分散而擔於多孔二氧化矽粒子上的傾向得到促進,另可對擔有觸媒的觸媒載體給予反應選擇性,推測其原因是:形成孔隙的粒子的形狀為圓球狀,且粒徑均勻,所形成的孔隙亦以孔徑均勻且分散的狀態存在。
本發明的多孔二氧化矽粒子的平均粒徑(Da)較佳為0.5~100μm,更佳0.5~50μm。依後述本發明的製造方法,若為上述範圍,則獲得球狀且均勻的多孔二氧化矽粒子。平均粒徑小於0.5μm的多孔二氧化矽粒子不易以本發明的製造方法製備。平均粒徑超過50μm時,尤其超過100μm 時,依本發明的製造方法易產生異形粒子,故欠佳。此外,多孔二氧化矽粒子的平均粒徑,較佳推薦5~50μm,尤其5~30μm。上述多孔二氧化矽粒子的平均粒徑是用離心沈降法測定,其具體測定方法在實例的[各種物性的測定方法]中記載於1.(B)「利用離心沈降法的平均粒徑的測定方法」。
本發明的多孔二氧化矽粒子的比表面積較佳10~250m2/g。比表面積小於30m2/g時,尤其是小於10m2/g時,當用作載體時,大多情況下須大量使用載體,不經濟。比表面積超過250m2/g時,則有產生反應生成物的再吸附等使反應效率下降的顧慮,且球狀集合體的強度變得不足,因此欠佳。比表面積的更佳範圍推薦30~250m2/g。
本發明的多孔二氧化矽粒子具有0.10~0.32ml/g的孔隙體積。孔隙體積小於0.10ml/g時,當用作為載體時,發揮觸媒作用的金屬微粒子等的擔載量變少,故大多情況下須大量使用載體,不經濟。若孔隙體積超過0.32ml/g,則有球狀集合體的強度不足的情況。孔隙體積的較佳範圍為0.10~0.25ml/g,更佳為0.12~0.20ml/g。
此外,該孔隙體積可藉由使用氮的定容式氣體吸附法求出,另外,孔隙分布、孔徑(峰值)可用BJH法(Barrett-Joyner-Halenda method)求出。另外,測定該些值的方法亦可使用水銀壓入法。
對本發明的多孔二氧化矽粒子而言,其粒子間空隙結構必需為,尤其孔徑分佈(X軸為孔徑[Ps],Y軸為將孔隙體積對孔徑微分而得的值)中的峰值孔徑(Pms)為2~200 nm,進而,孔徑在Pms×0.75~Pms×1.25nm範圍內的孔隙的合計孔隙體積為總孔隙體積的70%以上。
上述孔徑(Pms)小於2nm時,並不容易確保必需的孔隙體積。孔徑(Pms)超過25nm時,尤其是超過200nm時,則有粒子強度下降而在實用上成為問題的情況。關於孔徑(Pms)的範圍,較理想為推薦2~50nm的範圍。另外,更理想為推薦3~15nm的範圍。
孔徑在Pms×0.75~Pms×1.25nm範圍內的孔隙的合計孔隙體積小於總孔隙體積的80%時,尤其是小於70%時,容易產生孔徑分佈不均,應力集中於較大的孔隙,實用上強度變弱等問題。相對於上述總孔隙體積的合計孔隙體積的較佳比例為80%以上,更佳的比例推薦85%以上。
本發明所使用的多孔二氧化矽粒子較佳為空隙率為5~50%的粒子。本發明的多孔二氧化矽粒子如具有該範圍內的空隙率,即可表現出優良的粒子破壞強度。當空隙率小於5%時,可擔載的物質的量為微量,並不實用。空隙率超過50%時,則有無法保持粒子的強度的情況,故欠佳。關於空隙率,較理想為推薦10%~30%的範圍。
球狀集合體
本發明的多孔二氧化矽粒子是如上述由球狀二氧化矽微粒子的球狀集合體所構成。此處,球狀二氧化矽微粒子的平均粒徑(Db)較佳為10~500nm。平均粒徑小於10nm時,粒徑過小而使由無機二氧化矽微粒子的間隙所形成的孔隙體積下降,作為擔載用粒子的實用性下降。平均粒徑 超過50nm時,尤其是若平均粒徑超過500nm,則孔隙體積變大,但微粒子彼此的結合力弱,難以獲得球狀二氧化矽微粒子的集合體。球狀二氧化矽微粒子的更佳平均粒徑為10~300nm。另外,更佳為推薦10~50nm範圍的平均粒徑,特佳為推薦10~48nm範圍的平均粒徑。
此外,本申請案中,關於球狀二氧化矽微粒子的平均粒徑,是指利用動態光散射法來測定的平均粒徑,或者利用圖像分析法來測定的平均粒徑。
另外,後述「球狀二氧化矽微粒子(a)」及「球狀二氧化矽微粒子(b)」的情況亦同。關於藉由圖像分析法的平均粒徑測定方法,是利用實例的[各種物性的測定方法]中「5.粒徑分布的測定」所記載的平均粒徑的測定方法來測定。
上述球狀二氧化矽微粒子不包括棒狀、勾玉狀、細長形狀、念珠狀、卵狀等的異形粒子,必須為圓球度高的微粒子。本發明中所謂球狀,是指圓球度在0.90~1.00範圍內的形狀。此處所謂圓球度,對於利用穿透型電子顯微鏡拍照而得的照片投影圖中任意50個粒子而言,是指各個粒子的最大徑(DL)與和其正交的短徑(DS)的比(DS/DL)的平均值。圓球度小於0.90時,微粒子則稱不上球狀,而包括上述異形粒子之類的微粒子。
使用圓球度0.90~1.00的球狀二氧化矽微粒子作為球狀二氧化矽微粒子的本發明的多孔二氧化矽粒子可表現優良的粒子破壞強度。尤其是使球狀二氧化矽微粒子的圓球度一致為0.90以上時,對其強度會造成很大影響。
球狀二氧化矽微粒子例如可應用:日本專利特開平5-132309號公報等揭示的氧化物溶膠等二氧化矽微粒子、日本專利特開平10-454043號公報揭示的含有機基的複合二氧化矽微粒子、日本專利特開平7-133105號公報揭示的在粒子內部有空隙的複合二氧化矽微粒子等,但於不滿足上述圓球度時,可進行所謂的水熱處理,將圓球度調整為0.90~1.00後,再用作球狀二氧化矽微粒子。水熱處理的條件可例舉於100~200℃的溫度下進行1~24小時的處理的方法。另外,水熱處理時亦推薦使用高壓釜。
關於球狀二氧化矽微粒子的粒徑分佈為單分散的情況,較理想為推薦球狀二氧化矽微粒子的粒徑變動係數(CV值)在2~10%範圍內。當粒徑變動係數小於2%時,雖然對本發明而言更理想,但具該水準的粒徑分佈的球狀二氧化矽微粒子不容易獲得。當粒徑變動係數超過10%,由於單分散的程度下降,故本發明的效果下降。關於粒子變動係數的範圍,較佳為推薦2%~7%的範圍。
上述球狀二氧化矽微粒子的球狀集合體的製造方法可採用先前周知的方法,例如微膠囊法、乳化法、油法、噴霧法等。其中由本案申請人提申的日本專利特公平3-43201號公報、日本專利特公平2-61406號公報等揭示的圓球狀微粒子粉末製造方法中,即便起始無機二氧化矽微粒子非球狀,亦可得圓球狀的無機二氧化矽微粒子集合體,製造步驟不複雜,經濟性亦佳。該較佳的製造方法如後文所述。
官能基
本發明所使用的多孔二氧化矽粒子具有矽烷醇基、陰離子交換基或陽離子交換基作為其表面的官能基。
即,本發明的蛋白質固定化用載體之一態樣中是使用具有矽烷醇基的粒子作為多孔二氧化矽粒子。此處,由於多孔二氧化矽粒子於表面具有矽烷醇基,故可以說上述多孔二氧化矽粒子包含於本發明的蛋白質固定化用載體中。
另一態樣是使用具陰離子交換基或陽離子交換基的粒子作為多孔二氧化矽粒子。本發明提及「具陰離子交換基」或「具陽離子交換基」時,是指多孔二氧化矽粒子表面的官能基包含陰離子交換基或陽離子交換基,並不要求所有的矽烷醇基均以陰離子交換基或陽離子交換基進行改質。
因此,本發明的蛋白質固定化用載體中多孔二氧化矽粒子的態樣主要可例舉:(i)含有矽烷醇基,但不含陰離子交換基,亦不含陽離子交換基的粒子;(ii)含有陰離子交換基,而不含陽離子交換基的粒子;(iii)含有陽離子交換基而不含陰離子交換基的粒子;視情況亦可例舉(iv)含有陰離子交換基及陽離子交換基兩者的粒子。
本發明所謂陰離子交換基是指可吸附陰離子或可與酸反應而陰離子化來表現親水性的基團,是陽離子性或鹼性的基團,可例舉結構中含胺基或四級銨基的基團。結構中含胺基者可例舉:-CH2CH2CH2NH2、-CH2CH2CH2CH2NH2其他的胺烷基所代表的含一級胺基的基團;苯胺基等含二級胺基的基團;-CH2N(CH3)2、-CH2CH2N(CH3)2、-CH2CH2N(CH2CH2)2、-CH2CH2CH2N(CH2CH2)2等含三級 胺基的基團;以及-CH2N+(CH3)3、-CH2CH2N+(CH3)3、-CH2CH2N+(CH2CH2)3、-CH2CH2CH2N+(CH2CH2)3、-CH2CH2N+(CH2CH3)2CH2CH(OH)CH3、-N+(CH3)3等含四級銨基的基團,但並不限定於該些基團。
另一方面,所謂陽離子交換基是指可吸附陽離子或可與鹼反應而陽離子化來表現親水性的基團,可例舉陰離子性基團或酸性基。此處,雖然矽烷醇基也有吸附陽離子的可能,但本發明中提及「陽離子交換基」時,嚴格而言是指矽烷醇基以外的陽離子交換基。此種陽離子交換基可例舉結構中包含選自羧基、磷酸基或磺酸基的基團。結構中包含羧基的基團可例舉:-CH2COOH、-CH2CH2COOH、-CH2CH2CH2COOH、-CH2CH2CH2CH2COOH等羧烷基,磷酸基可例舉-PO4H2,磺酸基可例舉-CH2CH2SO3H、-CH2CH2CH2SO3H等磺烷基,但並不限定於該些基團。
本發明的蛋白質固定化用載體中,陰離子交換基及陽離子交換基通常經由對多孔二氧化矽粒子的結合性官能基而導入多孔性二氧化矽粒子的表面。通常情況下,陰離子交換基及陽離子交換基是以矽烷偶合劑或有機酸處理多孔二氧化矽粒子表面的矽烷醇基而結合於多孔二氧化矽粒子表面。以矽烷偶合劑處理時,是利用多孔二氧化矽粒子的表面矽烷醇基與矽烷偶合劑的水解反應導入所需陰離子交換基及陽離子交換基,此時陰離子交換基及陽離子交換基經由矽烷偶合劑的矽原子與多孔二氧化矽粒子表面結合。
此外,本說明書中有時對含結合性官能基的部分分子 結構使用「陰離子交換基」及「陽離子交換基」的用語。例如,有時在含如-Si-CH2CH2N(CH3)2等來自矽烷基偶合劑的結合性官能基的情況下使用「結構中含胺基的基團」。
此外,本發明使用的多孔二氧化矽粒子其表面的官能基較理想為矽烷醇基、陰離子交換基或陽離子交換基,此外疏水性有機基亦可適用。此種疏水性有機基可例舉甲基、γ-甲基丙烯醯氧基丙基等,但並不限定於該些基團。
表面處理
本發明使用的多孔二氧化矽粒子亦可與上述「官能基」的導入分開地,另行對上述球狀二氧化矽微粒子集合成的球狀集合體視需要進一步作表面處理。此表面處理須在可維持上述孔隙體積範圍、孔徑範圍的範圍內進行。藉由上述表面處理,即可提高粒子的強度。當粒子用作載體時,其具有提高與所擔載物質的親和性,提高擔載力的效果。
於向球狀二氧化矽微粒子添加酸或鹼及以下通式表示的有機矽化合物及/或其部分水解物來進行表面處理時,會形成具有有機官能基的二氧化矽系包覆層。
通式:RnSi(OR')4-n[其中,R及R'為選自碳數1~18的烷基、碳數1~18的芳基、乙烯基及丙烯基的烴基,n為0、1、2或3的整數。]
1-2.多孔二氧化矽粒子的製造方法
本發明所用的多孔二氧化矽粒子的製造方法只要可達成本發明的目的,且可獲得所需的作用、效果,則無特別限制。但是,本發明所用的多孔二氧化矽粒子較佳製造成 球狀多孔粒子,此時,通常利用下述方法來製造。
作為球狀多孔粒子的製造方法,上述多孔二氧化矽粒子的製造方法的特徵在於包括下述(A)、(B)及(C)各步驟。
(A)離心分離處理
製備平均粒徑為10~500nm,較佳10~50nm的球狀二氧化矽微粒子的分散液,以離心分離處理分離粗大粒子,將粒徑變動係數(CV值)調整為2%~10%,藉此製備粒徑分佈表現出單分散相的球狀二氧化矽微粒子分散液。
關於離心分離處理條件,通常推薦球狀二氧化矽微粒子分散液的固體成分濃度為1~50wt%,離心力為500~20000×g。此處,單位「×g」是以與地球的重力加速度的比來表示的相對離心加速度(RCF),亦可以「G」表述。
此外,於預先獲取粒徑變動係數(CV值)在2~10%範圍內,且粒徑分佈為單分散相的球狀二氧化矽微粒子分散液作為原料來使用的情況下,可省略此步驟(A)。
(B)球狀二氧化矽微粒子集合體的製備
將含球狀二氧化矽微粒子分散液的噴霧液在氣流中噴霧而製備球狀二氧化矽微粒子集合體。該球狀二氧化矽微粒子分散液的溶劑是使用水或有機溶劑。有機溶劑可使用乙醇、丙醇、丁醇等一元醇,乙二醇等多元醇等。
上述噴霧液除上述球狀二氧化矽微粒子分散液以外,亦可視需要含有矽酸液。藉由向上述球狀二氧化矽微粒子分散液添加矽酸液來製成噴霧液,粒子的強度得以增加。矽酸液的添加量較理想為以[球狀二氧化矽微粒子的重量]/ 矽酸液(二氧化矽換算)計為1.3以上。若小於1.3,則來自矽酸液的二氧化矽的比例過剩,空隙率下降的傾向增強。
關於上述噴霧液的濃度,以固體成分換算較佳為2~60wt%,特佳為4~50wt%。噴霧液的固體成分濃度小於2wt%時,難以獲得集合體。若噴霧液的濃度超過60wt%,則噴霧液變得不穩定,難以獲得球狀的集合體,而且也不能連續進行後述的噴霧乾燥,使集合體的產率下降。
上述噴霧液的噴霧乾燥方法只要可獲得上述集合體,並無特別限制,可採用旋轉圓盤法、加壓噴嘴法、二流體噴嘴法等先前周知的方法。尤其是日本專利特公平2-61406號公報揭示的二流體噴嘴方法可獲得粒徑分佈均勻的球狀二氧化矽微粒子集合體,且容易控制平均粒徑,因此較佳。
此時的乾燥溫度依照球狀二氧化矽微粒子分散液的濃度、處理速度等而不同,但使用噴霧乾燥機時,例如較佳為噴霧乾燥機入口溫度為100~300℃、出口溫度40~100℃等條件,更佳為入口溫度210~250℃、出口溫度50~55℃。
噴霧速度雖亦取決於噴霧裝置的形狀或規模,但通常例如於0.1~3L/h的範圍內進行。
(C)球狀二氧化矽微粒子集合體的加熱處理
為提高球狀二氧化矽微粒子彼此或與凝膠成分的結合力,而對步驟(B)所得的球狀二氧化矽微粒子集合體於150~600℃溫度範圍內作加熱處理。當加熱處理溫度小於150℃時,有時無法確認結合力的提高效果。另一方面,若超過600℃,則有球狀二氧化矽微粒子集合體收縮的顧 慮,最終獲得的球狀多孔粒子的空隙可能變小,故欠佳。
繼上述步驟(A)、(B)及(C)之後,可視需要來進行以下的步驟(D)、(E)及(F)的處理。
(D)球狀二氧化矽微粒子集合體分散液的製備
將步驟(C)所得的球狀二氧化矽微粒子集合體自然冷卻或冷卻至室溫~40℃,使其分散於水及/或有機溶劑中來製備其分散液。有機溶劑可用乙醇、丙醇、丁醇等一元醇,乙二醇等多元醇等。以將球狀二氧化矽微粒子集合體換算為氧化物而得的濃度計,分散液濃度較佳為0.1~40wt%,特佳為0.5~20wt%。若濃度超過40wt%,則步驟(D)中集合體彼此容易凝集,故欠佳。
(E)表面處理
向步驟(D)所得的集合體分散液添加以下的i)或ii)來進行球狀二氧化矽微粒子集合體的外表面的表面處理。
i)酸或鹼 ii)酸或鹼與下式表示的有機矽化合物及/或其部分水解物
通式:RnSi(OR')4-n[其中,R及R'為選自碳數1~18的烷基、碳數1~18的芳基、乙烯基及丙烯基的可經不含離子交換性基的基團所取代的烴基,n為0、1、2或3的整數。]
上述i)的酸或鹼通常使用酸或鹼的水溶液。此處,上述i)使用的「酸」與後述蛋白質固定化用載體的製造時使用的有機酸不同,是使用不向球狀二氧化矽微粒子集合體的外表面導入陽離子交換性基的酸。酸或鹼的種類並無特 別限制,可例舉鹽酸水溶液、硼酸水溶液、銨水溶液等。
上述ii)的酸或鹼定義與i)相同。此處ii)所用的「有機矽化合物」與後述蛋白質固定化用載體的製造時使用的矽烷偶合劑不同,是使用不向球狀二氧化矽微粒子集合體的外表面導入陰離子交換基或陽離子交換性基的化合物。上述通式表示的有機矽化合物具體可例舉:四甲氧基矽烷、四乙氧基矽烷、四異丙氧基矽烷、甲基三甲氧基矽烷、二甲基二甲氧基矽烷、苯基三甲氧基矽烷、二苯基二甲氧基矽烷、甲基三乙氧基矽烷、二甲基二乙氧基矽烷、苯基三乙氧基矽烷、二苯基二乙氧基矽烷、異丁基三甲氧基矽烷、乙烯基三甲氧基矽烷、乙烯基三乙氧基矽烷、乙烯基三(β-甲氧基乙氧基)矽烷、3,3,3-三氟丙基三甲氧基矽烷、甲基-3,3,3-三氟丙基二甲氧基矽烷、β-(3,4-環氧環己基)乙基三甲氧基矽烷、γ-縮水甘油氧基三丙基三甲氧基矽烷、γ-縮水甘油氧基丙基甲基二乙氧基矽烷、γ-縮水甘油氧基丙基三乙氧基矽烷、γ-甲基丙烯醯氧基丙基甲基二甲氧基矽烷、γ-甲基丙烯醯氧基丙基三甲氧基矽烷、γ-甲基丙烯醯氧基丙基甲基二乙氧基矽烷、γ-甲基丙烯醯氧基丙基三乙氧基矽烷、三甲基矽烷醇、甲基三氯矽烷、甲基二氯矽烷、二甲基二氯矽烷、三甲基氯矽烷、苯基三氯矽烷、二苯基二氯矽烷、乙烯基三氯矽烷、三甲基溴矽烷、二乙基矽烷等。
此外,與有機矽化合物及/或其部分水解物一起添加的酸或鹼雖亦發揮水解用觸媒的功能,但亦可視需要添加水解用觸媒。使用鹼金屬的氫氧化物或氨水、胺等鹼性觸媒 作為水解觸媒時,亦可於水解後去除該些鹼性觸媒而製成酸性溶液來使用。另於使用有機酸或無機酸等酸性觸媒製備水解物時,較佳在水解後以離子交換等方法去除酸性觸媒。此外,所得的有機矽化合物的水解物較理想為以水溶液的形態使用。此處所謂水溶液,是指水解物並不處於成為凝膠而白濁的狀態,而是具有透明性的狀態。
此外,有機矽化合物中n為0的化合物可直接使用,但n為1~3的化合物由於缺乏親水性,故較佳藉由預先之水解而使其在反應系統中可均勻混合。水解時可採用眾所周知的該些有機矽化合物的水解方法。
此外,亦可與上述有機矽化合物及/或其部分水解物或者矽酸液一起,添加上述氧化物以外的無機氧化物的前驅物金屬鹽來形成包含上述氧化物及上述氧化物以外的無機氧化物的氧化物系層。上述氧化物以外的無機氧化物的原料較佳使用可溶於鹼的無機化合物,例如上述金屬或者非金屬的氧酸的鹼金屬鹽或者鹼土金屬鹽、銨鹽、四級銨鹽。
(F)加熱處理
接著從步驟(E)所得的球狀二氧化矽微粒子集合體的分散液中分離出球狀二氧化矽微粒子集合體,乾燥後,於大氣壓或減壓下,在100~300℃下進行加熱處理而得多孔二氧化矽粒子。
1-3.蛋白質固定化用載體的製造方法
包含表面有矽烷醇基的多孔二氧化矽粒子的蛋白質固定化用載體可直接使用以上述1-2所述方法製造的多孔二 氧化矽粒子。其中特佳為由上述步驟(A)、(B)及(C)所得的多孔二氧化矽粒子。此種多孔二氧化矽粒子本來在其表面具有矽烷醇基。換言之,此種多孔二氧化矽粒子可作為本發明的蛋白質固定化用載體來用於酶等蛋白質的固定化。
另一方面,包含表面有陰離子交換基或陽離子交換基的多孔二氧化矽粒子的蛋白質固定化用載體是藉由對以上述1-2所述方法製造的多孔二氧化矽粒子,導入陰離子交換基或陽離子交換基來製造。此外較佳的是,表面有陰離子交換基或陽離子交換基的多孔二氧化矽粒子是藉由對由上述步驟(A)、(B)及(C)所得的表面有矽烷醇基的多孔二氧化矽粒子,以矽烷偶合劑或有機酸進行處理而得。此外,此處所用的矽烷偶合劑或有機酸是使用具有陰離子交換基或陽離子交換基的化合物。
另外,包含表面有疏水性有機基的多孔二氧化矽粒子的蛋白質固定化用載體是藉由對由上述步驟(A)、(B)及(C)所得的多孔二氧化矽粒子,以矽烷偶合劑(具有疏水性有機基的化合物)進行處理而得。
本發明的蛋白質固定化用載體的製造方法所用的矽烷偶合劑可例舉:3-胺丙基三甲氧基矽烷、3-胺丙基三乙氧基矽烷、3-胺丙基三丁氧基矽烷、4-胺丁基三乙氧基矽烷等具胺烷基的矽烷偶合劑;N-苯基-3-胺丙基三甲氧基矽烷等具苯烷基的矽烷偶合劑;二乙基胺基甲基三乙氧基矽烷、(N,N-二乙基-3-胺丙基)三甲氧基矽烷等具有二烷基胺烷基的矽烷偶合劑;氯化N-三甲氧基矽烷基丙基-N,N,N- 三甲基銨等具四級銨基的矽烷偶合劑;羧乙基矽烷三醇、三乙氧基矽烷基丙基順丁烯醯胺酸、N-(三甲氧基矽烷基丙基)伸乙基二胺三乙酸等具羧基的矽烷偶合劑;3-(三羥基矽烷基)-1-丙磺酸等具磺酸基的矽烷偶合劑等。
利用矽烷偶合劑的多孔二氧化矽粒子的處理無特別限制,可用周知的處理方法。例如,可向粉體狀的多孔二氧化矽粒子添加所需的矽烷偶合劑,視需要一邊加熱一邊攪拌,然後進行過濾、乾燥等而得蛋白質固定化用載體。
此處,當利用含胺基或四級銨基等陰離子交換基的矽烷偶合劑進行處理時,可將氨水等適當的鹼添加於處理反應的反應混合液中。另外,當利用含羧基等陽離子交換基的矽烷偶合劑進行處理時,可將乙酸等適當的酸分別添加於處理反應的反應混合液中。
另外,原料的多孔二氧化矽粒子可以暫時分散於乙醇等適當的極性溶劑中的狀態來用於處理。此種多孔二氧化矽粒子的處理大多情況下可於空氣中進行,但視需要亦可於惰性氣體環境下進行。關於加熱溫度、處理時間等諸多條件,可依多孔二氧化矽粒子或有機酸的性狀來適當設定。
關於處理的態樣,可向多孔二氧化矽粒子的水系分散液添加矽烷偶合劑,及視需要的酸或鹼,或者可視需要於添加有酸或鹼的含矽烷偶合劑的水溶液中添加多孔二氧化矽粒子或其分散液。
另外,本發明的蛋白質固定化用載體的製造方法中,所使用的有機酸可例舉己二酸、丁二酸、戊二酸、庚二酸、 辛二酸、壬二酸、癸二酸等二羧酸等。
利用有機酸的多孔二氧化矽粒子的處理無特別限制,可用周知的處理方法。例如,可向分散於適當水系溶劑中的表面具胺基的多孔二氧化矽粒子(粉體狀)添加所需有機酸,視需要邊加熱邊攪拌,再以過濾、乾燥等而得蛋白質固定化用載體。原料的多孔二氧化矽粒子可以暫時分散於乙醇等適當極性溶劑中的狀態來使用。此外,上述表面具胺基的多孔二氧化矽粒子,是以具胺基的矽烷偶合劑處理表面具矽烷醇基的多孔二氧化矽粒子而得。此種多孔二氧化矽粒子的處理大多情況下可在空氣中進行,但視需要亦可於惰性氣體環境下進行。加熱溫度、處理時間等諸多條件可依多孔二氧化矽粒子或有機酸的性狀來適當設定。
2.固定化蛋白質 2-1.固定化蛋白質
本發明中,上述蛋白質固定化用載體是使蛋白質固定化而以固定化蛋白質的形式使用。即,本發明的固定化蛋白質是在上述蛋白質固定化用載體上固定蛋白質而成。
本發明較佳態樣中的固定化蛋白質是將酶作為蛋白質而固定的固定化酶,但這並不意味構成固定化酶的蛋白質限定為酶,其亦可為將例如抗體等其他種類的蛋白質固定於上述蛋白質固定化用載體上而成的固定化蛋白質。
蛋白質
本發明的固定化蛋白質所使用的蛋白質的種類並無特別限制。但,就觸媒反應中的使用等對工業用途的應用的 觀點而言,可例舉酶作為較佳的蛋白質。
應用於本發明的固定化蛋白質的酶可例舉:催化氧化還原反應的氧化還原酶(oxidoreductase)、使官能基或原子團在分子間轉移的轉移酶(transferase)、催化水解反應的水解酶(hydrolase)、催化脫去反應或加成反應的解離酶(lyase)、對異構物的結構轉換進行催化的異構酶、利用三磷酸腺苷(adenosine triphosphate)的水解能量來使2個分子結合的連接酶(ligase)等,但並不限定於該些酶。
氧化還原酶可例舉:參與由醇變醛的反應的醇脫氫酶(alcohol dehydrogenase)、參與由醛變羧酸的反應的醛脫氫酶(aldehyde dehydrogenase)及醛氧化酶(aldehyde oxidase)、參與由一氧化碳向二氧化碳的反應的一氧化碳脫氫酶、參與L-胺基酸與2-氧酸(2-oxo-acid)的相互轉變的L-胺基酸氧化酶、參與由醛糖(aldose)變糖醇(sugar alcohol)的反應的醛糖還原酶(aldose reductase)等各種氧化酶及還原酶。
轉移酶可例舉:參與甲基的重排的甲基轉移酶,參與羧基的重排的羧基轉移酶,參與醛基、酮基的重排的轉醛醇酶(transaldolase),參與醯基的重排的醯基轉移酶,參與糖基(glycosyl)的重排的糖基轉移酶,參與胺基的重排的胺基轉移酶,參與磷酸基的重排的磷酸轉移酶(phosphotransferase)、參與硫基的重排的磺基轉移酶(sulfotransferase)等。
水解酶可例舉:參與酯水解的酯酶(esterase)、參與 肽(peptide)鍵水解的蛋白酶(protease)、參與糖類水解的糖苷酶(glycosidase)等。此處,酯酶的代表例可舉脂肪酶(lipase),糖苷酶的代表例可舉澱粉酶、乳糖酶(lactase)、麥芽糖酶(maltase)、蔗糖酶(saccharase)、溶菌酶(lysozyme)等。
解離酶可例舉:參與羧基的加成或脫去的羧酶(carboxylase)或脫羧酶(decarboxylase)、參與醛醇縮合及其逆反應的醛解離酶、脫水酶(dehydratase)等。此處,醛解離酶可例舉去氧核糖醛縮酶等。
異構酶可例舉參與基質內不對稱中心的異構化的表異構酶(epimerase)及消旋酶等。此處消旋酶的代表例可舉參與L-胺基酸與D-胺基酸的相互間轉變的胺基酸消旋酶。
連接酶可例舉參與由L-天冬醯胺酸(L-asparaginic acid)及氨來合成L-天冬醯胺(L-asparagine)的反應的天冬醯胺合成酶(asparagine synthetase)等。
另外,本發明的蛋白質固定化用載體上所固定的蛋白質除了上述酶以外,亦可為抗體等其他種類的蛋白質。另外,亦可為由多個多肽鏈所構成的複合酶。此種複合酶可例舉蛋白酶體(proteasome)、纖維素體(cellulosome)等,但並不限於該些例子。
本發明的蛋白質固定化用載體可固定周知的蛋白質或酶。然如上所述,蛋白質固定化用載體因其孔徑分佈中的峰值孔徑為2~200nm,較佳為2~50nm,故更佳的是所固定的蛋白質或酶的大小亦在該範圍內。另外,進而較佳為 推薦3~90nm的範圍,更佳為推薦3~45nm的範圍。
另外,當本發明的蛋白質固定化用載體或酶固定化用載體的表面具有矽烷醇基或陽離子交換基時,由於該蛋白質固定化用載體或酶固定化用載體位於酸性側,故特別適合於蛋白質的總電荷與pH的相關圖所表示的該蛋白質固有的荷電曲線中與該蛋白質的等電點(總電荷成為0的pH)相比酸性更強的pH環境中的蛋白質或酶的固定化。
另一方面,當本發明的蛋白質固定化用載體或酶固定化用載體的表面具有陰離子交換基時,由於該蛋白質或酶固定化用載體位於鹼性側,故特別適合於與該蛋白質的等電點相比鹼性更強的pH環境中的蛋白質或者酶的固定化。
另外,當本發明的蛋白質固定化用載體或酶固定化用載體的表面具有疏水性有機基時,即適合於疏水性高的蛋白質或酶的固定化。
2-2.固定化蛋白質的製造方法
本發明的固定化蛋白質的製造方法只要可達到本發明的目的,則無特別限定,通常可藉由使所需的蛋白質固定於上述蛋白質固定化用載體上來製造。
其較佳方法中,本發明的固定化蛋白質可使蛋白質吸附於上述蛋白質固定化用載體上而製造。該方法可以最單純的步驟來固定蛋白質,故可工業量產,另可使用種類廣泛的官能基作為蛋白質固定化用載體表面的官能基,故具有可對應多種的蛋白質固定化的優點。通常,可在適當的緩衝溶液中,使蛋白質吸附於蛋白質固定化用載體上。此 時pH或溫度等反應條件可依蛋白質、構成蛋白質固定化用載體的多孔二氧化矽粒子的性狀來適當調整。例如,關於溫度,就將蛋白質的變質抑制為最小限度的觀點而言,可為0~10℃,如4℃附近;就在不產生蛋白質的變性的範圍內快速進行反應的觀點而言,可為20~40℃,如30~37℃附近。但大多情況下,蛋白質於蛋白質固定化用載體上的吸附是在常溫附近進行,通常是在4~25℃的範圍內進行。
此處所謂「吸附」,是表示亦可包含藉由氫鍵、靜電的相互作用、親和性相關的相互作用以外的非共價鍵的相互作用來進行的固定化的概念。
此處,本發明的固定化蛋白質被認為或許是以介於蛋白質固定化用載體表面的矽烷醇基與蛋白質之間的氫鍵而固定化,但於包含表面具陰離子交換基或陽離子交換基的多孔二氧化矽粒子時,蛋白質的固定化時亦可利用靜電的相互作用,因此有利。
另一方面,於蛋白質固定化用載體包含表面具有如胺基或羧基等可與蛋白質形成共價鍵的官能基的多孔二氧化矽粒子時,為了進行更牢固的固定化,亦可於不損及蛋白質功能的範圍內,利用常用方法形成共價鍵,從而使蛋白質固定於蛋白質固定化用載體上。
2-3.固定化蛋白質的使用
本發明的固定化蛋白質主要用作固定化酶,其優點可例舉:經固定化的酶對基質的反應活性與對應的游離酶,即對應的未擔載的游離型酶為同等級;另外,因重複使用 而引起的活性下降與對應的游離酶相比更少。
此處當使用酶作為所固定的蛋白質時,用於與對應的未擔載的游離型酶(以下有時稱為「游離酶」)同樣的用途。
例如,可將上述氧化還原酶、轉移酶、水解酶、解離酶、異構酶、連接酶作為固定化酶而用於包括工業用途的各種用途。例如,可將消旋酶等異構酶作為固定化酶而用於胺基酸等的異構化反應,或可將去氧核糖醛縮酶等醛解離酶作為固定化酶而用於醛醇反應等。
[實例] [各種物性的測定方法] 1.平均粒徑的測定方法 (A)利用圖像分析法的平均粒徑測定
球狀二氧化矽微粒子的平均粒徑是如下文「5.粒徑分佈的測定」項目中所述,使用掃描型電子顯微鏡及圖像分析裝置來測定。
(B)利用離心沈降法的平均粒徑的測定方法
關於多孔二氧化矽粒子的平均粒徑,先將多孔二氧化矽粒子的分散液(水或40wt%甘油溶劑,固形分濃度為0.1~5wt%)於超音波產生機(iuch公司製US-2型)中分散5分鐘。接著自添加水或甘油而適度調節濃度的分散液中取出該分散液,放入玻璃槽(長度10mm,寬度10mm,高度45cm的尺寸)中,使用離心沈降式粒徑分佈測定裝置(堀場製作所製CAPA-700)來測定平均粒徑。
2.比重的測定方法
多孔二氧化矽粒子的比重是依以下要領進行測定。
先取10g試料於坩堝中,於110℃下乾燥2小時。接著將乾燥試料在乾燥器中冷卻後,於25ml比重瓶加入此試料3~4g,添加蒸餾水使其懸浮,於60mmHg下真空脫氣1小時後,於25℃恆溫槽中調整溫度。然後添加蒸餾水至比重瓶的標線來調整體積,依比重瓶容量(25ml)與蒸餾水體積(ml)之差算出試料體積(ml),然後依所加試料的重量(g)與如上算出的體積(ml)求出比重。
3.空隙率的測定方法
多孔二氧化矽粒子的空隙率是使用上述2求出的比重,以及二氧化矽的比重(不考慮內部存在的空隙的表觀上的二氧化矽的比重),由以下式子算出:100-[上述2求出的多孔二氧化矽粒子的比重]/[二氧化矽的比重]×100=空隙率(%)。
4.圓球度的測定方法
用穿透型電子顯微鏡(日立製作所公司製H-800),以25萬倍的倍率對試料氧化物溶膠拍攝照片,對所得照片投影圖中任意50個粒子分別測定最大徑(DL)和與其正交的短徑(DS)的比(DS/DL),將其平均值作為圓球度。
5.粒徑分布的測定
使用掃描型電子顯微鏡(日本電子公司製JSM-5300)拍攝粒子(倍率為250,000倍),對該圖像的250個粒子使用圖像分析裝置(旭化成公司製IP-1000)測定平均粒徑,計算出與粒徑分布相關的變動係數(CV值)。具體而言, 對250個粒子分別測定粒徑,根據其值求出平均粒徑及粒徑的標準偏差,由下述式子來計算:變動係數(CV值)=(粒徑標準偏差(σ)/平均粒徑(Dn))×100(%)。
6.孔隙體積、孔徑的測定方法
使用氣體吸附法及水銀壓入法來測定多孔二氧化矽粒子的孔隙體積及孔徑。此處,於下述各實例、參考例及比較例中,只要無特別記載,則使用氣體吸附法進行測定。
利用氣體吸附法的孔隙體積及孔徑的測定是依據以下步驟來進行。
關於多孔二氧化矽粒子的孔隙體積,是取10g試料於坩堝中,於300℃下乾燥1小時後,加入乾燥器中,冷卻至室溫。然後取0.15g放入至玻璃槽中,使用Belsorp mini II(Bel Japan公司製)一邊進行真空脫氣一邊使試料吸附氮氣後,使其脫附,根據所得的吸附等溫線來求出相對壓0.990的點下的孔隙體積,並利用BJH法算出孔徑(峰值)。
另關於利用水銀壓入法的孔隙體積及孔徑的測定,是取10g試料於坩堝中,於300℃下乾燥1小時後,加入乾燥器中,冷卻至室溫,使用PM-33(Quanta Chrome公司製)來進行。此時,以3.5kPa~231MPa(0.5~33000psi)壓入水銀,由壓力、孔徑與壓入量的關係求出孔隙分佈。由於該方法是向約5.4nm至約5.4μm的孔隙中壓入水銀而計測,故可計測出存在於多孔二氧化矽粒子內部的孔洞與多孔二氧化矽粒子之間的空隙兩者。僅多孔二氧化矽粒 子的內部的孔洞的體積是基於針對孔徑為200nm為止的孔隙的計測結果,來算出孔隙體積及孔徑。
[原料多孔二氧化矽粒子]
本發明的實例中,作為酶固定化用載體的原料的多孔二氧化矽粒子(下稱「原料多孔二氧化矽粒子」)P1、P2、P3及P4分別使用日揮觸媒化成公司製的SILICA MICRO BEAD P-7H、SILICA MICRO BEAD P-12H、SILICA MICRO BEAD P-4H、SILICA MICRO BEAD P-20H。
此處,原料多孔二氧化矽粒子P1、P2、P3及P4是利用噴霧乾燥法來製造的。
該些原料多孔二氧化矽粒子是藉由以下步驟來製造。
對球狀二氧化矽微粒子分散於水中而成的球狀二氧化矽微粒子分散液(二氧化矽濃度30wt%)進行離心分離,製備去除了粗大粒子的球狀二氧化矽微粒子分散液。將該球狀二氧化矽微粒子分散液的固體成分濃度調整為15wt%,製成噴霧液。接著於入口溫度220℃、出口溫度50℃的條件下進行噴霧乾燥,獲得原料多孔二氧化矽粒子。
另一方面,原料多孔二氧化矽粒子G1是將二氧化矽粉碎後,利用噴霧乾燥法進行微粒子化而製造。
各原料多孔二氧化矽粒子(P1~P4及G1)的特徵記載於表1。
[實例1] [酶固定化用載體(胺基修飾型)的製備] 1.酶固定化用載體P-3N的製備
使40g粉體狀多孔二氧化矽粒子P3在空氣中分散於155g乙醇中,攪拌5分鐘後添加13g的純水,進一步攪拌30分鐘。
接著於空氣中添加6g矽烷偶合劑(信越化學工業公司製KBM-903(3-胺丙基三甲氧基矽烷)),攪拌30分鐘後添加0.36g的29%氨水,攪拌30分鐘,再升溫至50℃,於50℃下繼續攪拌20小時。其後將反應混合物冷卻至室溫,利用過濾回收固體部分,將該固體部分於150℃下乾燥2小時,而得約35g的酶固定化用載體P-3N。
2.酶固定化用載體P-1N、P-2N、P-4N及G-1N的製備
酶固定化用載體P-1N、P-2N、P-4N及G-1N的製備是除了分別使用多孔二氧化矽粒子P1、P2、P4及G1代替上述多孔二氧化矽粒子P3來作為原料以外,利用與製備上述酶固定化用載體P-3N的情況同樣的方法來進行。
所製備的各酶固定化用載體(P-1N、P-2N、P-3N、P-4N及G-1N)的特徵記載於表1。
[實例2] [酶固定化用載體(羧基修飾型)的製備] 1.酶固定化用載體P-3C的製備
使40g粉體狀多孔二氧化矽粒子P-3N在空氣中分散於155g的乙醇中,攪拌5分鐘後添加13g的純水,進一步攪拌30分鐘。
接著在空氣中添加6g己二酸[關東化學公司製],攪拌30分鐘,再升溫至50℃,於50℃下繼續攪拌20小時。 其後將反應混合物冷卻至室溫,利用過濾回收固體部分,將該固體部分於150℃下乾燥2小時,而得約35g的酶固定化用載體P-3C。
2.酶固定化用載體P-1C、P-2C、P-4C及G-1C的製備
酶固定化用載體P-1C、P-2C、P-4C及G-1C的製備是除了分別使用多孔二氧化矽粒子P1、P2、P4及G1代替上述多孔二氧化矽粒子P3來作為原料以外,利用與製備上述酶固定化用載體P-3C的情況同樣的方法來進行。
所製備的各酶固定化用載體(P-1C、P-2C、P-3C、P-4C及G-1C)的特徵記載於表1。
[實例3] [酶固定化用載體(苯基胺基修飾型)的製備] 1.酶固定化用載體P-3Ph的製備
使40g粉體狀多孔二氧化矽粒子P3在空氣中分散於155g的乙醇中,攪拌5分鐘後添加13g的純水,進一步攪拌30分鐘。
接著在空氣中添加6g矽烷偶合劑(信越化學工業公司製KBM-573(N-苯基-3-胺丙基三甲氧基矽烷)),攪拌30分鐘後添加0.36g的29%氨水,攪拌30分鐘,再升溫至50℃,於50℃下續攪拌20小時。其後將反應混合物冷卻至室溫,利用過濾回收固體部分,將該固體部分於150℃下乾燥2小時,而得約35g的酶固定化用載體P-3Ph。
2.酶固定化用載體P-1Ph、P-2Ph、P-4Ph及G-1Ph的製備
酶固定化用載體P-1Ph、P-2Ph、P-4Ph及G-1Ph的製 備是除了分別使用多孔二氧化矽粒子P1、P2、P4及G1代替上述多孔二氧化矽粒子P3來作為原料以外,利用與製備上述酶固定化用載體P-3Ph的情況同樣的方法來進行。
所製備的各酶固定化用載體(P-1Ph、P-2Ph、P-3Ph、P-4Ph及G-1Ph)的特徵記載於表1。
[參考例1] [酶固定化用載體(矽烷醇基未處理型)]
關於矽烷醇基未處理型的酶固定化用載體,並不利用矽烷偶合劑等藥劑對多孔二氧化矽粒子P1、P2、P3、P4及G1進行表面修飾處理,而是以其原本的狀態來分別用作酶固定化用載體P-1、P-2、P-3、P-4及G-1。
[比較例1]
作為比較例使用的FSM型多孔二氧化矽粒子是利用文獻周知的方法(如日本專利特開2004-83501號公報記載的方法),向δ-Na2Si2O5(水矽鈉石)的水系分散液中添加適當的界面活性劑(膨潤劑),使其於加熱下反應,過濾後進行水洗,並於風乾後進行煅燒來製備。此處,孔徑為4.0nm、4.2nm、7.5nm、8.0nm、8.5nm、9.2nm的FSM型多孔二氧化矽粒子是將1,3,5-三異丙基苯作為膨潤劑,分別使用0ml、0ml、4.5ml、5.5ml、6.0ml、11.2ml而得。
作為比較例使用的各FSM型多孔二氧化矽粒子的特徵亦記載於表1。該些FSM型多孔二氧化矽粒子並不特別利用矽烷偶合劑等藥劑進行表面修飾處理,而是以其原本的狀態來用作酶固定化用載體。
[實例4] 1.固定化酶(消旋酶吸附型)的製備及酶吸附量的測定
準備緩衝溶液(20mM磷酸鉀與50mM氯化鉀的混合物,pH為7.5),以及將消旋酶溶解於緩衝溶液中而成的消旋酶溶液(消旋酶濃度為2mg/ml)。
接著混合1ml緩衝溶液、1ml消旋酶溶液及10mg的酶固定化用載體混合,製成混合溶液。將該混合溶液在培養室中於4℃下保存24小時,以製備消旋酶吸附於酶固定化用載體上而成的固定化酶。
接著用離心分離處理裝置[Eppendorf公司製centrifuge 5417R](21000G,1分鐘)對上述混合溶液作離心分離處理,使固定化酶沈澱,使用二喹啉甲酸法(BCA法)測定上清液中的消旋酶量,以其值作為未吸附的消旋酶量。然後,以自最初投入的消旋酶量(2mg)中減去未吸附的消旋酶量而得的值為吸附於酶固定化用載體上的消旋酶量。
對實例1~3製備的各酶固定化用載體分別作該實驗。
2.藉由二喹啉甲酸法(BCA法)的蛋白質的定量方法
消旋酶的定量是使用市售的定量試劑套組(Thermo Fisher Scientific公司製BCA Protein Assay Reagent。
3.固定化酶(消旋酶)的比活性試驗 [試料]
將固定化酶(於酶固定化用載體上吸附2μg消旋酶而成的相當量)及2.5ml的基質溶液(10mM的L-丙胺酸、10mM磷酸鉀,pH為7.5)在試驗管中混合,使其於溫度 30℃的條件下反應,獲得在透明的水溶液中懸浮有極少量的二氧化矽粒子的狀態的懸浮液。將該懸浮液作為試料。
[基於L-Ala的圓二色性隨時間變化率進行的比活性測定]
將包含上述懸浮液的試料放入1cm見方的石英槽,設置於圓二色性分散計(日本分光公司製J-820)上。槽中的懸浮液是利用磁力攪拌器進行攪拌,石英槽是利用帕耳帖(Peltier)式溫度控制裝置來保持在30℃。
接著,以1秒間隔來測定圓二色性分散計的L-丙胺酸的圓偏光的波長204nm下的橢圓率,共測定5分鐘。將L-丙胺酸的莫耳橢圓率設為23mdeg/mM來計測懸浮液中的L-丙胺酸濃度,根據每單位時間內轉換的丙胺酸量來計算活性。比活性是由下述式子求出:比活性=[固定於中孔二氧化矽上的酶的活性]/[固定化前酶的活性]。
各固定化酶(P-2、P-4、P-2N、P-4N、P-1N、P-3N及G-1N)的比活性示於圖1。
另外,圖1中一併表示下述固定化酶的比活性,以作為比較例。此外,以消旋酶對於酶固定化用載體的吸附量為代表,以與上述同樣的條件進行測定:1)用離子交換法使消旋酶固定於載體(DEAE Sepharose,GE Healthcare Japan公司製)上而成的固定化酶(DEAE);2)用金屬螯合物法固定消旋酶於載體(Ni Sepharose 6 Fast Flow,GE Healthcare Japan公司)的固定化酶(Ni Seph.);3)用共價鍵法固定消旋酶於載體(NHS-activated Sepharose 4 Fast Flow,GE Healthcare Japan)的固定化酶(NHS);4)使消旋酶固定於孔徑4.2nm的FSM上而成的固定化酶(FSM-4.2);5)使消旋酶固定於孔徑8.5nm的FSM上而成的固定化酶(FSM-8.5);6)使消旋酶固定於孔徑9.2nm的FSM上而成的固定化酶(FSM-9.2)。
由圖1可知,本發明的固定化酶(P-2、P-4、P-2N、P-4N、P-1N、P-3N及G-1N)與比較例的固定化酶相比,均表現出同級以上的比活性。
4.固定化酶(消旋酶)重複利用時的比活性試驗
(1)將固定化酶(使2μg消旋酶吸附於3g酶固定化用載體上而成)及1ml基質溶液(5mML-Ala,pH=8.5)在試驗管中混合,於30℃條件下用Tietech公司製Deep Well Maximizer於1800rpm下進行2分鐘懸浮反應而得懸浮液。
接著用離心分離處理裝置[Eppendorf公司製centrifuge 5417R]對該懸浮液進行離心分離處理(21000G,1分鐘),使固定化酶沈澱,去除上清液,再以相同條件進行離心分離處理,完全去除上清液而回收固定化酶。
將回收的固定化酶及與上述同樣的基質溶液1ml在試驗管中混合,於30℃條件下用Tietech公司製Deep Well Maximizer於1800rpm下進行2分鐘懸浮反應而得懸浮液。
接著用離心分離處理裝置對該懸浮液作離心分離處理(21000G,1分鐘),使固定化酶沈澱。此處分離上清液, 測定其中D-Ala的量以求出活性。將以上操作重複20次,測定各固定化酶的活性以計算比活性,其結果示於圖2。
由其結果可知,本發明的固定化酶(P-2N、P-4N、P-2、P-1N、P-1、P-4、P-3及P-3N)即便重複利用,亦可維持優異的比活性。
(2)對固定化酶的重複使用活性觀察至80次為止的結果示於圖3。由此可確認,與作為比較例的FSM8.5相較,重複利用時的活性維持性高。此相對於離心分離時FSM8.5被機械破壞的情況,本發明的固定化酶由於未產生上述破壞,故可以說最終獲得穩定的活性。
[實例5](KpDERA吸附型的固定化酶的性能試驗)
於以與實例4同樣的方式準備的載體上固定去氧核糖醛縮酶(DERA)。DERA是參與圖4所示反應的酶。
此處,將2-去氧核糖-5-磷酸酯(DR5P)轉變為乙醛及甘油醛-3-磷酸酯(G3P)的反應作為正反應,將G3P及乙醛轉變為DR5P的反應作為逆反應。此外,該DERA作為藉由圖5所示的串聯式醛醇反應來合成作為醫藥中間體的內酯時的酶,亦為備受期待的酶。然而,上述反應因為由醛引起失活,故迄今未得到實用化的反應。
1.固定化酶的製備
準備緩衝溶液(50mM三乙醇胺,pH=7.5),以及將來自克雷伯氏肺炎桿菌(Klebsiella pneumoniae,Kp)的去氧核糖醛縮酶(下稱「KpDERA」)溶於緩衝溶液中而成的KpDERA溶液(KpDERA濃度為2mg/ml)。
於20mg的酶固定化用載體P2中分別混合1ml緩衝溶液及1mlKpDERA溶液,於4℃下保存24小時而得懸浮液狀的固定化酶(KpDERA/酶固定化用載體系)。此外,亦使用酶固定化用載體P4或G1N製備上述固定化酶。
在比較例中,除了將上述20mg的酶固定化用載體替代為10mg的FSM-4.0以外,以與上述同樣的方式獲得懸浮液狀的固定化酶(KpDERA/FSM系)。
另外,對於FSM8.0、FSM8.5或FSM9.2亦同樣地製備固定化酶。
2.固定化酶中的酶吸附量的測定
利用離心處理裝置[Eppendorf公司製centrifuge 5417R](21000G,1分鐘)對上述1所得的各固定化酶(懸浮液)進行離心分離處理,使固定化酶沈澱,[以二喹啉甲酸(BCA)法]測定上清液中的KpDERA量,將該值作為未吸附KpDERA的量。此處,將自最初投入的KpDERA量(2mg)中減去未吸附KpDERA的量而得的值作為吸附於酶固定化用載體上的KpDERA量。
3.固定化酶與基質[DR5P]的反應
使固定化酶(使5μg的KpDERA吸附於37.5μg酶固定化用載體上而成)及2.0ml基質溶液(1mM的2-去氧核糖-5-磷酸酯[DR5P])在試驗管中30℃下反應得反應液。
該反應液含有磷酸丙糖異構酶、甘油醛-3-磷酸酯脫氫酶及0.2mM的NADH,由NADH的吸光度(波長340nm)變化來測定偶合反應,以間接算出DR5P的變化量(正反 應)。以1分鐘內分解1μmol基質的活性作為1個單位。
測定吸光度時使用紫外線-可見光分光光度計(島津製作所製,型號:UV-2450)。
4.固定化酶與基質[DG3P]的反應
使各固定化酶(使1.05μg的KpDERA吸附於18.4μg的各酶固定化用載體上而成)分別與350μl基質溶液[100mM三乙醇胺(pH=7.5)、100mM的DL-甘油三磷酸酯、300mM乙醛]在25℃下反應20分鐘,分別獲得反應液。
接著將各反應液40μl轉移至其他試管中進行離心分離處理(21000G,2分鐘),使各固定化酶沈澱。
將20μl的上清液轉移至新的試管中,添加8μl的60%過氯酸,在冰上進行10分鐘處理。
接著,添加13.4μl的1M氫氧化鈉及179μl的1M三乙醇胺(pH=7.5)來中和後,利用半胱胺酸-硫酸法測定所產生的DR5P的量(逆反應)。
如圖6所示,固定於P-4、P-2、G-1N上的DERA對正反應表現出與各FSM的情況相較下更高的比活性。另一方面,對於逆反應,如表2所示,P-4維持比較高的比活性,表現出與FSM-9.2相較下稍高的比活性。
5.固定化的DERA對乙醛的耐性的確認
為了確認固定化的DERA對乙醛的耐性提高,先評價乙醛對未擔載於載體上的游離(Free)酶的正反應的影響。
用300mM的乙醛在4℃下對0.2單位的KpDERA培養一定時間。以離心管柱(Spin Column)(Thermo Fisher Scientific)去除醛後,藉由測定正反應來求出殘留的活性。
如圖7所示,當乙醛濃度為300mM以上時,基本上1小時內即失去活性。
6.乙醛對固定化酶的正反應的影響的確認
接著評價乙醛對固定化酶的正反應的影響。
用300mM乙醛在4℃下將吸附有0.2單位KpDERA的本發明的固定化酶培養一定時間。以50mM的TEA(pH為7.5)清洗載體後,藉由測定正反應來求出殘留的活性。
如圖7所示,固定於FSM-9.2上的DERA及固定於P-4上的DERA與未擔載於載體上的游離DERA相較下,均可見乙醛耐性之提高。
7.乙醛對固定化酶的逆反應的影響的確認
接著評價乙醛對固定化酶的逆反應的影響。
使吸附有0.2單位KpDERA的本發明固定化酶與350μl基質溶液(100mM三乙醇胺[pH為7.5]、100mM的DL-甘油三磷酸酯、300mM乙醛)在25℃下進行一定的反應。
將25μl反應液轉移至新的試管中,離心(21000G,2分鐘)使載體沈澱。然後將20μl上清液轉移至新試管中,添加8μl的60%過氯酸,於冰上作10分鐘處理。續添加 13.4μl的1M氫氧化鈉及179μl的1M三乙醇胺(pH為7.5)中和後,用半胱胺酸-硫酸法測定所產生DR5P的量。
如圖8所示,對於逆反應而言,P-4的耐性顯著提高。
8.對內酯合成反應的應用
內酯是作為醫藥品中間體的重要物質,為簡化合成路徑,期待藉由圖5所示利用DERA的串聯式醛醇合成反應來合成內酯,但因醛會引起失活,故未得到實用化的反應。因此,將來自乙醛的藉由串聯式醛醇反應而得的內酯前驅物(2,4,6-三去氧-D-赤六吡喃糖苷(2,4,6-trideoxy-D-erythro-hexopyranoside))生成量進行比較。
將吸附有50μg的KpDERA的FSM或本發明的固定化酶的中孔二氧化矽添加於1ml的500mM乙醛溶液,於25℃下反應24小時。對反應混合物作離心分離(21000G,1分鐘),將4μl上清液點在薄層層析板(Silica Gel 60,Merck)上,以1-丁醇:乙酸:水=4:1:1(vol/vol/vol)展開後,利用對茴香醛乙醇液發色。其結果示於圖9。
使用固定於P-4上的DERA的系統與未擔載於載體上的游離DERA相較下,生成4倍量的2,4,6-三去氧-D-赤六吡喃糖苷。由此可確認,藉由固定於P-4上,可提高對於作為基質的醛的耐性。
[實例6](腈水合酶吸附型的固定化酶的性能試驗) 1.固定化酶的製備
準備緩衝溶液(20mM磷酸鉀與50mM氯化鉀的混合物,pH=7.5),以及將腈水合酶(NHase)溶於緩衝溶液 中而成的腈水合酶溶液(腈水合酶濃度為2mg/ml)。
將1ml的緩衝溶液、1ml的消旋酶溶液及10mg的酶固定化用載體混合,製成混合溶液。將混合溶液在培養室中於溫度4℃下保存24小時,以製備消旋酶吸附於酶固定化用載體上而成的固定化酶。
2.固定化酶中的腈水合酶的比活性測定
將所得固定化酶懸浮於2ml的0.1M磷酸緩衝液(pH為7.5)中,再將2ml含20mM甲基丙烯腈的磷酸緩衝液(活性測定液)加入石英光析管,設於紫外分光光度計上。
向活性測定液添加包含相當於10μg的腈水合酶的載體懸浮液,同時開始對波長224nm的吸光度增加進行記錄。將所生成的甲基丙烯醯胺的吸光係數設為ε=2.52mM-1cm-1,且將1分鐘內催化1μmol基質的活性作為1個單位,計算出1mg的NHase所具有的比活性。固定於各種載體上的NHase的比活性示於圖10。
G-1N表現出與未擔載於載體上的游離(free)酶相當的高比活性。
關於利用實例4~6的酶及與該些實例中記載的同樣方法而固定化的蟲漆酶、葡萄糖澱粉酶、澱粉酶及蛋白酶,與其他的酶一起,將以作為表示酶特性的指標的分子量及等電點所製成的圖示於圖11中。該圖中酶的次單元亦以數字表現。如此可確認將各種酶全部固定化而得高活性。
[實例7]
對改變一次粒子的平均粒徑大小而分別合成的各蛋白 質固定化用載體(多孔二氧化矽粒子)的孔徑分佈作測定。
1.用於測定的蛋白質固定化用載體(多孔二氧化矽粒子)
以下記載本實例中用於測定孔徑分佈的各蛋白質固定化用載體(多孔二氧化矽粒子)的製造方法等。
孔徑34nm的蛋白質固定化用載體(多孔二氧化矽粒子X1)是以如下方式獲得:對二氧化矽溶膠(日揮觸媒化成公司製SI-80P,平均粒徑80nm,濃度40wt%)的水稀釋品(二氧化矽濃度15wt%)2000g作陽離子交換,調整成pH=2.0後,添加矽酸液(二氧化矽濃度4.8wt%)以成為[二氧化矽溶膠中的二氧化矽]/[矽酸液中的二氧化矽]=9/1的比例,並攪拌以製備漿料。將該球狀二氧化矽微粒子分散液的固體成分濃度調為15wt%,製成噴霧液。再於入口溫度220℃、出口溫度50℃的條件下進行噴霧乾燥。
孔徑57nm的蛋白質固定化用載體(多孔二氧化矽粒子X2)是以如下方式獲得:將二氧化矽溶膠(日揮觸媒化成公司製SS-160,平均粒徑160nm,濃度40wt%)的水稀釋品(二氧化矽濃度15wt%)2000g進行陽離子交換,調成pH=2.0後,添加矽酸液(二氧化矽濃度4.8wt%)以成為[二氧化矽溶膠中的二氧化矽]/[矽酸液中的二氧化矽]=9/1的比例,並攪拌以製備漿料。將該球狀二氧化矽微粒子分散液的固體成分濃度調成15wt%,製成噴霧液。再於入口溫度220℃、出口溫度50℃的條件下進行噴霧乾燥。
孔徑95nm的蛋白質固定化用載體(多孔二氧化矽粒子X3)是以如下方式獲得:對2000g的二氧化矽溶膠(日 揮觸媒化成公司製SS-300,平均粒徑300nm,濃度40wt%)的水稀釋品(二氧化矽濃度15wt%)進行陽離子交換,調成pH=2.0後,添加矽酸液(二氧化矽濃度為4.8wt%)以成為[二氧化矽溶膠中的二氧化矽]/[矽酸液中的二氧化矽]=9/1的比例,並攪拌以製備漿料。將該球狀二氧化矽微粒子分散液的固體成分濃度調成15wt%,製成噴霧液。再於入口溫度220℃、出口溫度50℃的條件下進行噴霧乾燥。
所得多孔二氧化矽粒子X1、X2及X3的特徵列於表3。
另外,分別使用上述多孔二氧化矽粒子P3、P1、P2及P4作為孔徑為4nm、7nm、12nm及20nm的蛋白質固定化用載體(多孔二氧化矽粒子)。
此外,上述多孔二氧化矽粒子X1~X3及上述多孔二氧化矽粒子P1~P4均於粒子表面具有矽烷醇基。
2.對於各多孔二氧化矽粒子的孔徑分佈的測定
對上述蛋白質固定化用載體(多孔二氧化矽粒子)X1~ X3及P1~P4分別測定孔徑分佈。此處,對孔徑20nm為止的載體是利用氮吸附法測定孔隙體積及孔徑,對孔徑大於20nm的載體是利用水銀壓入法測定孔隙體積及孔徑。
測得的孔徑分佈示於圖12,其中以連結圓點的曲線表示的氮吸附法所得孔隙分佈是由Log微分孔隙體積分佈,即相對於孔徑d(nm)的微分氮氣吸附量△V/△(log d)(圖12中為方便起見而表為「dV/dlogd)」,V表示氮氣吸附體積)的關係來表示。另外,以連結三角點的曲線表示的水銀壓入法所得孔隙分佈是由相對於孔徑d的△Vd(圖12中為方便起見而表為「dVd」)的關係來表示。
此外,圖12中波峰所標的值是各載體的孔徑平均值。
酶分子大半可固定於孔徑20nm左右的孔隙內,但於形成多聚體發揮活性的類型的酶中,亦有大小超過20nm者。如上述,本發明的蛋白質固定化用載體可使孔徑大於20nm,而可固定形成超過20nm的多聚體的酶。因此上述結果表明,本發明可提供具有對該些酶的固定化適合的大小的孔隙的蛋白質固定化用載體(多孔二氧化矽粒子)。
[產業利用性]
本發明的蛋白質固定化用載體可用作酶等的載體。
另外,本發明的固定化蛋白質可在利用酶的合成反應,例如化學合成、精細化學的合成、醫藥品合成或者食品製造等技術領域中,改善各種合成反應中所應用的酶的穩定性或耐久性,提高目標生產物的生產性,實現目標物質的連續生產或省略酶自生產物中的分離步驟等。另外,本發明的固定化蛋白質可應用於各種酶。
圖1繪示固定於各種蛋白質固定化用載 體上的消旋酶的比活性。
圖2繪示因重複利用而引起的各種固定化消旋酶的比活性的變化。
圖3繪示因重複利用而引起的各種固定化消旋酶的比活性的變化。
圖4是去氧核糖醛縮酶所介入的反應的示意圖。
圖5是利用以去氧核糖醛縮酶(DERA)催化之串聯醛醇反應的內酯合成反應的示意圖。
圖6繪示固定於各種蛋白質固定化用載體上的DERA的對正反應的比活性。
圖7繪示乙醛中的固定化DERA對正反應的比活性的隨時間變化與游離DERA的比較。
圖8繪示乙醛中的固定化DERA的逆反應生成物量的隨時間變化與游離DERA的比較。
圖9繪示固定化DERA的內酯生成量與游離DERA的比較。
圖10繪示固定於各種蛋白質固定化用載體上的腈水合酶(NHase)的比活性。
圖11繪示包含本發明的固定化酶的各種酶的等電點與分子量的分佈。
圖12繪示各種蛋白質固定化用載體的孔徑分佈(連結圓點的曲線表示氮吸附法測得的孔徑分佈,連結三角點的曲線表示水銀壓入法測得的孔徑分布;各曲線的波峰附近所標註的值表示蛋白質固定化用載體的孔徑)。

Claims (17)

  1. 一種蛋白質固定化用載體,其特徵在於:包含內部具有粒子間空隙結構的多孔二氧化矽粒子,該多孔二氧化矽粒子滿足下述(1)~(6),且表面具有矽烷醇基、陰離子交換基或陽離子交換基:(1)平均粒徑(Da)為0.5~100μm;(2)比表面積為10~250m2/g;(3)孔隙體積(Pv)為0.10~0.32ml/g;(4)在X軸為孔徑(Ps)、Y軸為將孔隙體積對孔徑微分而得的值的孔徑分布中,峰值孔徑Pms為2~200nm;(5)孔徑在Pms×0.75~Pms×1.25nm範圍內的孔隙的合計孔隙體積為總孔隙體積的70%以上;(6)空隙率為5~50%。
  2. 如申請專利範圍第1項所述之蛋白質固定化用載體,其中該多孔二氧化矽粒子包含球狀二氧化矽微粒子集合而成的球狀集合體,該球狀二氧化矽微粒子的平均粒徑(Db)為10~500nm,圓球度為0.9~1,粒徑變動係數(CV值)為2~10%,且粒徑分布表現出單分散相。
  3. 一種蛋白質固定化用載體,其特徵在於:包含內部具有粒子間空隙結構的多孔二氧化矽粒子,該多孔二氧化矽粒子滿足下述(1)~(6),且表面具有矽烷醇基、陰離子交換基或陽離子交換基:(1)平均粒徑(Da)為0.5~50μm;(2)比表面積為10~250m2/g; (3)孔隙體積(Pv)為0.10~0.32ml/g;(4)在X軸為孔徑(Ps)、Y軸為將孔隙體積對孔徑微分而得的值的孔徑分布中,峰值孔徑Pms為2~50nm;(5)孔徑在Pms×0.75~Pms×1.25nm範圍內的孔隙的合計孔隙體積為總孔隙體積的80%以上;(6)空隙率為5~50%。
  4. 如申請專利範圍第3項所述之蛋白質固定化用載體,其中該多孔二氧化矽粒子包含球狀二氧化矽微粒子集合而成的球狀集合體,該球狀二氧化矽微粒子的平均粒徑(Db)為10~50nm,圓球度為0.9~1,粒徑變動係數(CV值)為2~10%,且粒徑分布表現出單分散相。
  5. 如申請專利範圍第1~4項中任一項所述之蛋白質固定化用載體,其中該陰離子交換基是結構中包含胺基或四級銨基的取代基。
  6. 如申請專利範圍第1~4項中任一項所述之蛋白質固定化用載體,其中該陽離子交換基是結構中包含選自羧基、磷酸基及磺酸基的任一基團的取代基。
  7. 如申請專利範圍第1~4項中任一項所述之蛋白質固定化用載體,其中該多孔二氧化矽粒子經過矽烷偶合劑或有機酸之表面處理。
  8. 如申請專利範圍第1~4項中任一項所述之蛋白質固定化用載體,其中該多孔二氧化矽粒子是將經過含胺基的矽烷偶合劑之處理的多孔二氧化矽粒子,進一步以有機酸作表面處理而成。
  9. 如申請專利範圍第1~4項中任一項所述之蛋白質固定化用載體,其用於酶的固定化。
  10. 如申請專利範圍第1~4項中任一項所述之蛋白質固定化用載體,其用於複合酶的固定化。
  11. 一種固定化蛋白質,包括:如申請專利範圍第1~8項中任一項所述之蛋白質固定化用載體,以及固定於該載體上的蛋白質。
  12. 如申請專利範圍第11項所述之固定化蛋白質,其中該蛋白質為酶。
  13. 如申請專利範圍第12項所述之固定化蛋白質,其中該酶為消旋酶。
  14. 如申請專利範圍第12項所述之固定化蛋白質,其中該酶為去氧核糖醛縮酶。
  15. 一種固定化蛋白質的製造方法,包括使蛋白質吸附於如申請專利範圍第1~8項中任一項所述之蛋白質固定化用載體的步驟。
  16. 如申請專利範圍第15項所述之固定化蛋白質的製造方法,其中該蛋白質為酶。
  17. 如申請專利範圍第15或16項所述之固定化蛋白質的製造方法,其中於緩衝溶液中,在4~25℃的範圍內使蛋白質吸附於蛋白質固定化用載體上。
TW100120178A 2010-06-09 2011-06-09 蛋白質固定化用載體、固定化蛋白質及其製造方法 TWI494429B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010132375 2010-06-09

Publications (2)

Publication Number Publication Date
TW201204829A TW201204829A (en) 2012-02-01
TWI494429B true TWI494429B (zh) 2015-08-01

Family

ID=45098140

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120178A TWI494429B (zh) 2010-06-09 2011-06-09 蛋白質固定化用載體、固定化蛋白質及其製造方法

Country Status (5)

Country Link
US (1) US20130109072A1 (zh)
EP (1) EP2592140A4 (zh)
JP (1) JP5734106B2 (zh)
TW (1) TWI494429B (zh)
WO (1) WO2011155536A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387975A (zh) 2012-05-11 2013-11-13 上海天伟生物制药有限公司 一种固定化环脂肽酰基转移酶及其制备方法和用途
WO2014058570A1 (en) 2012-09-17 2014-04-17 Alltech Associates, Inc. Chromatography media and devices
JP6152554B2 (ja) * 2012-11-28 2017-06-28 国立研究開発法人産業技術総合研究所 Dna合成酵素−シリカ系ナノ空孔材料複合体、その製造方法及び用途
JP6323861B2 (ja) * 2013-09-04 2018-05-16 リコーイメージング株式会社 表面修飾メソポーラスシリカナノ粒子の製造方法
ES2887110T3 (es) 2014-01-16 2021-12-21 Grace W R & Co Medios para cromatografía de afinidad y dispositivos para cromatografía
CN107847907A (zh) 2014-05-02 2018-03-27 格雷斯公司 官能化载体材料以及制备和使用官能化载体材料的方法
CN104293763B (zh) * 2014-08-28 2017-12-26 四川大学 脂肪酶固定化载体及其固定脂肪酶的方法
JP2016088862A (ja) * 2014-10-31 2016-05-23 国立大学法人京都大学 人工分子シャペロン、カラム及びタンパク質のリフォールディング方法
EP3302784B1 (en) 2015-06-05 2021-10-06 W.R. Grace & Co.-Conn. Adsorbent bioprocessing clarification agents and methods of making and using the same
US10261430B2 (en) * 2016-01-14 2019-04-16 Samsung Electronics Co., Ltd. Photoreceptor for electrophotography and image forming apparatus employing the same
JP6990906B2 (ja) * 2016-10-20 2022-02-03 国立研究開発法人産業技術総合研究所 メソポーラス微粒子の多孔質成形体、酵素担持用担体、その酵素複合体及びこれらの製造方法
KR102066151B1 (ko) * 2017-08-22 2020-01-14 고려대학교 산학협력단 단백질 및 효소 안정화용 다공성 실리카 담지체, 이의 제조방법 및 용도
US10520884B2 (en) * 2017-12-15 2019-12-31 Canon Kabushiki Kaisha Cartridge and image forming apparatus
CN108977433A (zh) * 2018-08-21 2018-12-11 青岛农业大学 一种固定化木质素过氧化物酶的制备方法及应用
DE102022204390A1 (de) * 2022-05-04 2023-11-09 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zum Sammeln von Atemluftkondensat
WO2023227795A1 (en) * 2022-05-27 2023-11-30 Enginzyme Ab Biocatalysts for organic synthesis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051076A (ja) * 2005-08-16 2007-03-01 National Institute Of Advanced Industrial & Technology ミオグロビン複合体

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567505B1 (fr) * 1984-07-11 1986-11-21 Rhone Poulenc Chim Base Silice a prise d'huile elevee et a structure primaire controlee et procede pour son obtention
JPS61168503A (ja) * 1985-01-23 1986-07-30 Shokubai Kasei Kogyo Kk 複合無機酸化物からなる真球状微粒子粉末の製造法
JPS61174103A (ja) * 1985-01-23 1986-08-05 Shokubai Kasei Kogyo Kk 金属酸化物からなる多孔質真球状微粒子粉末の製造法
JP2676849B2 (ja) * 1988-11-19 1997-11-17 三菱化学株式会社 シリカ質複合微粒子
JPH02180706A (ja) * 1988-12-31 1990-07-13 Tonen Corp リン酸化合物粒子集合体及びその製造方法
JP3729205B2 (ja) 1991-03-23 2005-12-21 触媒化成工業株式会社 複合酸化物ゾルおよびその製造法
JP3761189B2 (ja) 1993-11-04 2006-03-29 触媒化成工業株式会社 複合酸化物ゾル、その製造方法および基材
JP3410634B2 (ja) 1997-05-30 2003-05-26 株式会社豊田中央研究所 球状メソ多孔体及びその製造方法
JP4031168B2 (ja) 1999-01-12 2008-01-09 株式会社豊田中央研究所 酸化物多孔体、及び、該酸化物多孔体を用いた排ガス浄化用触媒
JP2001178457A (ja) 1999-12-24 2001-07-03 Toyota Central Res & Dev Lab Inc 酵素の固定化方法及び固定化酵素
JP2002262863A (ja) 2001-03-09 2002-09-17 Toyota Central Res & Dev Lab Inc 酸化酵素の安定化方法及び安定化酸化酵素
JP2004083501A (ja) 2002-08-28 2004-03-18 Toyota Central Res & Dev Lab Inc 安定化抗体とこれを利用する免疫反応法及び免疫反応装置
JP2006232594A (ja) 2005-02-23 2006-09-07 Tokyo Institute Of Technology メソ細孔無機多孔体およびその製造方法
US8715982B2 (en) * 2005-03-08 2014-05-06 Agency For Science, Technology And Research Immobilised enzymes
JP2007076941A (ja) 2005-09-13 2007-03-29 Tosoh Corp 多孔質球状シリカ及びその製造方法
JP2009520989A (ja) * 2005-12-20 2009-05-28 ザ オハイオ ステイト ユニバーシティ リサーチ ファウンデーション 分析法のためのナノ多孔性基材
JP5057021B2 (ja) 2006-07-24 2012-10-24 株式会社豊田中央研究所 球状シリカ系メソ多孔体及びその製造方法、並びにそれを用いた塩基性色素吸着材
JP4981510B2 (ja) * 2007-04-27 2012-07-25 古河電気工業株式会社 逆ミセル分散系を用いてなるシリカナノ粒子の製造方法、該方法により得られたシリカナノ粒子、及びそれを用いた標識試薬
JP5132193B2 (ja) * 2007-06-02 2013-01-30 日揮触媒化成株式会社 多孔質シリカ粒子およびその製造方法
JP2009073681A (ja) 2007-09-19 2009-04-09 Tohoku Univ 多孔質シリカ凝集粒子
JP2009125006A (ja) 2007-11-24 2009-06-11 National Institute Of Advanced Industrial & Technology シリカ系メソ多孔体−セルロース、ヘミセルロースの加水分解酵素複合体
JP2009153448A (ja) 2007-12-26 2009-07-16 National Institute Of Advanced Industrial & Technology シリカ系メソ多孔体−澱粉の加水分解酵素複合体
JP5253124B2 (ja) * 2008-12-10 2013-07-31 日揮触媒化成株式会社 多孔質シリカ粒子及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051076A (ja) * 2005-08-16 2007-03-01 National Institute Of Advanced Industrial & Technology ミオグロビン複合体

Also Published As

Publication number Publication date
TW201204829A (en) 2012-02-01
EP2592140A1 (en) 2013-05-15
JP5734106B2 (ja) 2015-06-10
US20130109072A1 (en) 2013-05-02
WO2011155536A1 (ja) 2011-12-15
EP2592140A4 (en) 2014-08-13
JP2012016351A (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
TWI494429B (zh) 蛋白質固定化用載體、固定化蛋白質及其製造方法
Cao et al. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal–organic framework material: a biocatalyst for esterification
Gao et al. Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization
Bao et al. Recent progress in hollow silica: Template synthesis, morphologies and applications
Wang et al. Nanoporous colloids: building blocks for a new generation of structured materials
Wang et al. Facile preparation of Fe3O4@ MOF core-shell microspheres for lipase immobilization
Zhao et al. Encapsulation of lipase in mesoporous silica yolk–shell spheres with enhanced enzyme stability
Venezia et al. Mesoporous silica nanoparticles for β-glucosidase immobilization by templating with a green material: Tannic acid
Wu et al. Active biocatalysts based on Candida rugosa lipase immobilized in vesicular silica
Xu et al. Improving adsorption and activation of the lipase immobilized in amino-functionalized ordered mesoporous SBA-15
Shah et al. Structural features of Penicillin acylase adsorption on APTES functionalized SBA-15
Bolivar et al. Oriented coimmobilization of oxidase and catalase on tailor-made ordered mesoporous silica
Zhou et al. Comparative studies on catalytic properties of immobilized Candida rugosa lipase in ordered mesoporous rod-like silica and vesicle-like silica
Lin et al. Magnetic enzyme nanogel (MENG): a universal synthetic route for biocatalysts
Cao et al. Fabrication of Ni2+-nitrilotriacetic acid functionalized magnetic mesoporous silica nanoflowers for one pot purification and immobilization of His-tagged ω-transaminase
Sigurdardóttir et al. Alcohol dehydrogenase on inorganic powders: Zeta potential and particle agglomeration as main factors determining activity during immobilization
Zhang et al. Effect of substrate (ZnO) morphology on enzyme immobilization and its catalytic activity
Bai et al. Immobilization of lipase on aminopropyl-grafted mesoporous silica nanotubes for the resolution of (R, S)-1-phenylethanol
Fei et al. Comparison of amino and epoxy functionalized SBA-15 used for carbonic anhydrase immobilization
Pavel et al. Effect of meso vs macro size of hierarchical porous silica on the adsorption and activity of immobilized β-galactosidase
Wang et al. Biocatalytic esterification of caprylic acid with caprylic alcohol by immobilized lipase on amino-functionalized mesoporous silica
Chen et al. Activity enhancement and stabilization of lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica
Li et al. Nano-sized mesoporous hydrogen-bonded organic frameworks for in situ enzyme immobilization
Mei et al. Nanoporous phyllosilicate assemblies for enzyme immobilization
Cui et al. Magnetic mesoporous enzyme–silica composites with high activity and enhanced stability