WO2011155458A1 - 充填方法、充填システムおよびボトル - Google Patents

充填方法、充填システムおよびボトル Download PDF

Info

Publication number
WO2011155458A1
WO2011155458A1 PCT/JP2011/062966 JP2011062966W WO2011155458A1 WO 2011155458 A1 WO2011155458 A1 WO 2011155458A1 JP 2011062966 W JP2011062966 W JP 2011062966W WO 2011155458 A1 WO2011155458 A1 WO 2011155458A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottle
seasoning
inert gas
filling
carbonated beverage
Prior art date
Application number
PCT/JP2011/062966
Other languages
English (en)
French (fr)
Inventor
美恵 太田
章智 関根
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010129907A external-priority patent/JP5704424B2/ja
Priority claimed from JP2010173767A external-priority patent/JP5704429B2/ja
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN201180028149.5A priority Critical patent/CN102917954B/zh
Publication of WO2011155458A1 publication Critical patent/WO2011155458A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C3/222Head-space air removing devices, e.g. by inducing foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C7/00Concurrent cleaning, filling, and closing of bottles; Processes or devices for at least two of these operations

Definitions

  • the present invention relates to a filling method, a filling system, and a bottle.
  • liquid seasonings such as soy sauce and dressing have been sold in glass bottles.
  • liquid seasonings have been filled in plastic bottles such as PET bottles for the purpose of reducing the weight of the container.
  • Japanese Patent Laid-Open No. 2005-350090 discloses a technique for removing oxygen in the head space by filling the seasoning and then substituting oxygen in the head space in the plastic bottle with an inert gas. .
  • Japanese Patent Application Laid-Open No. 2002-301441 shows a technique of injecting an inert gas and cleaning water (rinsing water) into an empty bottle in a mixed state.
  • the plastic bottle in order to improve the content storage (oxygen barrier) property, can be blended with a material having oxygen barrier properties and oxygen absorption functionality, or the plastic bottle can be multilayered to form a plastic bottle.
  • a technique for increasing the gas barrier property of the material compressing the aging of the contents over time is used.
  • the close-packing is a mechanism that can balance the pressure in the container to be pressurized and the filling tank, and a mechanism in which the contents are filled while a part of the gas in the container returns to the filling tank at the start of filling. It has become. In other words, the head space portion in the filling tank is replaced with the gas in the container as the continuous filling starts.
  • foaming since the mouth of the bottle is temporarily released after filling and before capping, foaming may occur in the contents at this time. Therefore, in the conventional filling method, even if the contents are made of carbonated beverages, the same problem as described above may occur.
  • the present invention has been made in consideration of such points, and by reducing the amount of oxygen present in the bottle from the beginning, a filling method capable of suppressing oxidative degradation of seasonings or carbonated beverages,
  • An object is to provide a filling system and a bottle.
  • the present invention relates to a seasoning filling method of filling a seasoning into a bottle having a mouth part and a bottle body, and supplying only inert gas from the mouth part into the bottle body, and the inside of the bottle body is inert gas.
  • a seasoning filling method comprising: an inert gas replacement step of replacing with a step, and a seasoning filling step of filling the seasoning into the bottle body from the mouth.
  • the present invention is a seasoning filling method characterized in that in the seasoning filling step, the seasoning is filled from the mouth into the bottle body at a temperature of 5 ° C. to 55 ° C.
  • the present invention is a seasoning filling method characterized in that the entire process is performed in a sterile atmosphere.
  • the present invention provides a seasoning filling characterized in that before the inert gas replacement step, a sterilization step for sterilizing the inside of the bottle and a rinsing step for supplying rinsing water from the mouth into the bottle body are provided. Is the method.
  • the present invention is a seasoning filling method characterized in that a sterilization step of sterilizing the inside of a bottle with an electron beam is provided before the inert gas replacement step.
  • the present invention is a seasoning filling method characterized in that after the seasoning filling step, an inert gas supply step for supplying an inert gas from the mouth portion into the bottle body is provided.
  • the present invention is a seasoning filling method characterized in that after the inert gas supply step, a cap mounting step of mounting a cap on the mouth is provided.
  • the present invention is a seasoning filling method characterized in that in the seasoning filling step, the seasoning is filled into the bottle body from the mouth portion at a temperature of 55 ° C. to 95 ° C.
  • the present invention is a seasoning filling method characterized in that a rinsing step for supplying rinsing water from the mouth into the bottle body is provided before the inert gas replacement step.
  • the present invention is a seasoning filling method characterized in that after the seasoning filling step, a cap attaching step of attaching a cap to the mouth is provided.
  • the present invention is a seasoning filling method characterized in that a sterilization step for sterilizing the inside of the bottle body is provided after the cap mounting step.
  • the present invention provides a foam containing an inert gas inside a seasoning filled in the bottle body during the seasoning filling process by the inert gas introduced into the bottle body during the inert gas replacement process.
  • This is a seasoning filling method characterized by the above.
  • the present invention is a seasoning filling method characterized in that the period from the inert gas replacement step to the seasoning filling step is performed in 0.5 to 20 seconds.
  • the present invention provides a seasoning filling method, wherein a bottle body of a bottle has a body portion and a bottom portion on which a depressed portion is formed, and a plurality of radially extending protrusions are formed on the depressed portion. It is.
  • the present invention is a seasoning filling method characterized in that a bottle body of a bottle has a trunk portion and a bottom portion made of a petaloid shape.
  • the present invention is characterized in that a bottle body of a bottle has a trunk portion and a bottom portion where a depression portion is formed, and the depth of the depression portion is 4% to 55% of the outer diameter of the trunk portion. It is a seasoning filling method.
  • the present invention relates to a seasoning filling system that fills a seasoning into a bottle having a mouth portion and a bottle body, and supplies only the inert gas from the mouth portion to the bottle body to pass through the inside of the bottle body.
  • Filling with seasoning comprising an inert gas replacement part that is replaced with, and a seasoning filling part that is provided on the downstream side of the inert gas replacement part and fills the seasoning from the mouth into the bottle body System.
  • the present invention is a seasoning filling system characterized in that in the seasoning filling section, the seasoning is filled from the mouth into the bottle body at a temperature of 5 ° C. to 55 ° C.
  • the present invention is provided with a sterilization unit for sterilizing the inside of the bottle upstream of the inert gas replacement unit, and upstream of the inert gas replacement unit and downstream of the sterilization unit, from the mouth into the bottle body.
  • a rinsing unit for supplying rinsing water is provided.
  • the present invention is a seasoning filling system characterized in that a sterilization section for sterilizing the inside of a bottle with an electron beam is provided upstream of an inert gas replacement section.
  • the present invention is a seasoning filling system characterized in that an inert gas supply unit for supplying an inert gas from the mouth portion into the bottle body is provided on the downstream side of the seasoning filling unit.
  • the present invention is a seasoning filling system characterized in that a cap attaching part for attaching a cap to the mouth part is provided on the downstream side of the inert gas supply part.
  • the present invention is a seasoning filling system characterized in that in the seasoning filling section, the seasoning is filled from the mouth portion into the bottle body at a temperature of 55 ° C. to 95 ° C.
  • the present invention is a seasoning filling system characterized in that a rinsing part for supplying rinsing water from the mouth part into the bottle body is provided upstream of the inert gas replacement part.
  • the present invention is a seasoning filling system characterized in that a cap attaching part for attaching a cap to the mouth part is provided on the downstream side of the seasoning filling part.
  • the present invention is a seasoning filling system characterized in that a sterilizing section for sterilizing the inside of the bottle body is provided on the downstream side of the cap mounting section.
  • the present invention takes 0.5 to 20 seconds from the replacement of the inside of the bottle body with the inert gas by the inert gas replacement section to the filling of the contents into the bottle body by the content filling section. It is a seasoning filling system characterized by that.
  • a bottle main body of a bottle has a trunk portion and a bottom portion in which a depressed portion is formed, and a plurality of radially extending protrusions are formed in the depressed portion. It is.
  • the present invention is a seasoning filling system characterized in that the bottle body of the bottle has a body portion and a bottom portion made of a petaloid shape.
  • the present invention is characterized in that a bottle body of a bottle has a trunk portion and a bottom portion where a depression portion is formed, and the depth of the depression portion is 4% to 55% of the outer diameter of the trunk portion. It is a seasoning filling system.
  • the present invention comprises a bottle having a bottle main body and a mouth portion, and a seasoning filled in the bottle main body of the bottle, and that the foam containing the inert gas is formed inside the seasoning. It is a featured seasoning bottle.
  • a bottle main body of a bottle has a body part and a bottom part in which a depressed part is formed, and a plurality of radially extending protrusions are formed in the depressed part. It is.
  • the present invention is a seasoning bottle characterized in that the bottle body of the bottle has a body portion and a bottom portion made of a petaloid shape.
  • the present invention is characterized in that a bottle body of a bottle has a trunk portion and a bottom portion where a depression portion is formed, and the depth of the depression portion is 4% to 55% of the outer diameter of the trunk portion. It is a bottle with seasonings.
  • the present invention relates to a carbonated beverage filling method of filling a carbonated beverage into a bottle having a mouth portion and a bottle body, and supplying only an inert gas from the mouth portion into the bottle body to pass the inert gas inside the bottle body.
  • a carbonated beverage filling method comprising: an inert gas replacement step of replacing with a carbonated beverage at a temperature of 1 ° C. to 10 ° C. from the mouth portion into the bottle body.
  • the present invention is a carbonated beverage filling method characterized in that a rinsing step for supplying rinsing water from the mouth into the bottle body is provided before the inert gas replacement step.
  • the present invention is a carbonated beverage filling method characterized in that after the carbonated beverage filling step, an inert gas supply step of supplying an inert gas from the mouth portion into the bottle body is provided.
  • the present invention is a carbonated beverage filling method characterized in that after the inert gas supply step, a cap mounting step of mounting a cap on the mouth is provided.
  • the present invention is a carbonated beverage filling method characterized in that a sterilization step for sterilizing the inside of the bottle body is provided after the cap mounting step.
  • the present invention is a carbonated beverage filling method characterized in that in the sterilization step, the inside of the bottle body is sterilized by exposing the bottle to hot water of 60 ° C. to 75 ° C.
  • the present invention is a carbonated beverage filling method, wherein the carbonated beverage contains fruit juice, milk component, or honey component (animal or plant derived component).
  • the present invention is a carbonated beverage filling method characterized in that the period from the inert gas replacement step to the carbonated beverage filling step is performed in 0.5 to 20 seconds.
  • the present invention is a carbonated beverage filling method characterized in that a bottle body of a bottle has a body portion and a bottom portion made of a petaloid shape.
  • the present invention relates to a carbonated beverage filling system for filling a carbonated beverage into a bottle having a mouth portion and a bottle body, and supplying only an inert gas from the mouth portion into the bottle body, and the inside of the bottle body is inert gas. And a carbonated beverage filling part that is provided downstream of the inert gas replacement unit and that fills the bottle body with a carbonated beverage at a temperature of 1 ° C. to 10 ° C. This is a carbonated beverage filling system.
  • the present invention is a carbonated beverage filling system characterized in that a rinsing part for supplying rinsing water from the mouth part into the bottle body is provided upstream of the inert gas replacement part.
  • the present invention is a carbonated beverage filling system characterized in that an inert gas supply unit for supplying an inert gas from the mouth portion into the bottle body is provided on the downstream side of the carbonated beverage filling unit.
  • the present invention is a carbonated beverage filling system characterized in that a cap attaching part for attaching a cap to the mouth part is provided downstream of the inert gas supply part.
  • the present invention is a carbonated beverage filling system characterized in that a sterilizing unit for sterilizing the inside of the bottle body is provided on the downstream side of the cap mounting unit.
  • the present invention is a carbonated beverage filling system characterized in that the bottle body is sterilized by exposing the bottle to hot water of 60 ° C. to 75 ° C. in the sterilization section.
  • the present invention is a carbonated beverage filling system, wherein the carbonated beverage contains fruit juice, milk component, or honey component (animal or plant derived component).
  • the present invention takes 0.5 to 20 seconds from the replacement of the inside of the bottle body with the inert gas by the inert gas replacement section to the filling of the carbonated drink into the bottle body at the carbonated beverage filling section.
  • a carbonated beverage filling system is 0.5 to 20 seconds from the replacement of the inside of the bottle body with the inert gas by the inert gas replacement section to the filling of the carbonated drink into the bottle body at the carbonated beverage filling section.
  • the present invention is a carbonated beverage filling system characterized in that the bottle body of the bottle has a body portion and a bottom portion having a petaloid shape.
  • the present invention includes a bottle having a bottle body and a mouth portion, and a carbonated beverage filled at a temperature of 1 ° C. to 10 ° C. in the bottle body of the bottle, and contains an inert gas in the carbonated beverage. It is a carbonated beverage containing bottle characterized by the foam being formed.
  • the present invention is a carbonated beverage bottle characterized in that the bottle body of the bottle has a trunk portion and a bottom portion made of a petaloid shape.
  • the inert gas is supplied from the mouth portion into the bottle body and the inside of the bottle body is replaced with the inert gas, and then the seasoning is filled into the bottle body from the mouth portion. For this reason, while filling an inert gas in a bottle main body, the bubble which accommodated the inert gas inside is formed in a seasoning. Thereby, the amount of oxygen existing in the bottle from the beginning (total amount of oxygen in the initial container) can be reduced, and the initial oxidative deterioration of the seasoning can be suppressed.
  • the carbonated beverage after supplying only the inert gas from the mouth portion into the bottle body and replacing the inside of the bottle body with the inert gas, the carbonated beverage at a temperature of 1 to 10 ° C. from the mouth portion into the bottle body. Fill. For this reason, while the inert gas is filled in the bottle body, bubbles containing the inert gas are formed in the carbonated beverage. Thereby, the amount of oxygen existing in the bottle from the beginning (the total amount of oxygen in the initial container) can be reduced, and the initial oxidation deterioration of the carbonated beverage can be suppressed.
  • FIG. 1 is a configuration diagram showing a seasoning filling system (aseptic filling system) according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a rinse part and an inert gas replacement part of the seasoning filling system according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart showing a seasoning filling method (aseptic filling method) according to the first embodiment of the present invention.
  • 4 (a) to 4 (c) are diagrams showing bottles in each step of the seasoning filling method according to the first embodiment of the present invention.
  • FIG. 5 is a block diagram which shows the seasoning filling system (hot filling system) by the 2nd Embodiment of this invention.
  • FIG. 1 is a configuration diagram showing a seasoning filling system (aseptic filling system) according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a rinse part and an inert gas replacement part of the
  • FIG. 6 is a flowchart showing a seasoning filling method (hot filling method) according to the second embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a relationship between a storage period and a color difference between seasonings.
  • FIG. 8 is a diagram showing a test result by a taste tester.
  • 9A and 9B show a bottle according to Example A.
  • FIG. 10A and 10B show a bottle according to Example B.
  • FIGS. 11A and 11B show a bottle according to Example C.
  • FIG. 12A and 12B show a bottle according to Example D.
  • FIG. 13A and 13B show a bottle according to Example E.
  • FIG. FIG. 14 is a block diagram which shows the carbonated beverage filling system by the 3rd Embodiment of this invention.
  • FIG. 15 is a flowchart showing a carbonated beverage filling method according to the third embodiment of the present invention.
  • 16 (a) to 16 (d) are diagrams showing bottles in respective steps of a carbonated beverage filling method according to a third embodiment of the present invention.
  • FIG. 17 is a perspective view showing bottles used in Examples 1 and 3 and a comparative example.
  • 18 is a perspective view showing a bottle used in Example 2.
  • FIG. 19 is a graph comparing the color difference ⁇ E of the carbonated beverage between Examples 1 to 3 and the comparative example.
  • FIGS. 1 to 4 are views showing a first embodiment of the present invention. Note that the first embodiment shown in FIGS. 1 to 4 uses an aseptic filling system as a seasoning filling system.
  • seasoning filling system aseptic filling system
  • the seasoning filling system 10 includes a sterilization unit 11, a rinse unit 12, an inert gas replacement unit 13, a seasoning filling unit 14, an inert gas supply unit 15, and a cap mounting unit 16. .
  • the sterilizing unit 11, the rinsing unit 12, the inert gas replacement unit 13, the seasoning filling unit 14, the inert gas supply unit 15, and the cap mounting unit 16 are arranged in this order from the upstream side to the downstream side. Yes.
  • a first transport mechanism 17 that transports the bottle 30 from the sterilization unit 11 to the rinse unit 12 is provided between the sterilization unit 11 and the rinse unit 12.
  • a second transport mechanism 18 that transports the bottle 30 from the inert gas replacement unit 13 to the seasoning filling unit 14 is provided between the inert gas replacement unit 13 and the seasoning filling unit 14.
  • the sterilizing unit 11 sterilizes the inside of the empty bottle 30 with the sterilizing agent 40 ejected in a mist shape, a rod shape, or a fountain type.
  • the bactericidal agent 40 include hydrogen peroxide water and peracetic acid.
  • an electron beam sterilization method hereinafter also referred to as EB (Electron Beam) sterilization
  • EB Electro Beam sterilization
  • the rinsing unit 12 supplies rinsing water 41 into the bottle main body 32 from the mouth 31 of the bottle 30 sterilized by the sterilizing unit 11.
  • the rinse water 41 is made of warm water (sterile water) of about 25 ° C. to 80 ° C., for example.
  • this rinse part 12 does not necessarily need to be provided. In this case, the amount of water and electricity used in the manufacturing process can be reduced.
  • the bottle 30 is turned upside down so that the opening part 31 may face downward.
  • the inert gas replacement unit 13 supplies only the inert gas 42 from the mouth portion 31 into the bottle main body 32 to the bottle 30 rinsed by the rinsing unit 12, thereby causing the inert gas 42 to pass through the bottle main body 32. It replaces with.
  • Various gases can be used as the inert gas 42, and nitrogen (N 2 ) is particularly preferable.
  • N 2 nitrogen
  • the bottle 30 is in the state where the mouth part 31 is directed downward.
  • the inert gas 42 is filled in the bottle 30 by substituting the air (oxygen) in the bottle 30 using the inert gas 42.
  • the rinse part 12 and the inert gas replacement part 13 are each arrange
  • the distributor 50 includes a fixed portion 51 and a rotating portion 52 that rotates on the fixed portion 51 in a certain direction. Among these, a plurality of nozzles 53 protruding upward are connected to the rotating portion 52.
  • the bottle 30 rotates in a fixed direction together with the nozzles 53 inserted into the mouth portion 31 as the rotating portion 52 rotates.
  • the distributor 50 has a planar circular shape, only a part of the distributor 50 is schematically shown in FIG. 2 for convenience.
  • the rinse section 12 includes a rinse water tank 59 that contains the rinse water 41, a rinse water supply pipe 54 that is connected to the rinse water tank 59, and a rinse water supply space 55 that is connected to the rinse water supply pipe 54. ing.
  • the rinse water supply space 55 is formed in the fixed portion 51 and communicates with the nozzle 53 that has moved to the top of the rinse water supply space 55 as the rotating portion 52 rotates. Accordingly, the rinse water 41 is supplied from the rinse water tank 59 into the bottle 30 through the rinse water supply pipe 54, the rinse water supply space 55, and the nozzles 53 in order, and the inside of the bottle 30 is washed.
  • the inert gas replacement unit 13 includes an inert gas tank 56 containing the inert gas 42, an inert gas supply pipe 57 connected to the inert gas tank 56, and an inert gas supply pipe 57 connected to the inert gas supply pipe 57. And an active gas supply space 58.
  • the inert gas supply space 58 is formed in the fixed portion 51 and communicates with the nozzle 53 that has moved above the inert gas supply space 58 as the rotating portion 52 rotates.
  • the inert gas 42 is supplied from the inert gas tank 56 into the bottle 30 through the inert gas supply pipe 57, the inert gas supply space 58, and the nozzles 53 in order, and is replaced with the air in the bottle 30. Is done.
  • the seasoning filling unit 14 for filling the seasoning 43 into the bottle body 32 from the mouth 31 of the bottle 30 is provided on the downstream side of the inert gas replacement unit 13.
  • the seasoning 43 is filled into the bottle 30 in a state where the inert gas 42 is filled.
  • the temperature of the seasoning 43 at the time of filling is 5 ° C. to 55 ° C.
  • the kind of seasoning 43 is not limited, For example, soy sauce, mirin, vinegar, ponzu, soup stock, soup sauce, soup sauce, noodle soup, cooking liquor, dressing, pasta sauce, Worcester sauce, etc.
  • Sauces, spicy seasonings such as chili oil, ketchup, mayonnaise, liquid miso, and other liquid seasonings can be used.
  • the bottle 30 is turned upside down again so that the mouth 31 faces upward.
  • An inert gas supply unit 15 is provided on the downstream side of the seasoning filling unit 14.
  • the inert gas supply unit 15 supplies the inert gas 42 from the mouth 31 of the bottle 30 into the bottle body 32, and the space above the liquid level of the seasoning 43 in the bottle body 32 (liquid level upper space 32 a).
  • the inside is filled with an inert gas 42.
  • the inert gas 42 for example, nitrogen (N 2 ) can be used similarly to the gas supplied in the inert gas replacement unit 13.
  • N 2 nitrogen
  • the inert gas supplied by the inert gas supply unit 15 may be made of a different type of gas from the inert gas supplied by the inert gas replacement unit 13.
  • the amount of the inert gas 42 filled in the inert gas supply unit 15 is preferably equal to or greater than the total volume of the bubbles 43a and the liquid surface upper space 32a.
  • the liquid surface upper space 32a is formed above the liquid surface of the seasoning 43 (a carbonated beverage 48 in the third embodiment to be described later) in the space inside the bottle body 32. It is a space and refers to the one excluding the bubbles 43a (bubbles 48a) generated in the seasoning 43 (carbonated beverage 48). Therefore, the gas contained in the bubble 43a and the upper liquid surface space 32a corresponds to the gas in the head space after entering the market.
  • the cap mounting portion 16 provided on the downstream side of the inert gas supply portion 15 seals the bottle 30 by mounting a cap 33 on the mouth portion 31 of the bottle 30.
  • the seasoning bottle 35 is obtained by attaching the cap 33 to the mouth part 31 of the bottle 30.
  • seasoning filling method (aseptic filling method) Next, the seasoning filling method (aseptic filling method) according to this embodiment will be described with reference to FIGS. 1, 3, and 4A to 4C.
  • the seasoning filling method according to the present embodiment is performed using the seasoning filling system 10 (FIG. 1) described above.
  • the inside of the empty bottle 30 is sterilized with the sterilizing agent 40 (sterilization process) (step S1 in FIG. 3).
  • the sterilizing agent 40 hydrogen peroxide solution or peracetic acid is mentioned as mentioned above.
  • the above-described EB sterilization method may be used.
  • the inside of the bottle 30 is sterilized in the sterilization unit 11.
  • the sterilized bottle 30 is turned upside down in the first transport mechanism 17 so that the mouth portion 31 faces downward, and is transported to the rinse section 12.
  • the rinse water 41 is supplied in the bottle main body 32 from the opening part 31 of the bottle 30 (rinsing process) (step S2 of FIG. 3).
  • the rinsing process is supplied in the bottle main body 32 from the opening part 31 of the bottle 30 (rinsing process) (step S2 of FIG. 3).
  • the bottle 30 is conveyed to the inert gas replacement unit 13 with the mouth portion 31 facing downward (see FIG. 2).
  • this inert gas replacement part 13 only the inert gas 42 is supplied from the mouth part 31 of the bottle 30 into the bottle main body 32, and the inside of the bottle main body 32 is replaced with the inert gas 42 (inert gas replacement step) ( Step S3 in FIG.
  • Step S3 in FIG. By injecting the inert gas 42 into the bottle main body 32 from below, there is an effect that the rinse water 41 remaining in the bottle main body 32 can be effectively removed.
  • the bottle 30 filled with the inert gas 42 is turned upside down in the second transport mechanism 18 so that the mouth portion 31 faces upward, and is transported to the seasoning filling section 14.
  • the seasoning 43 is filled into the bottle body 32 from the mouth 31 of the bottle 30 (seasoning filling step) (step S4 in FIG. 3, FIG. 4A).
  • the seasoning 43 is aseptically filled at a temperature of 5 ° C. to 55 ° C.
  • the seasoning 43 to be filled is controlled (liquid deaeration) and managed in advance in the liquid treatment step so as to suppress the dissolved oxygen concentration.
  • the inert gas 42 is introduced into the bottle body 32 in the inert gas replacement step. Therefore, in the seasoning 43, bubbles 43a in which the inert gas 42 is stored are generated. Further, the inert gas 42 is also encased in the seasoning 43.
  • the seasoning 43 is a sauce such as soy sauce, mirin, vinegar, ponzu, soup stock, soup sauce, soups such as noodle soup, cooking liquor, dressings, pasta sauce, or Worcester sauce as described above. It is preferably made of a liquid seasoning such as pungent seasonings such as chili oil, ketchup, mayonnaise, liquid miso.
  • the bottle 30 is conveyed to the inert gas supply unit 15.
  • the inert gas 42 is supplied from the mouth portion 31 of the bottle 30 into the bottle body 32 (inert gas supply step) (step S ⁇ b> 5 in FIG. 3, FIG. 4B). ).
  • the inert gas 42 is filled in the liquid surface upper space 32 a of the bottle body 32.
  • the inert gas 42 partially lost during the transportation of the bottle 30 from the inert gas replacement unit 13 through the seasoning filling unit 14 to the inert gas supply unit 15 is supplemented in the bottle body 32. .
  • the bottle 30 is conveyed to the cap mounting unit 16. Then, in the cap attachment part 16, the seasoning bottle 35 is obtained by attaching the cap 33 to the mouth part 31 of the bottle 30 (cap attachment process) (step S6 in FIG. 3, FIG. 4C).
  • the seasoned bottle 35 after sealing is filled in the bottle 30 having the bottle body 32 and the mouth portion 31, the cap 33 attached to the mouth portion 31 of the bottle 30, and the bottle body 32 of the bottle 30.
  • an inert gas 42 is filled in the liquid surface upper space 32a of the bottle main body 32, and bubbles 43a containing the inert gas 42 are formed therein (FIG. 4C). Therefore, the amount of oxygen existing in the bottle 30 from the beginning (the total amount of oxygen in the initial container) is extremely small.
  • the entire process from the sterilization process to the cap mounting process described above is performed in an aseptic atmosphere, and from the mouth portion 31 of the bottle 30 to the bottle body 32, the temperature is 5 ° C. to 55 ° C., for example, normal temperature ( The seasoning 43 is filled at 5 ° C. to 35 ° C.). That is, a so-called aseptic filling method is employed.
  • the difference between the aseptic filling method according to this embodiment and the hot pack filling method will be described.
  • the filling temperature of the seasoning 43 is 5 ° C. to 55 ° C.
  • the amount of gas in the bubbles 43a and the upper liquid surface space 32a at the time of filling is the largest in the market. It is mentioned that it is almost equal to the head space volume of the product (seasoning bottle 35) after it comes out.
  • the seasoning is filled at a high temperature of 55 ° C to 95 ° C. For this reason, the head space is filled with steam at the time of filling, and the oxygen concentration of the head space is low. In addition, when the seasoning subsequently becomes room temperature, the head space is greatly reduced. Furthermore, the solubility of a gas in a liquid generally has a property of increasing at a lower temperature.
  • the dissolved oxygen concentration in the seasoning 43 is likely to increase due to the entrainment of air when the seasoning 43 is filled, as compared with the hot pack filling method.
  • the liquid surface upper space 32a is large, the total oxygen amount in the bottle 30 tends to increase. Therefore, particularly when using the aseptic filling method, it is effective to prevent the seasoning 43 from being oxidized by suppressing the amount of oxygen present in the bottle 30 from the beginning (the total amount of oxygen in the initial container).
  • the production (conveyance) speed of the seasoning bottle 35 is 100 bpm to 2000 bpm.
  • bpm bottle per minute refers to the conveyance speed of the bottle 30 per minute.
  • the period from the inert gas replacement step (step S3 in FIG. 3) to the seasoning filling step (step S4 in FIG. 3) is performed in 0.5 to 20 seconds (ie, the inert gas replacement step is completed).
  • the time from immediately after the start to just before the seasoning filling process is started is preferably 0.5 to 20 seconds).
  • the bottle 30 As a material of the bottle 30, synthetic resin materials such as polyethylene terephthalate (PET), polypropylene (PP), polylactic acid (PLA) can be used. A preferable shape of the bottle 30 will be described later.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PLA polylactic acid
  • the inert gas 42 is supplied from the mouth portion 31 of the bottle 30 into the bottle body 32 and the inside of the bottle body 32 is replaced with the inert gas 42.
  • the bottle main body 32 is filled with the inert gas 42, and bubbles 43 a containing the inert gas 42 are formed in the seasoning 43.
  • the total amount of oxygen in the initial container in the bottle 30 (the amount of oxygen present in the upper liquid space 32a, the amount of oxygen present in the bubbles 43a, and the amount of oxygen dissolved in the seasoning 43 immediately after production)
  • the initial oxidation deterioration of the seasoning 43 can be suppressed.
  • the total oxygen amount in the initial container can be suppressed to 2.0 ml or less.
  • the effect of suppressing the initial oxidation of the contents of the bottle is high, it is effective to use a material having a property that the flavor and color difference are easily changed by oxidative degradation, such as the various seasonings 43 described above. It is possible to prevent oxidization by filling. In particular, even a liquid seasoning to which no preservative is added has the effect of delaying the progress of oxidation. Further, when a highly viscous material such as a sauce is used as the seasoning 43, bubbles 43a are likely to occur during filling, and the inert gas 42 is likely to be entrained in the seasoning 43, so that an effect of preventing oxidation is more easily obtained.
  • a material having a property that the flavor and color difference are easily changed by oxidative degradation such as the various seasonings 43 described above. It is possible to prevent oxidization by filling. In particular, even a liquid seasoning to which no preservative is added has the effect of delaying the progress of oxidation. Further, when a highly viscous
  • the rinse water 41 is supplied in the bottle main body 32 from the mouth part 31 of the bottle 30 (rinsing process), and only the inert gas 42 is supplied in the bottle main body 32 from the mouth part 31 after that. Then, the inside of the bottle body 32 is replaced with the inert gas 42 (inert gas replacement step). Therefore, the rinse water 41 can be effectively removed by the inert gas 42.
  • the inert gas supply process which supplies the inert gas 42 from the opening part 31 in the bottle main body 32 is provided after the seasoning filling process.
  • the inert gas 42 partially lost from the bottle main body 32 during transportation can be supplemented to the bottle main body 32, and the initial oxidative deterioration of the seasoning 43 can be more reliably suppressed.
  • the seasoning 43 is filled from the mouth portion 31 into the bottle main body 32 at 5 ° C. to 55 ° C., and the entire process is performed in an aseptic atmosphere (aseptic filling method). That is, since the seasoning 43 is not heated, deterioration of the seasoning 43 due to heat can be prevented.
  • the production (conveyance) speed of the seasoning bottle 35 is 100 bpm to 2000 bpm, and the period from the inert gas replacement step to the seasoning filling step is 0.5 seconds to 20 seconds. Therefore, the seasoning 43 can be filled into the bottle 30 at high speed.
  • FIGS. 5 and 6 are views showing a second embodiment of the present invention.
  • the second embodiment shown in FIGS. 5 and 6 uses a hot filling system as the seasoning filling system.
  • the seasoning 43 is filled at a relatively high temperature (55 ° C. to 95 ° C.) and on the downstream side of the cap mounting portion 16 instead of the sterilizing portion 11.
  • the point which provided the sterilization part 19 differs, and the other structure is as substantially the same as 1st Embodiment mentioned above.
  • 5 and 6 the same parts as those in the embodiment shown in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • seasoning filling system hot filling system
  • seasoning filling system aseptic filling system
  • the seasoning filling system 10 shown in FIG. 5 includes a rinse part 12, an inert gas replacement part 13, a seasoning filling part 14, a cap mounting part 16, and a sterilization part 19.
  • the rinse part 12, the inert gas replacement part 13, the seasoning filling part 14, the cap mounting part 16, and the sterilization part 19 are arranged in this order from the upstream side to the downstream side.
  • the 2nd conveyance mechanism 18 which conveys the bottle 30 to the seasoning filling part 14 from the inert gas replacement part 13 is provided.
  • a third transport mechanism 34 that transports the bottle 30 from the seasoning filling part 14 to the cap mounting part 16 is provided.
  • a fourth transport mechanism 36 that transports the bottle 30 from the cap mounting unit 16 to the sterilizing unit 19 is provided between the cap mounting unit 16 and the sterilizing unit 19.
  • the seasoning filling unit 14 hot-fills the seasoning 43 into the bottle 30 in a state where the inert gas 42 is filled.
  • the temperature of the seasoning 43 at the time of filling is 55 ° C. to 95 ° C., preferably 60 ° C. to 95 ° C., and more preferably 85 ° C. to 95 ° C.
  • the third transport mechanism 34 is for transporting the bottle 30 from the seasoning filling unit 14 to the cap mounting unit 16.
  • the inert gas 42 is supplied in the bottle main body 32 from the opening part 31 of the bottle 30, and the space above the liquid level of the seasoning 43 among the bottle main bodies 32 (liquid level upper space 32a).
  • the inside may be filled with an inert gas 42 (inert gas supply unit).
  • the sterilizing unit 19 causes the seasoning bottle 35 to incline horizontally, for example, to bring the seasoning 43 in a hot state into contact with the back surface of the cap 33, thereby sterilizing the back surface of the cap 33 and the inside of the bottle body 32. Is.
  • seasoning filling method hot filling method
  • seasoning filling method hot filling method
  • seasoning filling method aseptic filling method
  • the seasoning filling method includes a rinsing step (step S2), an inert gas replacement step (step S3), a seasoning filling step (step S4), a cap mounting step (step S6), And a sterilization step (step S7).
  • the rinsing step (step S2), the inert gas replacement step (step S3), and the cap mounting step (step S6) are substantially the same as the respective steps in the above-described seasoning filling method (aseptic filling method) (FIG. 3). It is.
  • the seasoning 43 is hot-filled at a temperature of 55 ° C to 95 ° C, preferably 85 ° C to 95 ° C. A portion of the inside of the bottle 30 that is in contact with the seasoning 43 is sterilized by the heated seasoning 43.
  • the seasoning 43 to be filled is controlled (liquid deaeration) and managed in advance in the liquid treatment step so as to suppress the dissolved oxygen concentration.
  • the seasoning bottle 35 is transported to the sterilizing unit 19 by the fourth transport mechanism 36 after the cap mounting step (step S6).
  • this sterilization part 19 the part which is not contacting the seasoning 43 among the seasoning containing bottles 35 is sterilized (sterilization process) (step S7)).
  • the seasoning bottle 35 is tilted horizontally, for example, to bring the seasoning 43 in a high temperature state (for example, 55 ° C. to 95 ° C.) into contact with the back surface of the cap 33, thereby Sterilize the inside.
  • a high temperature state for example, 55 ° C. to 95 ° C.
  • the seasoning 43 is filled from the mouth portion 31 into the bottle body 32 at a temperature of 55 ° C. to 95 ° C., preferably 85 ° C. to 95 ° C. (hot filling method).
  • the hot filling method has a smaller total amount of oxygen in the initial container in the bottle 30 than the aseptic filling method.
  • air entrainment during filling is inevitable.
  • the seasoning filling method according to the present embodiment it is possible to further reduce the total oxygen amount in the initial container. As a result, the product life of the seasoning bottle 35 can be further extended.
  • a seasoning bottle 35 (Example) was produced (hot filling method).
  • the bottle 30 was a heat-resistant PET bottle having a capacity of 750 ml, and the conveyance speed of the bottle 30 was 300 bpm.
  • rinsing water is supplied from the mouth portion 31 of the bottle 30 into the bottle body 32 (rinsing step), and then 800 ml of an inert gas 42 made of nitrogen is supplied from the mouth portion 31 into the bottle body 32.
  • the inside of 32 was replaced with nitrogen gas (inert gas replacement step).
  • seasoning 43 made of soy sauce was filled from the mouth portion 31 into the bottle body 32 at a temperature of 92 ° C. (seasoning filling step).
  • a cap 33 was attached to the mouth portion 31 (cap attaching step), and the inside of the bottle 30 was sterilized (sterilizing step), thereby obtaining a seasoning bottle 35 according to this example.
  • a seasoning bottle (comparative example) was produced in the same manner as in the above example, except that 800 ml of sterilized air instead of nitrogen was supplied from the mouth 31 into the bottle body 32. did.
  • the seasoning bottle 35 (Example) obtained in this way, the color in the seasoning 43 immediately after filling was measured, and a sensory test (dominance difference determination by a taste tester) was performed. Furthermore, the seasoning bottle 35 (Example) and the seasoning bottle (Comparative Example) were stored for 12 weeks in an environment at a temperature of 22 ° C., and the color difference ⁇ E * of the seasoning 43 in each bottle was measured. Judgment of superiority difference by taste test machine). The results are shown in FIGS.
  • the color difference ⁇ E * is a numerical value of the color change of the seasoning 43 after 12 weeks when the color of the seasoning 43 immediately after filling is 0.
  • the seasoning bottle 35 (Example) according to the present embodiment had a smaller color difference ⁇ E * after 12 weeks than the seasoning bottle according to the comparative example (see FIG. 7).
  • the seasoning bottle 35 (Example) according to the present embodiment is different from the seasoning bottle according to the comparative example in the change in the taste of the seasoning 43 after 12 weeks.
  • the difference from the reference sample was small in terms of “acidity”, “umami richness”, and “umami”. Also from these things, the effectiveness of the seasoning filling method by this Embodiment was able to be confirmed.
  • the configuration of the bottle is suitably used in the first embodiment and second condiments filling method and seasoning filling system according to the embodiment of the above described To do.
  • FIG. 9A and FIG. 9B show a bottle 30 (30a) suitably used in the seasoning filling method and seasoning filling system according to the present embodiment (Example A).
  • FIG. 9A is a perspective view showing a bottle according to Example A
  • FIG. 9B is a cross-sectional view showing the bottom of the bottle according to Example A (cross-sectional view taken along the line IX-IX in FIG. 9A). Figure).
  • a bottle 30 (30a) shown in FIGS. 9A and 9B has a mouth portion 31 and a bottle body 32.
  • the bottle main body 32 includes a body portion 21 and a bottom portion 37 connected to the body portion 21.
  • a recessed portion 38 that is recessed inward is formed at the center of the bottom portion 37.
  • a plurality (eight in this case) of protrusions 39 extending radially are formed on the depressed portion 38.
  • a circular recess 46 that is recessed inward is provided in the center of the depressed portion 38.
  • the outer diameter (body diameter) of the body part 21 is 55 mm to 120 mm, preferably 60 mm to 105 mm.
  • FIG. 10A and FIG. 10B show a bottle 30 (30b) suitably used in the seasoning filling method and seasoning filling system according to the present embodiment (Example B).
  • FIG. 10A is a perspective view showing a bottle according to Example B
  • FIG. 10B is a cross-sectional view showing the bottom of the bottle according to Example B (cross-sectional view taken along line XX in FIG. 10A). Figure).
  • a bottle 30 (30b) shown in FIGS. 10 (a) and 10 (b) has a mouth portion 31 and a bottle body 32.
  • the bottle main body 32 has the trunk
  • the bottom part 22 has five leg parts 23 arranged at equal intervals in the circumferential direction.
  • the outer diameter (body diameter) of the body part 21 is 55 mm to 120 mm, preferably 60 mm to 105 mm.
  • FIG. 11A is a perspective view showing a bottle according to Example C
  • FIG. 11B is a cross-sectional view showing the bottom of the bottle according to Example C (cross section taken along the line XI-XI in FIG. 11A). Figure).
  • a bottle 30 (30c) shown in FIGS. 11 (a) and 11 (b) has a mouth portion 31 and a bottle body 32.
  • the bottle main body 32 has the trunk
  • the outer diameter (body diameter) of the body part 21 is 55 mm to 120 mm, preferably 60 mm to 105 mm.
  • the bottle 30c has a depressed portion 25 that is depressed inward at the center of the bottom portion 24.
  • the depression 25 has a tapered peripheral wall 26 inclined toward the inside and a substantially star-shaped central recess 27 provided at the upper end thereof.
  • the depth of the depressed portion 25, that is, the distance Hb from the ground contact portion 28 to the deepest portion of the depressed portion 25 is 4% to 55% of the trunk diameter. If the distance Hb is smaller than 4% of the trunk diameter, the foaming volume of the foam 43a cannot be made sufficiently large. On the other hand, if the distance Hb exceeds 55% of the body diameter, the stability of the moldability is deteriorated and the shape of the bottom 24 is difficult to be obtained, which is not preferable.
  • the value of Hb is preferably 4% to 40% of the body diameter.
  • the value of Hb is preferably 10% to 55% of the body diameter.
  • FIG. 12 (a) and FIG.12 (b) have shown the bottle 60 which can be used for the seasoning filling method and seasoning filling system by this Embodiment (Example D).
  • 12 (a) is a perspective view showing a bottle according to Example D
  • FIG. 12 (b) is a cross-sectional view showing the bottom of the bottle according to Example D (cross section taken along line XII-XII in FIG. 12 (a)). Figure).
  • a bottle 60 shown in FIGS. 12A and 12B has a mouth portion 31 and a bottle main body 32.
  • the bottle main body 32 has the trunk
  • the recess 62 has a plurality of step portions 63, 63.
  • the outer diameter (body diameter) of the body part 21 is 55 mm to 120 mm.
  • the depth of the concave portion 62, that is, the distance Hc from the ground contact portion 64 to the deepest portion of the concave portion 62 is 4% to 35% of the trunk diameter.
  • the value of Hc can be 4% to 15% of the trunk diameter.
  • the value of Hc can be 18% to 35% of the trunk diameter.
  • FIG. 13A and FIG. 13B show a bottle 70 that can be used in the seasoning filling method and seasoning filling system according to the present embodiment (Example E).
  • 13 (a) is a perspective view showing a bottle according to Example E
  • FIG. 13 (b) is a cross-sectional view showing the bottom of the bottle according to Example E (cross-section taken along line XIII-XIII in FIG. 13 (a)). Figure).
  • a bottle 70 shown in FIGS. 13A and 13B has a mouth portion 31 and a bottle main body 32.
  • the bottle main body 32 has the trunk
  • the outer diameter (body diameter) of the body part 21 is 55 mm to 120 mm.
  • the depth of the concave portion 72 that is, the distance Hd from the ground contact portion 73 to the deepest portion of the concave portion 72 is 4% to 20% of the trunk diameter.
  • the value of Hd can be 4% to 15% of the trunk diameter.
  • the value of Hd can be 10% to 20% of the body diameter.
  • the bottles shown in FIGS. 9 to 13 were prepared (the bottle 30a of Example A, the bottle 30b of Example B, the bottle 30c of Example C, the bottle 60 of Example D, and the bottle 70 of Example E, respectively).
  • the contents of each bottle 30a, 30b, 30c, 60, 70 were 750 ml, and the shapes of the bottles were the same except for the bottom.
  • a seasoning bottle was prepared. Specifically, a seasoning bottle was prepared as follows.
  • Example A A seasoning bottle 35 (Example A) was produced using the bottle 30b of Example A shown in FIGS. 9 (a) and 9 (b). Specifically, a seasoning-filled bottle 35 (Example A) was produced using the seasoning filling system 10 shown in FIG. 5 and the seasoning filling method shown in FIG. 6 (hot filling method). Note that a PET bottle having a capacity of 750 ml was used as the bottle 30a, and the conveyance speed of the bottle 30a was 300 bpm.
  • seasoning filling step first, rinse water is supplied from the mouth portion 31 of the bottle 30a into the bottle body 32 (rinsing step), and then 800 ml of inert gas 42 made of nitrogen gas is supplied from the mouth portion 31 into the bottle body 32. Then, the inside of the bottle body 32 was replaced with nitrogen gas (inert gas replacement step). Next, seasoning 43 made of soy sauce was filled from the mouth portion 31 into the bottle body 32 at a temperature of 92 ° C. (seasoning filling step).
  • a cap 33 was attached to the mouth portion 31 (cap attaching step), and the inside of the bottle 30a was sterilized (sterilizing step) to obtain a seasoning bottle 35 according to Example A.
  • the capacity of the head space was 30 ml.
  • the foaming volume and the total oxygen amount in the initial container of the seasoning bottle 35 (Example A) thus obtained were measured. As a result, the foaming volume was 7.0 ml, and the total amount of oxygen in the initial container was 1.5 ml.
  • Example B A seasoning bottle 35 (Example B) was produced in the same manner as in Example A, except that the bottle 30b shown in FIGS. 10 (a) and 10 (b) was used.
  • the foaming volume and the total oxygen amount in the initial container of this seasoning bottle 35 (Example B) were measured, the foaming volume was 7.2 ml, and the total oxygen amount in the initial container was 1.7 ml.
  • Example C A seasoning bottle 35 (Example C) was produced in the same manner as in Example A except that the bottle 30c shown in FIGS. 11 (a) and 11 (b) was used.
  • the foaming volume and the total oxygen amount in the initial container of this seasoning bottle 35 (Example C) were measured, the foaming volume was 6.8 ml, and the total oxygen amount in the initial container was 2.0 ml.
  • Example D A seasoning-containing bottle (Example D) was produced in the same manner as Example A, except that the bottle 60 shown in FIGS. 12 (a) and 12 (b) was used.
  • the foaming volume and the initial oxygen amount in the initial container of this seasoning bottle (Example D) were measured, the foaming volume was 4.2 ml, and the initial oxygen amount in the initial container was 4.8 ml.
  • Example E A seasoning bottle (Example E) was produced in the same manner as in Example A except that the bottle 70 shown in FIGS. 13 (a) and 13 (b) was used.
  • the foaming volume and the initial oxygen amount in the initial container of this seasoning bottle (Example E) were measured, the foaming volume was 1.6 ml, and the initial oxygen amount in the initial container was 5.2 ml.
  • the bottles 30a to 30c according to Examples A to C have a shape in which foaming due to the bubbles 43a of the inert gas 42 is likely to occur, as compared with the bottles 60 and 70 according to Example D and Example E.
  • the total oxygen amount in the initial container of the seasoning bottle 35 according to Examples A to C can be kept relatively low. That is, the bottles 30a to 30c according to Examples A to C have relatively large irregularities formed on the bottoms 37, 22, and 24, respectively. For this reason, foaming tends to occur when the seasoning 43 is filled, and it is considered that the total amount of oxygen in the initial container could be kept low.
  • Example A when the bottom has a flat bottom shape, when the filling liquid is filled, the liquid turbulence phenomenon hardly occurs and foaming hardly occurs, so that the effect of keeping the total oxygen amount in the initial container low is small.
  • Example B when the depression is formed at the bottom (Example A, Example C), or when the bottom is made of a petaloid shape (Example B), the shape of the bottom is complicated. Turbulence tends to occur during filling, bubbles are generated, and the bubbles are filled with nitrogen.
  • Example D and Example E although the effect which suppresses the total oxygen amount in an initial container becomes relatively low, the effect is not necessarily acquired.
  • the seasoning bottle 35 was produced using the hot filling method (FIGS. 5 and 6) in Examples A to E. However, even when the seasoning bottle 35 is produced using the aseptic filling method (FIGS. 1 and 3), the same result as above can be obtained.
  • FIGS. 14 to 16 are views showing a third embodiment of the present invention.
  • the third embodiment shown in FIGS. 14 to 16 is a system that fills a bottle 30 with a carbonated beverage.
  • 14 to 16 the same parts as those in the first embodiment and the second embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a carbonated beverage filling system 10A shown in FIG. 14 is a system that fills a bottle 30 having a mouth portion 31 and a bottle body 32 with a carbonated beverage 48.
  • This carbonated beverage filling system 10A includes a rinsing unit 12, an inert gas replacement unit 13, a carbonated beverage filling unit 14A, an inert gas supply unit 15, a cap mounting unit 16, and a sterilization unit 19A.
  • the rinse section 12, the inert gas replacement section 13, the carbonated beverage filling section 14A, the inert gas supply section 15, the cap mounting section 16, and the sterilization section 19A are arranged in this order from the upstream side to the downstream side. Yes.
  • a second transport mechanism 18 that transports the bottle 30 from the inert gas replacement unit 13 to the carbonated beverage filling unit 14A is provided.
  • a fourth transport mechanism 36 for transporting the bottle 30 from the cap mounting unit 16 to the sterilizing unit 19A is provided between the cap mounting unit 16 and the sterilizing unit 19A.
  • the rinse unit 12 supplies rinse water 41 from the mouth 31 of the empty bottle 30 into the bottle body 32.
  • the inert gas replacement unit 13 supplies only the inert gas 42 from the mouth portion 31 into the bottle main body 32 to the bottle 30 rinsed by the rinsing unit 12, thereby causing the inert gas 42 to pass through the bottle main body 32. It replaces with.
  • the configurations of the rinse section 12 and the inert gas replacement section 13 are the same as those in the first embodiment and the second embodiment (see FIG. 2), and detailed description thereof is omitted here.
  • a carbonated beverage filling portion 14 ⁇ / b> A for filling carbonated beverage 48 from the mouth portion 31 of the bottle 30 into the bottle body 32 is provided on the downstream side of the inert gas replacement portion 13.
  • the carbonated beverage 48 is filled into the bottle 30 filled with the inert gas 42.
  • the temperature of the carbonated beverage 48 at the time of filling in the carbonated beverage filling unit 14A is 1 ° C. to 10 ° C., preferably 5 ° C. to 10 ° C.
  • the reason why the temperature of the carbonated beverage 48 is set to a chilled region of 1 ° C. to 10 ° C. is that carbon dioxide gas easily escapes from the carbonated beverage 48 when the liquid temperature exceeds 10 ° C.
  • the carbonated beverage 48 may be made of various beverages containing carbon dioxide gas, and in particular, a carbonated beverage containing fruit juice (plant system), milk component (animal system), or honey component can be suitably used.
  • a carbonated beverage containing fruit juice plant system
  • milk component animal system
  • honey component honey component
  • juices oranges, blood oranges, Wenzhou mandarin oranges, lemons, grapefruits, limes, mandarines, yuzu, tangerines, temple oranges, tangeros, citrus fruits such as calamancy, apples, grapes, peaches, pineapples, guava, bananas, mangoes
  • Examples include acerola, papaya, passion fruit, ume, pear, apricot, litchi, melon, pear, squeezed fruit juices, soy milk, and the like.
  • These may be one type of fruit juice or a mixture of two or more types of fruit juice.
  • the bottle 30 is turned upside down so that the mouth portion 31 faces upward.
  • An inert gas supply unit 15 is provided on the downstream side of the carbonated beverage filling unit 14A.
  • the inert gas supply unit 15 supplies the inert gas 42 from the mouth portion 31 of the bottle 30 into the bottle main body 32, and the space above the liquid level of the carbonated beverage 48 in the bottle main body 32 (liquid level upper space 32 a).
  • the inside is filled with an inert gas 42.
  • the cap mounting portion 16 provided on the downstream side of the inert gas supply portion 15 seals the bottle 30 by mounting a cap 33 on the mouth portion 31 of the bottle 30. In this way, by attaching the cap 33 to the mouth portion 31 of the bottle 30, a carbonated beverage-containing bottle 75 is obtained.
  • the sterilizing unit 19A sterilizes the carbonated beverage 48 in the bottle body 32 by subjecting the carbonated beverage containing bottle 75 in an upright state to a hot water shower from the outer surface of the bottle 30.
  • the bottle 30 is sterilized by being exposed to, for example, 60 ° C. to 75 ° C. warm water for 10 minutes or more (medium temperature sterilization).
  • a container sterilization unit for sterilizing the inside of the bottle 30 may be provided upstream of the rinse unit 12 (corresponding to the sterilization unit 11 in the first embodiment described above).
  • the container sterilization unit may sterilize the empty bottle with a mist-like, rod-like, or fountain-type sterilizing agent (for example, hydrogen peroxide or peracetic acid).
  • An empty bottle may be sterilized by (EB sterilization).
  • Carbonated beverage filling method Next, a carbonated beverage filling method according to the present embodiment will be described with reference to FIGS. 15 and 16.
  • the carbonated beverage filling method according to the present embodiment is performed using the above-described carbonated beverage filling system 10A (FIG. 14).
  • the seasoning filling method includes a rinsing step (step S2), an inert gas replacement step (step S3), a carbonated beverage filling step (step S8), and an inert gas supply step (step S5). And a cap mounting step (step S6) and a sterilization step (step S9).
  • the rinse process (step S2), the inert gas replacement process (step S3), the inert gas supply process (step S5), and the cap mounting process (step S6) are the same as those in the first embodiment and the second embodiment described above. This is substantially the same as each step in the embodiment, and detailed description thereof will be omitted below.
  • the empty bottle 30 is conveyed to the rinse part 12 with the mouth part 31 facing downward.
  • the rinse water 41 is supplied in the bottle main body 32 from the opening part 31 of the bottle 30 (rinsing process) (step S2 of FIG. 15).
  • the bottle 30 is conveyed to the inert gas replacement unit 13 with the mouth portion 31 facing downward.
  • the inert gas replacement unit 13 only the inert gas 42 is supplied from the mouth portion 31 of the bottle 30 into the bottle body 32, and the inside of the bottle body 32 is replaced with the inert gas 42 (inert gas replacement step) ( Step S3 in FIG.
  • the bottle 30 filled with the inert gas 42 is turned upside down in the second transport mechanism 18 so that the mouth portion 31 faces upward, and is transported to the carbonated beverage filling portion 14A.
  • the carbonated beverage 48 is filled into the bottle body 32 from the mouth portion 31 of the bottle 30 (carbonated beverage filling step) (step S8 in FIG. 15, FIG. 16A).
  • the filling temperature of the carbonated beverage 48 is 1 ° C. to 10 ° C., preferably 5 ° C. to 10 ° C.
  • This carbonated beverage 48 is preliminarily filled with carbon dioxide gas (carbonic acid filling step).
  • the strength of the carbon dioxide gas of the carbonated beverage 48 may be equivalent to the degree of carbon dioxide gas having a gas volume (GV) of 2.0 to 4.0.
  • gas such as oxygen contained in the liquid is replaced with carbonic acid gas, so that the amount of dissolved oxygen is small despite being filled at such a low temperature (1 ° C. to 10 ° C.). It is kept low.
  • the carbonated beverage 48 is filled by a filling method under a pressurized atmosphere called mouth close filling, and immediately after filling, bubbles are generated in and inside the carbonated beverage 48. It hardly occurs (FIG. 16B).
  • the carbonated beverage 48 consists of a carbonated beverage containing fruit juice (plant type), a milk component (animal type), or a honey component as mentioned above. That is, according to the present embodiment, since the effect of suppressing the initial oxidation of the carbonated beverage 48 is high, natural juice such as fruit juice (plant-based), milk component (animal-based), or honey component contained in the carbonated beverage 48 is used. Oxidative deterioration of the derived component can be prevented, and a carbonated beverage that maintains the texture can be provided.
  • the bottle 30 is conveyed to the inert gas supply unit 15.
  • the inert gas 42 is supplied from the mouth portion 31 of the bottle 30 into the bottle body 32 (inert gas supply step) (step S 5 in FIG. 15, FIG. 16C). ).
  • step S8 in FIG. 15 the close contact filling (pressure filling) is performed, so that foaming is unlikely to occur during filling.
  • the mouth portion 31 of the bottle 30 is temporarily opened, and foaming occurs at this time (see FIG. 16C). That is, a large number of bubbles 48 a are generated inside and on the surface of the carbonated beverage 48 filled in the bottle body 32.
  • the inert gas 42 is introduced into the bottle body 32 in the inert gas replacement step, the inert gas 42 is accommodated in the bubbles 48a.
  • An inert gas 42 is also encapsulated in the carbonated beverage 48.
  • cap mounting portion 16 In this cap mounting part 16, by attaching the cap 33 to the mouth part 31 of the bottle 30, a carbonated beverage containing bottle 75 is obtained (cap mounting process) (step S6 in FIG. 15, FIG. 16 (d)).
  • the bottle 75 with the carbonated beverage after sealing is filled in the bottle 30 having the bottle body 32 and the mouth portion 31, the cap 33 attached to the mouth portion 31 of the bottle 30, and the bottle body 32 of the bottle 30.
  • a carbonated beverage 48 is filled in the liquid surface upper space 32a of the bottle body 32, and bubbles 48a containing the inert gas 42 are formed inside (FIG. 16D). Therefore, the amount of oxygen existing in the bottle 30 from the beginning (the total amount of oxygen in the initial container) is extremely small.
  • the carbonated beverage containing bottle 75 since the inside of the bottle 30 is expanded by carbon dioxide gas (internal pressure), the liquid level is relatively lower than that of a general beverage (the liquid level upper space 32a becomes large). ).
  • the carbonated beverage bottle 75 is conveyed to the sterilization unit 19A by the fourth conveyance mechanism 36.
  • the carbonated beverage 48 in the bottle main body 32 is sterilized by taking a warm water shower from the outer surface (side and upper side) of the bottle 30 (sterilization process, step S9 of FIG. 15).
  • the bottle 30 is sterilized by, for example, being subjected to a hot water shower at 60 ° C. to 75 ° C. for 10 minutes or longer (medium temperature sterilization).
  • the carbonated beverage 48 is acidic, it is originally in an environment in which bacteria (spore fungus) are difficult to grow.
  • the above sterilization conditions that is, the condition that the hot water of 60 ° C. to 75 ° C. is bathed for 10 minutes or more
  • the above sterilization conditions have a low thermal history and are gentler than the sterilization conditions when the hot filling method is adopted.
  • a sufficient bactericidal effect can be obtained.
  • the production (conveyance) speed of the carbonated beverage bottle 75 is preferably 100 bpm to 2000 bpm.
  • the period from the inert gas replacement process (step S3 in FIG. 15) to the carbonated beverage filling process (step S8 in FIG. 15) is performed in 0.5 to 20 seconds (ie, the inert gas replacement process is completed). It is preferable that the time from immediately after the start to just before the carbonated beverage filling process is started is 0.5 to 20 seconds).
  • the bottle 30 As a main material of the bottle 30, synthetic resin materials such as polyethylene terephthalate (PET), polypropylene (PP), and polylactic acid (PLA) can be used. As described later, it is preferable to use a bottle 30 having a petaloid-shaped bottom (see FIGS. 17 and 18). Moreover, as the bottle 30, it is preferable to use the heat-resistant pressure bottle which has a carbon dioxide gas barrier property. Although the heat-resistant pressure bottle tends to be heavier than a general bottle, it is possible to reduce the weight by using a multilayer bottle or a vapor deposition bottle.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PLA polylactic acid
  • the inert gas 42 is supplied from the mouth portion 31 of the bottle 30 into the bottle body 32 and the inside of the bottle body 32 is replaced with the inert gas 42.
  • the carbonated beverage 48 is filled into the bottle main body 32.
  • the bottle main body 32 is filled with the inert gas 42, and bubbles 48a containing the inert gas 42 therein are formed in the carbonated beverage 48, for example, in the inert gas supply process.
  • the total amount of oxygen in the initial container in the bottle 30 (the amount of oxygen present in the upper liquid space 32a immediately after production, the amount of oxygen present in the bubbles 48a, and the amount of oxygen dissolved in the carbonated beverage 48)
  • the initial oxidative deterioration of the carbonated beverage 48 can be suppressed.
  • the total oxygen amount in the initial container can be suppressed to 1.5 ml or less.
  • the rinse water 41 is supplied in the bottle main body 32 from the mouth part 31 of the bottle 30 (rinsing process), and only the inert gas 42 is supplied in the bottle main body 32 from the mouth part 31 after that. Then, the inside of the bottle body 32 is replaced with the inert gas 42 (inert gas replacement step). Therefore, the rinse water 41 can be effectively removed by the inert gas 42.
  • the carbonated beverage 48 is filled into the bottle body 32 from the mouth portion 31 at a temperature of 1 ° C. to 10 ° C., the carbon dioxide gas is difficult to escape from the carbonated beverage 48.
  • the carbonated beverage 48 is filled into the bottle body 32. Therefore, even though the temperature of the carbonated beverage 48 is low (1 ° C. to 10 ° C.), the amount of oxygen dissolved in the carbonated beverage 48 is kept small.
  • the production (conveyance) speed of the carbonated beverage containing bottle 75 is 100 bpm to 2000 bpm, and the interval from the inert gas replacement step to the carbonated beverage filling step is 0.5 second to 20 seconds. Therefore, it is possible to fill the bottle 30 with the carbonated beverage 48 at a high speed.
  • Example 1 A carbonated beverage containing bottle 75 (Example 1) was produced by using the carbonated beverage filling system 10A shown in FIG. 14 and the carbonated beverage filling method shown in FIG.
  • the bottle main body 32 of the bottle 30 has the trunk
  • the bottom part 22 has the five leg parts 23 arrange
  • rinse water is supplied from the mouth portion 31 of the bottle 30 into the bottle body 32 (rinsing step), and then 550 ml of an inert gas 42 made of nitrogen is supplied from the mouth portion 31 into the bottle body 32.
  • the inside of the bottle body 32 was replaced with nitrogen gas (inert gas replacement step).
  • a carbonated beverage 48 made of a carbonated beverage containing orange juice was filled from the mouth portion 31 into the bottle body 32 at a temperature of 10 ° C. (carbonated beverage filling step).
  • the conveyance speed of the bottle 30 was 600 bpm.
  • an inert gas 42 was supplied from the mouth 31 of the bottle 30 into the bottle body 32 (inert gas supply step). Thereafter, a cap 33 was attached to the mouth portion 31 (cap attaching step), and the inside of the bottle 30 was sterilized (sterilizing step), whereby a carbonated beverage bottle 75 according to Example 1 was obtained. In addition, the capacity of the head space of the carbonated beverage bottle 75 was 30 ml.
  • the amount of foaming and the total amount of oxygen in the initial container of the carbonated beverage containing bottle 75 (Example 1) thus obtained were measured.
  • the foaming amount was 17 ml
  • the total oxygen amount in the initial container was 0.8 ml.
  • the foaming amount refers to the total volume of bubbles generated in the carbonated beverage 48, that is, the bubbles 48a of the inert gas 42 and the bubbles of carbon dioxide gas.
  • Example 2 A carbonated beverage bottle 75 (Example 2) was produced in the same manner as in Example 1 except that a 500 ml heat-resistant pressure PET bottle shown in FIG. 18 was used as the bottle 30.
  • the width of each leg part 23 is wider than the bottle 30 shown in FIG. 17, and the length of each leg part 23 is shorter than the bottle 30 shown in FIG.
  • the amount of foaming of this carbonated beverage bottle 75 (Example 2) and the total amount of oxygen in the initial container were measured, the amount of foaming was 14 ml, and the total amount of oxygen in the initial container was 1.1 ml.
  • Example 3 A carbonated beverage bottle 75 (Example 3) was produced in the same manner as in Example 1 except that the inert gas supply step was not performed after the carbonated beverage filling step.
  • the amount of foaming of this carbonated beverage bottle 75 (Example 3) and the total amount of oxygen in the initial container were measured, the amount of foaming was 18 ml, and the total amount of oxygen in the initial container was 1.3 ml.
  • a carbonated beverage bottle (comparative example) was prepared in the same manner as in Example 1 except that 550 ml of gas made of sterilized air instead of nitrogen was supplied from the mouth portion 31 into the bottle body 32. Produced.
  • the amount of foaming and the total amount of oxygen in the initial container of this carbonated beverage bottle were measured, the amount of foaming was 17 ml and the total amount of oxygen in the initial container was 1.8 ml.
  • the four carbonated beverage bottles (Examples 1 to 3 and Comparative Example) thus obtained were each stored in a dark place at a temperature of 40 ° C. for 3 weeks, and then the color difference ⁇ E was measured. The result is shown in FIG.
  • the color difference ⁇ E is obtained by quantifying the color change of the carbonated beverage 48 after three weeks when the color of the carbonated beverage 48 immediately after filling is 0.

Landscapes

  • Vacuum Packaging (AREA)
  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
  • Basic Packing Technique (AREA)

Abstract

 本発明は、口部31と、ボトル本体32とを有するボトル30に対して調味料43を充填する調味料充填方法である。まず口部31からボトル本体32内へ不活性ガス42のみを供給してボトル本体32内を不活性ガス42で置換し、その後、口部31からボトル本体32内へ調味料43を充填する。予めボトル本体32内に導入された不活性ガス42により、ボトル本体32内に充填された調味料43に、内部に不活性ガス42を収納した泡43aが生じる。

Description

充填方法、充填システムおよびボトル
 本発明は、充填方法、充填システムおよびボトルに関する。
 従来一般に、醤油、ドレッシング等の液状調味料はガラス瓶に充填されて販売されている。一方近年、容器の軽量化を図ること等を目的として、このような液状調味料をPETボトル等のプラスチックボトルに充填することも行われている。
 しかしながら、このような液状調味料は、酸化劣化によって色や風味に影響が生じやすいという性質がある。したがって、液状調味料を容器に充填する場合、開栓するまでの間に起こりうる初期酸化劣化を抑制することが重要となる。
 特開2005-350090号公報には、調味料を充填した後、プラスチックボトル内のヘッドスペース中の酸素を不活性ガスによって置換することにより、ヘッドスペース中の酸素を除去する技術が開示されている。
 他方、特開2002-301441号公報には、不活性ガスと洗浄水(リンス水)とを混合した状態で空ボトル内に注入する技術が示されている。
 また近年、プラスチックボトルに使用されるプラスチック材料の使用量を減らすことにより、プラスチックボトルを軽量化することが望まれている。しかしながら、プラスチックボトルを軽量化することは、プラスチックボトルの強度および内容物保存(酸素バリア)性を低下させることに繋がる。
 このため、内容物保存(酸素バリア)性を高めるために、プラスチックボトルを構成する材料に酸素遮断性や酸素吸収機能性を有する材料をブレンドしたり、プラスチックボトルを多層化することにより、プラスチックボトルのガスバリア性を高める(内容物の経時酸化を抑制する)技術が使用されている。
 また、内容物を充填した後、プラスチックボトル内のヘッドスペース中の酸素を不活性ガスによって置換することにより、ヘッドスペース中の酸素を除去する(内容物の初期酸化を抑制する)充填包装技術が存在する(特開2008-155943号公報)。
特開2005-350090号公報 特開2002-301441号公報 特開2008-155943号公報
 しかしながら、特開2005-350090号のように、ボトルのヘッドスペース中に液化不活性ガスを滴下し、あるいは特開2008-155943号公報のように、ボトルのヘッドスペース中に不活性ガスを吹きかけることにより、不活性ガスにより酸素を置換することを行うのみでは、そのガス置換率に限界が存在する。とりわけ内容物の種類によっては、充填時に周囲の空気を巻き込み、泡立ち易く、かつこの泡が消えにくいものもある。このような泡立ちやすい内容物が充填されているボトルの場合、ヘッドスペース中の酸素を不活性ガスにより置換する際、ヘッドスペースのうち泡の外部の空間(液面上方空間)に存在する酸素を置換することはできるが、泡の内部に存在する酸素を置換することはできない。このような、泡内部に存在する酸素は、一定時間の経過後、泡の消滅とともにヘッドスペース中に放出されるため、結果的にヘッドスペース中の酸素量が上昇してしまうことになる。
 一方、内容物が炭酸飲料からなる場合、加圧雰囲気下で充填を行う、いわゆる口部密着充填と呼ばれる充填方式が用いられるため、充填時の発泡は比較的起こりにくいと考えられる。尚、密着充填は、加圧される容器内と充填タンク内の圧バランスが取れる機構になっており、充填開始とともに容器中の一部のガスが充填タンクに戻りつつ内容物が充填される機構となっている。つまり、連続充填開始とともに充填タンク内のヘッドスペース部が容器内のガスによって置換されることになる。また、充填後、キャッピングまでの間にボトルの口部が一時的に圧開放されるので、このとき内容物に泡立ちが発生する可能性がある。したがって、従来の充填方法においては、内容物が炭酸飲料からなる場合であっても、上述した問題と同様の問題が発生するおそれがある。
 他方、特開2002-301441号公報においては、不活性ガスを注入する工程と洗浄水(リンス水)を注入する工程とが区別されていないため、洗浄水(リンス水)の水切りを十分に行うことが難しいと考えられる。すなわち、リンス水と不活性ガスとがスプレー状に吹き出してしまうため、リンス水がボトル内壁にミスト状に残り、水切りが難しくなると考えられる。
 本発明はこのような点を考慮してなされたものであり、ボトル内に最初から存在する酸素量を減らすことにより、調味料または炭酸飲料の酸化劣化を抑制することが可能な、充填方法、充填システム、およびボトルを提供することを目的とする。
 本発明は、口部と、ボトル本体とを有するボトルに対して調味料を充填する調味料充填方法において、口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換する不活性ガス置換工程と、口部からボトル本体内へ調味料を充填する調味料充填工程とを備えたことを特徴とする調味料充填方法である。
 本発明は、調味料充填工程において、口部からボトル本体内へ5℃~55℃の温度で調味料を充填することを特徴とする調味料充填方法である。
 本発明は、工程全体が無菌雰囲気下で行われることを特徴とする調味料充填方法である。
 本発明は、不活性ガス置換工程の前に、ボトル内を殺菌する殺菌工程と、口部からボトル本体内へリンス水を供給するリンス工程とが設けられていることを特徴とする調味料充填方法である。
 本発明は、不活性ガス置換工程の前に、ボトル内を電子線により殺菌する殺菌工程が設けられていることを特徴とする調味料充填方法である。
 本発明は、調味料充填工程の後、口部からボトル本体内へ不活性ガスを供給する不活性ガス供給工程が設けられていることを特徴とする調味料充填方法である。
 本発明は、不活性ガス供給工程の後、口部にキャップを装着するキャップ装着工程が設けられていることを特徴とする調味料充填方法である。
 本発明は、調味料充填工程において、口部からボトル本体内へ55℃~95℃の温度で調味料を充填することを特徴とする調味料充填方法である。
 本発明は、不活性ガス置換工程の前に、口部からボトル本体内へリンス水を供給するリンス工程が設けられていることを特徴とする調味料充填方法である。
 本発明は、調味料充填工程の後、口部にキャップを装着するキャップ装着工程が設けられていることを特徴とする調味料充填方法である。
 本発明は、キャップ装着工程の後、ボトル本体内を殺菌する殺菌工程が設けられていることを特徴とする調味料充填方法である。
 本発明は、不活性ガス置換工程の際ボトル本体内に導入された不活性ガスにより、調味料充填工程の際、ボトル本体内に充填された調味料に、内部に不活性ガスを収納した泡が生じることを特徴とする調味料充填方法である。
 本発明は、不活性ガス置換工程から調味料充填工程までの間が0.5秒~20秒で行われることを特徴とする調味料充填方法である。
 本発明は、ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部に、放射状に延びる複数の突起が形成されていることを特徴とする調味料充填方法である。
 本発明は、ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする調味料充填方法である。
 本発明は、ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部の深さは、胴部の外径の4%~55%であることを特徴とする調味料充填方法である。
 本発明は、口部と、ボトル本体とを有するボトルに対して調味料を充填する調味料充填システムにおいて、口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換する不活性ガス置換部と、不活性ガス置換部の下流側に設けられ、口部からボトル本体内へ調味料を充填する調味料充填部とを備えたことを特徴とする調味料充填システムである。
 本発明は、調味料充填部において、口部からボトル本体内へ5℃~55℃の温度で調味料を充填することを特徴とする調味料充填システムである。
 本発明は、不活性ガス置換部の上流側に、ボトル内を殺菌する殺菌部が設けられ、不活性ガス置換部の上流側であって殺菌部の下流側に、口部からボトル本体内へリンス水を供給するリンス部が設けられていることを特徴とする調味料充填システムである。
 本発明は、不活性ガス置換部の上流側に、ボトル内を電子線により殺菌する殺菌部が設けられていることを特徴とする調味料充填システムである。
 本発明は、調味料充填部の下流側に、口部からボトル本体内へ不活性ガスを供給する不活性ガス供給部が設けられていることを特徴とする調味料充填システムである。
 本発明は、不活性ガス供給部の下流側に、口部にキャップを装着するキャップ装着部が設けられていることを特徴とする調味料充填システムである。
 本発明は、調味料充填部において、口部からボトル本体内へ55℃~95℃の温度で調味料を充填することを特徴とする調味料充填システムである。
 本発明は、不活性ガス置換部の上流側に、口部からボトル本体内へリンス水を供給するリンス部が設けられていることを特徴とする調味料充填システムである。
 本発明は、調味料充填部の下流側に、口部にキャップを装着するキャップ装着部が設けられていることを特徴とする調味料充填システムである。
 本発明は、キャップ装着部の下流側に、ボトル本体内を殺菌する殺菌部が設けられていることを特徴とする調味料充填システムである。
 本発明は、不活性ガス置換部でボトル本体内を不活性ガスで置換してから、内容物充填部でボトル本体内へ内容物を充填するまでの間が0.5秒~20秒で行われることを特徴とする調味料充填システムである。
 本発明は、ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部に、放射状に延びる複数の突起が形成されていることを特徴とする調味料充填システムである。
 本発明は、ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする調味料充填システムである。
 本発明は、ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部の深さは、胴部の外径の4%~55%であることを特徴とする調味料充填システムである。
 本発明は、ボトル本体と口部とを有するボトルと、ボトルのボトル本体内に充填された調味料とを備え、調味料に、内部に不活性ガスを収納した泡が形成されていることを特徴とする調味料入ボトルである。
 本発明は、ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部に、放射状に延びる複数の突起が形成されていることを特徴とする調味料入ボトルである。
 本発明は、ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする調味料入ボトルである。
 本発明は、ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部の深さは、胴部の外径の4%~55%であることを特徴とする調味料入ボトルである。
 本発明は、口部と、ボトル本体とを有するボトルに対して炭酸飲料を充填する炭酸飲料充填方法において、口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換する不活性ガス置換工程と、口部からボトル本体内へ1℃~10℃の温度で炭酸飲料を充填する炭酸飲料充填工程とを備えたことを特徴とする炭酸飲料充填方法である。
 本発明は、不活性ガス置換工程の前に、口部からボトル本体内へリンス水を供給するリンス工程が設けられていることを特徴とする炭酸飲料充填方法である。
 本発明は、炭酸飲料充填工程の後、口部からボトル本体内へ不活性ガスを供給する不活性ガス供給工程が設けられていることを特徴とする炭酸飲料充填方法である。
 本発明は、不活性ガス供給工程の後、口部にキャップを装着するキャップ装着工程が設けられていることを特徴とする炭酸飲料充填方法である。
 本発明は、キャップ装着工程の後、ボトル本体内を殺菌する殺菌工程が設けられていることを特徴とする炭酸飲料充填方法である。
 本発明は、殺菌工程において、ボトルに対して60℃~75℃の温水を浴びせることによりボトル本体内を殺菌することを特徴とする炭酸飲料充填方法である。
 本発明は、炭酸飲料は、果汁、乳成分、またははちみつ成分(動植物由来成分)を含むことを特徴とする炭酸飲料充填方法である。
 本発明は、不活性ガス置換工程から炭酸飲料充填工程までの間が0.5秒~20秒で行われることを特徴とする炭酸飲料充填方法である。
 本発明は、ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする炭酸飲料充填方法である。
 本発明は、口部と、ボトル本体とを有するボトルに対して炭酸飲料を充填する炭酸飲料充填システムにおいて、口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換する不活性ガス置換部と、不活性ガス置換部の下流側に設けられ、口部からボトル本体内へ1℃~10℃の温度で炭酸飲料を充填する炭酸飲料充填部とを備えたことを特徴とする炭酸飲料充填システムである。
 本発明は、不活性ガス置換部の上流側に、口部からボトル本体内へリンス水を供給するリンス部が設けられていることを特徴とする炭酸飲料充填システムである。
 本発明は、炭酸飲料充填部の下流側に、口部からボトル本体内へ不活性ガスを供給する不活性ガス供給部が設けられていることを特徴とする炭酸飲料充填システムである。
 本発明は、不活性ガス供給部の下流側に、口部にキャップを装着するキャップ装着部が設けられていることを特徴とする炭酸飲料充填システムである。
 本発明は、キャップ装着部の下流側に、ボトル本体内を殺菌する殺菌部が設けられていることを特徴とする炭酸飲料充填システムである。
 本発明は、殺菌部において、ボトルに対して60℃~75℃の温水を浴びせることによりボトル本体内を殺菌することを特徴とする炭酸飲料充填システムである。
 本発明は、炭酸飲料は、果汁、乳成分、またははちみつ成分(動植物由来成分)を含むことを特徴とする炭酸飲料充填システムである。
 本発明は、不活性ガス置換部でボトル本体内を不活性ガスで置換してから、炭酸飲料充填部でボトル本体内へ炭酸飲料を充填するまでの間が0.5秒~20秒で行われることを特徴とする炭酸飲料充填システムである。
 本発明は、ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする炭酸飲料充填システムである。
 本発明は、ボトル本体と口部とを有するボトルと、ボトルのボトル本体内に1℃~10℃の温度で充填された炭酸飲料とを備え、炭酸飲料に、内部に不活性ガスを収納した泡が形成されていることを特徴とする炭酸飲料入ボトルである。
 本発明は、ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする炭酸飲料入ボトルである。
 本発明によれば、口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換した後、口部からボトル本体内へ調味料を充填する。このため、ボトル本体内に不活性ガスが充填されるとともに、調味料に、内部に不活性ガスを収納した泡が形成される。これにより、ボトル内に最初から存在する酸素量(初期容器内総酸素量)を減らすことができ、調味料の初期酸化劣化を抑制することができる。
 本発明によれば、口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換した後、口部からボトル本体内へ1℃~10℃の温度で炭酸飲料を充填する。このため、ボトル本体内に不活性ガスが充填されるとともに、炭酸飲料に、内部に不活性ガスを収納した泡が形成される。これにより、ボトル内に最初から存在する酸素量(初期容器内総酸素量)を減らすことができ、炭酸飲料の初期酸化劣化を抑制することができる。
図1は、本発明の第1の実施の形態による調味料充填システム(無菌充填システム)を示す構成図。 図2は、本発明の第1の実施の形態による調味料充填システムのリンス部および不活性ガス置換部を示す概略断面図。 図3は、本発明の第1の実施の形態による調味料充填方法(無菌充填方法)を示すフロー図。 図4(a)~図4(c)は、本発明の第1の実施の形態による調味料充填方法の各工程におけるボトルを示す図。 図5は、本発明の第2の実施の形態による調味料充填システム(ホット充填システム)を示す構成図。 図6は、本発明の第2の実施の形態による調味料充填方法(ホット充填方法)を示すフロー図。 図7は、保存期間と調味料の色差との関係を示す図。 図8は、味覚試験機による試験結果を示す図。 図9(a)および図9(b)は、実施例Aによるボトルを示す図。 図10(a)および図10(b)は、実施例Bによるボトルを示す図。 図11(a)および図11(b)は、実施例Cによるボトルを示す図。 図12(a)および図12(b)は、実施例Dによるボトルを示す図。 図13(a)および図13(b)は、実施例Eによるボトルを示す図。 図14は、本発明の第3の実施の形態による炭酸飲料充填システムを示す構成図。 図15は、本発明の第3の実施の形態による炭酸飲料充填方法を示すフロー図。 図16(a)~図16(d)は、本発明の第3の実施の形態による炭酸飲料充填方法の各工程におけるボトルを示す図。 図17は、実施例1、3および比較例で用いられるボトルを示す斜視図。 図18は、実施例2で用いられるボトルを示す斜視図。 図19は、実施例1~3と比較例との間で炭酸飲料の色差ΔEを比較するグラフ。
 第1の実施の形態
 以下、図1乃至図4を参照して本発明の第1の実施の形態について説明する。図1乃至図4は本発明の第1の実施の形態を示す図である。なお、図1乃至図4に示す第1の実施の形態は、調味料充填システムとして無菌充填システムを用いるものである。
 (調味料充填システム)
 まず図1乃至図2により本実施の形態による調味料充填システム(無菌充填システム)について説明する。
 図1に示す調味料充填システム10は、口部31と、ボトル本体32とを有するボトル30に対して調味料43を充填するシステムである。この調味料充填システム10は、殺菌部11と、リンス部12と、不活性ガス置換部13と、調味料充填部14と、不活性ガス供給部15と、キャップ装着部16とを備えている。これら殺菌部11、リンス部12、不活性ガス置換部13、調味料充填部14、不活性ガス供給部15、およびキャップ装着部16は、上流側から下流側に向けてこの順に配設されている。
 また、殺菌部11とリンス部12との間に、ボトル30を殺菌部11からリンス部12へ搬送する第1搬送機構17が設けられている。さらに、不活性ガス置換部13と調味料充填部14との間に、ボトル30を不活性ガス置換部13から調味料充填部14へ搬送する第2搬送機構18が設けられている。
 殺菌部11は、ミスト状、棒状、または噴水式に噴出される殺菌剤40により空のボトル30内を殺菌するものである。この殺菌剤40としては、例えば過酸化水素水または過酢酸が挙げられる。なお、殺菌部11においては、殺菌剤40を用いる殺菌方法のほか、殺菌剤40を用いない電子線殺菌(以下、EB(Electron Beam)殺菌ともいう)方法が用いられても良い。
 リンス部12は、殺菌部11で内部が殺菌されたボトル30の口部31からボトル本体32内へリンス水41を供給するものである。このリンス水41は、例えば25℃~80℃程度の温水(無菌水)からなっている。なお、殺菌部11においてEB殺菌方法を用いる場合、このリンス部12は必ずしも設けられなくても良い。この場合、製造工程において水や電気の使用量を削減することができる。
 なお、殺菌部11とリンス部12との間に位置する第1搬送機構17において、口部31が下方を向くように、ボトル30を上下反転するようになっている。
 不活性ガス置換部13は、リンス部12でリンスされたボトル30に対し、その口部31からボトル本体32内へ不活性ガス42のみを供給し、これによりボトル本体32内を不活性ガス42で置換するものである。この不活性ガス42としては各種のガスを用いることができるが、とりわけ窒素(N2)を用いることが好ましい。また充填する不活性ガス42の量は、ボトル30の容積を上回る量とすることが好ましい。なお、不活性ガス置換部13において、ボトル30は口部31を下方に向けたままの状態である。このように、不活性ガス42を用いてボトル30内の空気(酸素)を置換することにより、ボトル30内に不活性ガス42が充填される。
 次に図2を用いて、このリンス部12および不活性ガス置換部13の構成について更に詳細に説明する。
 図2に示すように、リンス部12および不活性ガス置換部13は、それぞれディストリビュータ50上に配置されている。このディストリビュータ50は、固定部51と、固定部51上で一定方向に回転する回転部52とを有している。このうち回転部52に、上方に向けて突出する複数のノズル53が連結されている。そしてボトル30は、回転部52の回転に伴い、口部31内に挿入された各ノズル53とともに一定方向に回転するようになっている。なお、ディストリビュータ50は平面円形形状からなっているが、図2では、便宜上、ディストリビュータ50の一部分のみを模式的に示している。
 リンス部12は、リンス水41を収容したリンス水タンク59と、リンス水タンク59に連結されたリンス水供給管54と、リンス水供給管54に連結されたリンス水供給空間55とを有している。このうちリンス水供給空間55は、固定部51内に形成されるとともに、回転部52の回転に伴ってリンス水供給空間55上方に移動してきたノズル53と連通するようになっている。これによりリンス水41は、リンス水タンク59から、リンス水供給管54、リンス水供給空間55、および各ノズル53を順次介してボトル30内に供給され、ボトル30内が洗浄される。
 他方、不活性ガス置換部13は、不活性ガス42を収容した不活性ガスタンク56と、不活性ガスタンク56に連結された不活性ガス供給管57と、不活性ガス供給管57に連結された不活性ガス供給空間58とを有している。このうち不活性ガス供給空間58は、固定部51内に形成されるとともに、回転部52の回転に伴って不活性ガス供給空間58上方に移動してきたノズル53と連通するようになっている。これにより不活性ガス42は、不活性ガスタンク56から、不活性ガス供給管57、不活性ガス供給空間58、および各ノズル53を順次介してボトル30内に供給され、ボトル30内の空気と置換される。
 再び図1を参照すると、不活性ガス置換部13の下流側に、ボトル30の口部31からボトル本体32内へ調味料43を充填する調味料充填部14が設けられている。この調味料充填部14において、不活性ガス42が充填された状態のボトル30に対して調味料43が充填される。この場合、充填時における調味料43の温度は5℃~55℃である。なお、調味料43の種類は限定されるものではないが、例えば、醤油、みりん、酢、ポン酢、だし汁、つけだれ類、めんつゆ等のつゆ類、調理用酒、ドレッシング類、パスタソースやウスターソース等のソース類、ラー油等の辛味調味料類、ケチャップ、マヨネーズ、液状味噌等、液状の調味料を用いることができる。
 なお不活性ガス置換部13と調味料充填部14との間の第2搬送機構18において、口部31が上方を向くように再度ボトル30を上下反転するようになっている。
 調味料充填部14の下流側には、不活性ガス供給部15が設けられている。この不活性ガス供給部15は、ボトル30の口部31からボトル本体32内へ不活性ガス42を供給し、ボトル本体32のうち調味料43の液面上方の空間(液面上方空間32a)内に不活性ガス42を充填するものである。なお、不活性ガス42としては、不活性ガス置換部13において供給されるガスと同様に、例えば窒素(N2)を用いることができる。なお、不活性ガス供給部15で供給される不活性ガスが、不活性ガス置換部13で供給される不活性ガスと異なる種類のガスからなっていても良い。この不活性ガス供給部15で充填される不活性ガス42の量は、泡43aおよび液面上方空間32aの合計容積と同等以上の量とすることが好ましい。ここで本明細書中、液面上方空間32aとは、ボトル本体32内部の空間のうち、調味料43(後述する第3の実施の形態においては炭酸飲料48)の液面上方に形成される空間であって、調味料43(炭酸飲料48)に発生する泡43a(泡48a)を除いたものをいう。したがって、泡43aおよび液面上方空間32aに含まれる気体が、市場に出た後におけるヘッドスペース中の気体に相当する。
 不活性ガス供給部15の下流側に設けられたキャップ装着部16は、ボトル30の口部31にキャップ33を装着することにより、ボトル30を密閉するものである。このように、ボトル30の口部31にキャップ33を装着することにより、調味料入ボトル35が得られる。
 (調味料充填方法)
 次に、図1、図3、および図4(a)~図4(c)により、本実施の形態による調味料充填方法(無菌充填方法)について説明する。本実施の形態による調味料充填方法は、上述した調味料充填システム10(図1)を用いて行われるものである。
 まず、殺菌部11において、空のボトル30内を殺菌剤40により殺菌する(殺菌工程)(図3のステップS1)。この殺菌剤40としては、上述したように過酸化水素水または過酢酸が挙げられる。なお、この殺菌工程において、殺菌剤40を用いる殺菌方法のほか、上述したEB殺菌方法を用いても良い。このように、殺菌部11においてボトル30内が殺菌される。
 次に、殺菌されたボトル30は、第1搬送機構17において口部31が下方を向くように上下反転され、リンス部12に搬送される。次にこのリンス部12において、ボトル30の口部31からボトル本体32内へリンス水41が供給される(リンス工程)(図3のステップS2)。このように、リンス水41を用いてボトル30内を洗浄することにより、ボトル30内に残存する殺菌剤40等を取り除く。なお、殺菌工程においてEB殺菌方法を用いる場合には、殺菌剤40を使用しないため、必ずしもこのリンス工程を設ける必要はない。ただし、この場合であっても、ボトル30内に残存する異物等を除去するために、このリンス工程が設けられていても良い。
 続いて、ボトル30は、口部31を下方に向けた状態のまま不活性ガス置換部13に搬送される(図2参照)。この不活性ガス置換部13において、ボトル30の口部31からボトル本体32内へ不活性ガス42のみを供給し、ボトル本体32内を不活性ガス42で置換する(不活性ガス置換工程)(図3のステップS3)。このように、ボトル本体32内に下方から不活性ガス42を噴射することにより、ボトル本体32内に残存するリンス水41を効果的に取り除くことができるという効果もある。
 次に、不活性ガス42が充填されたボトル30は、第2搬送機構18において口部31が上方を向くように上下反転され、調味料充填部14に搬送される。続いて、調味料充填部14において、ボトル30の口部31からボトル本体32内へ調味料43が充填される(調味料充填工程)(図3のステップS4、図4(a))。この場合、調味料43は5℃~55℃の温度で無菌充填される。なお、充填される調味料43は、その溶存酸素濃度を抑えるように、予め液処理工程において制御(液脱気)管理されている。
 この調味料充填工程の際、ボトル30のボトル本体32に充填された調味料43の内部および表面に、充填時の巻き込みにより多数の泡43aが生じる。この場合、上述したように、不活性ガス置換工程において、ボトル本体32内に不活性ガス42が導入されている。したがって、調味料43には、内部に不活性ガス42が収納された泡43aが生じる。また、調味料43中にも不活性ガス42が包み込まれる。
 本実施の形態において、調味料43は、上述したように醤油、みりん、酢、ポン酢、だし汁、つけだれ類、めんつゆ等のつゆ類、調理用酒、ドレッシング類、パスタソースやウスターソース等のソース類、ラー油等の辛味調味料類、ケチャップ、マヨネーズ、液状味噌等、液状の調味料からなっていることが好ましい。
 調味料充填工程の後、ボトル30は不活性ガス供給部15に搬送される。次いで、この不活性ガス供給部15において、ボトル30の口部31からボトル本体32内へ不活性ガス42が供給される(不活性ガス供給工程)(図3のステップS5、図4(b))。これにより、ボトル本体32の液面上方空間32a内に不活性ガス42が充填される。この結果、不活性ガス置換部13から調味料充填部14を経て不活性ガス供給部15に至るボトル30の搬送中に一部失われた不活性ガス42が、ボトル本体32内に補填される。
 不活性ガス供給工程の後、ボトル30はキャップ装着部16に搬送される。その後、キャップ装着部16において、ボトル30の口部31にキャップ33を装着することにより、調味料入ボトル35が得られる(キャップ装着工程)(図3のステップS6、図4(c))。
 この密栓後の調味料入ボトル35は、ボトル本体32と口部31とを有するボトル30と、ボトル30の口部31に装着されたキャップ33と、ボトル30のボトル本体32内に充填された調味料43とを備えている。また、ボトル本体32の液面上方空間32a内に不活性ガス42が充填されるとともに、内部に不活性ガス42を収納した泡43aが形成されている(図4(c))。したがって、ボトル30内に最初から存在する酸素量(初期容器内総酸素量)がきわめて少なく抑えられている。
 ところで、本実施の形態において、上述した殺菌工程からキャップ装着工程までの工程全体が無菌雰囲気下で行われるとともに、ボトル30の口部31からボトル本体32内へ5℃~55℃、例えば常温(5℃~35℃)で調味料43を充填するようになっている。すなわち、いわゆる無菌充填方式が採用されている。
 ここで、本実施の形態による無菌充填方式と、ホットパック充填方式の違いについて説明する。本実施の形態による無菌充填方式の特徴として、調味料43の充填温度が5℃~55℃であるため、充填時における泡43aおよび液面上方空間32aの気体量は、最も多い場合で、市場に出た後における、製品(調味料入ボトル35)のヘッドスペース容積にほぼ等しいことが挙げられる。
 これに対して、ホットパック充填方式(後述)を採用した場合には、55℃~95℃の高温下で調味料を充填する。このため、充填時にヘッドスペースは蒸気で満たされており、ヘッドスペースの酸素濃度は低くなっている。また、その後調味料が常温となった場合には、ヘッドスペースが大きく減少する。さらに、気体の液体への溶解度は一般的に低温である程、増す性質がある。
 したがって、本実施の形態による無菌充填方式は、ホットパック充填方式と比べて、調味料43の充填時における空気の巻き込みにより、調味料43中の溶存酸素濃度が高まりやすい。加えて、液面上方空間32aが大きいことから、ボトル30内の総酸素量が大きくなりやすい傾向にある。したがって、とりわけ無菌充填方式を用いる場合、ボトル30内に最初から存在する酸素量(初期容器内総酸素量)を抑えることが、調味料43の酸化を防止するうえで効果的となる。
 なお、本実施の形態において、調味料入ボトル35の生産(搬送)速度は、100bpm~2000bpmとすることが好ましい。ここでbpm(bottle per minute)とは、1分間当たりのボトル30の搬送速度をいう。この場合、不活性ガス置換工程(図3のステップS3)から調味料充填工程(図3のステップS4)までの間が0.5秒~20秒で行われる(すなわち不活性ガス置換工程が完了した直後から調味料充填工程が開始される直前までの時間が0.5秒~20秒である)ことが好ましい。
 なお、ボトル30の材料としては、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリ乳酸(PLA)等の合成樹脂材料を用いることができる。なお、ボトル30の好ましい形状については後述する。
 以上のように本実施の形態によれば、ボトル30の口部31からボトル本体32内へ不活性ガス42のみを供給してボトル本体32内を不活性ガス42で置換した後、口部31からボトル本体32内へ調味料43を充填する。このことにより、ボトル本体32内に不活性ガス42が充填されるとともに、調味料43に、内部に不活性ガス42を収納した泡43aが形成される。この結果、ボトル30内の初期容器内総酸素量(製造直後における、液面上方空間32a内部に存在する酸素量、泡43a内部に存在する酸素量、および調味料43に溶解している酸素量の合計)を減らすことができ、調味料43の初期酸化劣化を抑制することができる。具体的には、500mlサイズのボトル30の場合、初期容器内総酸素量を2.0ml以下に抑えることができる。
 とりわけ本実施の形態によれば、ボトル内容物の初期酸化を抑制する効果が高いため、上述した各種調味料43のように、酸化劣化によって風味や色差が変わりやすい性質を持つものを、効果的に充填して酸化防止を図ることができる。とりわけ保存料を添加しない液状調味料であっても、酸化の進行を遅らせる効果が得られる。また、調味料43としてソース等の粘性の高いものを用いる場合、充填時に泡43aが生じやすく、かつ調味料43内に不活性ガス42を巻き込みやすいため、より酸化防止の効果が得られやすい。
 また本実施の形態によれば、ボトル30の口部31からボトル本体32内へリンス水41を供給し(リンス工程)、その後、口部31からボトル本体32内へ不活性ガス42のみを供給してボトル本体32内を不活性ガス42で置換する(不活性ガス置換工程)。したがって、不活性ガス42によってリンス水41を効果的に除去することができる。
 また本実施の形態によれば、調味料充填工程の後、口部31からボトル本体32内へ不活性ガス42を供給する不活性ガス供給工程が設けられている。このことにより、搬送中にボトル本体32内から一部失われた不活性ガス42をボトル本体32に補填することができ、調味料43の初期酸化劣化をより確実に抑制することができる。
 また本実施の形態によれば、口部31からボトル本体32内へ5℃~55℃で調味料43を充填するとともに、工程全体が無菌雰囲気下で行われる(無菌充填方式)。すなわち、調味料43を加熱することがないので、熱による調味料43の劣化を防止することができる。
 さらに本実施の形態によれば、従来の無菌充填方式で使用されている設備を大幅に改造する必要がないため、設備コストを抑制することができる。
 さらに本実施の形態によれば、調味料入ボトル35の生産(搬送)速度は、100bpm~2000bpmであり、また不活性ガス置換工程から調味料充填工程までの間が0.5秒~20秒で行われるので、ボトル30に対して高速で調味料43を充填することが可能である。
 第2の実施の形態
 次に、図5および図6を参照して本発明の第2の実施の形態について説明する。図5および図6は、本発明の第2の実施の形態を示す図である。図5および図6に示す第2の実施の形態は、調味料充填システムとしてホット充填システムを用いるものである。図5および図6に示す第2の実施の形態は、調味料43を比較的高温(55℃~95℃)で充填する点、および殺菌部11に代えて、キャップ装着部16の下流側に殺菌部19を設けた点が異なるものであり、他の構成は上述した第1の実施の形態と略同一である。図5および図6において、図1乃至図4に示す実施の形態と同一部分には同一の符号を付して詳細な説明は省略する。
 (調味料充填システム)
 まず図5により本実施の形態による調味料充填システム(ホット充填システム)について説明する。以下、図1に示す調味料充填システム(無菌充填システム)と異なる点を中心に説明する。
 図5に示す調味料充填システム10は、リンス部12と、不活性ガス置換部13と、調味料充填部14と、キャップ装着部16と、殺菌部19とを備えている。これらリンス部12、不活性ガス置換部13、調味料充填部14、キャップ装着部16、および殺菌部19は、上流側から下流側に向けてこの順に配設されている。
 不活性ガス置換部13と調味料充填部14との間には、ボトル30を不活性ガス置換部13から調味料充填部14へ搬送する第2搬送機構18が設けられている。調味料充填部14とキャップ装着部16との間には、ボトル30を調味料充填部14からキャップ装着部16へ搬送する第3搬送機構34が設けられている。またキャップ装着部16と殺菌部19との間には、ボトル30をキャップ装着部16から殺菌部19へ搬送する第4搬送機構36が設けられている。
 本実施の形態において、調味料充填部14は、不活性ガス42が充填された状態のボトル30に対して調味料43をホット充填するものである。この場合、充填時における調味料43の温度は55℃~95℃であり、好ましくは60℃~95℃であり、更に好ましくは85℃~95℃である。
 上述したように、第3搬送機構34は、ボトル30を調味料充填部14からキャップ装着部16へ搬送するためのものである。なお、第3搬送機構34において、ボトル30の口部31からボトル本体32内へ不活性ガス42を供給し、ボトル本体32のうち調味料43の液面上方の空間(液面上方空間32a)内に不活性ガス42を充填しても良い(不活性ガス供給部)。
 また殺菌部19は、調味料入ボトル35を例えば水平に傾けることにより、高温の状態の調味料43をキャップ33の裏面に接触させ、これによりキャップ33の裏面やボトル本体32の内部を殺菌するものである。
 (調味料充填方法)
 次に、図6により、本実施の形態による調味料充填方法(ホット充填方法)について説明する。本実施の形態による調味料充填方法は、上述した調味料充填システム10(図5)を用いて行われるものである。以下、図3に示す調味料充填方法(無菌充填方法)と異なる点を中心に説明する。
 本実施の形態において、調味料充填方法は、リンス工程(ステップS2)と、不活性ガス置換工程(ステップS3)と、調味料充填工程(ステップS4)と、キャップ装着工程(ステップS6)と、殺菌工程(ステップS7)とを備えている。このうちリンス工程(ステップS2)、不活性ガス置換工程(ステップS3)、およびキャップ装着工程(ステップS6)は、上述した調味料充填方法(無菌充填方法)(図3)における各工程と略同様である。
 一方、調味料充填工程(ステップS4)において、調味料43は55℃~95℃、好ましくは85℃~95℃の温度でホット充填される。そしてボトル30内部のうち調味料43に接触している部分は、加熱された調味料43によって殺菌される。なお、充填する調味料43は、その溶存酸素濃度を抑えるように、予め液処理工程において制御(液脱気)管理されている。
 また本実施の形態において、キャップ装着工程(ステップS6)の後、調味料入ボトル35は、第4搬送機構36により殺菌部19に搬送される。この殺菌部19において、調味料入ボトル35内部のうち、調味料43に接触していない部分を殺菌する(殺菌工程)(ステップS7))。この際、調味料入ボトル35を例えば水平に傾けることにより、高温状態(例えば55℃~95℃)の調味料43をキャップ33の裏面に接触させ、これによりキャップ33の裏面やボトル本体32の内部を殺菌する。この場合、ボトル本体32の内部を周方向均一に殺菌するため、調味料入ボトル35をその中心軸線に沿って回転させることが好ましい。
 本実施の形態によれば、上述した第1の実施の形態における効果のほか、以下のような効果が得られる。すなわち本実施の形態によれば、口部31からボトル本体32内へ55℃~95℃、好ましくは85℃~95℃の温度で調味料43を充填している(ホット充填方式)。一般に、ホット充填方式は、無菌充填方式と比べてボトル30内の初期容器内総酸素量が少ない。ただし、ホット充填方式といえども、充填時の空気巻き込みは避けられない。このため、本実施の形態による調味料充填方法を用いることにより、初期容器内総酸素量を更に低減することが可能となる。この結果、調味料入ボトル35の製品寿命を更に延ばすことが可能となる。
 次に、図5乃至図8を用いて本実施の形態の具体的実施例を説明する。
 (実施例)
 図5に示す調味料充填システム10を用い、かつ図6に示す調味料充填方法により調味料入ボトル35(実施例)を作製した(ホット充填方式)。なお、ボトル30としては容量750mlの耐熱PETボトルを用い、さらにボトル30の搬送速度は300bpmとした。
 まずボトル30の口部31からボトル本体32内へリンス水を供給し(リンス工程)、続いて、口部31からボトル本体32内へ窒素からなる不活性ガス42を800ml供給して、ボトル本体32内を窒素ガスで置換した(不活性ガス置換工程)。次に、口部31からボトル本体32内へ醤油からなる調味料43を92℃の温度で充填した(調味料充填工程)。
 その後、口部31にキャップ33を装着し(キャップ装着工程)、ボトル30内を殺菌することにより(殺菌工程)、本実施例による調味料入ボトル35を得た。
 (比較例)
 リンス工程の後、口部31からボトル本体32内へ窒素ではなく無菌化した空気からなるガスを800ml供給したこと、以外は、上記実施例と同様にして調味料入ボトル(比較例)を作製した。
 このようにして得られた調味料入ボトル35(実施例)について、充填直後の調味料43中の色を測定するとともに、官能試験(味覚試験機による優位差判定)を実施した。さらに調味料入ボトル35(実施例)および調味料入ボトル(比較例)を温度22℃の環境下で12週間保存し、各ボトルにおける調味料43の色差ΔE*を測定するとともに、官能試験(味覚試験機による優位差判定)を実施した。この結果を図7および図8に示す。なお色差ΔE*とは、充填直後の調味料43の色を0とした場合における、12週間経過後の調味料43の色の変化を数値化したものである。
 この結果、本実施の形態による調味料入ボトル35(実施例)は、比較例による調味料入ボトルと比べて、12週間経過後における色差ΔE*が小さかった(図7参照)。また味覚試験機による試験結果によれば、本実施の形態による調味料入ボトル35(実施例)は、比較例による調味料入ボトルと比べて、12週間経過後における調味料43の味覚の変化が小さかった(図8参照)。とりわけ、「酸味」、「旨味コク」、および「旨味」の点で基準サンプルとの相違が小さかった。これらのことからも、本実施の形態による調味料充填方法の有効性を確認することができた。
 ボトルの構成
 次に、図9乃至図13を用いて、上述した第1の実施の形態および第2の実施の形態による調味料充填方法および調味料充填システムにおいて好適に用いられるボトルの構成について説明する。
 上述したように、上述した各実施の形態においては、ボトル30の口部31からボトル本体32内へ不活性ガス42のみを供給してボトル本体32内を不活性ガス42で置換し(不活性ガス置換工程)、その後口部31からボトル本体32内へ調味料43を充填している(調味料充填工程)。
 また上述したように、調味料充填工程の際、充填時の巻き込みにより調味料43に多数の泡43aが生じる。この泡43aの内部には、不活性ガス42が閉じこめられている。したがって、多数の泡43aの合計体積(以下、泡立ち体積ともいう)が大きければ大きいほど、ボトル本体32の液面上方空間32a内の酸素量を相対的に減少させることができる。また泡43a内部の不活性ガス42は、キャップ装着工程までの間に外部の酸素とほとんど置換されない。したがって、ボトル30内に存在する酸素量(初期容器内総酸素量)を低く抑えることができる。本発明者らは、このような泡立ち体積はボトル30の形状による影響を受けやすく、とりわけボトル30の底部の形状による影響を受けやすいことを見出した。
 以下、図9乃至図13により、本実施の形態において用いられるボトル(実施例A~実施例E)について順次説明する。
 (実施例A)
 図9(a)および図9(b)は、本実施の形態による調味料充填方法および調味料充填システムに好適に用いられるボトル30(30a)を示している(実施例A)。なお図9(a)は、実施例Aによるボトルを示す斜視図であり、図9(b)は、実施例Aによるボトルの底部を示す断面図(図9(a)のIX-IX線断面図)である。
 図9(a)および図9(b)に示すボトル30(30a)は、口部31と、ボトル本体32とを有している。このうちボトル本体32は、胴部21と、胴部21に連接する底部37とを有している。底部37の中央部には、内方に向けて陥没する陥没部38が形成されている。また陥没部38には、放射状に延びる複数(この場合は8個)の突起39が形成されている。さらに陥没部38の中央には、内方に凹む円形凹部46が設けられている。この場合、胴部21の外径(胴径)は55mm乃至120mm、好ましくは60mm乃至105mmとなっている。
 (実施例B)
 図10(a)および図10(b)は、本実施の形態による調味料充填方法および調味料充填システムに好適に用いられるボトル30(30b)を示している(実施例B)。なお図10(a)は、実施例Bによるボトルを示す斜視図であり、図10(b)は、実施例Bによるボトルの底部を示す断面図(図10(a)のX-X線断面図)である。
 図10(a)および図10(b)に示すボトル30(30b)は、口部31と、ボトル本体32とを有している。このうちボトル本体32は、胴部21と、胴部21に連接するとともにペタロイド形状からなる底部22とを有している。底部22は、周方向に等間隔に配置された5つの脚部23を有している。この場合、胴部21の外径(胴径)は55mm乃至120mm、好ましくは60mm乃至105mmとなっている。
 (実施例C)
 図11(a)および図11(b)は、本実施の形態による調味料充填方法および調味料充填システムに好適に用いられるボトル30(30c)を示している(実施例C)。なお図11(a)は、実施例Cによるボトルを示す斜視図であり、図11(b)は、実施例Cによるボトルの底部を示す断面図(図11(a)のXI-XI線断面図)である。
 図11(a)および図11(b)に示すボトル30(30c)は、口部31と、ボトル本体32とを有している。このうちボトル本体32は、胴部21と、胴部21に連接するとともに中央に陥没部25が形成された底部24とを有している。この場合、胴部21の外径(胴径)は55mm乃至120mm、好ましくは60mm乃至105mmとなっている。
 このボトル30cは、底部24の中央部に内方に向けて陥没する陥没部25を有している。この陥没部25は、内部に向けて傾斜したテーパー状周壁26と、その上端に設けられた略星形状の中心凹部27とを有している。また陥没部25の深さ、すなわち接地部28から陥没部25の最深部までの距離Hbは、胴径の4%~55%である。距離Hbが胴径の4%よりも小さいと、泡43aの泡立ち体積を十分大きくすることができない。一方、距離Hbが胴径の55%を越えると、成形性の安定が悪くなり、底部24の形状が出にくいので好ましくない。なお、第1の実施の形態(無菌充填システムおよび無菌充填方法)においては、Hbの値を胴径の4%~40%とすることが好ましい。一方、第2の実施の形態(ホット充填システムおよびホット充填方法)においては、Hbの値を胴径の10%~55%とすることが好ましい。
 (実施例D)
 一方、図12(a)および図12(b)は、本実施の形態による調味料充填方法および調味料充填システムに用いることが可能なボトル60を示している(実施例D)。なお図12(a)は、実施例Dによるボトルを示す斜視図であり、図12(b)は、実施例Dによるボトルの底部を示す断面図(図12(a)のXII-XII線断面図)である。
 図12(a)および図12(b)に示すボトル60は、口部31と、ボトル本体32とを有している。このうちボトル本体32は、胴部21と、胴部21に連接するとともに凹部62が形成された底部61とを有している。凹部62は、複数の段部63、63を有している。この場合、胴部21の外径(胴径)は55mm乃至120mmとなっている。また凹部62の深さ、すなわち接地部64から凹部62の最深部までの距離Hcは、胴径の4%~35%である。なお、第1の実施の形態(無菌充填システムおよび無菌充填方法)においては、Hcの値を胴径の4%~15%とすることが可能である。一方、第2の実施の形態(ホット充填システムおよびホット充填方法)においては、Hcの値を胴径の18%~35%とすることが可能である。
 (実施例E)
 図13(a)および図13(b)は、本実施の形態による調味料充填方法および調味料充填システムに用いることが可能なボトル70を示している(実施例E)。なお図13(a)は、実施例Eによるボトルを示す斜視図であり、図13(b)は、実施例Eによるボトルの底部を示す断面図(図13(a)のXIII-XIII線断面図)である。
 図13(a)および図13(b)に示すボトル70は、口部31と、ボトル本体32とを有している。このうちボトル本体32は、胴部21と、胴部21に連接するとともに凹部72が形成された底部71とを有している。この場合、胴部21の外径(胴径)は55mm乃至120mmとなっている。また凹部72の深さ、すなわち接地部73から凹部72の最深部までの距離Hdは、胴径の4%~20%である。なお、第1の実施の形態(無菌充填システムおよび無菌充填方法)においては、Hdの値を胴径の4%~15%とすることが可能である。一方、第2の実施の形態(ホット充填システムおよびホット充填方法)においては、Hdの値を胴径の10%~20%とすることが可能である。
 ボトルの実施例
 次に、図9乃至図13に示すボトルを用いた具体的実施例を説明する。
 まず図9乃至図13に示すボトルを準備した(それぞれ、実施例Aのボトル30a、実施例Bのボトル30b、実施例Cのボトル30c、実施例Dのボトル60、実施例Eのボトル70という)。各ボトル30a、30b、30c、60、70の内容量は750mlであり、底部を除いて各ボトルの形状は互いに同一であった。次にそれぞれのボトルについて、調味料入ボトルを作製した。具体的には以下のようにして、調味料入ボトルを作製した。
 (実施例A)
 図9(a)および図9(b)に示す実施例Aのボトル30bを用いて、調味料入ボトル35(実施例A)を作製した。具体的には、図5に示す調味料充填システム10を用い、かつ図6に示す調味料充填方法により調味料入ボトル35(実施例A)を作製した(ホット充填方式)。なお、ボトル30aとして容量750mlのPETボトルを用い、さらにボトル30aの搬送速度は300bpmとした。
 この際、まずボトル30aの口部31からボトル本体32内へリンス水を供給し(リンス工程)、続いて、口部31からボトル本体32内へ窒素ガスからなる不活性ガス42を800ml供給して、ボトル本体32内を窒素ガスで置換した(不活性ガス置換工程)。次に、口部31からボトル本体32内へ醤油からなる調味料43を92℃の温度で充填した(調味料充填工程)。
 その後、口部31にキャップ33を装着し(キャップ装着工程)、ボトル30a内を殺菌することにより(殺菌工程)、実施例Aによる調味料入ボトル35を得た。この場合、ヘッドスペースの容量は30mlであった。
 このようにして得られた調味料入ボトル35(実施例A)の泡立ち体積および初期容器内総酸素量を測定した。この結果、泡立ち体積は7.0mlであり、初期容器内総酸素量は1.5mlとなった。
 (実施例B)
 図10(a)および図10(b)に示すボトル30bを用いたこと、以外は、実施例Aと同様にして調味料入ボトル35(実施例B)を作製した。この調味料入ボトル35(実施例B)の泡立ち体積および初期容器内総酸素量を測定したところ、泡立ち体積は7.2mlであり、初期容器内総酸素量は1.7mlとなった。
 (実施例C)
 図11(a)および図11(b)に示すボトル30cを用いたこと、以外は、実施例Aと同様にして調味料入ボトル35(実施例C)を作製した。この調味料入ボトル35(実施例C)の泡立ち体積および初期容器内総酸素量を測定したところ、泡立ち体積は6.8mlであり、初期容器内総酸素量は2.0mlとなった。
 (実施例D)
 図12(a)および図12(b)に示すボトル60を用いたこと、以外は、実施例Aと同様にして調味料入ボトル(実施例D)を作製した。この調味料入ボトル(実施例D)の泡立ち体積および初期容器内総酸素量を測定したところ、泡立ち体積は4.2mlであり、初期容器内総酸素量は4.8mlとなった。
 (実施例E)
 図13(a)および図13(b)に示すボトル70を用いたこと、以外は、実施例Aと同様にして調味料入ボトル(実施例E)を作製した。この調味料入ボトル(実施例E)の泡立ち体積および初期容器内総酸素量を測定したところ、泡立ち体積は1.6mlであり、初期容器内総酸素量は5.2mlとなった。
 この結果、実施例A~実施例Cによるボトル30a~30cは、実施例Dおよび実施例Eによるボトル60、70と比較して、不活性ガス42の泡43aによる泡立ちが生じやすい形状を有しており、これにより、実施例A~実施例Cによる調味料入ボトル35の初期容器内総酸素量を相対的に低く抑えられることが分かった。すなわち、実施例A~実施例Cによるボトル30a~30cは、それぞれその底部37、22、24に比較的大きい凹凸が形成されている。このため、調味料43を充填する際に泡立ちが生じやすく、これにより初期容器内総酸素量を低く抑えることができたと考えられる。他方、底部が平底形状の場合、充填液を充填した際、液の乱流現象が起こりにくく、泡立ちも起こりにくいので、初期容器内総酸素量を低く抑えるという効果は小さい。逆に言えば、底部に陥没部が形成されていたり(実施例A、実施例C)、底部がペタロイド形状からなっている場合(実施例B)には、底部の形状が複雑であるため、充填時に乱流が起こりやすく、泡が発生し、且つその泡の中は窒素で満たされるようになる。なお、実施例Dおよび実施例Eによるボトル60、70については、初期容器内総酸素量を抑制する効果は相対的に低くなるが、効果が得られないわけではない。
 上述したように、実施例A~実施例Eにおいてホット充填方式(図5および図6)を用いて調味料入ボトル35を作製した。しかしながら、無菌充填方式(図1および図3)を用いて調味料入ボトル35を作製した場合であっても、上記と略同様の結果が得られる。
 第3の実施の形態
 次に、図面を参照して本発明の第3の実施の形態について説明する。図14乃至図16は本発明の第3の実施の形態を示す図である。図14乃至図16に示す第3の実施の形態は、ボトル30に対して炭酸飲料を充填するシステムである。図14乃至図16において、上述した第1の実施の形態および第2の実施の形態と同一部分には同一の符号を付して詳細な説明は省略する。
 (炭酸飲料充填システム)
 まず図14により本実施の形態による炭酸飲料充填システムについて説明する。
 図14に示す炭酸飲料充填システム10Aは、口部31と、ボトル本体32とを有するボトル30に対して炭酸飲料48を充填するシステムである。
 この炭酸飲料充填システム10Aは、リンス部12と、不活性ガス置換部13と、炭酸飲料充填部14Aと、不活性ガス供給部15と、キャップ装着部16と、殺菌部19Aとを備えている。これらリンス部12、不活性ガス置換部13、炭酸飲料充填部14A、不活性ガス供給部15、キャップ装着部16、および殺菌部19Aは、上流側から下流側に向けてこの順に配設されている。
 不活性ガス置換部13と炭酸飲料充填部14Aとの間には、ボトル30を不活性ガス置換部13から炭酸飲料充填部14Aへ搬送する第2搬送機構18が設けられている。またキャップ装着部16と殺菌部19Aとの間には、ボトル30をキャップ装着部16から殺菌部19Aへ搬送する第4搬送機構36が設けられている。
 リンス部12は、空のボトル30の口部31からボトル本体32内へリンス水41を供給するものである。不活性ガス置換部13は、リンス部12でリンスされたボトル30に対し、その口部31からボトル本体32内へ不活性ガス42のみを供給し、これによりボトル本体32内を不活性ガス42で置換するものである。
 これらリンス部12および不活性ガス置換部13の構成については、第1の実施の形態および第2の実施の形態と同様であり(図2参照)、ここでは詳細な説明を省略する。
 不活性ガス置換部13の下流側には、ボトル30の口部31からボトル本体32内へ炭酸飲料48を充填する炭酸飲料充填部14Aが設けられている。この炭酸飲料充填部14Aにおいて、不活性ガス42が充填された状態のボトル30に対して炭酸飲料48が充填される。炭酸飲料充填部14Aでの充填時における炭酸飲料48の温度は1℃~10℃であり、好ましくは5℃~10℃である。このように炭酸飲料48の温度を1℃~10℃のチルド域とする理由は、液温が10℃を上回ると炭酸ガスが炭酸飲料48から抜けやすくなってしまうためである。
 炭酸飲料48は、炭酸ガスを含む各種飲料からなっていて良いが、とりわけ、果汁(植物系)、乳成分(動物系)、またははちみつ成分を含む炭酸飲料を好適に用いることができる。このうち果汁としては、オレンジ、ブラッドオレンジ、温州ミカン、レモン、グレープフルーツ、ライム、マンダリン、ユズ、タンジェリン、テンプルオレンジ、タンジェロ、カラマンシー等の柑橘類、リンゴ、ブドウ、モモ、パイナップル、グアバ、バナナ、マンゴー、アセロラ、パパイヤ、パッションフルーツ、ウメ、ナシ、アンズ、ライチ、メロン、西洋ナシ、スモモ類等の各種果物の搾汁(果汁)、豆乳等が挙げられる。これらは1種類の果物の搾汁であってもよいし、2種類以上の果物の搾汁の混合液であってもよい。
 なお不活性ガス置換部13と炭酸飲料充填部14Aとの間の第2搬送機構18において、口部31が上方を向くようにボトル30を上下反転するようになっている。
 炭酸飲料充填部14Aの下流側には、不活性ガス供給部15が設けられている。この不活性ガス供給部15は、ボトル30の口部31からボトル本体32内へ不活性ガス42を供給し、ボトル本体32のうち炭酸飲料48の液面上方の空間(液面上方空間32a)内に不活性ガス42を充填するものである。
 不活性ガス供給部15の下流側に設けられたキャップ装着部16は、ボトル30の口部31にキャップ33を装着することにより、ボトル30を密閉するものである。このように、ボトル30の口部31にキャップ33を装着することにより、炭酸飲料入ボトル75が得られる。
 なお、不活性ガス供給部15およびキャップ装着部16の構成については、第1の実施の形態および第2の実施の形態と同様であり、ここでは詳細な説明を省略する。
 また殺菌部19Aは、直立した状態の炭酸飲料入ボトル75に対して、ボトル30の外面から温水シャワーを浴びせることにより、ボトル本体32内の炭酸飲料48を殺菌するものである。具体的には、温水ノズル45からボトル30に対して例えば60℃~75℃の温水を10分以上浴びせることにより殺菌を行う(中温殺菌)。
 なお、図示していないが、リンス部12の上流側に、予めボトル30内部を殺菌する容器殺菌部を設けても良い(上述した第1の実施の形態における殺菌部11に対応する)。この場合、容器殺菌部は、ミスト状、棒状、または噴水式に噴出される殺菌剤(例えば過酸化水素水または過酢酸)により空のボトル内を殺菌するものであっても良く、電子線殺菌(EB殺菌)により空のボトル内を殺菌するものであっても良い。
 (炭酸飲料充填方法)
 次に、図15および図16により、本実施の形態による炭酸飲料充填方法について説明する。本実施の形態による炭酸飲料充填方法は、上述した炭酸飲料充填システム10A(図14)を用いて行われるものである。
 本実施の形態において、調味料充填方法は、リンス工程(ステップS2)と、不活性ガス置換工程(ステップS3)と、炭酸飲料充填工程(ステップS8)と、不活性ガス供給工程(ステップS5)と、キャップ装着工程(ステップS6)と、殺菌工程(ステップS9)とを備えている。このうちリンス工程(ステップS2)、不活性ガス置換工程(ステップS3)、不活性ガス供給工程(ステップS5)、およびキャップ装着工程(ステップS6)は、上述した第1の実施の形態および第2の実施の形態における各工程と略同様であり、以下において詳細な説明は省略する。
 まず空のボトル30が、口部31を下方に向けた状態でリンス部12に搬送されてくる。次にこのリンス部12において、ボトル30の口部31からボトル本体32内へリンス水41が供給される(リンス工程)(図15のステップS2)。
 続いて、ボトル30は、口部31を下方に向けた状態のまま不活性ガス置換部13に搬送される。この不活性ガス置換部13において、ボトル30の口部31からボトル本体32内へ不活性ガス42のみを供給し、ボトル本体32内を不活性ガス42で置換する(不活性ガス置換工程)(図15のステップS3)。
 次に、不活性ガス42が充填されたボトル30は、第2搬送機構18において口部31が上方を向くように上下反転され、炭酸飲料充填部14Aに搬送される。続いて、炭酸飲料充填部14Aにおいて、ボトル30の口部31からボトル本体32内へ炭酸飲料48が充填される(炭酸飲料充填工程)(図15のステップS8、図16(a))。この場合、炭酸飲料48の充填温度は、1℃~10℃であり、好ましくは5℃~10℃である。
 この炭酸飲料48には、予め炭酸ガスが封入されている(炭酸封入工程)。炭酸飲料48の炭酸ガスの強度は、ガスボリューム(G.V.)が2.0~4.0の炭酸ガスを封入した程度に相当するものを用いることができる。なお、上述した炭酸封入工程において、液中に含まれる酸素等の気体が炭酸ガスに置き換わるため、このように低温(1℃~10℃)で充填しているにも関わらず、溶存酸素量が低く抑えられている。
 また、炭酸飲料充填工程において、炭酸飲料48は、口部密着充填と呼ばれる加圧雰囲気下での充填方式により充填されるので、充填された直後には、炭酸飲料48の内部および表面に泡は生じにくい(図16(b))。
 ところで、本実施の形態において、炭酸飲料48は、上述したように果汁(植物系)、乳成分(動物系)、またははちみつ成分を含む炭酸飲料からなっていることが好ましい。すなわち、本実施の形態によれば、炭酸飲料48の初期酸化を抑制する効果が高いため、炭酸飲料48に含まれる果汁(植物系)、乳成分(動物系)、またははちみつ成分のような天然由来の成分の酸化劣化を防止することができ、素材感を維持した炭酸飲料を提供することができる。
 炭酸飲料充填工程の後、ボトル30は不活性ガス供給部15に搬送される。次いで、この不活性ガス供給部15において、ボトル30の口部31からボトル本体32内へ不活性ガス42が供給される(不活性ガス供給工程)(図15のステップS5、図16(c))。
 なお、炭酸飲料充填工程(図15のステップS8)においては、上述したように口部密着充填(加圧充填)を行っているので、充填時の泡立ちは起こりにくい。しかしながら、不活性ガス供給工程(図15のステップS5)においては、ボトル30の口部31が一時的に開放されるので、このとき泡立ちが発生する(図16(c)参照)。すなわち、ボトル本体32に充填された炭酸飲料48の内部および表面に多数の泡48aが生じる。この場合、上述したように、不活性ガス置換工程においてボトル本体32内に不活性ガス42が導入されているので、泡48aの内部には不活性ガス42が収容される。また、炭酸飲料48中にも不活性ガス42が包み込まれている。
 その後、ボトル30はキャップ装着部16に搬送される。このキャップ装着部16において、ボトル30の口部31にキャップ33を装着することにより、炭酸飲料入ボトル75が得られる(キャップ装着工程)(図15のステップS6、図16(d))。
 この密栓後の炭酸飲料入ボトル75は、ボトル本体32と口部31とを有するボトル30と、ボトル30の口部31に装着されたキャップ33と、ボトル30のボトル本体32内に充填された炭酸飲料48とを備えている。また、ボトル本体32の液面上方空間32a内に不活性ガス42が充填されるとともに、内部に不活性ガス42を収納した泡48aが形成されている(図16(d))。したがって、ボトル30内に最初から存在する酸素量(初期容器内総酸素量)がきわめて少なく抑えられている。なお、炭酸飲料入ボトル75においては、ボトル30内が炭酸ガス(内圧)によって膨張する為、一般的な飲料の場合と比べてその液面が比較的低くなる(液面上方空間32aが大きくなる)。
 その後、炭酸飲料入ボトル75は、第4搬送機構36により殺菌部19Aに搬送される。この殺菌部19Aにおいて、ボトル30の外面(側方および上方)から温水シャワーを浴びせることにより、ボトル本体32内の炭酸飲料48を殺菌する(殺菌工程、図15のステップS9)。この際、温水ノズル45からボトル30に対して、例えば60℃~75℃の温水シャワーを10分以上浴びせることにより殺菌を行う(中温殺菌)。なお、炭酸飲料48は酸性である為、もともと菌(芽胞菌)が生育しづらい環境下にある。したがって、上記殺菌条件(すなわち60℃~75℃の温水を10分以上浴びせるという条件)は、熱履歴が低く、ホット充填方式を採用した場合の殺菌条件よりも緩やかであるが、この場合であっても十分な殺菌効果が得られる。
 なお、本実施の形態において、炭酸飲料入ボトル75の生産(搬送)速度は、100bpm~2000bpmとすることが好ましい。この場合、不活性ガス置換工程(図15のステップS3)から炭酸飲料充填工程(図15のステップS8)までの間が0.5秒~20秒で行われる(すなわち不活性ガス置換工程が完了した直後から炭酸飲料充填工程が開始される直前までの時間が0.5秒~20秒である)ことが好ましい。
 なお、ボトル30の主材料としては、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリ乳酸(PLA)等の合成樹脂材料を用いることができる。なお、ボトル30としては、後述するように、ペタロイド形状の底部を有するものを用いることが好ましい(図17および図18参照)。また、ボトル30としては、炭酸ガスバリア性を有する耐熱圧ボトルを用いることが好ましい。耐熱圧ボトルは、一般的なボトルと比較してその重量が重くなる傾向があるが、多層ボトルまたは蒸着ボトルを使用することにより、軽量化を図ることが可能である。
 以上のように本実施の形態によれば、ボトル30の口部31からボトル本体32内へ不活性ガス42のみを供給してボトル本体32内を不活性ガス42で置換した後、口部31からボトル本体32内へ炭酸飲料48を充填する。このことにより、ボトル本体32内に不活性ガス42が充填されるとともに、例えば不活性ガス供給工程で、炭酸飲料48に、内部に不活性ガス42を収納した泡48aが形成される。この結果、ボトル30内の初期容器内総酸素量(製造直後における、液面上方空間32a内部に存在する酸素量、泡48a内部に存在する酸素量、および炭酸飲料48に溶解している酸素量の合計)を減らすことができ、炭酸飲料48の初期酸化劣化を抑制することができる。具体的には、500mlサイズのボトル30の場合、初期容器内総酸素量を1.5ml以下に抑えることができる。また、殺菌工程において炭酸飲料48が加熱された際にも、ボトル30内の酸素の影響によって炭酸飲料48が酸化するおそれがない。
 また本実施の形態によれば、ボトル30の口部31からボトル本体32内へリンス水41を供給し(リンス工程)、その後、口部31からボトル本体32内へ不活性ガス42のみを供給してボトル本体32内を不活性ガス42で置換する(不活性ガス置換工程)。したがって、不活性ガス42によってリンス水41を効果的に除去することができる。
 また本実施の形態によれば、口部31からボトル本体32内へ1℃~10℃の温度で炭酸飲料48を充填しているので、炭酸ガスが炭酸飲料48から抜けにくい。一方、本実施の形態においては、ボトル本体32内を不活性ガス42で置換した後、ボトル本体32内へ炭酸飲料48を充填している。したがって、炭酸飲料48の温度が低温(1℃~10℃)であるにも関わらず、炭酸飲料48に溶解する酸素量は少なく抑えられている。
 さらに本実施の形態によれば、炭酸飲料入ボトル75の生産(搬送)速度は、100bpm~2000bpmであり、また不活性ガス置換工程から炭酸飲料充填工程までの間が0.5秒~20秒で行われるので、ボトル30に対して高速で炭酸飲料48を充填することが可能である。
 次に、図17乃至図19を用いて本発明の具体的実施例を説明する。
 (実施例1)
 図14に示す炭酸飲料充填システム10Aを用い、かつ図15に示す炭酸飲料充填方法により炭酸飲料入ボトル75(実施例1)を作製した。
 ボトル30としては図17に示す容量500mlの耐熱圧PETボトルを用いた。この場合、ボトル30のボトル本体32は、胴部21と、胴部21に連接するとともにペタロイド形状からなる底部22とを有している。このうち底部22は、周方向に等間隔に配置された5つの脚部23を有している。
 この場合、まずボトル30の口部31からボトル本体32内へリンス水を供給し(リンス工程)、続いて、口部31からボトル本体32内へ窒素からなる不活性ガス42を550ml供給して、ボトル本体32内を窒素ガスで置換した(不活性ガス置換工程)。次に、口部31からボトル本体32内へオレンジ果汁入り炭酸飲料からなる炭酸飲料48を10℃の温度で充填した(炭酸飲料充填工程)。なお、ボトル30の搬送速度は600bpmとした。
 続いて、ボトル30の口部31からボトル本体32内へ不活性ガス42を供給した(不活性ガス供給工程)。その後、口部31にキャップ33を装着し(キャップ装着工程)、ボトル30内を殺菌することにより(殺菌工程)、実施例1による炭酸飲料入ボトル75を得た。なお、炭酸飲料入ボトル75のヘッドスペースの容量は30mlであった。
 続いて、このようにして得られた炭酸飲料入ボトル75(実施例1)の泡立ち量および初期容器内総酸素量を測定した。この結果、泡立ち量は17mlとなり、初期容器内総酸素量は0.8mlとなった。なお、泡立ち量とは、炭酸飲料48に生じる泡、すなわち不活性ガス42の泡48aおよび炭酸ガスの泡の合計体積をいう。
 (実施例2)
 ボトル30として、図18に示す容量500mlの耐熱圧PETボトルを用いたこと、以外は、上記実施例1と同様にして炭酸飲料入ボトル75(実施例2)を作製した。図18に示すボトル30において、各脚部23の幅は図17に示すボトル30より広く、各脚部23の長さは図17に示すボトル30より短くなっている。この炭酸飲料入ボトル75(実施例2)の泡立ち量および初期容器内総酸素量を測定したところ、泡立ち量は14mlとなり、初期容器内総酸素量は1.1mlとなった。
 (実施例3)
 炭酸飲料充填工程の後、不活性ガス供給工程を行わなかったこと、以外は、上記実施例1と同様にして炭酸飲料入ボトル75(実施例3)を作製した。この炭酸飲料入ボトル75(実施例3)の泡立ち量および初期容器内総酸素量を測定したところ、泡立ち量は18mlとなり、初期容器内総酸素量は1.3mlとなった。
 (比較例)
 リンス工程の後、口部31からボトル本体32内へ窒素ではなく無菌化した空気からなるガスを550ml供給したこと、以外は、上記実施例1と同様にして炭酸飲料入ボトル(比較例)を作製した。この炭酸飲料入ボトル(比較例)の泡立ち量および初期容器内総酸素量を測定したところ、泡立ち量は17mlとなり、初期容器内総酸素量は1.8mlとなった。
 このようにして得られた4つの炭酸飲料入ボトル(実施例1~3および比較例)について、それぞれ温度40℃の暗所で3週間保存した後、色差ΔEを測定した。この結果を図19に示す。なお色差ΔEとは、充填直後の炭酸飲料48の色を0とした場合における、3週間経過後の炭酸飲料48の色の変化を数値化したものである。
 この結果、実施例1~3による炭酸飲料入ボトル75は、比較例による炭酸飲料入ボトルと比べて、3週間経過後における色差ΔEが小さく、酸化が進みにくいことが分かった。このことから、本実施の形態による炭酸飲料充填システムおよび炭酸飲料充填方法の有効性を確認することができた。

Claims (54)

  1.  口部と、ボトル本体とを有するボトルに対して調味料を充填する調味料充填方法において、
     口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換する不活性ガス置換工程と、
     口部からボトル本体内へ調味料を充填する調味料充填工程とを備えたことを特徴とする調味料充填方法。
  2.  調味料充填工程において、口部からボトル本体内へ5℃~55℃の温度で調味料を充填することを特徴とする請求項1記載の調味料充填方法。
  3.  工程全体が無菌雰囲気下で行われることを特徴とする請求項2記載の調味料充填方法。
  4.  不活性ガス置換工程の前に、
     ボトル内を殺菌する殺菌工程と、
     口部からボトル本体内へリンス水を供給するリンス工程とが設けられていることを特徴とする請求項2記載の調味料充填方法。
  5.  不活性ガス置換工程の前に、ボトル内を電子線により殺菌する殺菌工程が設けられていることを特徴とする請求項2記載の調味料充填方法。
  6.  調味料充填工程の後、口部からボトル本体内へ不活性ガスを供給する不活性ガス供給工程が設けられていることを特徴とする請求項1記載の調味料充填方法。
  7.  不活性ガス供給工程の後、口部にキャップを装着するキャップ装着工程が設けられていることを特徴とする請求項6記載の調味料充填方法。
  8.  調味料充填工程において、口部からボトル本体内へ55℃~95℃の温度で調味料を充填することを特徴とする請求項1記載の調味料充填方法。
  9.  不活性ガス置換工程の前に、口部からボトル本体内へリンス水を供給するリンス工程が設けられていることを特徴とする請求項8記載の調味料充填方法。
  10.  調味料充填工程の後、口部にキャップを装着するキャップ装着工程が設けられていることを特徴とする請求項8記載の調味料充填方法。
  11.  キャップ装着工程の後、ボトル本体内を殺菌する殺菌工程が設けられていることを特徴とする請求項10記載の調味料充填方法。
  12.  不活性ガス置換工程の際ボトル本体内に導入された不活性ガスにより、調味料充填工程の際、ボトル本体内に充填された調味料に、内部に不活性ガスを収納した泡が生じることを特徴とする請求項1記載の調味料充填方法。
  13.  不活性ガス置換工程から調味料充填工程までの間が0.5秒~20秒で行われることを特徴とする請求項1記載の調味料充填方法。
  14.  ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部に、放射状に延びる複数の突起が形成されていることを特徴とする請求項1記載の調味料充填方法。
  15.  ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする請求項1記載の調味料充填方法。
  16.  ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部の深さは、胴部の外径の4%~55%であることを特徴とする請求項1記載の調味料充填方法。
  17.  口部と、ボトル本体とを有するボトルに対して調味料を充填する調味料充填システムにおいて、
     口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換する不活性ガス置換部と、
     不活性ガス置換部の下流側に設けられ、口部からボトル本体内へ調味料を充填する調味料充填部とを備えたことを特徴とする調味料充填システム。
  18.  調味料充填部において、口部からボトル本体内へ5℃~55℃の温度で調味料を充填することを特徴とする請求項17記載の調味料充填システム。
  19.  不活性ガス置換部の上流側に、ボトル内を殺菌する殺菌部が設けられ、
     不活性ガス置換部の上流側であって殺菌部の下流側に、口部からボトル本体内へリンス水を供給するリンス部が設けられていることを特徴とする請求項18記載の調味料充填システム。
  20.  不活性ガス置換部の上流側に、ボトル内を電子線により殺菌する殺菌部が設けられていることを特徴とする請求項18記載の調味料充填システム。
  21.  調味料充填部の下流側に、口部からボトル本体内へ不活性ガスを供給する不活性ガス供給部が設けられていることを特徴とする請求項18記載の調味料充填システム。
  22.  不活性ガス供給部の下流側に、口部にキャップを装着するキャップ装着部が設けられていることを特徴とする請求項21記載の調味料充填システム。
  23.  調味料充填部において、口部からボトル本体内へ55℃~95℃の温度で調味料を充填することを特徴とする請求項17記載の調味料充填システム。
  24.  不活性ガス置換部の上流側に、口部からボトル本体内へリンス水を供給するリンス部が設けられていることを特徴とする請求項23記載の調味料充填システム。
  25.  調味料充填部の下流側に、口部にキャップを装着するキャップ装着部が設けられていることを特徴とする請求項23記載の調味料充填システム。
  26.  キャップ装着部の下流側に、ボトル本体内を殺菌する殺菌部が設けられていることを特徴とする請求項25記載の調味料充填システム。
  27.  不活性ガス置換部でボトル本体内を不活性ガスで置換してから、内容物充填部でボトル本体内へ内容物を充填するまでの間が0.5秒~20秒で行われることを特徴とする請求項17記載の内容物充填システム。
  28.  ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部に、放射状に延びる複数の突起が形成されていることを特徴とする請求項17記載の調味料充填システム。
  29.  ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする請求項17記載の調味料充填システム。
  30.  ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部の深さは、胴部の外径の4%~55%であることを特徴とする請求項17記載の調味料充填システム。
  31.  ボトル本体と口部とを有するボトルと、
     ボトルのボトル本体内に充填された調味料とを備え、
     調味料に、内部に不活性ガスを収納した泡が形成されていることを特徴とする調味料入ボトル。
  32.  ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部に、放射状に延びる複数の突起が形成されていることを特徴とする請求項31記載の調味料入ボトル。
  33.  ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする請求項31記載の調味料入ボトル。
  34.  ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部の深さは、胴部の外径の4%~55%であることを特徴とする請求項31記載の調味料入ボトル。
  35.  口部と、ボトル本体とを有するボトルに対して炭酸飲料を充填する炭酸飲料充填方法において、
     口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換する不活性ガス置換工程と、
     口部からボトル本体内へ1℃~10℃の温度で炭酸飲料を充填する炭酸飲料充填工程とを備えたことを特徴とする炭酸飲料充填方法。
  36.  不活性ガス置換工程の前に、口部からボトル本体内へリンス水を供給するリンス工程が設けられていることを特徴とする請求項35記載の炭酸飲料充填方法。
  37.  炭酸飲料充填工程の後、口部からボトル本体内へ不活性ガスを供給する不活性ガス供給工程が設けられていることを特徴とする請求項35記載の炭酸飲料充填方法。
  38.  不活性ガス供給工程の後、口部にキャップを装着するキャップ装着工程が設けられていることを特徴とする請求項37記載の炭酸飲料充填方法。
  39.  キャップ装着工程の後、ボトル本体内を殺菌する殺菌工程が設けられていることを特徴とする請求項38記載の炭酸飲料充填方法。
  40.  殺菌工程において、ボトルに対して60℃~75℃の温水を浴びせることによりボトル本体内を殺菌することを特徴とする請求項39記載の炭酸飲料充填方法。
  41.  炭酸飲料は、果汁、乳成分、またははちみつ成分を含むことを特徴とする請求項35記載の炭酸飲料充填方法。
  42.  不活性ガス置換工程から炭酸飲料充填工程までの間が0.5秒~20秒で行われることを特徴とする請求項35記載の炭酸飲料充填方法。
  43.  ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする請求項35記載の炭酸飲料充填方法。
  44.  口部と、ボトル本体とを有するボトルに対して炭酸飲料を充填する炭酸飲料充填システムにおいて、
     口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換する不活性ガス置換部と、
     不活性ガス置換部の下流側に設けられ、口部からボトル本体内へ1℃~10℃の温度で炭酸飲料を充填する炭酸飲料充填部とを備えたことを特徴とする炭酸飲料充填システム。
  45.  不活性ガス置換部の上流側に、口部からボトル本体内へリンス水を供給するリンス部が設けられていることを特徴とする請求項44記載の炭酸飲料充填システム。
  46.  炭酸飲料充填部の下流側に、口部からボトル本体内へ不活性ガスを供給する不活性ガス供給部が設けられていることを特徴とする請求項44記載の炭酸飲料充填システム。
  47.  不活性ガス供給部の下流側に、口部にキャップを装着するキャップ装着部が設けられていることを特徴とする請求項46記載の炭酸飲料充填システム。
  48.  キャップ装着部の下流側に、ボトル本体内を殺菌する殺菌部が設けられていることを特徴とする請求項47記載の炭酸飲料充填システム。
  49.  殺菌部において、ボトルに対して60℃~75℃の温水を浴びせることによりボトル本体内を殺菌することを特徴とする請求項48記載の炭酸飲料充填システム。
  50.  炭酸飲料は、果汁、乳成分、またははちみつ成分を含むことを特徴とする請求項44記載の炭酸飲料充填システム。
  51.  不活性ガス置換部でボトル本体内を不活性ガスで置換してから、炭酸飲料充填部でボトル本体内へ炭酸飲料を充填するまでの間が0.5秒~20秒で行われることを特徴とする請求項44記載の炭酸飲料充填システム。
  52.  ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする請求項44記載の炭酸飲料充填システム。
  53.  ボトル本体と口部とを有するボトルと、
     ボトルのボトル本体内に1℃~10℃の温度で充填された炭酸飲料とを備え、
     炭酸飲料に、内部に不活性ガスを収納した泡が形成されていることを特徴とする炭酸飲料入ボトル。
  54.  ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする請求項53記載の炭酸飲料入ボトル。
PCT/JP2011/062966 2010-06-07 2011-06-06 充填方法、充填システムおよびボトル WO2011155458A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180028149.5A CN102917954B (zh) 2010-06-07 2011-06-06 填充方法、填充系统及填充的瓶

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-129907 2010-06-07
JP2010129907A JP5704424B2 (ja) 2010-06-07 2010-06-07 調味料充填方法、調味料充填システム、および調味料入ボトル
JP2010173767A JP5704429B2 (ja) 2010-08-02 2010-08-02 炭酸飲料充填方法、炭酸飲料充填システム、および炭酸飲料入ボトル
JP2010-173767 2010-08-02

Publications (1)

Publication Number Publication Date
WO2011155458A1 true WO2011155458A1 (ja) 2011-12-15

Family

ID=45098065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062966 WO2011155458A1 (ja) 2010-06-07 2011-06-06 充填方法、充填システムおよびボトル

Country Status (3)

Country Link
CN (1) CN102917954B (ja)
MY (1) MY166257A (ja)
WO (1) WO2011155458A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113428821A (zh) * 2016-09-30 2021-09-24 大日本印刷株式会社 碳酸饮料填充装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107990144A (zh) * 2017-11-30 2018-05-04 长沙深蓝未来智能技术有限公司 不规则空间置换气体的方法和设备
CN108061245A (zh) * 2017-11-30 2018-05-22 长沙深蓝未来智能技术有限公司 使用中介气体的气体置换方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584808A (ja) * 1991-09-25 1993-04-06 Mitsui Petrochem Ind Ltd 飽和ポリエステル製ボトル
JP2001278225A (ja) * 2000-03-29 2001-10-10 Toyo Seikan Kaisha Ltd ボトル詰飲料の製造方法
JP2005112436A (ja) * 2003-10-09 2005-04-28 Mitsubishi Heavy Ind Ltd 容器内ガス置換方法、容器内ガス置換装置、及び、飲料液充填方法
JP2007126168A (ja) * 2005-11-02 2007-05-24 Mitsubishi Heavy Ind Ltd 電子線殺菌システム
JP2007161347A (ja) * 2007-02-05 2007-06-28 Toyo Seikan Kaisha Ltd ガス置換方法およびその装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6500035A (ja) * 1965-01-05 1965-08-25
JP2001031010A (ja) * 1999-07-22 2001-02-06 Toyo Seikan Kaisha Ltd 合成樹脂製ボトルへの内容物の充填密封方法
JP2003237729A (ja) * 2002-02-20 2003-08-27 Mitsubishi Heavy Ind Ltd ボトル容器ガス置換装置、ボトル容器搬送装置、ボトル容器のガス置換方法
JP4315700B2 (ja) * 2003-02-25 2009-08-19 北海製罐株式会社 ポリエチレンテレフタレート樹脂製耐熱ボトル
AU2004249691B2 (en) * 2003-06-18 2009-10-08 The Coca-Cola Company Polyester composition for hot fill applications, containers made therewith, and methods
JP5030519B2 (ja) * 2006-09-27 2012-09-19 サントリーホールディングス株式会社 充填方法および充填装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584808A (ja) * 1991-09-25 1993-04-06 Mitsui Petrochem Ind Ltd 飽和ポリエステル製ボトル
JP2001278225A (ja) * 2000-03-29 2001-10-10 Toyo Seikan Kaisha Ltd ボトル詰飲料の製造方法
JP2005112436A (ja) * 2003-10-09 2005-04-28 Mitsubishi Heavy Ind Ltd 容器内ガス置換方法、容器内ガス置換装置、及び、飲料液充填方法
JP2007126168A (ja) * 2005-11-02 2007-05-24 Mitsubishi Heavy Ind Ltd 電子線殺菌システム
JP2007161347A (ja) * 2007-02-05 2007-06-28 Toyo Seikan Kaisha Ltd ガス置換方法およびその装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113428821A (zh) * 2016-09-30 2021-09-24 大日本印刷株式会社 碳酸饮料填充装置
CN113428821B (zh) * 2016-09-30 2023-07-07 大日本印刷株式会社 碳酸饮料填充装置

Also Published As

Publication number Publication date
MY166257A (en) 2018-06-22
CN102917954B (zh) 2015-07-15
CN102917954A (zh) 2013-02-06

Similar Documents

Publication Publication Date Title
US8147752B2 (en) Sterilants and sterilization method for aseptic filling
JP5064657B2 (ja) 容器入り炭酸飲料の製造方法
ITRM20060118A1 (it) Procedimento di lavaggio e sterilizzazione di prodotti alimentari in particolare verdure e relativa apparecchiatura
WO2011155458A1 (ja) 充填方法、充填システムおよびボトル
JP4530916B2 (ja) 高品質トマト処理物及びそれを用いるトマト加工食品の製造法
JP5569810B2 (ja) 内容物充填方法、内容物充填システム、および内容物入ボトル
JP4547156B2 (ja) 殺菌済製品を無菌で貯蔵する方法
JP5704429B2 (ja) 炭酸飲料充填方法、炭酸飲料充填システム、および炭酸飲料入ボトル
JP5656103B2 (ja) 内容物充填方法、内容物充填システム、および内容物入ボトル
RU2435460C2 (ru) Способ упаковки пищевого продукта с увеличенным сроком хранения
JP5704424B2 (ja) 調味料充填方法、調味料充填システム、および調味料入ボトル
JP2009261355A (ja) 野菜汁及び/又は果汁含有飲料の製造法
JP2014090678A (ja) 容器詰野菜汁及び/又は果汁含有飲料及びその製造方法、並びに容器詰野菜汁及び/又は果汁含有飲料の呈味劣化防止方法
US20180338511A1 (en) Water and other liquids containing hydrogen and/or noble gases
JPH085514B2 (ja) ペットボトルの無菌充填方法および装置
JP3838609B2 (ja) 密封容器入り日本酒の製造方法
JP2006069672A (ja) Petボトル詰めミネラルウオーターの製造方法
JP4812607B2 (ja) 容器の殺菌方法、及び容器入り飲料の製造方法
JP2010047321A (ja) Petボトル詰めミネラルウオーターの製造方法
JP6206522B2 (ja) 内容物充填システムの検証方法および培地
JP2943678B2 (ja) 包装食品の殺菌方法
JP2834649B2 (ja) ボトルの殺菌方法
JP6811046B2 (ja) 容器詰飲料の製造方法
JP6945981B2 (ja) 容器詰め飲料の製造方法及び容器詰め飲料の開栓時噴き出し抑制方法
CN101884404A (zh) 新型泡菜生产工艺

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028149.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201006356

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 11792415

Country of ref document: EP

Kind code of ref document: A1