TWI519503B - 電路基板用氮化鋁基板及其製造方法 - Google Patents

電路基板用氮化鋁基板及其製造方法 Download PDF

Info

Publication number
TWI519503B
TWI519503B TW100119734A TW100119734A TWI519503B TW I519503 B TWI519503 B TW I519503B TW 100119734 A TW100119734 A TW 100119734A TW 100119734 A TW100119734 A TW 100119734A TW I519503 B TWI519503 B TW I519503B
Authority
TW
Taiwan
Prior art keywords
aluminum nitride
grain boundary
nitride substrate
boundary phase
less
Prior art date
Application number
TW100119734A
Other languages
English (en)
Other versions
TW201202170A (en
Inventor
Yusaku Harada
Katsunori Terano
Takeshi Gotoh
Original Assignee
Denka Company Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Company Ltd filed Critical Denka Company Ltd
Publication of TW201202170A publication Critical patent/TW201202170A/zh
Application granted granted Critical
Publication of TWI519503B publication Critical patent/TWI519503B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/025Other inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/87Grain boundary phases intentionally being absent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Products (AREA)
  • Inorganic Insulating Materials (AREA)

Description

電路基板用氮化鋁基板及其製造方法
本發明係關於高溫下之絕緣特性優良的氮化鋁基板及其製造方法。
隨著電子技術的發展,半導體的高輸出化持續進展中,而使用於半導體搭載用電路基板之絕緣性優良的氮化鋁基板,被用在多種區域,例如:被用來作為電鐵道或電動汽車等驅動控制用或產業用機器人的控制用之基板材料。其中,開發出一種次世代半導體,其具有對製品可靠性有很大影響之減少交換損失(switching loss)、能量損失、擴張控制操作溫度的優點,故以高可靠性SiC晶片作為取代目前使用之Si晶片的材料是可期待的。由於SiC晶片可作動的溫度為400℃左右,比以往的150℃還要高溫,故作為半導體搭載用電路基板的絕緣材料使用之氮化鋁基板,必須在此種高溫下亦能發揮優良的絕緣特性。
以往,作為前述氮化鋁基板使用的氮化鋁燒結體,一般是利用以下的方法製造。亦即,在氮化鋁粉末中混合燒結助劑、黏合劑、塑化劑、分散介質、脫模劑等的添加劑。藉由擠壓成形等將其成形為薄片狀,利用沖壓機等加工成所期望的形狀或尺寸(成形-沖壓)。然後,藉由將成形體在空氣中或氮等的非氧化性氣體環境中加熱至350~700℃並去除黏合劑後(脫脂),在氮等的非氧化性氣體環境中於1800~1900℃下保持0.5~10小時(燒結),來製造。
然而,以此種方法製得的氮化鋁基板的絕緣破壞電壓,雖呈現在室溫下高達30~40kV/mm左右的絕緣特性,但會有在400℃的高溫下低至10kV/mm左右的問題。
為了提高氮化鋁燒結體的絕緣特性,以往曾有各種提議,例如提議使鈦固溶於氮化鋁結晶粒子中,使不成對電子(unpaired electron)濃度增加之方法(專利文獻1)、或控制氮化鋁結晶粒子或晶界氣孔的平均直徑、晶界氣孔與粒內氣孔的比例之方法(專利文獻2)等。然而,以往的方法均無法確保高溫下的絕緣特性。
[先前技術文獻] [專利文獻]
[專利文獻1]日本特開平06-128041號公報
[專利文獻2]日本特開2006-13257號公報
本發明的目的在於提供一種高溫下之絕緣特性優良的氮化鋁基板及其製造方法。
本發明的一態樣中,提供一種電路基板用氮化鋁基板,其係在具有平均粒徑為2~5μm的氮化鋁結晶粒子且熱導率為170W/m‧K以上的電路基板用氮化鋁基板中,不含樹枝狀晶界相,且400℃下的絕緣破壞電壓為30kV/mm以上。
在上述一態樣中,晶界相為不連續地分散的非樹枝狀晶界相。又,於另一態樣中,由氮化鋁基板的鏡面研磨面所測定之晶界相的個數基準粒徑分布中的累積10%粒徑d10為0.6μm以上,累積50%粒徑d50為1.6μm以下。
本發明之另一態樣中,提供一種於400℃下絕緣破壞電壓為30kV/mm以上之電路基板用氮化鋁基板的製造方法,其係具有將含氮化鋁粉末的原料在壓力150Pa以下加熱至1500℃,然後在非氧化性氣體中作為壓力0.4MPa以上的加壓氣體環境而昇溫至1700~1900℃並加以保持後,以10℃/分鐘以下的冷卻速度冷卻至1600℃之步驟。
在此,氮化鋁粉末無特別限制,在一實施例態樣中,以雜質而言,可列舉:氧含量為1.2質量%以下、碳含量為0.04質量%以下、Fe含量為30ppm以下、Si含量為60ppm以下的粉末。又,原料中通常含燒結助劑,但以此燒結助劑而言,在一實施例態樣中可使用稀土金屬化合物、鹼土金屬化合物、過渡金屬化合物。
再者,本發明的一態樣中,亦提供一種可利用上述製造方法製造的電路基板用氮化鋁基板,即一種可藉由將含氮化鋁粉末的原料在壓力150Pa以下加熱至1500℃,然後在作為非氧化性之壓力0.4MPa以上的加壓氣體環境而昇溫至1700~1900℃並加以保持後,以10℃/分鐘以下的冷卻速度冷卻至1600℃來製造的電路基板用氮化鋁基板。
根據本發明,可提供高溫下的絕緣特性優良,且適合作為電路基板用的氮化鋁基板及其製造方法。
[用以實施發明之形態]
就本發明之電路基板用氮化鋁基板的一實施例形態進行說明。
本發明之電路基板用氮化鋁基板的特徵為:包含由氮化鋁結晶粒子與埋住該粒子間的空間之晶界相;熱導率為170W/m‧K以上,且400℃下的絕緣破壞電壓為30kV/mm以上。在此,絕緣破壞電壓具有該發明所屬技術領域中具有通常知識者一般能理解的意思,可藉由依據JIS C2110,將電壓施加於試料,並將絕緣破壞產生時的電壓除以試料的厚來求得。
氮化鋁結晶粒子的平均粒徑以2~5μm為佳。在此,氮化鋁結晶粒子的平均粒徑可藉由下述方式求得,即:使用掃描型電子顯微鏡測定在氮化鋁基板的破斷面所觀察的粒徑,並由測定數的平均值求得。若氮化鋁結晶粒子的平均粒徑未滿2μm,則氮化鋁基板的緻密化會不足,會有熱導率降低的情形。另一方面,若氮化鋁結晶粒子的平均粒徑超過5μm,由於氮化鋁結晶粒子間的空隙會變大,該空隙無法充分地以晶界相填充,故會有絕緣特性或機械強度降低的情形。又,於應力負載時,容易發生氮化鋁結晶粒子的粒子內破壞,而會導致機械強度降低。
本發明的氮化鋁基板是一種以不含樹枝狀晶界相為特徵的氮化鋁基板,換言之,其特徵在於:晶界相成為非樹枝狀晶界相。亦即,本案發明人為了達成高溫下之絕緣特性的提升而致力探討研究,結果發現400℃下的絕緣破壞電壓低於30kV/mm的氮化鋁基板中,觀察到多數形狀呈樹枝狀的晶界相;相對地,在絕緣破壞電壓超過30kV/mm的氮化鋁基板中,完全未觀察到樹枝狀晶界相,該晶界相之多數的晶界相成為不連續地分散的非樹枝狀晶界相。在此,晶界相的形狀可藉由以下方式來確認,例如:將1g的氮化鋁基板放入50ml的20%氫氧化鈉水溶液中,於130℃下保持12小時,靜置至氮化鋁結晶粒子溶解為止,然後,藉由過濾、洗淨取出殘留的晶界相,以掃描型電子顯微鏡進行觀察。此處所謂的「樹枝狀晶界相」是指具有複數個晶界相呈立體狀連結的形狀之晶界相。因此,本發明之氮化鋁基板,於其晶界相中不含此種樹枝狀的晶界相部分,其晶界相成為多數的晶界相呈不連續地分散的非樹枝狀晶界相。第1圖的顯微鏡照片係表示觀察上述之樹枝狀晶界相的一例,第2圖的顯微鏡照片係表示觀察不含樹枝狀晶界相且晶界相為不連續地分散的非樹枝狀晶界相的一例。
樹枝狀晶界相對高溫下之氮化鋁基板的絕緣特性造成的影響推測有下列兩點。
第一點是因構成氮化鋁基板之氮化鋁結晶粒子與晶界相之熱膨脹率的差所產生的微小空隙的存在。25~400℃下之晶界相的膨脹率成為接近氮化鋁之約2倍的值,茲認為一旦成為高溫,於氮化鋁結晶粒子與晶界相的界面會產生因彼此膨脹的差所致之微小變形或空隙。此時,當呈立體狀伸展的樹枝狀晶界相存在時,微小的空隙便會連續地分布於氮化鋁基板內,而使絕緣距離變短,所以推測氮化鋁基板的絕緣特性會降低。另一方面,在不含樹枝狀晶界相且包含非樹枝狀之不連續的分散相的晶界相之情況,因所產生的微小空隙不會連結,故認為高溫下之氮化鋁基板的絕緣特性不會降低。
第二點是晶界相的導電路徑化。使用於燒結的燒結助劑,一般以使用鹼土族金屬化合物或稀土族金屬化合物等的情況居多,此等燒結助劑在燒結初期會與存在於氮化鋁粉末表面的氧化物反應而形成複合氧化物的液相。此液相在燒結過程中會將氮化鋁結晶粒子內的雜質固溶。結果,純化後的氮化鋁結晶粒子進行晶粒成長,燒結體組織緻密化,藉此導致氮化鋁基板的高導熱化-高強度化。含有許多雜質的液相在燒結結束後被冷卻,析出作為晶界相。因此,茲認為晶界相本身的電絕緣性比氮化鋁結晶粒子低。特別是在呈立體狀連結的樹枝狀晶界相存在的情況,絕緣性低的晶界相具有作為導電路徑之作用,故推測氮化鋁基板的絕緣特性會降低。
再者,在本發明的一實施例態樣中,氮化鋁基板由鏡面研磨面所測定之晶界相的個數基準粒徑分布中的累積10%粒徑d10為0.6μm以上,累積50%粒徑d50為1.6μm以下。在此,針對晶界相的個數基準粒徑分布的測定方法,說明如次。亦即,將氮化鋁基板包埋於環氧樹脂並加以固化後,將其以垂直於基板的厚度方向的方式加以切斷,以拋光研磨對該剖面進行鏡面研磨。透過掃描型電子顯微鏡觀察該研磨面,利用影像解析軟體由該影像測定晶界相的粒徑,藉此,可求出個數基準粒徑分布。若累積10%粒徑d10未滿0.6μm,會有氮化鋁基板中的晶界相局部以樹枝狀存在的情況,若累積50%粒徑d50超過1.6μm,會有晶界相彼此連結成塊狀凝聚體的情況。任一情況皆有因上述晶界相的影響而導致高溫下之氮化鋁基板的絕緣特性降低之虞。以往,雖知悉有以氮化鋁結晶粒子的粒徑或晶界相的組成為主的氮化鋁基板,但未有晶界相的形狀或分布狀態對絕緣特性甚重要的揭示,且也未有絕緣特性與由鏡面研磨面所測定之晶界相的個數基準粒徑分布的相關性之揭示,特別是關於藉由不含樹枝狀晶界相來使高溫下之氮化鋁基板的絕緣特性提升的技術,至今仍未知悉。
如上述,本發明的氮化鋁基板因不含樹枝狀晶界相,所以高溫下的絕緣特性優良,其中只要能將晶界相形成非樹枝狀,則以任何方法來製造皆可。然而,本案發明人致力探討研究的結果發現,僅藉由將燒結時的爐內壓力或冷卻速度等的條件設為特定條件,便可將晶界相確實地形成非樹枝狀,可製造400℃下的絕緣破壞電壓為30kV/mm以上的氮化鋁基板。
亦即,本發明之氮化鋁基板的製造方法具備:
(i)原料準備步驟,準備含氮化鋁粉末的原料;以及
(ii)燒結步驟,將前述原料在壓力150Pa以下加熱至1500℃,然後在非氧化性氣體中作為壓力0.4MPa以上的加壓氣體環境而昇溫至1700~1900℃並加以保持後,以10℃/分鐘以下的冷卻速度冷卻至1600℃。
(i)原料準備步驟:
除了氮化鋁粉末之外,還可適當使用燒結助劑、黏合劑、塑化劑、分散介質、脫模劑等的添加劑。氮化鋁粉末並無特別限定,可使用藉由將金屬鋁在氮氣環境下加以氮化的直接氮化法、將氧化鋁以碳還原的還原氮化法等周知的方法所製得的氮化鋁粉末,其中以高純度且微細粉末者為佳。具體而言,以雜質而言,較佳為使用氧含量為1.2質量%以下、碳含量為0.04質量%以下、Fe含量為30ppm以下、Si含量為60ppm以下者,又,更佳為使用最大粒徑為20μm以下者。在此,雖然氧基本上是雜質,但具有防止過度燒結的作用,因此,為了防止因過度燒結所致之燒結體的強度降低,宜使用氧含量為0.7質量%以上者。
燒結助劑並無特別限定,可使用稀土族金屬的化合物,鹼土族金屬的化合物,過渡金屬的化合物等。其中,以使用氧化釔、或併用氧化釔與氧化鋁為佳。此等燒結助劑會與氮化鋁粉末反應而形成複合氧化物的液相(例如2Y2O3-Al2O3、Y2O3-Al2O3、3Y2O3-5Al2O3等),此液相會促使燒結體高密度化,同時萃取氮化鋁結晶粒子中之雜質的氧等,使之偏析作為結晶界的氧化物相,藉此促使高導熱化。
在原料準備步驟(i)中,利用混合裝置將上述氮化鋁粉末與燒結助劑混合,於經混合的原料粉添加黏合劑等,然後藉由薄片成形(sheet form)等加以成形而獲得成形體,接著,將該成形體進一步脫脂而獲得脫脂體以作為燒結用原料。此處,氮化鋁粉末等的混合方法無特別限制,可使用例如球磨機、棒磨機、混合機等周知的混合裝置。黏合劑雖無特別限制,惟以使用具有可塑性或界面活性效果的甲基纖維素系、或熱分解性優良的丙烯酸酯系的黏合劑為佳。又,可依需要併用塑化劑、分散介質等。舉例來說,塑化劑可使用甘油等,分散介質可使用離子交換水或乙醇等。
成形薄片的脫脂方法無特別限制,但較佳為將成形薄片在空氣中或氮等的非氧化性氣體環境中加熱至300~700℃以去除黏合劑。脫脂時間必需依據成形薄片的尺寸、處理片數適當地決定,通常為1~10小時。
(ii)燒結步驟:
將在原料準備步驟(i)中獲得的原料(脫脂體)加以燒結而獲得氮化鋁燒結體。於該步驟中,首先,將燒結爐內的壓力設在150Pa以下,加熱至1500℃。藉此,去除脫脂體中的殘留碳,而獲得具有較佳的燒結體組織與導熱性的氮化鋁燒結體。在此,若爐內壓力超過150Pa,碳的去除會不充分,又,若加熱至超過1500℃,氮化鋁結晶粒子會局部地緻密化,碳的擴散路徑被封閉,故會導致碳的去除不充分。
其次,在非氧化性氣體環境中作為壓力0.4MPa以上的加壓氣體環境而昇溫至1700~1900℃並加以保持。藉此,可獲得熱導率高且絕緣特性提升的氮化鋁燒結體。在此,茲認為若在爐內壓力0.4MPa以上的加壓氣體環境中燒結,則已液相化的燒結助劑會變得難以揮發,可有效地抑制氮化鋁結晶粒子間的空隙產生,可提升氮化鋁基板的絕緣特性。又,倘若燒結溫度未滿1700℃,則氮化鋁結晶粒子的晶粒成長不會充分進行,所以會有無法獲得緻密的燒結體組織且氮化鋁基板的熱導率降低的情況。另一方面,一旦燒結溫度超過1900℃,氮化鋁結晶粒子的晶粒成長便會過度進行,會有氮化鋁結晶粒子間的空隙變大,絕緣特性降低的情況。
在此,非氧化性氣體環境意指不含氧等的氧化性氣體之惰性氣體環境或還原性氣體環境等。
其次,在加壓氣體環境下以10℃/分鐘以下的冷卻速度冷卻至1600℃。玆認為在冷卻初期的階段,於結晶界存在液相,於1600℃左右固化。以習知的製造方式進行之爐內冷卻的冷卻速度為15℃/分鐘以上,在如此般冷卻速度快速的情況,由於液相的固化急遽進行,故樹枝狀晶界相會在氮化鋁結晶粒子之兩晶粒的界面析出。然而,若以10℃/分鐘以下的冷卻速度冷卻,則晶界相會以埋住存在於氮化鋁結晶粒子間的空隙的方式析出,晶界相彼此無法產生連結,可抑制樹枝狀晶界相的析出。又,茲認為因可一邊緩和氮化鋁結晶粒子間的變形,一邊析出晶界相,故所獲得的氮化鋁基板在高溫下產生微小龜裂的情況會受到抑制,絕緣特性得以提升。在到達1600℃的緩慢冷卻結束後,可如習知般急速冷卻至室溫。
又,爐內的壓力係以設成0.4MPa以上為佳,若未滿0.4MPa,液相化的燒結助劑便會在析出作為晶界相之前揮發,使氮化鋁結晶粒子間產生空隙,因而導致氮化鋁基板的絕緣特性降低。此外,冷卻方法可藉由控制燒結爐的加熱器溫度來實施。
以下,以實施例更詳細地說明本發明,惟本發明的範圍未受此種實施例所限制。
[實施例]
<實施例1>
在97質量份的氮化鋁粉末中,添加3質量份的氧化釔粉末,在球磨機中混合1小時而獲得混合粉末。在100質量份的此混合粉末中,添加6質量份的纖維素醚系黏合劑、5質量份的甘油、10質量份的離子交換水,在亨舍爾混合機(Henschel mixer)中混合1分鐘,而獲得混合物。接著,將此混合物在單軸擠壓機中成形為厚度0.8mm的薄片狀,利用附設模具的沖壓機沖切成90mm×90mm的尺寸。在成形薄片塗布氮化硼粉作為脫模劑後,積層15片,在空氣中於570℃下加熱5小時並進行脫脂。然後,將脫脂體移置真空-加壓爐,以爐內壓力100Pa加熱至1500℃。接著,導入氮,作為爐內壓力0.6MPa的加壓氣體環境而升溫至1750℃,保持2小時之後,以1℃/分鐘的冷卻速度冷卻至1600℃,而獲得氮化鋁基板。針對所獲得的氮化鋁基板,評價氮化鋁結晶粒子的平均粒徑、樹枝狀晶界相的有無、晶界相的個數基準粒徑分布、熱導率、25℃及400℃下的絕緣破壞電壓。將結果顯示於表1。
<使用材料>
氮化鋁粉末:平均粒徑1.2μm,氧含量0.8質量%。
氧化釔粉末:信越化學工業公司製,商品名「Yttrium Oxide」
黏合劑:信越化學工業公司製,商品名「METOLOSE」
甘油:花王公司製,商品名「EXCEPARL」
氮化硼粉:電氣化學工業公司製,商品名「DENKA BORON NITRIDE MGP」
<評價方法>
氮化鋁結晶粒子的平均粒徑:透過掃描型電子顯微鏡將氮化鋁基板的破斷面放大為2000倍,測定50個氮化鋁結晶粒子的粒徑,算出平均值。
樹枝狀晶界相的有無:將1g的氮化鋁基板放入50ml的20%氫氧化鈉水溶液中,在130℃下保持12小時,靜置到氮化鋁結晶粒子溶解為止,然後藉由過濾、洗淨取出残留的晶界相,以掃描型電子顯微鏡進行觀察,以此方式來進行確認。
晶界相的個數基準粒徑分布:利用BUEHLER公司製「自動研磨裝置EKOMET3」研磨氮化鋁基板的破斷面,將該研磨面透過掃描型電子顯微鏡放大至500倍,觀察晶界相的分布狀態(觀察區域155μm×231μm)。第3圖係表示以掃描型電子顯微鏡觀察氮化鋁基板的鏡面研磨面的一例。所獲得的影像透過Media Cybernetics公司製「Image-Pro Plus 6.2J」進行影像解析處理,算出累積10%粒徑d10及累積50%粒徑d50。
熱導率:利用ULVAC理工公司製「雷射閃光(laser flash)法熱定數測定裝置TC-7000」進行測定。
25℃及400℃下的絕緣破壞電壓:可藉由在可加熱至400℃的加熱爐內設置電極,併設交流耐電壓測定裝置來測定。為了排除測定時之氣體環境的影響,將爐內的氣體環境設為氮氣環境0.3MPa來進行測定。在保持於既定溫度的加熱爐中,於氮化鋁基板的上下面配置球狀電極,依據JIS C2110,將電壓施加於試料,以測定絕緣破壞產生時的電壓。藉由將絕緣破壞產生時的電壓除以試料的厚度,可算出絕緣破壞電壓。
<實施例2、3>
除了將達1500℃的燒結氣體環境如表1所示般作變更之外,其餘部分係與實施例1同樣而獲得氮化鋁基板。將結果顯示於表1。
<實施例4、5>
除了將1500℃至燒結溫度的燒結氣體環境如表1所示般作變更之外,其餘部分係與實施例1同樣而獲得氮化鋁基板。將結果顯示於表1。
<實施例6、7>
除了將燒結氣體環境如表1所示般作變更之外,其餘部分係與實施例1同樣而獲得氮化鋁基板。將結果顯示於表1。
<實施例8、9>
除了將冷卻速度如表1所示般作變更之外,其餘部分係與實施例1同樣而獲得氮化鋁基板。將結果顯示於表1。
<比較例1>
除了將燒結氣體環境與冷卻速度如表1所示般作變更之外,其餘部分係與實施例1同樣而獲得氮化鋁基板。將結果顯示於表1。
<比較例2>
除了將達1500℃的燒結氣體環境如表1所示般作變更之外,其餘部分係與實施例1同樣而獲得氮化鋁基板。將結果顯示於表1。
<比較例3>
除了將1500℃至燒結溫度的燒結氣體環境如表1所示般作變更之外,其餘部分係與實施例1同樣而獲得氮化鋁基板。將結果顯示於表1。
<比較例4、5>
除了將燒結氣體環境如表1所示般作變更之外,其餘部分係與實施例1同樣而獲得氮化鋁基板。將結果顯示於表1。
<比較例6>
除了將冷卻速度如表1所示般作變更之外,其餘部分係與實施例1同樣而獲得氮化鋁基板。將結果顯示於表1。
[產業上利用之可能性]
根據本發明,可提供高溫下的絕緣特性優良,且適合作為電路基板用的氮化鋁基板及其製造方法。
第1圖係表示習知之氮化鋁基板之樹枝狀晶界相的一例之掃描型電子顯微鏡照片。
第2圖係表示本發明之氮化鋁基板之非樹枝狀晶界相的一例之掃描型電子顯微鏡照片。
第3圖係表示本發明之氮化鋁基板之鏡面研磨面的一例之掃描型電子顯微鏡照片。

Claims (4)

  1. 一種電路基板用氮化鋁基板,其在具有平均粒徑為2~5μm的氮化鋁結晶粒子且熱導率為170W/m‧K以上的電路基板用氮化鋁基板中,不含樹枝狀晶界相(grain boundary phase);晶界相為不連續地分散的非樹枝狀晶界相;且400℃下的絕緣破壞電壓為30kV/mm以上。
  2. 如申請專利範圍第1項之電路基板用氮化鋁基板,其中由氮化鋁基板的鏡面研磨面所測定之晶界相的個數基準粒徑分布中的累積10%粒徑d10為0.6μm以上,累積50%粒徑d50為1.6μm以下。
  3. 如申請專利範圍第1或2項之電路基板用氮化鋁基板,其係藉由將含氮化鋁粉末的原料在壓力150Pa以下加熱至1500℃,然後在非氧化性氣體中作為壓力0.4MPa以上0.8MPa以下的加壓氣體環境而昇溫至1700~1900℃並加以保持後,以10℃/分鐘以下的冷卻速度冷卻至1600℃來製造。
  4. 一種如申請專利範圍第1或2項之電路基板用氮化鋁基板的製造方法,其具有下述步驟:將含氮化鋁粉末的原料在壓力150Pa以下加熱至1500℃,然後在非氧化性氣體中作為壓力0.4MPa以上0.8MPa以下的加壓氣體環境而昇溫至1700~1900℃並加以保持後,以10℃/分鐘以下的冷卻速度冷卻至1600℃之步驟。
TW100119734A 2010-06-08 2011-06-07 電路基板用氮化鋁基板及其製造方法 TWI519503B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010130665 2010-06-08

Publications (2)

Publication Number Publication Date
TW201202170A TW201202170A (en) 2012-01-16
TWI519503B true TWI519503B (zh) 2016-02-01

Family

ID=45097927

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100119734A TWI519503B (zh) 2010-06-08 2011-06-07 電路基板用氮化鋁基板及其製造方法

Country Status (8)

Country Link
US (1) US9190189B2 (zh)
EP (1) EP2581357B1 (zh)
JP (1) JP5919190B2 (zh)
KR (1) KR101693071B1 (zh)
CN (1) CN102933520B (zh)
CA (1) CA2801857C (zh)
TW (1) TWI519503B (zh)
WO (1) WO2011155319A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105502313B (zh) * 2015-12-24 2018-06-05 上海欣鑫化工有限公司 一种利用双螺杆挤出机制备氮化镓纳米晶体的方法
EP3560905B1 (en) * 2016-12-21 2022-05-04 NGK Insulators, Ltd. Transparent aln sintered body and production method therefor
JP6496092B1 (ja) 2017-05-30 2019-04-03 京セラ株式会社 窒化アルミニウム質焼結体、および半導体保持装置
JP2020158375A (ja) * 2019-03-28 2020-10-01 京セラ株式会社 窒化アルミニウム基板、電子装置及び電子モジュール
JP7441070B2 (ja) * 2020-02-18 2024-02-29 京セラ株式会社 窒化アルミニウム基板、電子装置及び電子モジュール

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68926040T2 (de) * 1989-05-22 1996-10-02 Sumitomo Electric Industries Siliciumnitridsinterkörper hoher Festigkeit und Verfahren zu seiner Herstellung
JPH03197368A (ja) * 1989-12-26 1991-08-28 Nippon Light Metal Co Ltd 高熱伝導性点火プラグ用絶縁碍子およびその製造方法
US5760532A (en) * 1991-12-26 1998-06-02 Ngk Spark Plug Co., Ltd. Sintered ceramic body for a spark plug
JP3404813B2 (ja) 1992-09-04 2003-05-12 住友電気工業株式会社 窒化アルミニウム焼結体およびその製造方法
JP3633636B2 (ja) * 1993-02-05 2005-03-30 住友電気工業株式会社 窒化アルミニウム焼結体
JPH0797265A (ja) * 1993-09-27 1995-04-11 Denki Kagaku Kogyo Kk 窒化アルミニウム焼結体及びそれを用いた回路基板
US5409868A (en) * 1993-12-23 1995-04-25 Electrofuel Manufacturing Co. Ceramic articles made of compositions containing borides and nitrides
US6017485A (en) * 1996-03-28 2000-01-25 Carborundum Corporation Process for making a low electrical resistivity, high purity aluminum nitride electrostatic chuck
JP3670444B2 (ja) * 1997-06-06 2005-07-13 日本碍子株式会社 窒化アルミニウム基複合体、電子機能材料、静電チャックおよび窒化アルミニウム基複合体の製造方法
JP2004214690A (ja) * 2000-02-07 2004-07-29 Ibiden Co Ltd 半導体製造・検査装置用セラミック基板
JP4763929B2 (ja) * 2001-07-31 2011-08-31 電気化学工業株式会社 窒化アルミニウム焼結体、その製造方法及びその焼結体を用いた回路基板
JP2003070169A (ja) 2001-08-27 2003-03-07 Shin Kobe Electric Mach Co Ltd 自動車用鉛蓄電池の劣化判定方法
JP2003073169A (ja) * 2001-09-04 2003-03-12 Denki Kagaku Kogyo Kk 窒化アルミニウム焼結体、その製造方法及びその焼結体を用いた回路基板
JP4386695B2 (ja) 2002-11-14 2009-12-16 日本碍子株式会社 窒化アルミニウム焼結体の製造方法
JP4666960B2 (ja) 2004-06-28 2011-04-06 京セラ株式会社 静電チャック
WO2010109960A1 (ja) * 2009-03-26 2010-09-30 株式会社東芝 窒化アルミニウム基板、窒化アルミニウム回路基板、半導体装置および窒化アルミニウム基板の製造方法

Also Published As

Publication number Publication date
CA2801857C (en) 2018-01-23
CA2801857A1 (en) 2011-12-15
US9190189B2 (en) 2015-11-17
EP2581357A4 (en) 2014-03-05
CN102933520A (zh) 2013-02-13
EP2581357A1 (en) 2013-04-17
WO2011155319A1 (ja) 2011-12-15
JP5919190B2 (ja) 2016-05-18
KR101693071B1 (ko) 2017-01-04
KR20130087481A (ko) 2013-08-06
EP2581357B1 (en) 2018-02-21
US20130149530A1 (en) 2013-06-13
CN102933520B (zh) 2015-08-19
TW201202170A (en) 2012-01-16
JPWO2011155319A1 (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP6822362B2 (ja) 窒化珪素基板の製造方法、及び窒化珪素基板
JP5060092B2 (ja) 半導体装置用放熱板
TWI519503B (zh) 電路基板用氮化鋁基板及其製造方法
KR101751531B1 (ko) 질화 규소 기판 제조방법
JP4556162B2 (ja) 窒化珪素質焼結体及びその製造方法、並びにそれを用いた回路基板
JP4518020B2 (ja) 窒化ケイ素質焼結体およびそれを用いた回路基板。
JP3775335B2 (ja) 窒化ケイ素質焼結体および窒化ケイ素質焼結体の製造方法、並びにそれを用いた回路基板
JP6720053B2 (ja) 窒化ケイ素焼結体の製造方法
JP4615873B2 (ja) 窒化アルミニウム焼結体及びその製造方法
KR102139189B1 (ko) 180 W/mk 내지 230 W/mk의 열전도성을 갖는 질화알루미늄 기판의 제조방법
JP2002029850A (ja) 窒化ケイ素焼結体とその製造方法
JP4564257B2 (ja) 高熱伝導性窒化アルミニウム焼結体
JP7429825B2 (ja) 窒化アルミニウム焼結体、及びその製造方法、回路基板、並びに、積層基板
JP4142556B2 (ja) 窒化アルミニウム焼結体及びその製造方法、用途
JP2001019557A (ja) 窒化珪素焼結体とその製造方法、及び回路基板
JP4912530B2 (ja) 窒化アルミニウム焼結体及びその製造方法
JP2003020282A (ja) 窒化アルミニウム焼結体、その製造方法及び用途
JP2022094464A (ja) 窒化シリコン用グリーンシート、および、その製造方法
JP2008063154A (ja) 窒化アルミニウム焼結体