WO2011155319A1 - 回路基板用窒化アルミニウム基板及びその製造方法 - Google Patents

回路基板用窒化アルミニウム基板及びその製造方法 Download PDF

Info

Publication number
WO2011155319A1
WO2011155319A1 PCT/JP2011/061823 JP2011061823W WO2011155319A1 WO 2011155319 A1 WO2011155319 A1 WO 2011155319A1 JP 2011061823 W JP2011061823 W JP 2011061823W WO 2011155319 A1 WO2011155319 A1 WO 2011155319A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
grain boundary
nitride substrate
boundary phase
substrate
Prior art date
Application number
PCT/JP2011/061823
Other languages
English (en)
French (fr)
Inventor
祐作 原田
克典 寺野
後藤 猛
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP2012519327A priority Critical patent/JP5919190B2/ja
Priority to CA2801857A priority patent/CA2801857C/en
Priority to US13/702,523 priority patent/US9190189B2/en
Priority to CN201180028274.6A priority patent/CN102933520B/zh
Priority to EP11792276.5A priority patent/EP2581357B1/en
Priority to KR1020137000160A priority patent/KR101693071B1/ko
Publication of WO2011155319A1 publication Critical patent/WO2011155319A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/025Other inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/87Grain boundary phases intentionally being absent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element

Definitions

  • the present invention relates to an aluminum nitride substrate having excellent insulation characteristics at high temperatures and a method for producing the same.
  • aluminum nitride substrates with excellent insulation used for semiconductor-mounted circuit boards are used in various fields, such as drive control and industrial applications such as electric railways and electric vehicles. It is used as a substrate material for control of industrial robots. Among them, it is highly reliable as a material to replace the currently used Si chip for the development of next-generation semiconductors with features such as switching loss and energy loss that greatly affect product reliability, and extended control operating temperature. Promising SiC chips are promising. Since the operable temperature of the SiC chip is around 400 ° C., which is higher than the conventional 150 ° C., the aluminum nitride substrate used as an insulating material for the circuit board for semiconductor mounting is excellent even at such a high temperature. It is required to exhibit insulating properties.
  • an aluminum nitride sintered body used as the aluminum nitride substrate is generally manufactured by the following method. That is, additives such as a sintering aid, a binder, a plasticizer, a dispersion medium, and a release agent are mixed with the aluminum nitride powder. It is formed into a sheet by extrusion or the like, and processed into a desired shape and size by a press machine (molding / pressing). Next, the molded body is heated to 350 to 700 ° C. in air or in a non-oxidizing atmosphere such as nitrogen to remove the binder (degreasing), and then 0.degree. C. at 1800 to 1900 ° C. in a non-oxidizing atmosphere such as nitrogen. Manufactured by holding (sintering) for 5-10 hours.
  • additives such as a sintering aid, a binder, a plasticizer, a dispersion medium, and a release agent are mixed with the aluminum nitride powder. It is formed into a
  • the breakdown voltage of the aluminum nitride substrate manufactured by such a method shows high insulation characteristics of about 30 to 40 kV / mm at room temperature, but decreases to around 10 kV / mm at a high temperature of 400 ° C. There was a problem that.
  • Patent Document 1 A method of dissolving solid titanium in aluminum nitride crystal particles to increase the unpaired electron concentration (Patent Document 1), A method of controlling the average diameter of aluminum nitride crystal grains and grain boundary pores, and the ratio of grain boundary pores to intragranular pores (Patent Document 2) has been proposed.
  • Patent Document 2 A method of controlling the average diameter of aluminum nitride crystal grains and grain boundary pores, and the ratio of grain boundary pores to intragranular pores.
  • An object of the present invention is to provide an aluminum nitride substrate having excellent insulating properties at high temperatures and a method for producing the same.
  • a dendritic grain boundary phase in an aluminum nitride substrate for circuit boards having aluminum nitride crystal particles having an average particle diameter of 2 to 5 ⁇ m and a thermal conductivity of 170 W / m ⁇ K or more, a dendritic grain boundary phase There is provided an aluminum nitride substrate for a circuit board having a dielectric breakdown voltage at 400 ° C. of 30 kV / mm or more.
  • the grain boundary phase is a non-dendritic grain boundary phase dispersed discontinuously.
  • the cumulative 10% particle diameter d10 in the number-based particle size distribution of the grain boundary phase measured from the mirror polished surface of the aluminum nitride substrate is 0.6 ⁇ m or more, and the cumulative 50% particle diameter d50 is 1. 6 ⁇ m or less.
  • the raw material containing aluminum nitride powder is heated to 1500 ° C. at a pressure of 150 Pa or lower, and then heated to 1700-1900 ° C. as a pressurized atmosphere with a non-oxidizing gas at a pressure of 0.4 MPa or higher.
  • a method of manufacturing an aluminum nitride substrate for circuit boards having a dielectric breakdown voltage of 30 kV / mm or more at 400 ° C. comprising a step of cooling to 1600 ° C. at a cooling rate of 10 ° C./min or less after holding.
  • the aluminum nitride powder is not particularly limited, but in one embodiment, as impurities, the oxygen content is 1.2 mass% or less, the carbon content is 0.04 mass% or less, the Fe content is 30 ppm or less, A powder having a Si content of 60 ppm or less is exemplified.
  • the raw material usually includes a sintering aid, and as such a sintering aid, in one embodiment, a rare earth metal compound, an alkaline earth metal compound, or a transition metal compound is used.
  • an aluminum nitride substrate for circuit boards that can be manufactured by the above-described manufacturing method, that is, a raw material containing aluminum nitride powder is heated to 1500 ° C. at a pressure of 150 Pa or less, and then a non-oxidizing pressure of 0.
  • An aluminum nitride substrate for a circuit board to be manufactured is also provided by raising and maintaining a pressure atmosphere of 4 MPa or higher up to 1700 to 1900 ° C. and then cooling to 1600 ° C. at a cooling rate of 10 ° C./min or less.
  • an aluminum nitride substrate which is excellent in insulation characteristics at high temperatures and suitable for circuit boards, and a method for producing the same.
  • An aluminum nitride substrate for a circuit board according to the present invention comprises aluminum nitride crystal grains and a grain boundary phase filling a space between the grains, and has a thermal conductivity of 170 W / m ⁇ K or more at 400 ° C.
  • the dielectric breakdown voltage has the meaning normally understood by those skilled in the art.
  • JIS C2110 a voltage is applied to the sample, and the voltage when the dielectric breakdown occurs is divided by the thickness of the sample. Can be obtained.
  • the average particle diameter of the aluminum nitride crystal particles is preferably 2 to 5 ⁇ m.
  • the average particle diameter of the aluminum nitride crystal particles can be determined from the average value of the number of measurements by measuring the particle diameter observed on the fracture surface of the aluminum nitride substrate using a scanning electron microscope.
  • the average particle diameter of the aluminum nitride crystal particles is less than 2 ⁇ m, the aluminum nitride substrate is not sufficiently densified, and the thermal conductivity may be lowered.
  • the average particle diameter of the aluminum nitride crystal particles exceeds 5 ⁇ m, voids between the aluminum nitride crystal particles become large, and the voids cannot be sufficiently filled with the grain boundary phase. May decrease.
  • the aluminum nitride crystal particles are likely to break in the grain at the time of stress load, leading to a decrease in mechanical strength.
  • the aluminum nitride substrate of the present invention is an aluminum nitride substrate characterized by not containing a dendritic grain boundary phase.
  • the grain boundary phase is a non-dendritic grain boundary phase. It is characterized by. That is, as a result of intensive investigations to achieve improvement in insulation characteristics at high temperatures, the present inventor has made a dendritic shape on the aluminum nitride substrate whose dielectric breakdown voltage at 400 ° C. is below 30 kV / mm. While many grain boundary phases are observed, the dendritic grain boundary phase is not observed at all on the aluminum nitride substrate having a breakdown voltage exceeding 30 kV / mm, and the grain boundary phase is composed of many grain boundary phases.
  • the shape of the grain boundary phase is, for example, that 1 g of aluminum nitride substrate is placed in 50 ml of 20% aqueous sodium hydroxide solution, held at 130 ° C. for 12 hours, and allowed to stand until the aluminum nitride crystal particles are dissolved. It can be confirmed by removing the grain boundary phase remaining by filtration, washing and observing with a scanning electron microscope.
  • the “dendritic grain boundary phase” referred to here is a grain boundary phase having a shape in which a plurality of grain boundary phases are three-dimensionally connected.
  • such a dendritic grain boundary phase portion is not included in the grain boundary phase, and the grain boundary phase is a non-dendritic shape in which many grain boundary phases are discontinuously dispersed. It is a grain boundary phase.
  • the micrograph in FIG. 1 shows an example in which the above-described dendritic grain boundary phase is observed, and the micrograph in FIG. 2 does not include the dendritic grain boundary phase and the grain boundary phase is discontinuous. An example is shown in which a dispersed non-dendritic grain boundary phase is observed.
  • the following two can be inferred as the influence of the dendritic grain boundary phase on the insulating properties of the aluminum nitride substrate at high temperatures.
  • the first is the presence of minute voids caused by the difference in thermal expansion coefficient between the aluminum nitride crystal grains constituting the aluminum nitride substrate and the grain boundary phase. Since the thermal expansion coefficient of the grain boundary phase at 25 to 400 ° C. is about twice that of aluminum nitride, there is a difference in expansion between the aluminum nitride crystal grains and the grain boundary phase at high temperatures. It is thought that minute strains and voids are generated due to. At this time, if there is a dendritic grain boundary phase extending in a three-dimensional manner, minute voids are continuously distributed in the aluminum nitride substrate and the insulation distance is shortened. Is estimated to decline.
  • the grain boundary phase does not include a dendritic grain boundary phase and is composed of a non-dendritic discontinuous dispersed phase, the generated minute voids are not connected. It is considered that the insulation characteristics of the material do not deteriorate.
  • the second is the formation of a conductive path in the grain boundary phase.
  • the sintering aids used for sintering generally use alkaline earth metal compounds or rare earth metal compounds, but these sintering aids are present on the surface of the aluminum nitride powder in the early stage of sintering. It reacts with the oxide to form a complex oxide liquid phase. This liquid phase dissolves impurities in the aluminum nitride crystal grains during the sintering process. As a result, the purified aluminum nitride crystal grains grow and the sintered body structure becomes dense, which leads to high thermal conductivity and high strength of the aluminum nitride substrate.
  • the liquid phase containing a large amount of impurities is cooled after the completion of sintering and precipitates as a grain boundary phase. Therefore, it is considered that the electrical insulating property of the grain boundary phase itself is lower than that of the aluminum nitride crystal particles.
  • the grain boundary phase having low insulation acts as a conductive path, and the insulating properties of the aluminum nitride substrate are deteriorated.
  • the aluminum nitride substrate has a cumulative 10% particle diameter d10 of 0.6 ⁇ m or more in the number-based particle diameter distribution of the grain boundary phase measured from the mirror polished surface, and a cumulative 50% particle The diameter d50 is 1.6 ⁇ m or less.
  • a method for measuring the number-based particle size distribution of the grain boundary phase will be described below. That is, an aluminum nitride substrate is embedded in an epoxy resin and solidified, then cut so as to be perpendicular to the thickness direction of the substrate, and the cross section is mirror polished by buffing. The number-based particle size distribution can be determined by observing the polished surface with a scanning electron microscope and measuring the particle size of the grain boundary phase from the image with image analysis software.
  • the cumulative 10% particle diameter d10 is less than 0.6 ⁇ m
  • a part of the grain boundary phase in the aluminum nitride substrate may exist as a dendritic shape, and when the cumulative 50% particle diameter d50 exceeds 1.6 ⁇ m,
  • the grain boundary phases are connected as agglomerated aggregates. In either case, there is a risk that the insulating properties of the aluminum nitride substrate at high temperatures may be deteriorated due to the influence of the grain boundary phase described above.
  • the aluminum nitride substrate according to the present invention does not contain a dendritic grain boundary phase, it has excellent insulating properties at high temperatures, but the grain boundary phase is non-dendritic. Any method may be used as long as it can be formed. However, as a result of earnest research, the present inventor can surely form the grain boundary phase in a non-dendritic state only by setting the conditions such as the furnace pressure during cooling and the cooling rate as specific conditions. It has been found that an aluminum nitride substrate having a breakdown voltage at 400 ° C. of 30 kV / mm or more can be produced.
  • the manufacturing method of the aluminum nitride substrate according to the present invention is as follows.
  • (Ii) The raw material is heated to 1500 ° C. at a pressure of 150 Pa or less, then heated to 1700 to 1900 ° C. as a pressurized atmosphere with a non-oxidizing gas pressure of 0.4 MPa or more, and then held at 10 ° C. to 1600 ° C.
  • the aluminum nitride powder is not particularly limited, and an aluminum nitride powder produced by a known method such as a direct nitriding method in which metal aluminum is nitrided in a nitrogen atmosphere or a reducing nitriding method in which alumina is reduced with carbon can be used. However, among these, those having high purity and fine powder are preferable.
  • the impurities those having an oxygen content of 1.2 mass% or less, a carbon content of 0.04 mass% or less, an Fe content of 30 ppm or less, and an Si content of 60 ppm or less are preferably used.
  • the maximum particle size is more preferably 20 ⁇ m or less.
  • oxygen is basically an impurity, but has an action of preventing excessive sintering. Therefore, in order to prevent strength reduction of the sintered body due to excessive sintering, the oxygen content is It is preferable to use a material of 0.7% by mass or more.
  • the sintering aid is not particularly limited, and rare earth metal compounds, alkaline earth metal compounds, transition metal compounds, and the like can be used. Among these, yttrium oxide or a combination of yttrium oxide and aluminum oxide is preferable. These sintering aids react with the aluminum nitride powder to form a composite oxide liquid phase (for example, 2Y2O3 ⁇ Al2O3, Y2O3 ⁇ Al2O3, 3Y2O3 ⁇ 5Al2O3, etc.), and this liquid phase increases the density of the sintered body. At the same time, oxygen, which is an impurity in the aluminum nitride crystal grains, is extracted and segregated as an oxide phase at the grain boundaries, thereby achieving high thermal conductivity.
  • a composite oxide liquid phase for example, 2Y2O3 ⁇ Al2O3, Y2O3 ⁇ Al2O3, 3Y2O3 ⁇ 5Al2O3, etc.
  • the aluminum nitride powder and the sintering aid are mixed by a mixing device, a binder is added to the mixed raw material powder, and then molded by sheet molding or the like to obtain a molded body. This is further degreased to obtain a degreased body as a raw material for sintering.
  • the mixing method of aluminum nitride powder or the like is not particularly limited, and a known mixing apparatus such as a ball mill, a rod mill, or a mixer can be used.
  • the binder is not particularly limited, but it is preferable to use a methylcellulose-based binder having plasticity or a surface-active effect or an acrylate ester-based binder excellent in thermal decomposability.
  • a plasticizer, a dispersion medium, etc. are used together as needed. In one example, glycerin or the like is used as the plasticizer, and ion-exchanged water or ethanol is used as the dispersion medium.
  • the method for degreasing the molded sheet is not particularly limited, but it is preferable to remove the binder by heating the molded sheet to 300 to 700 ° C. in a non-oxidizing atmosphere such as air or nitrogen.
  • the degreasing time needs to be appropriately determined according to the size of the molded sheet and the number of processed sheets, but is usually 1 to 10 hours.
  • the temperature is raised to 1700 to 1900 ° C. and held as a pressurized atmosphere of 0.4 MPa or more in a non-oxidizing atmosphere.
  • a pressurized atmosphere of 0.4 MPa or more As a result, an aluminum nitride sintered body having high thermal conductivity and improved insulation characteristics can be obtained.
  • the liquid phase sintering aid is less likely to volatilize, and void generation between aluminum nitride crystal particles can be effectively suppressed. It is considered that the insulating properties of the substrate can be improved.
  • the non-oxidizing atmosphere means an inert gas atmosphere or a reducing atmosphere that does not contain an oxidizing gas such as oxygen.
  • the grain boundary phase precipitates so as to fill the voids existing between the aluminum nitride crystal grains, so that the grain boundary phases are not connected to each other, and the dendritic grain boundaries Phase precipitation can be suppressed.
  • the grain boundary phase precipitates while relaxing the strain between the aluminum nitride crystal grains, it is considered that the resulting aluminum nitride substrate is suppressed from generating microcracks at high temperature and has improved insulating properties. After the slow cooling to 1600 ° C. is completed, it can be rapidly cooled to room temperature as in the prior art.
  • the pressure in the furnace is preferably 0.4 MPa or more, and if it is less than 0.4 MPa, the liquid phase sintering aid volatilizes before being precipitated as a grain boundary phase, and voids are formed between aluminum nitride crystal particles. As a result, the insulating properties of the aluminum nitride substrate are degraded.
  • the cooling method can be carried out by controlling the heater temperature of the sintering furnace.
  • Example 1 3 parts by mass of yttrium oxide powder was added to 97 parts by mass of aluminum nitride powder and mixed for 1 hour in a ball mill to obtain a mixed powder. To 100 parts by mass of the mixed powder, 6 parts by mass of a cellulose ether binder, 5 parts by mass of glycerin, and 10 parts by mass of ion-exchanged water were added and mixed for 1 minute in a Henschel mixer to obtain a mixture. Next, this mixture was formed into a sheet having a thickness of 0.8 mm using a single screw extruder, and punched out to a size of 90 mm ⁇ 90 mm using a press machine with a die.
  • Aluminum nitride powder Average particle size 1.2 ⁇ m, oxygen content 0.8 mass%.
  • Yttrium oxide powder manufactured by Shin-Etsu Chemical Co., Ltd., trade name “Yttrium Oxide”
  • Binder Shin-Etsu Chemical Co., Ltd., trade name “Metrozu”
  • Glycerin Product name “Exepal” manufactured by Kao Corporation Boron nitride powder: manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “DENKABORON NITRIDE MGP”
  • Number-based particle size distribution of grain boundary phase The fracture surface of an aluminum nitride substrate is polished with an “automatic polishing device Ecomet 3” manufactured by Bühler, and the polished surface is magnified 500 times with a scanning electron microscope. The distribution state was observed (observation area 155 ⁇ m ⁇ 231 ⁇ m).
  • FIG. 3 shows an example in which the mirror-polished surface of an aluminum nitride substrate is observed with a scanning electron microscope. The obtained image was subjected to image analysis processing by “Image-Pro Plus 6.2J” manufactured by Media Cybernetics, and a cumulative 10% particle diameter d10 and a cumulative 50% particle diameter d50 were calculated.
  • Dielectric breakdown voltage at 25 ° C. and 400 ° C . It can be measured by providing an electrode in a heating furnace that can be heated to 400 ° C. and providing an AC withstand voltage measuring device. In order to eliminate the influence of the atmosphere at the time of measurement, the atmosphere in the furnace was measured with a nitrogen atmosphere of 0.3 MPa. In a heating furnace maintained at a predetermined temperature, spherical electrodes were arranged on the upper and lower surfaces of the aluminum nitride substrate, voltage was applied to the sample according to JIS C2110, and the voltage when dielectric breakdown occurred was measured. The dielectric breakdown voltage was calculated by dividing the voltage at which dielectric breakdown occurred by the thickness of the sample.
  • Examples 4 and 5 An aluminum nitride substrate was obtained in the same manner as in Example 1 except that the sintering atmosphere from 1500 ° C. to the sintering temperature was changed as shown in Table 1. The results are shown in Table 1.
  • Examples 6 and 7 An aluminum nitride substrate was obtained in the same manner as in Example 1 except that the sintering temperature was changed as shown in Table 1. The results are shown in Table 1.
  • Example 8 and 9 An aluminum nitride substrate was obtained in the same manner as in Example 1 except that the cooling rate was changed as shown in Table 1. The results are shown in Table 1.
  • an aluminum nitride substrate which is excellent in insulation characteristics at high temperatures and suitable for circuit boards, and a method for producing the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Products (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

 平均粒子径が2~5μmである窒化アルミニウム結晶粒子を有し、熱伝導率が170W/m・K以上である回路基板用窒化アルミニウム基板において、樹枝状の粒界相を含有せず、400℃における絶縁破壊電圧が30kV/mm以上である、回路基板用窒化アルミニウム基板が開示される。また、窒化アルミニウム粉末を含む原料を圧力150Pa以下で1500℃まで加熱し、その後、非酸化性ガスで圧力0.4MPa以上の加圧雰囲気として1700~1900℃まで昇温、保持した後、1600℃まで10℃/分以下の冷却速度で冷却する工程を具備する、回路基板用窒化アルミニウム基板の製造方法が提供される。

Description

回路基板用窒化アルミニウム基板及びその製造方法
 本発明は、高温下における絶縁特性に優れた窒化アルミニウム基板及びその製造方法に関する。
 エレクトロニクス技術の発展に伴い、半導体の高出力化が進む中、半導体搭載用回路基板に用いられる絶縁性に優れた窒化アルミニウム基板は、多岐にわたる分野、例えば電鉄や電気自動車等の駆動制御用や産業用ロボットの制御用の基板材料として用いられている。その中において、製品信頼性に大きく影響するスイッチングロスやエネルギーロスの低減、制御作動温度の拡張といった特長を持つ次世代半導体の開発のため、現在使用されているSiチップに代わる材料として、高信頼性SiCチップが有望視されている。SiCチップの作動可能温度は400℃前後であり、従来の150℃に比べ高温となるため、半導体搭載用回路基板の絶縁材料として用いられる窒化アルミニウム基板には、このような高温下においても優れた絶縁特性を発揮することが求められる。
 従来、前記窒化アルミニウム基板として使用される窒化アルミニウム焼結体は、一般に以下の方法で製造されている。すなわち、窒化アルミニウム粉末に焼結助剤、バインダー、可塑剤、分散媒、離型剤等の添加剤を混合する。それを押出成形等によってシート状に成形し、プレス機等により所望の形状や寸法に加工する(成形・プレス)。次いで、成形体を空気中又は窒素等の非酸化性雰囲気中で350~700℃に加熱してバインダーを除去した後(脱脂)、窒素等の非酸化性雰囲気中において1800~1900℃で0.5~10時間保持すること(焼結)によって製造されている。
 しかし、このような方法で製造された窒化アルミニウム基板の絶縁破壊電圧は、室温では30~40kV/mm程度と高い絶縁特性を示すものの、400℃といった高温下においては10kV/mm前後にまで低下してしまうという問題があった。
 窒化アルミニウム焼結体の絶縁特性を高めるために、従来、種々の提案がなされ、例えば、窒化アルミニウム結晶粒子中にチタンを固溶させ、不対電子濃度を増加させる方法(特許文献1)や、窒化アルミニウム結晶粒子や粒界気孔の平均径、粒界気孔と粒内気孔の比率を制御する方法(特許文献2)などが提案されている。しかしながら、これまでに、高温下における絶縁特性を確保できているものはなかった。
特開平06-128041号公報 特開2006-13257号公報
 本発明の目的は、高温下における絶縁特性に優れた窒化アルミニウム基板とその製造方法を提供することである。
 本発明の一態様では、平均粒子径が2~5μmである窒化アルミニウム結晶粒子を有し、熱伝導率が170W/m・K以上である回路基板用窒化アルミニウム基板において、樹枝状の粒界相を含有せず、400℃における絶縁破壊電圧が30kV/mm以上である、回路基板用窒化アルミニウム基板が提供される。
 上記において、一態様では、粒界相は、不連続に分散した非樹枝状の粒界相である。また別の態様では、窒化アルミニウム基板の鏡面研磨面から測定される粒界相の個数基準粒子径分布における累積10%粒子径d10が0.6μm以上であり、累積50%粒子径d50が1.6μm以下である。
 本発明の更なる態様では、窒化アルミニウム粉末を含む原料を圧力150Pa以下で1500℃まで加熱し、その後、非酸化性ガスで圧力0.4MPa以上の加圧雰囲気として1700~1900℃まで昇温、保持した後、1600℃まで10℃/分以下の冷却速度で冷却する工程を具備する、400℃における絶縁破壊電圧が30kV/mm以上である回路基板用窒化アルミニウム基板の製造方法が提供される。
 ここで、窒化アルミニウム粉末は、特に限定されないが、一実施態様では、不純物として、酸素含有量が1.2質量%以下、カーボン含有量が0.04質量%以下、Fe含有量が30ppm以下、Si含有量が60ppm以下である粉末が挙げられる。また、原料には、通常は焼結助剤が含められるが、かかる焼結助剤としては、一実施態様では、希土類金属化合物、アルカリ土類金属化合物、遷移金属化合物が使用される。
 更に本発明の一態様では、上記製造方法により製造されうる回路基板用窒化アルミニウム基板、つまり、窒化アルミニウム粉末を含む原料を圧力150Pa以下で1500℃まで加熱し、その後、非酸化性の圧力0.4MPa以上の加圧雰囲気として1700~1900℃まで昇温、保持した後、1600℃まで10℃/分以下の冷却速度で冷却することにより、製造される回路基板用窒化アルミニウム基板も提供される。
 本発明によれば、高温下における絶縁特性に優れ、回路基板用として好適な窒化アルミニウム基板及びその製造方法が提供される。
従来の窒化アルミニウム基板の樹枝状の粒界相の一例を示す走査型電子顕微鏡写真である。 本発明に係る窒化アルミニウム基板の非樹枝状の粒界相の一例を示す走査型電子顕微鏡写真である。 本発明に係る窒化アルミニウム基板の鏡面研磨面の一例を示す走査型電子顕微鏡写真である。
 本発明に係る回路基板用窒化アルミニウム基板の一実施形態について説明する。
 本発明に係る回路基板用窒化アルミニウム基板は、窒化アルミニウム結晶粒子とその粒子間の空間を埋める粒界相とからなるものであり、熱伝導率が170W/m・K以上であり、400℃における絶縁破壊電圧が30kV/mm以上であることを特徴とする窒化アルミニウム基板である。ここで、絶縁破壊電圧は、当業者により通常理解される通りの意味を有し、JIS C2110に準じて、試料に電圧を加え、絶縁破壊が生じたときの電圧を試料の厚みで除することで求めることができる。
 窒化アルミニウム結晶粒子の平均粒子径は2~5μmであることが好ましい。ここで、窒化アルミニウム結晶粒子の平均粒子径は、走査型電子顕微鏡を用いて窒化アルミニウム基板の破断面にて観察される粒子径を測定し、測定数の平均値から求めることができる。窒化アルミニウム結晶粒子の平均粒子径が2μm未満であると、窒化アルミニウム基板の緻密化が不十分となり、熱伝導率が低下する場合がある。他方、窒化アルミニウム結晶粒子の平均粒子径が5μmを超えると、窒化アルミニウム結晶粒子間の空隙が大きくなり、その空隙を粒界相で充填することが十分にできなくなるため、絶縁特性や機械的強度が低下する場合がある。また、応力負荷時に窒化アルミニウム結晶粒子の粒子内破壊が発生しやすく、機械的強度の低下につながる。
 本発明の窒化アルミニウム基板は、樹枝状の粒界相を含有してないことを特徴とする窒化アルミニウム基板であり、換言すれば、粒界相が非樹枝状の粒界相となっていることを特徴とする。すなわち、本発明者は、高温での絶縁特性の向上を達成するために鋭意検討を行った結果、400℃における絶縁破壊電圧が30kV/mmを下回る窒化アルミニウム基板には、樹枝状の形状をした粒界相が多数観察されるのに対して、絶縁破壊電圧が30kV/mmを上回る窒化アルミニウム基板には、樹枝状の粒界相がまったく観察されず、その粒界相は多数の粒界相が不連続に分散した非樹枝状の粒界相となっていることを見出した。ここで、粒界相の形状は、例えば、1gの窒化アルミニウム基板を50mlの20%水酸化ナトリウム水溶液に入れ、130℃で12時間保持し、窒化アルミニウム結晶粒子が溶解するまで静置し、その後、濾過、洗浄により残留した粒界相を取り出し、走査型電子顕微鏡によって観察することで確認できる。ここで言う「樹枝状の粒界相」とは、複数の粒界相が立体的に連結した形状を有する粒界相である。よって、本発明の窒化アルミニウム基板では、その粒界相の中にこのような樹枝状の粒界相部分が含まれず、粒界相は、多数の粒界相が不連続に分散した非樹枝状の粒界相となっている。図1の顕微鏡写真は、上記のような樹枝状の粒界相が観察される一例を示し、図2の顕微鏡写真は、樹枝状の粒界相が含まれない、粒界相が不連続に分散した非樹枝状の粒界相が観察される一例を示している。
 樹枝状の粒界相が高温下における窒化アルミニウム基板の絶縁特性に及ぼす影響として以下の二つのことが推察される。
 一つ目は、窒化アルミニウム基板を構成する窒化アルミニウム結晶粒子と粒界相の熱膨張率の差により生じる微小な空隙の存在である。25~400℃における粒界相の熱膨張率は、窒化アルミニウムのそれの約2倍近い値となるため、高温になると、窒化アルミニウム結晶粒子と粒界相の界面には、互いの膨張の差による微小なひずみや空隙が生じていると考えられる。このとき、立体的に伸展している樹枝状の粒界相が存在すると、窒化アルミニウム基板内に微小な空隙が連続的に分布してしまい、絶縁距離が短くなるため、窒化アルミニウム基板の絶縁特性が低下すると推察される。一方、樹枝状の粒界相を含まず、非樹枝状で不連続の分散相からなる粒界相となっている場合、生じた微小な空隙が連結することがなくなるため、高温における窒化アルミニウム基板の絶縁特性は低下しないと考えられる。
 二つ目は、粒界相の導電経路化である。焼結に用いる焼結助剤は、一般的にアルカリ土類金属化合物や希土類金属化合物等を使用する場合が多いが、これらの焼結助剤は、焼結初期に窒化アルミニウム粉末の表面に存在する酸化物と反応して複合酸化物の液相を形成する。この液相は焼結過程において窒化アルミニウム結晶粒子内の不純物を固溶する。その結果、純化した窒化アルミニウム結晶粒子が粒成長し、焼結体組織が緻密化することによって窒化アルミニウム基板の高熱伝導化・高強度化をもたらす。不純物を多く含有した液相は、焼結終了後に冷却され、粒界相として析出する。そのため、粒界相自体の電気絶縁性は窒化アルミニウム結晶粒子より低くなると考えられる。特に立体的に連結した樹枝状の粒界相が存在した場合、絶縁性の低い粒界相が導電経路として作用することになり、窒化アルミニウム基板の絶縁特性が低下すると推察される。
 さらに、本発明の一実施態様では、窒化アルミニウム基板は、鏡面研磨面から測定される粒界相の個数基準粒子径分布における累積10%粒子径d10が0.6μm以上であり、累積50%粒子径d50が1.6μm以下である。ここで粒界相の個数基準粒子径分布の測定方法について以下に説明する。すなわち、窒化アルミニウム基板をエポキシ樹脂に包埋、固化した後、基板の厚み方向に垂直になるように切断し、その断面をバフ研磨にて鏡面研磨を行う。その研磨面を走査型電子顕微鏡によって観察し、その画像から画像解析ソフトにより粒界相の粒子径を測定することで、個数基準粒子径分布を求めることができる。累積10%粒子径d10が0.6μm未満であると、窒化アルミニウム基板中の粒界相の一部が樹枝状として存在する場合があり、累積50%粒子径d50が1.6μmを超えると、粒界相同士が塊状の凝集体として連結してしまう場合がある。いずれの場合も、上述した粒界相の影響により高温下における窒化アルミニウム基板の絶縁特性を低下させるおそれがある。従来、窒化アルミニウム結晶粒子の粒径や粒界相の組成に注目した窒化アルミニウム基板は知られているものの、絶縁特性に対して粒界相の形状や分布状態が重要であること、さらには、絶縁特性と鏡面研磨面から測定される粒界相の個数基準粒子径分布との関連性を開示したものはなく、特に、樹枝状の粒界相を含有させないことで高温下における窒化アルミニウム基板の絶縁特性を向上させることについては、これまでに知られていない。
 以上のように、本発明に係る窒化アルミニウム基板は、樹枝状の粒界相を含有していないことから、高温下における絶縁特性に優れたものとなっているが、粒界相を非樹枝状に形成することができるならば、如何なる方法によって製造しても構わない。しかしながら、本発明者は、鋭意研究の結果、焼結時の炉内圧力や冷却速度等の条件を特定の条件とするだけで、粒界相を確実に非樹枝状に形成することができ、400℃における絶縁破壊電圧が30kV/mm以上である窒化アルミニウム基板を製造することができることを見いだした。
 すなわち、本発明に係る窒化アルミニウム基板の製造方法は、
 (i)窒化アルミニウム粉末を含む原料を準備する原料準備工程と、
 (ii)前記原料を圧力150Pa以下で1500℃まで加熱し、その後、非酸化性ガスで圧力0.4MPa以上の加圧雰囲気として1700~1900℃まで昇温、保持した後、1600℃まで10℃/分以下の冷却速度で冷却する焼結工程と
を具備する。
(i)原料準備工程:
 窒化アルミニウム粉末の他に、焼結助剤、バインダー、可塑剤、分散媒、離型剤等の添加剤が適宜使用される。窒化アルミニウム粉末は、特に限定されるものではなく、金属アルミニウムを窒素雰囲気下で窒化する直接窒化法、アルミナをカーボンで還元する還元窒化法等の公知の方法で製造された窒化アルミニウム粉末が使用できるが、中でも、高純度かつ微粉であるものが好ましい。具体的には、不純物として、酸素含有量が1.2質量%以下、カーボン含有量が0.04質量%以下、Fe含有量が30ppm以下、Si含有量が60ppm以下であるものが好適に使用され、また、最大粒子径が20μm以下であることがより好ましい。ここで、酸素は基本的には不純物であるが、焼結過多を防止する作用を有しており、よって、焼結過多による焼結体の強度低下を防止するためには、酸素含有量が0.7質量%以上のものを使用するのが好ましい。
 焼結助剤は、特に限定されるものではなく、希土類金属の化合物、アルカリ土類金属の化合物、遷移金属の化合物等が使用できる。中でも、酸化イットリウム、あるいは、酸化イットリウムと酸化アルミニウムの併用が好ましい。これらの焼結助剤は、窒化アルミニウム粉末と反応し複合酸化物の液相(例えば2Y2O3・Al2O3、Y2O3・Al2O3、3Y2O3・5Al2O3等)を形成し、この液相が焼結体の高密度化をもたらし、同時に窒化アルミニウム結晶粒子中の不純物である酸素等を抽出し、結晶粒界の酸化物相として偏析させることによって高熱伝導化をもたらす。
 原料準備工程(i)では、上記窒化アルミニウム粉末と焼結助剤を混合装置によって混合し、混合した原料粉にバインダー等を添加した後、これをシート成形等により成形して成形体を得、これをさらに脱脂して脱脂体を焼結用原料として得る。ここで、窒化アルミニウム粉末等の混合方法は特に限定されるものではなく、例えばボールミル、ロッドミル、ミキサーなどの公知の混合装置が使用できる。バインダーは特に限定されるものではないが、可塑性や界面活性効果を有するメチルセルロース系や、熱分解性に優れたアクリル酸エステル系のバインダーを用いることが好ましい。また、必要に応じて、可塑剤、分散媒等が併用される。一例では、可塑剤としてはグリセリン等が、分散媒としてはイオン交換水やエタノール等が使用される。
 成形シートの脱脂方法は特に限定されないが、成形シートを空気中又は窒素等の非酸化性雰囲気中で300~700℃に加熱してバインダーを除去することが好ましい。脱脂時間は成形シートのサイズ、処理枚数に応じて適宜決定する必要があるが、通常1~10時間である。
(ii)焼結工程:
 原料準備工程(i)で得られた原料(脱脂体)を焼結して窒化アルミニウム焼結体を得る。当該工程では、先ず、焼結炉内の圧力を150Pa以下とし、1500℃まで加熱する。これにより、脱脂体中の残留カーボンが除去され、好ましい焼結体組織と熱伝導性を有する窒化アルミニウム焼結体が得られる。ここで、炉内圧力が150Paを越えると、カーボンの除去が不十分となり、また1500℃を越えて加熱すると、窒化アルミニウム結晶粒子の緻密化が一部で進行し、カーボンの拡散経路が閉ざされてしまうため、カーボンの除去が不十分となってしまう。
 次いで、非酸化性雰囲気で圧力0.4MPa以上の加圧雰囲気として1700~1900℃まで昇温、保持する。これにより、熱伝導率が高く、絶縁特性が向上させられた窒化アルミニウム焼結体が得られる。ここで、炉内圧力0.4MPa以上の加圧雰囲気で焼結すると、液相化した焼結助剤が揮発しにくくなり、窒化アルミニウム結晶粒子間の空隙発生を効果的に抑制でき、窒化アルミニウム基板の絶縁特性を向上させることができると考えられる。また、焼結温度が1700℃未満であると、窒化アルミニウム結晶粒子の粒成長が十分に進行しないために、緻密な焼結体組織が得られず、窒化アルミニウム基板の熱伝導率が低下する場合がある。一方、焼結温度が1900℃を超えると、窒化アルミニウム結晶粒子の過度な粒成長が進行し、窒化アルミニウム結晶粒子間の空隙が大きくなり、絶縁特性が低下する場合がある。
 ここで、非酸化性雰囲気とは、酸素等の酸化性ガスを含まない不活性ガス雰囲気や還元性雰囲気等を意味する。
 次いで、加圧雰囲気下で1600℃まで10℃/分以下の冷却速度で冷却する。冷却初期の段階では、結晶粒界には液相が存在しており、1600℃前後にて固化すると考えられる。従来の製造で行われる炉冷での冷却速度は15℃/分以上であり、このように冷却速度が速い場合、液相の固化が急激に進行するため、窒化アルミニウム結晶粒子の二粒子界面に樹枝状の粒界相が析出する。しかし、10℃/分以下の冷却速度で冷却すると、窒化アルミニウム結晶粒子間に存在する空隙を埋めるように粒界相が析出するため、粒界相同士の連結が起こらず、樹枝状の粒界相の析出を抑制することができる。また、窒化アルミニウム結晶粒子間のひずみを緩和しながら粒界相が析出するため、得られる窒化アルミニウム基板は、高温下での微小クラック発生が抑制され、絶縁特性が向上すると考えられる。1600℃までの徐冷が終了した後は、従来のように室温まで急冷することができる。
 また、炉内の圧力は、0.4MPa以上とするのが好ましく、0.4MPa未満では液相化した焼結助剤が粒界相として析出する前に揮発し、窒化アルミニウム結晶粒子間に空隙が発生するため、窒化アルミニウム基板の絶縁特性が低下してしまう。また、冷却方法は、焼結炉のヒーター温度を制御することにより、実施できる。
 以下、本発明を実施例によってさらに詳細に説明するが、本発明の範囲がこのような実施例によって限定されることはない。
<実施例1>
 窒化アルミニウム粉末97質量部に、酸化イットリウム粉末3質量部を添加し、ボールミルにおいて1時間混合して混合粉末を得た。この混合粉末100質量部にセルロースエーテル系バインダー6質量部、グリセリン5質量部、イオン交換水10質量部を添加し、ヘンシェルミキサーにおいて1分間混合し、混合物を得た。次に、この混合物を単軸押出機において厚み0.8mmのシート状に成形し、金型付きプレス機により90mm×90mmの寸法に打ち抜いた。成形シートに離型剤として窒化ホウ素粉を塗布した後、15枚を積層し、空気中において570℃で5時間加熱し脱脂した。次に、脱脂体を真空・加圧炉に移し、炉内圧力100Paで1500℃まで加熱した。その後、窒素を導入して炉内圧力0.6MPaの加圧雰囲気として1750℃まで昇温し、2時間保持した後、1600℃までを1℃/分の冷却速度で冷却し、窒化アルミニウム基板を得た。得られた窒化アルミニウム基板について、窒化アルミニウム結晶粒子の平均粒子径、樹枝状粒界相の有無、粒界相の個数基準粒子径分布、熱伝導率、25℃及び400℃における絶縁破壊電圧を評価した。結果を表1に示す。
<使用材料>
 窒化アルミニウム粉末:平均粒径1.2μm、酸素含有量0.8質量%。
 酸化イットリウム粉末:信越化学工業社製、商品名「Yttrium Oxide」
 バインダー:信越化学工業社製、商品名「メトローズ」
 グリセリン:花王社製、商品名「エキセパール」
 窒化ホウ素粉:電気化学工業社製、商品名「デンカボロンナイトライドMGP」
<評価方法>
 窒化アルミニウム結晶粒子の平均粒子径:窒化アルミニウム基板の破断面を走査型電子顕微鏡で2000倍に拡大し、50個の窒化アルミニウム結晶粒子の粒子径を測定し、平均値を算出した。
 樹枝状粒界相の有無:1gの窒化アルミニウム基板を50mlの20%水酸化ナトリウム水溶液に入れ、130℃で12時間保持し、窒化アルミニウム結晶粒子が溶解するまで静置し、その後、濾過、洗浄により残留した粒界相を取り出し、走査型電子顕微鏡によって観察することで確認した。
 粒界相の個数基準粒子径分布:窒化アルミニウム基板の破断面をビューラー社製「自動研磨装置エコメット3」により研磨し、その研磨面を走査型電子顕微鏡で500倍に拡大し、粒界相の分布状態を観察した(観察領域155μm×231μm)。図3に窒化アルミニウム基板の鏡面研磨面を走査型電子顕微鏡で観察した一例を示す。得られた画像をMedia Cybernetics社製「Image-Pro Plus 6.2J」により画像解析処理し、累積10%粒子径d10及び累積50%粒子径d50を算出した。
 熱伝導率:アルバック理工社製「レーザーフラッシュ法熱定数測定装置TC-7000」により測定した。
 25℃及び400℃における絶縁破壊電圧:400℃に加熱できる加熱炉内に電極を設け、交流耐電圧測定装置を併設することにより測定できる。測定時の雰囲気の影響を排除するために、炉内の雰囲気を窒素雰囲気0.3MPaとして測定を行った。所定の温度に保たれた加熱炉において、窒化アルミニウム基板の上下面に球状電極を配置し、JIS C2110に準じて試料に電圧を加え、絶縁破壊が生じたときの電圧を測定した。絶縁破壊が生じたときの電圧を試料の厚みで除することで絶縁破壊電圧を算出した。
<実施例2,3>
 1500℃までの焼結雰囲気を表1に示すように変えたこと以外は、実施例1と同様にして窒化アルミニウム基板を得た。結果を表1に示す。
<実施例4,5>
 1500℃から焼結温度までの焼結雰囲気を表1に示すように変えたこと以外は、実施例1と同様にして窒化アルミニウム基板を得た。結果を表1に示す。
<実施例6,7>
 焼結温度を表1に示すように変えたこと以外は、実施例1と同様にして窒化アルミニウム基板を得た。結果を表1に示す。
<実施例8,9>
 冷却速度を表1に示すように変えたこと以外は、実施例1と同様にして窒化アルミニウム基板を得た。結果を表1に示す。
<比較例1>
 焼結雰囲気と冷却速度を表1に示すように変えたこと以外は、実施例1と同様にして窒化アルミニウム基板を得た。結果を表1に示す。
<比較例2>
 1500℃までの焼結雰囲気を表1に示すように変えたこと以外は、実施例1と同様にして窒化アルミニウム基板を得た。結果を表1に示す。
<比較例3>
 1500℃から焼結温度までの焼結雰囲気を表1に示すように変えたこと以外は、実施例1と同様にして窒化アルミニウム基板を得た。結果を表1に示す。
<比較例4,5>
 焼結温度を表1に示すように変えたこと以外は、実施例1と同様にして窒化アルミニウム基板を得た。結果を表1に示す。
<比較例6>
 冷却速度を表1に示すように変えたこと以外は、実施例1と同様にして窒化アルミニウム基板を得た。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、高温下における絶縁特性に優れ、回路基板用として好適な窒化アルミニウム基板及びその製造方法が提供される。

Claims (5)

  1.  平均粒子径が2~5μmである窒化アルミニウム結晶粒子を有し、熱伝導率が170W/m・K以上である回路基板用窒化アルミニウム基板において、樹枝状の粒界相を含有せず、400℃における絶縁破壊電圧が30kV/mm以上である、回路基板用窒化アルミニウム基板。
  2.  粒界相が不連続に分散した非樹枝状の粒界相である、請求項1に記載の回路基板用窒化アルミニウム基板。
  3.  窒化アルミニウム基板の鏡面研磨面から測定される粒界相の個数基準粒子径分布における累積10%粒子径d10が0.6μm以上であり、累積50%粒子径d50が1.6μm以下である、請求項1又は2に記載の回路基板用窒化アルミニウム基板。
  4.  窒化アルミニウム粉末を含む原料を圧力150Pa以下で1500℃まで加熱し、その後、非酸化性ガスで圧力0.4MPa以上の加圧雰囲気として1700~1900℃まで昇温、保持した後、1600℃まで10℃/分以下の冷却速度で冷却することにより製造される、請求項1から3の何れか一項に記載の回路基板用窒化アルミニウム基板。
  5.  窒化アルミニウム粉末を含む原料を圧力150Pa以下で1500℃まで加熱し、その後、非酸化性ガスで圧力0.4MPa以上の加圧雰囲気として1700~1900℃まで昇温、保持した後、1600℃まで10℃/分以下の冷却速度で冷却する工程を具備する、請求項1から3の何れか一項に記載の回路基板用窒化アルミニウム基板の製造方法。
PCT/JP2011/061823 2010-06-08 2011-05-24 回路基板用窒化アルミニウム基板及びその製造方法 WO2011155319A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012519327A JP5919190B2 (ja) 2010-06-08 2011-05-24 回路基板用窒化アルミニウム基板及びその製造方法
CA2801857A CA2801857C (en) 2010-06-08 2011-05-24 Aluminium nitride substrate for circuit board and production method thereof
US13/702,523 US9190189B2 (en) 2010-06-08 2011-05-24 Aluminum nitride substrate for circuit board and production method thereof
CN201180028274.6A CN102933520B (zh) 2010-06-08 2011-05-24 电路基板用氮化铝基板及其制造方法
EP11792276.5A EP2581357B1 (en) 2010-06-08 2011-05-24 Circuit board comprising an aluminium nitride substrate and production method thereof
KR1020137000160A KR101693071B1 (ko) 2010-06-08 2011-05-24 회로 기판용 질화 알루미늄 기판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-130665 2010-06-08
JP2010130665 2010-06-08

Publications (1)

Publication Number Publication Date
WO2011155319A1 true WO2011155319A1 (ja) 2011-12-15

Family

ID=45097927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061823 WO2011155319A1 (ja) 2010-06-08 2011-05-24 回路基板用窒化アルミニウム基板及びその製造方法

Country Status (8)

Country Link
US (1) US9190189B2 (ja)
EP (1) EP2581357B1 (ja)
JP (1) JP5919190B2 (ja)
KR (1) KR101693071B1 (ja)
CN (1) CN102933520B (ja)
CA (1) CA2801857C (ja)
TW (1) TWI519503B (ja)
WO (1) WO2011155319A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158375A (ja) * 2019-03-28 2020-10-01 京セラ株式会社 窒化アルミニウム基板、電子装置及び電子モジュール
JP2021130571A (ja) * 2020-02-18 2021-09-09 京セラ株式会社 窒化アルミニウム基板、電子装置及び電子モジュール

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105502313B (zh) * 2015-12-24 2018-06-05 上海欣鑫化工有限公司 一种利用双螺杆挤出机制备氮化镓纳米晶体的方法
EP3560905B1 (en) * 2016-12-21 2022-05-04 NGK Insulators, Ltd. Transparent aln sintered body and production method therefor
JP6496092B1 (ja) 2017-05-30 2019-04-03 京セラ株式会社 窒化アルミニウム質焼結体、および半導体保持装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197368A (ja) * 1989-12-26 1991-08-28 Nippon Light Metal Co Ltd 高熱伝導性点火プラグ用絶縁碍子およびその製造方法
JPH06128041A (ja) 1992-09-04 1994-05-10 Sumitomo Electric Ind Ltd 窒化アルミニウム焼結体およびその製造方法
JPH0797265A (ja) * 1993-09-27 1995-04-11 Denki Kagaku Kogyo Kk 窒化アルミニウム焼結体及びそれを用いた回路基板
JP2003073169A (ja) * 2001-09-04 2003-03-12 Denki Kagaku Kogyo Kk 窒化アルミニウム焼結体、その製造方法及びその焼結体を用いた回路基板
JP2004214690A (ja) * 2000-02-07 2004-07-29 Ibiden Co Ltd 半導体製造・検査装置用セラミック基板
JP2006013257A (ja) 2004-06-28 2006-01-12 Kyocera Corp 静電チャック

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68926040T2 (de) * 1989-05-22 1996-10-02 Sumitomo Electric Industries Siliciumnitridsinterkörper hoher Festigkeit und Verfahren zu seiner Herstellung
US5760532A (en) * 1991-12-26 1998-06-02 Ngk Spark Plug Co., Ltd. Sintered ceramic body for a spark plug
JP3633636B2 (ja) * 1993-02-05 2005-03-30 住友電気工業株式会社 窒化アルミニウム焼結体
US5409868A (en) * 1993-12-23 1995-04-25 Electrofuel Manufacturing Co. Ceramic articles made of compositions containing borides and nitrides
US6017485A (en) * 1996-03-28 2000-01-25 Carborundum Corporation Process for making a low electrical resistivity, high purity aluminum nitride electrostatic chuck
JP3670444B2 (ja) * 1997-06-06 2005-07-13 日本碍子株式会社 窒化アルミニウム基複合体、電子機能材料、静電チャックおよび窒化アルミニウム基複合体の製造方法
JP4763929B2 (ja) * 2001-07-31 2011-08-31 電気化学工業株式会社 窒化アルミニウム焼結体、その製造方法及びその焼結体を用いた回路基板
JP2003070169A (ja) 2001-08-27 2003-03-07 Shin Kobe Electric Mach Co Ltd 自動車用鉛蓄電池の劣化判定方法
JP4386695B2 (ja) 2002-11-14 2009-12-16 日本碍子株式会社 窒化アルミニウム焼結体の製造方法
WO2010109960A1 (ja) * 2009-03-26 2010-09-30 株式会社東芝 窒化アルミニウム基板、窒化アルミニウム回路基板、半導体装置および窒化アルミニウム基板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197368A (ja) * 1989-12-26 1991-08-28 Nippon Light Metal Co Ltd 高熱伝導性点火プラグ用絶縁碍子およびその製造方法
JPH06128041A (ja) 1992-09-04 1994-05-10 Sumitomo Electric Ind Ltd 窒化アルミニウム焼結体およびその製造方法
JPH0797265A (ja) * 1993-09-27 1995-04-11 Denki Kagaku Kogyo Kk 窒化アルミニウム焼結体及びそれを用いた回路基板
JP2004214690A (ja) * 2000-02-07 2004-07-29 Ibiden Co Ltd 半導体製造・検査装置用セラミック基板
JP2003073169A (ja) * 2001-09-04 2003-03-12 Denki Kagaku Kogyo Kk 窒化アルミニウム焼結体、その製造方法及びその焼結体を用いた回路基板
JP2006013257A (ja) 2004-06-28 2006-01-12 Kyocera Corp 静電チャック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2581357A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158375A (ja) * 2019-03-28 2020-10-01 京セラ株式会社 窒化アルミニウム基板、電子装置及び電子モジュール
JP2021130571A (ja) * 2020-02-18 2021-09-09 京セラ株式会社 窒化アルミニウム基板、電子装置及び電子モジュール
JP7441070B2 (ja) 2020-02-18 2024-02-29 京セラ株式会社 窒化アルミニウム基板、電子装置及び電子モジュール

Also Published As

Publication number Publication date
CA2801857C (en) 2018-01-23
CA2801857A1 (en) 2011-12-15
TWI519503B (zh) 2016-02-01
US9190189B2 (en) 2015-11-17
EP2581357A4 (en) 2014-03-05
CN102933520A (zh) 2013-02-13
EP2581357A1 (en) 2013-04-17
JP5919190B2 (ja) 2016-05-18
KR101693071B1 (ko) 2017-01-04
KR20130087481A (ko) 2013-08-06
EP2581357B1 (en) 2018-02-21
US20130149530A1 (en) 2013-06-13
CN102933520B (zh) 2015-08-19
TW201202170A (en) 2012-01-16
JPWO2011155319A1 (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5231823B2 (ja) 多結晶MgO焼結体及びその製造方法、並びにスパッタリング用MgOターゲット
JP5444387B2 (ja) 半導体装置用放熱板
JP2018184333A (ja) 窒化珪素基板の製造方法、及び窒化珪素基板
JP5919190B2 (ja) 回路基板用窒化アルミニウム基板及びその製造方法
JP2019052072A (ja) 窒化ケイ素焼結体基板、電子装置、及び、窒化ケイ素焼結体基板の製造方法
JP5406565B2 (ja) 酸化アルミニウム焼結体、その製法及び半導体製造装置部材
JP4556162B2 (ja) 窒化珪素質焼結体及びその製造方法、並びにそれを用いた回路基板
KR20190032966A (ko) 질화규소 소결체 제조를 위한 테이프 캐스팅용 슬러리 조성물
KR101901172B1 (ko) 전기절연성이 우수한 고열전도성 질화규소 세라믹스 기판
JP6720053B2 (ja) 窒化ケイ素焼結体の製造方法
JP5728684B2 (ja) 快削性セラミックス及びその製造方法
JP2005200287A (ja) 窒化アルミニウム焼結体及びその製造方法
JP4564257B2 (ja) 高熱伝導性窒化アルミニウム焼結体
JP7455184B1 (ja) 窒化ケイ素薄板及び窒化ケイ素樹脂複合板
JP4142556B2 (ja) 窒化アルミニウム焼結体及びその製造方法、用途
KR20220037168A (ko) 직접 발포 방식을 이용한 다공성 세라믹의 제조방법 및 이에 의해 제조된 다공성 세라믹
JP3810344B2 (ja) 窒化アルミニウム焼結体、その製造方法及び用途
JP2022094464A (ja) 窒化シリコン用グリーンシート、および、その製造方法
TW201706231A (zh) 鋁-碳化矽質複合體及其製造方法
JP2002220283A (ja) 窒化アルミニウム焼結体及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028274.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519327

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2801857

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011792276

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137000160

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13702523

Country of ref document: US