WO2010109960A1 - 窒化アルミニウム基板、窒化アルミニウム回路基板、半導体装置および窒化アルミニウム基板の製造方法 - Google Patents

窒化アルミニウム基板、窒化アルミニウム回路基板、半導体装置および窒化アルミニウム基板の製造方法 Download PDF

Info

Publication number
WO2010109960A1
WO2010109960A1 PCT/JP2010/051682 JP2010051682W WO2010109960A1 WO 2010109960 A1 WO2010109960 A1 WO 2010109960A1 JP 2010051682 W JP2010051682 W JP 2010051682W WO 2010109960 A1 WO2010109960 A1 WO 2010109960A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
crystal grains
nitride substrate
substrate
composite oxide
Prior art date
Application number
PCT/JP2010/051682
Other languages
English (en)
French (fr)
Inventor
山口 晴彦
福田 悦幸
Original Assignee
株式会社東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝マテリアル株式会社 filed Critical 株式会社東芝
Priority to JP2011505919A priority Critical patent/JP5667045B2/ja
Priority to US13/259,222 priority patent/US8791566B2/en
Publication of WO2010109960A1 publication Critical patent/WO2010109960A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/408Noble metals, e.g. palladium, platina or silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Definitions

  • the present invention relates to an aluminum nitride substrate, an aluminum nitride circuit substrate, and an aluminum nitride substrate manufacturing method, and more particularly, an aluminum nitride substrate, an aluminum nitride circuit substrate, and an aluminum nitride substrate that are excellent in insulation characteristics and heat dissipation and used for power transistors and the like. It relates to the manufacturing method. Further, the present invention relates to a semiconductor device using these.
  • Ceramic substrates mainly composed of aluminum nitride have excellent insulating properties and heat dissipation.
  • This ceramic substrate mainly composed of aluminum nitride forms a circuit board by bonding a metal conductor layer by an active metal method, a direct bonding method or the like.
  • This circuit board is used as a circuit board for a high power semiconductor such as a power transistor.
  • the power transistor forms a power transistor module (hereinafter also referred to as a module) by incorporating a plurality of power transistor chips (hereinafter also referred to as chips) in the same package.
  • Power transistors generate large amounts of heat because they are used with high power. In recent years, the power transistor tends to have a smaller chip size and a larger amount of heat generated per unit area due to the miniaturization of the module.
  • the entire module expands thermally.
  • the end of the module is fixed to a heat radiating fin or the like, a bending moment is generated in the entire module when the power transistor is used. For this reason, if the strength of the ceramic substrate used to insulate the chips is weak, there is a problem that the substrate is cracked and insulation failure occurs in the module.
  • lead-free solder is often used for soldering a chip or the like to a ceramic substrate in consideration of the environment. Since lead-free solder generally has a higher melting point than lead-containing solder, the use of lead-free solder increases the soldering temperature regardless of the reflow method or flow method.
  • soldering area between the base metal and the ceramic substrate is the largest in the module, when the reflow temperature is high, it is applied to the module due to the difference in linear expansion coefficient between the base metal and the ceramic substrate. The bending moment is also very large. For this reason, when the strength of the ceramic substrate is weak, the substrate may be cracked even when the module is assembled.
  • the ceramic substrate used in the power module is required to have high strength in addition to insulation and heat dissipation.
  • Patent Document 1 discloses an aluminum nitride substrate having high thermal conductivity and excellent heat dissipation.
  • Patent Document 2 discloses an aluminum nitride substrate having high heat dissipation characteristics and mechanical strength.
  • Patent Document 1 the strength of the aluminum nitride substrate disclosed in Patent Document 1 and Patent Document 2 was not sufficient.
  • Patent Document 1 although the thermal conductivity exceeds 200 W / m ⁇ K, its strength is low.
  • Patent Document 2 although the strength is excellent, it is necessary to adjust the amount of Si component.
  • the Si component segregates in the aluminum nitride substrate, it reacts with carbon in the substrate to form SiC having high conductivity, and there is a problem that the volume resistance value is locally reduced, that is, the conductivity is increased. If the insulation of the substrate is not sufficient, unnecessary conduction occurs between the circuits, resulting in malfunction of the semiconductor element.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an aluminum nitride substrate, an aluminum nitride circuit substrate, a semiconductor device, and a method for manufacturing an aluminum nitride substrate that are excellent in insulation characteristics and heat dissipation and have high strength.
  • the present invention controls the particle size of aluminum nitride crystal grains in the aluminum nitride substrate and controls the particle size and content of the composite oxide crystal grains derived from the sintering aid, etc. It has been completed by finding that it is possible to improve the folding strength.
  • An aluminum nitride substrate according to the present invention solves the above-mentioned problems, and is a composite oxide containing a plurality of aluminum nitride crystal grains and a rare earth element and aluminum that exist at the grain boundary of the aluminum nitride crystal grains.
  • An aluminum nitride substrate composed mainly of aluminum nitride, wherein the aluminum nitride crystal grains have a maximum grain size of 10 ⁇ m or less, and the composite oxide crystal grains have a maximum There are 40 or more of the composite oxide crystal grains of 1 ⁇ m or more in the field of view of 100 ⁇ m ⁇ 100 ⁇ m whose grain size is smaller than the maximum grain size of the aluminum nitride crystal grains and the surface of the aluminum nitride substrate is observed.
  • bending strength in the polished non state after up is not less than 400 MPa, the volume resistivity to, wherein a is 10 12 [Omega] m or more .
  • an aluminum nitride circuit board solves the above problems, and is characterized in that a conductor portion is provided on the surface of the aluminum nitride board.
  • the semiconductor device according to the present invention solves the above-mentioned problems, and is characterized in that a semiconductor element is mounted on the conductor portion of the aluminum nitride circuit board.
  • the method for producing an aluminum nitride substrate according to the present invention solves the above problems, and a first aluminum nitride molded body obtained by molding an aluminum nitride powder, a rare earth oxide powder and an organic binder, A degreasing step of obtaining a second aluminum nitride molded body by degreasing in the atmosphere, and a first sintering for obtaining a first sintered body by sintering the second aluminum nitride molded body in a vacuum at 1300 ° C. to 1500 ° C. And a second sintering step of sintering the first sintered body at 1750 ° C. to 1820 ° C. in an inert atmosphere to obtain an aluminum nitride substrate.
  • an aluminum nitride substrate having excellent insulation characteristics and heat dissipation and high strength can be obtained.
  • excellent strength can be obtained, so that the manufacturing cost can be reduced.
  • an aluminum nitride circuit board having excellent insulation characteristics and heat dissipation and high strength can be obtained.
  • a highly reliable semiconductor device can be provided.
  • FIG. 1 The SEM observation result of the torn surface of the aluminum nitride board
  • FIG. The SEM observation result of the surface of the aluminum nitride board
  • An aluminum nitride substrate according to the present invention is a composite material composed mainly of aluminum nitride, comprising a polycrystal having a plurality of aluminum nitride crystal grains and a composite oxide crystal grain containing a rare earth element and aluminum. It is.
  • the complex oxide crystal grains exist at the grain boundaries of the aluminum nitride crystal grains.
  • the aluminum nitride crystal grains have a maximum grain size of 10 ⁇ m or less, preferably 3 ⁇ m to 9 ⁇ m, more preferably 3 ⁇ m to 6 ⁇ m.
  • the maximum grain size of the aluminum nitride crystal grains is the maximum grain size of the aluminum nitride crystal grains in the aluminum nitride substrate.
  • the maximum grain size of the aluminum nitride crystal grains observed on the fracture surface of the aluminum nitride substrate Means.
  • the maximum grain size of the aluminum nitride crystal grains is obtained by taking an enlarged photograph of the fractured surface of the aluminum nitride substrate with a scanning electron microscope (SEM) and forming a rectangular measurement range of 50 ⁇ m ⁇ 50 ⁇ m on the fractured surface, It can be obtained by measuring the size of aluminum nitride crystal grains present in this measurement range.
  • the aluminum nitride crystal grains are substantially spherical, there is a line intercept method as a simple method, and the number of aluminum nitride crystal grains on a straight line 50 ⁇ m is determined by the formula (50 ⁇ m / number of aluminum nitride crystal grains). This operation can be performed three times or more to obtain an average particle size.
  • the maximum particle size of the aluminum nitride crystal grains exceeds 10 ⁇ m, the aluminum nitride crystal grains become a starting point of fracture, and the bending strength of the substrate may be lowered.
  • the aluminum nitride crystal grains are increased, the triple point is increased, which also causes a decrease in the contact strength.
  • the thermal conductivity may be less than 160 W / m ⁇ K.
  • the aluminum nitride crystal grains have an average particle diameter of preferably 2 ⁇ m to 6 ⁇ m.
  • the average grain size of the aluminum nitride crystal grains is the average grain size of the aluminum nitride crystal grains in the aluminum nitride substrate.
  • the average grain size of the aluminum nitride crystal grains observed on the fracture surface of the aluminum nitride substrate Means.
  • a specific method for measuring the average particle size of the aluminum nitride crystal grains can be obtained by a measurement method similar to the maximum particle size of the aluminum nitride crystal particles.
  • the thermal conductivity may be less than 160 W / m ⁇ K.
  • the average particle diameter of the aluminum nitride crystal grains exceeds 6 ⁇ m, the aluminum nitride crystal grains may become a starting point of destruction, and the bending strength of the substrate may be lowered.
  • the composite oxide crystal grains are crystal grains of a composite oxide containing a rare earth element and aluminum.
  • rare earth element that forms the composite oxide examples include at least one selected from Y and lanthanoids such as La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, and Yb.
  • Y reacts with aluminum to form YAG (yttrium, aluminum, garnet), and is preferable because it has high bonding strength with aluminum nitride crystal grains.
  • Each composite oxide crystal grain includes YAM (monoclinic structure, monoclinic structure: M 4 N 2 O 9 ) crystal grain, YAG (yttrium, aluminum, garnet structure: M 3 N 5 O 12 ) crystal grain. , And YAP (perovskite structure: M 1 N 1 O 3 ) crystal grains, and is not particularly limited.
  • the fact that the complex oxide crystal grains of the aluminum nitride substrate are YAM, YAG, or YAP crystal grains is determined, for example, by the crystal structure detected by the X-ray surface analysis method on the surface of the aluminum nitride substrate.
  • the complex oxide crystal grains in the aluminum nitride substrate are composed of at least one of YAM crystal grains, YAG crystal grains, and YAP crystal grains. Even if it is a phase, three phases of YAM, YAG, and YAP may be sufficient.
  • the maximum grain size of the composite oxide crystal grains is smaller than the maximum grain diameter of the aluminum nitride crystal grains.
  • the maximum particle diameter of the composite oxide crystal grains is the maximum particle diameter of the composite oxide crystal grains in the aluminum nitride substrate, for example, the composite oxide crystal grains observed on the fracture surface of the aluminum nitride substrate. It means the maximum particle size.
  • a specific method for measuring the maximum particle size of the complex oxide crystal grains can be obtained by a measurement method similar to the maximum particle size of the aluminum nitride crystal grains.
  • the composite oxide crystal grains may become a starting point of destruction, and the bending strength of the substrate may be lowered.
  • the aluminum nitride circuit board is bonded by joining the aluminum nitride substrate and the metal plate using an active brazing material.
  • the bonding strength of the aluminum nitride circuit board tends to be low. This is because the active metal and aluminum nitride are prevented from reacting to form an active metal nitride.
  • the maximum particle size of the complex oxide crystal grains is preferably 7 ⁇ m or less. Further, it is preferably 2 to 3 ⁇ m on average.
  • the bonding strength of the aluminum nitride circuit board tends to be low will be described below. That is, when an active metal brazing material is used to join an aluminum nitride substrate and a metal plate such as a copper plate, the interface between the aluminum nitride substrate and the active metal brazing material is mainly composed of aluminum nitride crystal grains on the surface of the aluminum nitride substrate. N is bonded to Ti, Hf, Zr, and the like in the active metal brazing material by reacting to form active metal nitride. For this reason, if complex oxide crystal grains that do not contribute to the reaction with Ti, Hf, Zr, etc.
  • the aluminum nitride crystal grains are formed on the surface of the aluminum nitride substrate. This is because N does not exist densely and the generation density of the active metal nitride is small, so that the bonding strength between the surface of the aluminum nitride substrate and the active metal brazing material layer tends to be low.
  • the bonding strength may be lowered for the same reason.
  • the composite oxide crystal grains have 40 or more, preferably 40 to 70, more preferably 45, composite oxide crystal grains having a size of 1 ⁇ m or more in a 100 ⁇ m ⁇ 100 ⁇ m field of view of the surface of the aluminum nitride substrate. There are 70 to 70 pieces.
  • Examples of the method for observing the surface of the aluminum nitride substrate include a method of observing with an SEM.
  • the composite oxide crystal grains do not sufficiently fix the aluminum nitride crystal grains to each other, and nitriding There exists a possibility that the bending strength of an aluminum substrate may become low. Moreover, it also causes the partial volume resistivity to decrease.
  • the thermal conductivity of the aluminum nitride substrate tends to be low.
  • the reason why the bonding strength of the aluminum nitride circuit board tends to be low is that when there are many composite oxide crystal grains that do not contribute to the reaction with Ti, Hf, Zr, etc. in the active metal brazing material on the surface of the aluminum nitride board, aluminum nitride This is because the crystal grain N does not exist densely and the generation density of the active metal nitride is reduced, so that the bonding strength between the aluminum nitride substrate surface and the active metal brazing material layer tends to be low.
  • the rare earth element content relative to the aluminum nitride substrate is usually 3% by mass to 6% by mass in terms of rare earth oxide.
  • the rare earth oxide equivalent refers to the mass of rare earth elements in the aluminum nitride substrate converted to rare earth oxides.
  • the oxide of the rare earth element is Y 2 O 3 .
  • the rare earth element content in the aluminum nitride substrate is less than 3% by mass in terms of rare earth oxide, the liquid phase component required for sintering is reduced, and the aluminum nitride crystal grains and composite oxide of the aluminum nitride substrate are reduced. There is a possibility that the crystal grains are difficult to be densified and the thermal conductivity of the aluminum nitride substrate is lowered.
  • the rare earth element content in the aluminum nitride substrate exceeds 6% by mass in terms of the rare earth oxide, densification is promoted and the sintered composite oxide has an excessively large particle size. Folding strength may be lowered.
  • the aluminum nitride substrate according to the present invention may contain Si as an impurity.
  • the content of Si in the aluminum nitride substrate is 50 ppm or less in terms of the mass of Si alone.
  • the aluminum nitride substrate according to the present invention is usually obtained through a sintering process such as a first sintering process and a second sintering process.
  • the aluminum nitride substrate according to the present invention usually has a surface roughness Ra of 3 ⁇ m to 5 ⁇ m in an unpolished state after baking in the second sintering step, which is the final sintering step.
  • the aluminum nitride substrate according to the present invention has a bending strength of 400 MPa or more, preferably 400 MPa to 500 MPa in an unpolished state after baking in the second sintering step.
  • the bending strength means a three-point bending strength.
  • the aluminum nitride substrate according to the present invention has a bending strength of 450 MPa or more, preferably 450 MPa to 550 MPa when the surface roughness Ra is polished to 1 ⁇ m or less in the polishing step after baking in the second sintering step.
  • it can be 500 MPa to 550 MPa.
  • the aluminum nitride substrate according to the present invention has a volume resistivity of 10 12 ⁇ m or more measured by the four-terminal method in the unpolished state after baking.
  • the upper limit of the volume resistivity is not particularly limited, but is preferably 10 15 ⁇ m or less.
  • the volume resistivity is measured by a four-terminal method according to JIS-C-2141.
  • the aluminum nitride substrate according to the present invention has a thermal conductivity of 160 W / m ⁇ K or more, preferably 160 W / m ⁇ K to 190 W / m ⁇ K, in an unpolished state after baking.
  • the thermal conductivity means the thermal conductivity measured by the laser flash method.
  • the aluminum nitride substrate according to the present invention Since the aluminum nitride substrate according to the present invention has small and few complex oxide crystal grains exposed on the surface, the active metal nitride between the active metal brazing material and N of the aluminum nitride crystal grains on the surface of the aluminum nitride substrate. The generation reaction occurs in a wide range, and the bonding strength between the aluminum nitride substrate and the active metal brazing material is high. For this reason, the aluminum nitride substrate according to the present invention can be firmly bonded to the metal plate through the active metal brazing material layer even in an unsintered state after sintering, and the surface polishing step can be omitted. An aluminum circuit board can be produced. Therefore, the aluminum nitride substrate according to the present invention is suitable as a raw material for producing the aluminum nitride circuit substrate according to the present invention.
  • the aluminum nitride substrate according to the present invention is efficiently manufactured, for example, by the following method for manufacturing an aluminum nitride substrate according to the present invention.
  • the method for manufacturing an aluminum nitride substrate according to the present invention includes a degreasing step, a first sintering step, and a second sintering step.
  • the degreasing step is a step of obtaining a second aluminum nitride molded body by degreasing the first aluminum nitride molded body obtained by molding the aluminum nitride powder, the rare earth oxide powder and the organic binder in the air.
  • the degreasing step includes a first aluminum nitride molded body production step of forming a first aluminum nitride molded body by molding an aluminum nitride powder, a rare earth oxide powder, and an organic binder, and the first aluminum nitride molded body in the atmosphere. And a second aluminum nitride molded body producing step of obtaining a second aluminum nitride molded body by degreasing.
  • the first aluminum nitride molded body production step is a step of molding the aluminum nitride powder, the rare earth oxide powder and the organic binder to obtain the first aluminum nitride molded body.
  • the aluminum nitride powder for example, the average particle diameter D 50 is usually 0.5 [mu] m ⁇ 2 [mu] m, preferably can be used in the 0.8 [mu] m ⁇ 1.5 [mu] m.
  • D 50 means a cumulative 50% particle size.
  • the aluminum nitride powder generates aluminum nitride crystal grains after the first and second sintering steps.
  • the rare earth oxide powder for example, an oxide powder of at least one rare earth element selected from Y and lanthanoids such as La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, and Yb is used.
  • the rare earth oxide powder include Y 2 O 3 powder.
  • the rare earth oxide powder When the rare earth oxide powder undergoes the first and second sintering steps, it reacts with the aluminum nitride powder to produce a composite oxide containing a rare earth element and aluminum.
  • the crystal grains of the composite oxide exist at the grain boundaries of the aluminum nitride crystal grains, and strongly adjoin the adjacent aluminum nitride crystal grains.
  • Y 2 O 3 powder is preferable because it reacts with aluminum to form yttrium aluminum oxide such as YAG and has high bonding strength with aluminum nitride crystal grains.
  • the average particle diameter D 50 is usually 0.8 [mu] m ⁇ 2 [mu] m, preferably can be used in the 1.0 .mu.m ⁇ 1.5 [mu] m.
  • organic binder examples include PVB (polyvinyl butyral).
  • the organic binder combines the aluminum nitride powder and the rare earth element oxide powder to produce the first aluminum nitride molded body.
  • the thickness of the green sheet can be reduced, and the degreasing in the green sheet can be sufficiently performed. Therefore, the amount of residual carbon in the obtained aluminum nitride substrate can be reduced.
  • the first aluminum nitride molded body can be obtained by cutting the sheet-shaped molded body as it is or, if necessary, by cutting it into a desired size.
  • the first aluminum nitride molded body may have a form other than a sheet form. Further, when the first aluminum nitride molded body is in the form of a sheet, the molding method is not limited to the doctor blade method as long as the method can form the sheet-like aluminum nitride molded body.
  • the first aluminum nitride molded body usually contains 3% by mass to 6% by mass of rare earth oxide powder with respect to the total amount of aluminum nitride powder and rare earth oxide powder.
  • the rare earth oxide powder is contained so as to have a content within this range, the bending strength of the resulting aluminum nitride substrate is increased.
  • the second aluminum nitride molded body manufacturing step is performed after the first aluminum nitride molded body manufacturing step.
  • the second aluminum nitride molded body production step is a step of obtaining the second aluminum nitride molded body by degreasing the first aluminum nitride molded body in the atmosphere.
  • the second aluminum nitride molded body is obtained by removing the organic binder from the first aluminum nitride molded body by degreasing.
  • the second aluminum nitride molded body is a molded body substantially free of carbon and made of aluminum nitride powder and rare earth oxide powder.
  • the first aluminum nitride molded body is degreased by heat treatment in the atmosphere.
  • the organic binder is efficiently lost, so that the obtained aluminum nitride substrate has a small amount of residual carbon, and various properties such as bending strength and volume resistivity are improved.
  • the heat treatment conditions for degreasing are usually 400 ° C to 600 ° C.
  • the heat treatment conditions for degreasing are 400 ° C. to 600 ° C.
  • the organic binder is efficiently lost. If the organic binder remains more than necessary, the amount of carbon in the molded body increases, which is not preferable.
  • the first sintering step is a step of obtaining the first sintered body by sintering the second aluminum nitride molded body in vacuum at 1300 ° C. to 1500 ° C.
  • the first sintered body is a polycrystalline body
  • the first sintered body is a polycrystalline body that is not densified as much as the second sintered body.
  • the vacuum in the first sintering step means a state in which an atmosphere such as air is normally 10 ⁇ 3 Pa or less, preferably 10 ⁇ 4 Pa or less.
  • the treatment temperature in the first sintering step is 1300 ° C to 1500 ° C.
  • the treatment temperature in the first sintering step is less than 1300 ° C., the aluminum nitride crystal grains and the composite oxide crystal grains are not sufficiently sintered, and the bending strength of the aluminum nitride substrate tends to be low.
  • the processing temperature of the first sintering step exceeds 1500 ° C., the growth of aluminum nitride crystal grains and composite oxide crystal grains is promoted too much, and the bending strength of the aluminum nitride substrate tends to be lowered.
  • the treatment time for the first sintering step is usually 2 to 5 hours.
  • the treatment time is less than 2 hours, sintering of the aluminum nitride crystal grains and composite oxide crystal grains becomes insufficient, and the bending strength of the aluminum nitride substrate tends to be low.
  • the second sintering step is a step of obtaining the aluminum nitride substrate by sintering the first sintered body at 1750 ° C. to 1820 ° C. in an inert atmosphere.
  • nitrogen gas for example, nitrogen gas or argon gas is used. Of these, nitrogen gas is preferable because it is inexpensive.
  • the inert atmosphere is usually 1 atm to 100 atm. When the pressure of the inert atmosphere exceeds 1 atm, the crystal structure of the aluminum nitride substrate becomes dense.
  • the treatment temperature in the second sintering step is 1750 ° C. to 1820 ° C.
  • the treatment temperature in the second sintering step is less than 1750 ° C., the aluminum nitride crystal grains and the complex oxide crystal grains are not sufficiently densified, and the bending strength of the aluminum nitride substrate tends to be low.
  • the processing temperature of the second sintering step exceeds 1820 ° C., the growth of aluminum nitride crystal grains and composite oxide crystal grains is promoted too much, and the bending strength of the aluminum nitride substrate tends to be lowered.
  • the treatment time for the second sintering step is usually 2 to 5 hours.
  • the treatment time is less than 2 hours, densification of aluminum nitride crystal grains and composite oxide crystal grains becomes insufficient, and the bending strength of the aluminum nitride substrate tends to be low.
  • the second sintering step may be performed after the temperature raising step for raising the temperature by continuously heating without cooling.
  • the temperature raising step is performed at a rate of temperature increase from the sintering temperature of the first sintering step to the sintering temperature of the second sintering step. It is preferably carried out at a temperature of not more than ° C / h, more preferably 30 to 80 ° C / h. If it exceeds 80 ° C./h, the rate of temperature rise is too fast and the composite oxide tends to grow. On the other hand, when the temperature is less than 30 ° C./h, there is no problem of grain growth.
  • the aluminum nitride substrate obtained through the second sintering step becomes the aluminum nitride substrate according to the present invention.
  • the obtained aluminum nitride substrate is provided with a plurality of aluminum nitride crystal grains and composite oxide crystal grains arranged in the grain boundary space of the aluminum nitride crystal grains and including a rare earth element and aluminum.
  • the relative density is a value obtained by (actual value / theoretical density) ⁇ 100 (%), the actual value is the Archimedes method, and the theoretical density is obtained by a simple method using a value obtained by converting the sintering aid component into an oxide. It's okay.
  • AlN aluminum nitride
  • Y 2 O 3 yttrium oxide
  • the thickness of the aluminum nitride substrate is not particularly limited, but is preferably 0.2 to 1 mm when used for a circuit board.
  • the method for manufacturing an aluminum nitride substrate according to the present invention may further include a polishing step if necessary.
  • the polishing step is a step of polishing the aluminum nitride substrate surface to a surface roughness Ra of 1 ⁇ m or less after the second sintering step.
  • the surface roughness Ra in an unpolished state after baking is usually 3 ⁇ m to 5 ⁇ m.
  • Examples of the polishing method for polishing the surface of the aluminum nitride substrate to a surface roughness Ra of 1 ⁇ m or less include buff polishing and lapping.
  • the aluminum nitride circuit board according to the present invention is obtained by providing a conductor portion on the surface of the aluminum nitride substrate according to the present invention.
  • the conductor part examples include a metal conductor such as copper and an active metal thin film made of one or more selected from Ti, Zr and Hf.
  • the aluminum nitride circuit board is obtained by, for example, joining a metal plate to the surface of the aluminum nitride substrate via an active metal brazing material layer and performing appropriate etching or the like on the metal plate. It can be produced by forming a conductor circuit.
  • the active metal brazing material layer is a layer made of active metal brazing material.
  • the active metal brazing material is a brazing material containing at least one of Ti, Hf, and Zr, and can braze ceramics and metal directly without performing metallization or surface treatment.
  • the active brazing material is bonded to the aluminum nitride substrate by reacting Ti, Hf, Zr, etc. in the brazing material with N of the aluminum nitride crystal grains on the surface of the aluminum nitride substrate to generate an active metal nitride. .
  • the active metal brazing material examples include Ag—Cu—Ti—In and Ag—Cu—Ti.
  • the specific composition includes, for example, 15 to 30% by mass of Cu, 0.5 to 5% by mass of an active metal composed of at least one of Ti, Hf, and Zr, with the balance being Ag. And 15 to 30% by mass of Cu, 0.5 to 5% by mass of an active metal composed of at least one of Ti, Hf and Zr, and 5 to 20% by mass of at least one of In, Sn and Zn. And a brazing material with the balance being Ag.
  • Examples of the metal plate include a copper plate.
  • the aluminum oxide substrate according to the present invention Since the aluminum oxide substrate according to the present invention has small and few complex oxide crystal grains exposed on the surface, a large amount of active metal nitride is generated at the interface between the aluminum nitride substrate and the active metal brazing material, and the aluminum nitride substrate and the active metal nitride are active. High bonding strength with metal brazing material. For this reason, the aluminum nitride substrate according to the present invention can be firmly bonded to the metal plate through the active brazing material layer even in the unsintered state after sintering, and the surface polishing step is omitted and the aluminum nitride substrate is omitted. A circuit board can be produced. Therefore, the manufacturing cost of the aluminum nitride circuit board according to the present invention can be greatly reduced as compared with the prior art.
  • the conductor part is an active metal thin film made of one or more selected from Ti, Zr, and Hf
  • the thin film conductor part made of the active metal thin film has a three-layer structure such as Ti / Pt / Au. It is done.
  • a semiconductor device has a semiconductor element mounted on a conductor portion of the aluminum nitride circuit board according to the present invention.
  • Examples of the method for mounting the semiconductor element on the conductor portion include a method for mounting the semiconductor element on a metal plate or thin film via a solder layer.
  • Examples of the semiconductor element include a power element such as an IGBT and a light emitting diode (LED). Further, if necessary, wiring connection can be made by wire bonding.
  • Example 1 (Preparation of aluminum nitride substrate) ⁇ Degreasing process> An AlN powder having an average particle diameter of 1.0 ⁇ m and a Y 2 O 3 powder having an average particle diameter of 1.2 ⁇ m are mixed in ethanol at a ratio shown in Table 1, and then PVB (polyvinyl butyral) is added to form a slurry.
  • the amount of AlN powder shown in Table 1 is the balance obtained by subtracting the amount of Y 2 O 3 powder from the total amount of 100% by mass of the AlN powder and Y 2 O 3 powder.
  • a green sheet was formed from this slurry by a doctor blade method. The obtained green sheet was cut to produce a sheet-shaped first molded body of 50 mm ⁇ 45 mm ⁇ thickness 1 mm.
  • the first molded body was degreased by heating at 450 ° C. for 4 hours in the atmosphere to obtain a second molded body.
  • ⁇ Second sintering step> The first sintered body was heated at 1750 ° C. for 4 hours in a 1 atm nitrogen gas atmosphere to obtain an aluminum nitride substrate. The thickness of the obtained substrate was 0.8 mm.
  • the fracture surface obtained by manually breaking the aluminum nitride substrate is taken with an SEM (scanning electron microscope) at a magnification of 2000 times, and on this photograph, a rectangular measurement range of 50 ⁇ m ⁇ 50 ⁇ m is formed on the fracture surface. Then, the particle sizes of the AlN crystal grains and the composite oxide crystal grains existing in this measurement range were measured, and the maximum value and the average value of the AlN crystal grains and the maximum diameter of the composite oxide crystal grains were calculated.
  • the number of complex oxide crystal grains having a grain size of 1 ⁇ m or more on the surface of the aluminum nitride substrate was determined.
  • the surface of the aluminum nitride substrate is taken with an SEM at a magnification of 1000 times, and a rectangular measurement range of 100 ⁇ m ⁇ 100 ⁇ m on the substrate surface is formed on the photograph, and a composite having a particle size of 1 ⁇ m or more existing in the measurement range The number of oxide crystal grains was determined.
  • the AlN crystal grains appear gray and the complex oxide crystal grains appear white, so the AlN crystal grains and the complex oxide crystal grains in the enlarged photograph are visible to the naked eye. Be identifiable.
  • FIG. 1 shows the SEM observation result of the fracture surface of the aluminum nitride substrate
  • FIG. 2 shows the SEM observation result of the surface of the aluminum nitride substrate.
  • the part that appears white is the complex oxide crystal grain
  • the part that appears black is the AlN crystal grain.
  • the relative density was determined by (actual measurement value / theoretical density) ⁇ 100 (%).
  • the actual measurement value was obtained by the Archimedes method, and the theoretical density was obtained by a simple method using a value obtained by converting the sintering aid component into an oxide.
  • the relative density was 99.7%.
  • the obtained aluminum nitride substrate was measured for three-point bending strength under the conditions of a span of 30 mm and a crosshead speed of 0.5 mm / min according to JIS-R1601, and this value was taken as the bending strength.
  • the bending strength was measured on an aluminum nitride substrate having a surface roughness Ra of 1 ⁇ m by buffing in addition to an aluminum nitride substrate that had been baked and not polished.
  • volume resistivity of the aluminum nitride substrate that was baked and not polished was measured by the four-terminal method according to JIS-C-2141.
  • the volume resistivity was in the range of 10 13 to 10 14 ⁇ m.
  • the average particle diameter of the composite oxide crystals of 1 ⁇ m or more was in the range of 2 to 3 ⁇ m.
  • Tables 1 to 3 show the manufacturing conditions and measurement results of the aluminum nitride substrate.
  • an active metal brazing material (Ag 60 mass% —Cu 24 mass% —Ti 2 mass% —In 14 mass%) is applied to both sides of the substrate, and the thickness is applied to the coated surface.
  • a 0.3 mm copper plate was joined to produce an aluminum nitride circuit board.
  • the bonding strength is a value measured by peeling a copper plate from an aluminum nitride substrate using a tensile tester.
  • Table 4 shows the bonding strength of the aluminum nitride circuit board.
  • Examples 2-5, Comparative Examples 1-2 An aluminum nitride substrate and an aluminum nitride circuit substrate were produced in the same manner as in Example 1 except that the manufacturing conditions were changed as shown in Tables 1 and 2.
  • the relative density of the aluminum nitride substrates according to Examples 2 to 5 was 99.3 to 99.8%.
  • Comparative Example 2 the AlN crystal grains were not densified, and an aluminum nitride substrate having sufficient strength could not be produced.
  • the obtained aluminum nitride substrate and aluminum nitride circuit substrate were evaluated in the same manner as in Example 1.
  • the surface roughness Ra of the baked surface of the obtained aluminum nitride substrate varied depending on the measurement location, and was in the range of 3 ⁇ m to 5 ⁇ m.
  • the volume resistivity was in the range of 10 13 to 10 14 ⁇ m.
  • the average particle diameter of the composite oxide crystals of 1 ⁇ m or more was in the range of 2 to 3 ⁇ m.
  • Tables 1 to 3 show the manufacturing conditions and measurement results of the aluminum nitride substrate.
  • Table 4 shows the bonding strength of the aluminum nitride circuit board.
  • Example 4 in addition to the case of using an aluminum nitride substrate that has not been polished and polished, the surface is polished to replace the aluminum nitride substrate that has not been polished and polished.
  • An aluminum nitride circuit board was also produced when using an aluminum nitride substrate with an Ra of 1 ⁇ m.
  • the obtained aluminum nitride circuit board was evaluated in the same manner as when an unpolished aluminum nitride board was used.
  • Table 4 shows the bonding strength of the aluminum nitride circuit board.
  • Example 4 data using the polished aluminum nitride substrate is shown in Table 4 as “Example 4 (Polished substrate)”.
  • Example 4 From the comparison between normal Example 4 using an unpolished aluminum nitride substrate and Example 4 (polishing substrate) using a polished aluminum nitride substrate in Table 4, the aluminum nitride substrate of Example 4 is It was found that there was no significant difference in the bonding strength of the aluminum nitride circuit board between the case where it was bonded to a copper plate without polishing and the case where it was bonded to a copper plate after polishing. In other words, it has been found that the aluminum nitride substrate according to the present example can be sufficiently applied to a circuit board even without polishing.
  • Example 6 An aluminum nitride substrate and an aluminum nitride circuit substrate were produced in the same manner as in Example 1 except that the production conditions were changed as shown in Table 5.
  • the obtained aluminum nitride substrate and aluminum nitride circuit substrate were evaluated in the same manner as in Example 1.
  • the relative density of the aluminum nitride substrates according to Examples 6 to 8 was 99.2 to 99.6%.
  • the surface roughness Ra of the baked surface of the obtained aluminum nitride substrate varied depending on the measurement location, and was in the range of 3 ⁇ m to 5 ⁇ m.
  • the volume resistivity was in the range of 10 13 to 10 14 ⁇ m.
  • the average particle diameter of the composite oxide crystals of 1 ⁇ m or more was in the range of 2 to 3 ⁇ m.
  • Tables 1, 5 and 6 show the manufacturing conditions and measurement results of the aluminum nitride substrate.
  • Table 7 shows the bonding strength of the aluminum nitride circuit board.
  • the AlN substrate according to this example (Examples 1 to 8) was found to have a bending strength of 400 MPa or more and a volume resistivity of 10 12 ⁇ m or more when not polished after baking.
  • the first sintering step and the second sintering step were continuously performed under the conditions shown in Table 8 to obtain an aluminum nitride substrate.
  • the thickness of the obtained substrate was 0.6 mm. Moreover, the same measurement as Example 1 was performed about the obtained aluminum nitride board
  • the bending strength was also measured for an aluminum nitride substrate having a surface roughness Ra of 1 ⁇ m or 0.5 ⁇ m by buffing in addition to an aluminum nitride substrate that had been baked and not polished.
  • the ones controlled at a predetermined temperature increase rate were able to obtain excellent adhesion strength even in the baked state.
  • the volume resistivity was in the range of 10 13 to 10 14 ⁇ m. Further, the average particle diameter of the composite oxide crystals of 1 ⁇ m or more was in the range of 2 to 3 ⁇ m.
  • the aluminum nitride circuit board according to the example obtained excellent bonding strength.
  • the AlN circuit board according to this example also has good bonding strength.
  • an aluminum nitride substrate having a thermal conductivity of 160 to 190 W / m ⁇ K can provide a circuit substrate that can provide excellent bonding strength even without polishing. Since the bonding strength is high, the reliability of a semiconductor device on which a semiconductor element is mounted can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Products (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 絶縁特性および放熱性に優れるとともに強度の高い窒化アルミニウム基板、窒化アルミニウム回路基板および窒化アルミニウム基板の製造方法を提供する。 本発明に係る窒化アルミニウム基板は、複数個の窒化アルミニウム結晶粒と、窒化アルミニウム結晶粒の粒界に存在し、希土類元素とアルミニウムとを含む複合酸化物結晶粒と、を備えた多結晶体からなり、窒化アルミニウムを主成分とする窒化アルミニウム基板であって、窒化アルミニウム結晶粒の最大粒径が10μm以下であり、複合酸化物結晶粒の最大粒径が窒化アルミニウム結晶粒の最大粒径よりも小さく、窒化アルミニウム基板を表面観察した100μm×100μmの視野中に、複合酸化物結晶粒の1μm以上のものが40個以上あり、焼き上がり後の研磨していない状態での抗折強度が400MPa以上であり、体積抵抗率が1012Ωm以上である。

Description

窒化アルミニウム基板、窒化アルミニウム回路基板、半導体装置および窒化アルミニウム基板の製造方法
 本発明は、窒化アルミニウム基板、窒化アルミニウム回路基板および窒化アルミニウム基板の製造方法に関し、詳しくは、絶縁特性と放熱性に優れ、パワートランジスタ等に用いられる窒化アルミニウム基板、窒化アルミニウム回路基板および窒化アルミニウム基板の製造方法に関する。また、これらを用いた半導体装置に関する。
 窒化アルミニウムを主成分とするセラミックス基板は絶縁特性と放熱性に優れる。この窒化アルミニウムを主成分とするセラミックス基板は、活性金属法、直接接合法等で金属の導体層が接合されて回路基板を形成する。この回路基板は、パワートランジスタ等の大電力半導体用の回路基板として用いられている。パワートランジスタは、同一パッケージ内にパワートランジスタチップ(以下、チップともいう)を複数個組み込むことによりパワートランジスタモジュール(以下、モジュールともいう)を形成する。
 パワートランジスタは大電力で使用されるためチップの発熱量が大きい。近年、このパワートランジスタはモジュールの小型化によりチップのサイズも小さくなり、単位面積当たりの発熱量がより大きくなる傾向にある。
 このようにチップが発熱するとモジュール全体が熱膨張する。このとき、モジュールは端部が放熱フィン等に固定されているため、パワートランジスタの使用時にモジュール全体に曲げモーメントが発生する。このため、チップ同士の絶縁に用いているセラミックス基板の強度が弱いと、基板の割れが発生しモジュールに絶縁不良が発生するという問題がある。
 また、昨今、セラミックス基板へのチップ等のはんだ付けには、環境への配慮から鉛フリーはんだが用いられることが多い。一般的に、鉛フリーはんだは鉛入りはんだに比べ融点が高いため、鉛フリーはんだを用いるとリフロー法、フロー法を問わずはんだ付けの温度が高くなる。
 さらに、モジュールのベース金属とセラミックス基板との間の接合に用いられるはんだにも鉛フリー化が必要とされている。このベース金属-セラミックス基板間のはんだ付けは、モジュール内でのはんだ付けの面積が一番大きいため、リフローの温度が高くなるとベース金属とセラミックス基板との線膨張係数の差によりモジュールに印加される曲げモーメントも非常に大きくなる。このため、セラミックス基板の強度が弱い場合には、モジュールの組み立て時にも基板の割れが発生する可能性がある。
 このように、パワーモジュールに用いられるセラミックス基板には、絶縁性、放熱性に加えて高強度も要求されている。
 これに対し、特開2007-63122号公報(特許文献1)には、熱伝導率が高く放熱性に優れた窒化アルミニウム基板が開示されている。また、特開2003-201179号公報(特許文献2)には、放熱特性および機械的強度が高い窒化アルミニウム基板が開示されている。
特開2007-63122号公報 特開2003-201179号公報
 しかし、特許文献1や特許文献2に開示された窒化アルミニウム基板では、強度が充分でなかった。例えば、特許文献1では熱伝導率が200W/m・Kを超えるもののその強度は低く、特許文献2では強度が優れるもののSi成分量の調整が必要であった。Si成分は、窒化アルミニウム基板中に偏析すると基板中の炭素と反応し導電性の高いSiCとなり、局所的に体積抵抗値を下げる、すなわち導電性を上げると言った問題があった。基板の絶縁性が十分でないと回路同士で不要な導通が生じて半導体素子の誤作動を招く。
 本発明は、上記事情に鑑みてなされたものであり、絶縁特性および放熱性に優れるとともに強度の高い窒化アルミニウム基板、窒化アルミニウム回路基板、半導体装置および窒化アルミニウム基板の製造方法を提供することを目的とする。
 本発明は、窒化アルミニウム基板中の窒化アルミニウム結晶粒の粒径を制御するとともに、焼結助剤に由来する複合酸化物結晶粒の粒径および含有量を制御する等により、窒化アルミニウム基板の抗折強度を向上させることが可能であることを見出して完成されたものである。
 本発明に係る窒化アルミニウム基板は、上記問題点を解決するものであり、複数個の窒化アルミニウム結晶粒と、この窒化アルミニウム結晶粒の粒界に存在し、希土類元素とアルミニウムとを含む複合酸化物結晶粒と、を備えた多結晶体からなり、窒化アルミニウムを主成分とする窒化アルミニウム基板であって、前記窒化アルミニウム結晶粒の最大粒径が10μm以下であり、前記複合酸化物結晶粒の最大粒径が前記窒化アルミニウム結晶粒の最大粒径よりも小さく、前記窒化アルミニウム基板を表面観察した100μm×100μmの視野中に、前記複合酸化物結晶粒の1μm以上のものが40個以上あり、焼き上がり後の研磨していない状態での抗折強度が400MPa以上であり、体積抵抗率が1012Ωm以上であることを特徴とする。
 また、本発明に係る窒化アルミニウム回路基板は、上記問題点を解決するものであり、上記窒化アルミニウム基板の表面に、導体部を設けたことを特徴とする。
 さらに、本発明に係る半導体装置は、上記問題点を解決するものであり、の窒化アルミニウム回路基板の導体部に半導体素子を搭載したことを特徴とする。
 また、本発明に係る窒化アルミニウム基板の製造方法は、上記問題点を解決するものであり、窒化アルミニウム粉末、希土類酸化物粉末および有機バインダーを成形して得られた第1窒化アルミニウム成形体を、大気中で脱脂して第2窒化アルミニウム成形体を得る脱脂工程と、前記第2窒化アルミニウム成形体を真空中、1300℃~1500℃で焼結させて第1焼結体を得る第1焼結工程と、前記第1焼結体を不活性雰囲気中、1750℃~1820℃で焼結させて窒化アルミニウム基板を得る第2焼結工程と、を備えることを特徴とする。
 本発明に係る窒化アルミニウム基板およびその製造方法によれば、絶縁特性および放熱性に優れるとともに強度の高い窒化アルミニウム基板が得られる。特に研磨レスであっても優れた強度が得られるので製造コストの低減が可能である。
 本発明に係る窒化アルミニウム回路基板によれば、絶縁特性および放熱性に優れるとともに強度の高い窒化アルミニウム回路基板が得られる。また、信頼性の高い半導体装置を提供することができる。
実施例1で得られた窒化アルミニウム基板の破断面のSEM観察結果。 実施例1で得られた窒化アルミニウム基板の表面のSEM観察結果。
[窒化アルミニウム基板]
 本発明に係る窒化アルミニウム基板は、複数個の窒化アルミニウム結晶粒と、希土類元素とアルミニウムとを含む複合酸化物結晶粒と、を備えた多結晶体からなる、窒化アルミニウムを主成分とする複合材料である。本発明に係る窒化アルミニウム基板において、複合酸化物結晶粒は、窒化アルミニウム結晶粒の粒界に存在する。
 窒化アルミニウム結晶粒は、最大粒径が10μm以下、好ましくは3μm~9μm、さらに好ましくは3μm~6μmである。
 ここで、窒化アルミニウム結晶粒の最大粒径とは、窒化アルミニウム基板中の窒化アルミニウム結晶粒の最大粒径であり、たとえば、窒化アルミニウム基板の破断面で観察される窒化アルミニウム結晶粒の最大粒径を意味する。窒化アルミニウム結晶粒の最大粒径は、具体的には、窒化アルミニウム基板の破断面をSEM(走査型電子顕微鏡)で拡大写真を撮り、破断面における50μm×50μmの矩形の測定範囲を形成し、この測定範囲内に存在する窒化アルミニウム結晶粒の大きさを測定する等により求められる。窒化アルミニウム結晶粒は略球形であるため簡易法として線インターセプト法があり、直線50μm上における窒化アルミニウム結晶粒の個数を図り(50μm/窒化アルミニウム結晶粒の個数)の式により求める。この作業を3回以上行い平均粒径とすることができる。
 窒化アルミニウム結晶粒の最大粒径が10μmを超えると、窒化アルミニウム結晶粒が破壊の起点となり、基板の抗折強度が低くなるおそれがある。また、窒化アルミニウム結晶粒が大きくなると、3重点が大きくなり、この点も抗接強度の低下を招く。
 また、窒化アルミニウム結晶粒の最大粒径が3μm未満であると、粒界相の存在比率が高まるため熱伝導率が160W/m・K未満になるおそれがある。
 窒化アルミニウム結晶粒は、平均粒径が、好ましくは2μm~6μmである。
 ここで、窒化アルミニウム結晶粒の平均粒径とは、窒化アルミニウム基板中の窒化アルミニウム結晶粒の平均粒径であり、たとえば、窒化アルミニウム基板の破断面で観察される窒化アルミニウム結晶粒の平均粒径を意味する。窒化アルミニウム結晶粒の平均粒径の具体的な測定方法は、窒化アルミニウム結晶粒の最大粒径と同様な測定方法で求めることができる。
 窒化アルミニウム結晶粒の平均粒径が3μm未満であると、粒界相の存在比率が高まるため熱伝導率が160W/m・K未満になるおそれがある。
 また、窒化アルミニウム結晶粒の平均粒径が6μmを超えると、窒化アルミニウム結晶粒が破壊の起点となり、基板の抗折強度が低くなるおそれがある。
 複合酸化物結晶粒は、希土類元素とアルミニウムとを含む複合酸化物の結晶粒である。
 複合酸化物を生成する希土類元素としては、たとえば、Y、およびLa、Ce、Pr、Nd、Sm、Gd、Dy、Ho、Er、Yb等のランタノイドから選択される少なくとも1種が挙げられる。希土類元素うち、Yは、アルミニウムと反応してYAG(イットリウム・アルミニウム・ガーネット)を形成し、窒化アルミニウム結晶粒との結合力が高いため好ましい。
 それぞれの複合酸化物結晶粒は、YAM(単斜型構造、モノクリニック構造:M)の結晶粒、YAG(イットリウム・アルミニウム・ガーネット構造:M12)の結晶粒、およびYAP(ペロブスカイト構造:M)の結晶粒のいずれかになっており、特に限定されない。
 ここで、窒化アルミニウム基板の複合酸化物結晶粒がYAM、YAGまたはYAPの結晶粒であることは、たとえば、窒化アルミニウム基板表面のX線表面分析法で検出される結晶構造により判断される。
 窒化アルミニウム基板中にある複合酸化物結晶粒は、YAMの結晶粒、YAGの結晶粒およびYAPの結晶粒の少なくとも1種で構成されており、いずれか1種の単相であっても、2相であっても、YAM、YAGおよびYAPの3相であってもよい。
 複合酸化物結晶粒は、最大粒径が、窒化アルミニウム結晶粒の最大粒径よりも小さい。
 ここで、複合酸化物結晶粒の最大粒径とは、窒化アルミニウム基板中の複合酸化物結晶粒の最大粒径であり、たとえば、窒化アルミニウム基板の破断面で観察される複合酸化物結晶粒の最大粒径を意味する。複合酸化物結晶粒の最大粒径の具体的な測定方法は、窒化アルミニウム結晶粒の最大粒径と同様な測定方法で求めることができる。
 複合酸化物結晶粒の最大粒径が窒化アルミニウム結晶粒の最大粒径以上の大きさであると、複合酸化物結晶粒が破壊の起点となり、基板の抗折強度が低くなるおそれがある。
 また、複合酸化物結晶粒の最大粒径が窒化アルミニウム結晶粒の最大粒径以上の大きさであると、活性ろう材を用いて窒化アルミニウム基板と金属板とを接合して窒化アルミニウム回路基板を作製したときに、窒化アルミニウム回路基板の接合強度が低くなりやすい。これは、活性金属と窒化アルミニウムが反応して活性金属窒化物を形成するのを阻害してしまうためである。なお、複合酸化物結晶粒の最大粒径は、好ましくは7μm以下である。また、平均で2~3μmであることが好ましい。
 窒化アルミニウム回路基板の接合強度が低くなりやすい詳細な理由を、以下に述べる。すなわち、活性金属ろう材を用いて窒化アルミニウム基板と銅板等の金属板とを接合する場合、窒化アルミニウム基板と活性金属ろう材との界面は、主に、窒化アルミニウム基板表面の窒化アルミニウム結晶粒のNと、活性金属ろう材中のTi、Hf、Zr等と、が反応して活性金属窒化物を生成することにより接着される。このため、窒化アルミニウム基板表面に、活性金属ろう材中のTi、Hf、Zr等との反応に寄与しない複合酸化物結晶粒が大きい粒径で存在すると、窒化アルミニウム基板表面に窒化アルミニウム結晶粒のNが密に存在せず、活性金属窒化物の生成密度が小さくなるため、窒化アルミニウム基板表面と活性金属ろう材層との接合強度が低くなりやすいからである。活性金属ろう材の代わりにTi、Hf、Zr等の活性金属の薄膜を用いる場合も同様の理由により接合強度が低下するおそれがある。
 複合酸化物結晶粒は、窒化アルミニウム基板を表面観察した100μm×100μmの視野中に、複合酸化物結晶粒の1μm以上のものが、40個以上、好ましくは40個~70個、より好ましくは45個~70個存在する。
 窒化アルミニウム基板の表面観察方法としては、たとえば、SEMで観察する方法が挙げられる。
 窒化アルミニウム基板の表面観察した視野中に存在する複合酸化物結晶粒の1μm以上のものの個数が40個未満であると、複合酸化物結晶粒が窒化アルミニウム結晶粒同士を十分に固着させず、窒化アルミニウム基板の抗折強度が低くなるおそれがある。また、部分的な体積抵抗率を低下させる原因にもなる。
 窒化アルミニウム基板の表面観察した視野中に存在する複合酸化物結晶粒の1μm以上のものの個数が70個を超えると、窒化アルミニウム基板の熱伝導率が低くなりやすい。
 また、複合酸化物結晶粒の1μm以上のものの個数が70個を超えると、活性金属ろう材を用いて窒化アルミニウム基板と金属板とを接合して窒化アルミニウム回路基板を作製したときに、窒化アルミニウム回路基板の接合強度が低くなりやすい。
 窒化アルミニウム回路基板の接合強度が低くなりやすい理由は、窒化アルミニウム基板表面に、活性金属ろう材中のTi、Hf、Zr等との反応に寄与しない複合酸化物結晶粒が多く存在すると、窒化アルミニウム結晶粒のNが密に存在せず、活性金属窒化物の生成密度が小さくなるため、窒化アルミニウム基板表面と活性金属ろう材層との接合強度が低くなりやすいからである。
 本発明に係る窒化アルミニウム基板は、窒化アルミニウム基板に対する希土類元素の含有量が、希土類酸化物換算量で、通常3質量%~6質量%である。
 ここで、希土類酸化物換算量とは、窒化アルミニウム基板中の希土類元素を、希土類元素の酸化物に換算した質量をいう。たとえば、窒化アルミニウム基板中の希土類元素がYの場合、希土類元素の酸化物はYである。
 窒化アルミニウム基板に対する希土類元素の含有量が希土類酸化物換算量で3質量%未満であると、焼結の際に必要な液相成分が少なくなり、窒化アルミニウム基板の窒化アルミニウム結晶粒および複合酸化物結晶粒の緻密化し難くなり、窒化アルミニウム基板の熱伝導率が低くなるおそれがある。
 窒化アルミニウム基板に対する希土類元素の含有量が希土類酸化物換算量で6質量%を超えると、緻密化が促進されて焼結後の複合酸化物の粒径が大きくなりすぎて、窒化アルミニウム基板の抗折強度が低くなるおそれがある。
 本発明に係る窒化アルミニウム基板は、不純物としてSiが含まれることがある。窒化アルミニウム基板中のSiの含有量は、Si単体の質量換算で50ppm以下である。
 本発明に係る窒化アルミニウム基板は、通常、第1焼結工程および第2焼結工程等の焼結工程を経て得られる。
 本発明に係る窒化アルミニウム基板は、最後の焼結工程である第2焼結工程での焼き上がり後の研磨していない状態での表面粗さRaが通常3μm~5μmになる。
 本発明に係る窒化アルミニウム基板は、第2焼結工程での焼き上がり後、研磨していない状態での抗折強度が400MPa以上、好ましくは400MPa~500MPaになる。ここで抗折強度とは、3点曲げ強度を意味する。
 なお、本発明に係る窒化アルミニウム基板は、第2焼結工程での焼き上がり後、研磨工程で表面粗さRaを1μm以下まで研磨すると、抗折強度を450MPa以上、好ましくは450MPa~550MPa、より好ましくは500MPa~550MPaにすることができる。
 本発明に係る窒化アルミニウム基板は、焼き上がり後の研磨していない状態での四端子法で測定した体積抵抗率が1012Ωm以上になる。なお、体積抵抗率の上限は特に限定されるものではないが、1015Ωm以下が好ましい。また、体積抵抗率の測定はJIS-C-2141に準じて四端子法で行う。
 本発明に係る窒化アルミニウム基板は、焼き上がり後の研磨していない状態での熱伝導率が、通常160W/m・K以上、好ましくは160W/m・K~190W/m・Kになる。
 ここで熱伝導率とは、レーザフラッシュ法で測定した熱伝導率を意味する。
 本発明に係る窒化アルミニウム基板は、表面に露出した複合酸化物結晶粒が小さくかつ少ないため、窒化アルミニウム基板表面の窒化アルミニウム結晶粒のNと、活性金属ろう材との間の活性金属窒化物の生成反応が広い範囲で生じ、窒化アルミニウム基板と活性金属ろう材との接合強度が高い。このため、本発明に係る窒化アルミニウム基板は、焼結上がりの研磨していない状態でも活性金属ろう材層を介して金属板と強固に結合することができ、表面の研磨工程を省略して窒化アルミニウム回路基板を作製することができる。したがって、本発明に係る窒化アルミニウム基板は、本発明に係る窒化アルミニウム回路基板の製造原料として好適である。
 本発明に係る窒化アルミニウム基板は、たとえば、以下の本発明に係る窒化アルミニウム基板の製造方法により効率よく製造される。
[窒化アルミニウム基板の製造方法]
 本発明に係る窒化アルミニウム基板の製造方法は、脱脂工程と、第1焼結工程と、第2焼結工程と、を備える。
(脱脂工程)
 脱脂工程は、窒化アルミニウム粉末、希土類酸化物粉末および有機バインダーを成形して得られた第1窒化アルミニウム成形体を、大気中で脱脂して第2窒化アルミニウム成形体を得る工程である。
 詳細には、脱脂工程は、窒化アルミニウム粉末、希土類酸化物粉末および有機バインダーを成形して第1窒化アルミニウム成形体を得る第1窒化アルミニウム成形体作製工程と、第1窒化アルミニウム成形体を大気中で脱脂して第2窒化アルミニウム成形体を得る第2窒化アルミニウム成形体作製工程とを有する。
<第1窒化アルミニウム成形体作製工程>
 脱脂工程では、はじめに、第1窒化アルミニウム成形体作製工程を行う。
 第1窒化アルミニウム成形体作製工程は、窒化アルミニウム粉末、希土類酸化物粉末および有機バインダーを成形して、第1窒化アルミニウム成形体を得る工程である。
 窒化アルミニウム粉末としては、たとえば、平均粒径D50が、通常0.5μm~2μm、好ましくは0.8μm~1.5μmのものを用いることができる。ここでD50とは、累積50%粒径を意味する。窒化アルミニウム粉末は、第1および第2の焼結工程を経ると、窒化アルミニウム結晶粒を生成する。
 希土類酸化物粉末としては、たとえば、Y、およびLa、Ce、Pr、Nd、Sm、Gd、Dy、Ho、Er、Yb等のランタノイドから選択される少なくとも1種の希土類元素の酸化物の粉末が用いられる。具体的には、希土類酸化物粉末として、たとえばY粉末が挙げられる。
 希土類酸化物粉末は、第1および第2の焼結工程を経ると、窒化アルミニウム粉末と反応し、希土類元素とアルミニウムとを含む複合酸化物を生成する。複合酸化物の結晶粒は、窒化アルミニウム結晶粒の粒界に存在し、隣接する窒化アルミニウム結晶粒同士を強く固着する。
 希土類元素酸化物粉末のうち、Y粉末は、アルミニウムと反応してYAG等のイットリウムアルミニウム酸化物を形成し、窒化アルミニウム結晶粒との結合力が高いため好ましい。
 希土類元素酸化物粉末としては、たとえば、平均粒径D50が、通常0.8μm~2μm、好ましくは1.0μm~1.5μmのものを用いることができる。
 有機バインダーとしては、たとえば、PVB(ポリビニルブチラール)が挙げられる。有機バインダーは、窒化アルミニウム粉末および希土類元素酸化物粉末を結合させて、第1窒化アルミニウム成形体を作製するものである。
 上記の窒化アルミニウム粉末、希土類元素酸化物粉末および有機バインダーは、たとえばエタノール、トルエン、ケトン等の有機溶媒中で混合されるとスラリーを作製する。このスラリーから有機溶媒を除去すると、窒化アルミニウム粉末および希土類元素酸化物粉末が有機バインダーで固着された成形体が得られる。たとえば、スラリーについてドクターブレード法を用いて成形し有機溶媒を除去すると、シート状の成形体(グリーンシート)が得られる。
 ドクターブレード法を用いると、グリーンシートの厚さを薄くすることができ、グリーンシート内の脱脂が十分に行われやすくなるため、得られる窒化アルミニウム基板中の残炭量を少なくすることができる。
 このシート状の成形体は、このままで、または必要により所望の大きさに切断することにより、第1窒化アルミニウム成形体が得られる。
 なお、第1窒化アルミニウム成形体は、シート状以外の形態であってもよい。また、第1窒化アルミニウム成形体がシート状である場合、成形方法はシート状の窒化アルミニウム成形体を成形可能な方法であればよく、ドクターブレード法に限られない。
 第1窒化アルミニウム成形体は、窒化アルミニウム粉末と希土類酸化物粉末との合計量に対し希土類酸化物粉末を、通常3質量%~6質量%含む。希土類酸化物粉末をこの範囲内の含有量になるように含むと、得られる窒化アルミニウム基板の抗折強度が高くなる。
<第2窒化アルミニウム成形体作製工程>
 脱脂工程では、第1窒化アルミニウム成形体作製工程の次に、第2窒化アルミニウム成形体作製工程を行う。
 第2窒化アルミニウム成形体作製工程は、第1窒化アルミニウム成形体を、大気中で脱脂して第2窒化アルミニウム成形体を得る工程である。
 第2窒化アルミニウム成形体は、脱脂により第1窒化アルミニウム成形体から有機バインダーを除去することにより得られる。第2窒化アルミニウム成形体は、実質的に炭素を含まず、窒化アルミニウム粉末および希土類酸化物粉末からなる成形体である。
 第1窒化アルミニウム成形体の脱脂は、大気中で熱処理することにより行われる。熱処理を大気中で行うことにより、有機バインダーが効率よく消失するため、得られる窒化アルミニウム基板は残炭素が少なくなり、抗折強度や体積抵抗率等の諸特性が高くなる。
 脱脂の熱処理条件は、通常400℃~600℃である。脱脂の熱処理条件が400℃~600℃であると、有機バインダーが効率よく消失する。有機バインダーが必要以上に残存すると成形体中の炭素量が多くなるため好ましくない。
(第1焼結工程)
 第1焼結工程は、第2窒化アルミニウム成形体を真空中、1300℃~1500℃で焼結させて第1焼結体を得る工程である。
 第2窒化アルミニウム成形体を焼結させることにより、窒化アルミニウム結晶粒と、この窒化アルミニウム結晶粒の粒界に存在し、希土類元素とアルミニウムとを含む複合酸化物結晶粒と、を備えた多結晶体である第1焼結体が得られる。
 ただし、第1焼結体は、多結晶体にはなっているものの、通常、窒化アルミニウム結晶粒間や、窒化アルミニウム結晶粒と複合酸化物結晶粒との間等に空隙が存在する。このため、第1焼結体は、第2焼結体ほどには緻密化されていない多結晶体になっている。
 第1焼結工程において真空とは、大気等の雰囲気を、通常10-3Pa以下、好ましくは10-4Pa以下にした状態を意味する。
 真空中で焼結させることにより、焼結の際に、有機バインダー等の炭素含有成分が除去され、窒化アルミニウム結晶粒や複合酸化物結晶粒中の残炭量を少なくすることができる。
 第1焼結工程の処理温度は1300℃~1500℃である。
 第1焼結工程の処理温度が1300℃未満であると、窒化アルミニウム結晶粒や複合酸化物結晶粒の焼結が不十分になり、窒化アルミニウム基板の抗折強度が低くなりやすい。
 第1焼結工程の処理温度が1500℃を超えると、窒化アルミニウム結晶粒や複合酸化物結晶粒の粒成長が促進されすぎて、窒化アルミニウム基板の抗折強度が低くなりやすい。
 第1焼結工程の処理時間は、通常2時間~5時間である。
 処理時間が2時間未満であると、窒化アルミニウム結晶粒や複合酸化物結晶粒の焼結が不十分になり、窒化アルミニウム基板の抗折強度が低くなりやすい。
 処理時間が5時間を超えると、窒化アルミニウム結晶粒や複合酸化物結晶粒の粒成長が促進されすぎて、窒化アルミニウム基板の抗折強度が低くなりやすい。
(第2焼結工程)
 第2焼結工程は、第1焼結体を不活性雰囲気中、1750℃~1820℃で焼結させて窒化アルミニウム基板を得る工程である。
 第1焼結体を焼結させることにより、窒化アルミニウム結晶粒および複合酸化物結晶粒が成長して緻密化し、窒化アルミニウム基板が得られる。
 不活性雰囲気としては、たとえば、窒素ガス、アルゴンガスが用いられる。このうち、窒素ガスは、安価であるため好ましい。
 不活性雰囲気は、通常1atm~100atmにする。不活性雰囲気の圧力を1atmを超えるようにすると、窒化アルミニウム基板の結晶組織が緻密になる。
 第2焼結工程を不活性雰囲気中で行うことにより、窒化アルミニウム基板から適度な量の脱酸素が行われ、窒化アルミニウム結晶粒および複合酸化物結晶粒が成長して緻密化する。
 第2焼結工程の処理温度は1750℃~1820℃である。
 第2焼結工程の処理温度が1750℃未満であると、窒化アルミニウム結晶粒や複合酸化物結晶粒の緻密化が不十分になり、窒化アルミニウム基板の抗折強度が低くなりやすい。
 第2焼結工程の処理温度が1820℃を超えると、窒化アルミニウム結晶粒や複合酸化物結晶粒の粒成長が促進されすぎて、窒化アルミニウム基板の抗折強度が低くなりやすい。
 第2焼結工程の処理時間は、通常2時間~5時間である。
 処理時間が2時間未満であると、窒化アルミニウム結晶粒や複合酸化物結晶粒の緻密化が不十分になり、窒化アルミニウム基板の抗折強度が低くなりやすい。
 処理時間が5時間を超えると、窒化アルミニウム結晶粒や複合酸化物結晶粒の粒成長が促進されすぎて、窒化アルミニウム基板の抗折強度が低くなりやすい。
 第1焼結工程から第2焼結工程への移行の際は、第1焼結工程終了後、一旦常温まで冷却する冷却工程を行ってから第2焼結工程を行うようにしてもよいし、第1焼結工程終了後、冷却せずに連続して加熱することにより、昇温させる昇温工程を行ってから第2焼結工程を行うようにしてもよい。第1焼結工程から連続して第2焼結工程を行うときは、昇温工程は、第1焼結工程の焼結温度から第2焼結工程の焼結温度までの昇温度速を80℃/h以下、さらには30~80℃/hで行うことが好ましい。80℃/hを超えると昇温速度が速すぎて複合酸化物が粒成長し易い。一方、30℃/h未満の場合、粒成長の問題はないが、製造時間がかかり過ぎるので製造性の観点から好ましくない。
 第2焼結工程を経て得られた窒化アルミニウム基板は、本発明に係る窒化アルミニウム基板になる。
 すなわち、得られた窒化アルミニウム基板は、複数個の窒化アルミニウム結晶粒と、この窒化アルミニウム結晶粒の粒界の空間に配置され、希土類元素とアルミニウムとを含む複合酸化物結晶粒と、を備えた多結晶体からなる窒化アルミニウム基板であって、複合酸化物結晶粒の最大粒径が前記窒化アルミニウム結晶粒の最大粒径よりも小さく、窒化アルミニウム基板を表面観察した100μm×100μmの視野中に、複合酸化物結晶粒の1μm以上のものが40個以上あるものになる。
 これにより、相対密度99%以上の高密度窒化アルミニウム焼結体が得られる。なお、相対密度は(実測値/理論密度)×100(%)により求められる値であり、実測値はアルキメデス法、理論密度は焼結助剤成分を酸化物換算した値を使う簡易法で求めてよい。例えば、Y換算で4質量%のY、残部窒化アルミニウムの窒化アルミニウム焼結体の場合、(0.96×3.3g/cm+0.04×5.03g/cm)=3.37g/cmが理論密度となる。なお、窒化アルミニウム(AlN)の理論密度3.3g/cm、酸化イットリウム(Y)の理論密度5.03g/cmは、それぞれ「岩波 理化学辞典 第5版」から引用した。
 また、窒化アルミニウム基板の厚さは特に限定されるものではないが、回路基板に用いる場合は0.2~1mmが好ましい。
 本発明に係る窒化アルミニウム基板の製造方法は、必要により研磨工程をさらに備えていてもよい。
(研磨工程)
 研磨工程は、第2焼結工程後に窒化アルミニウム基板表面を表面粗さRa1μm以下まで研磨する工程である。
 本発明に係る窒化アルミニウム基板は、焼き上がり後の研磨していない状態での表面粗さRaが通常3μm~5μmになる。
 本工程で窒化アルミニウム基板の表面を表面粗さRa1μm以下まで研磨すると、窒化アルミニウム基板の3点曲げ強度が高くなる。
 窒化アルミニウム基板の表面を表面粗さRa1μm以下まで研磨する研磨方法としては、たとえばバフ研磨やラップ研磨が挙げられる。
[窒化アルミニウム回路基板]
 本発明に係る窒化アルミニウム回路基板は、上記の本発明に係る窒化アルミニウム基板の表面に、導体部を設けたものである。
 導体部としては、たとえば、銅等の金属導体や、Ti、ZrおよびHfより選ばれる1種以上からなる活性金属薄膜が挙げられる。
 導体部が銅等の金属導体である場合、窒化アルミニウム回路基板は、たとえば、窒化アルミニウム基板の表面に、活性金属ろう材層を介して金属板を接合し、金属板に適宜エッチング等を行って導体回路を形成することにより、作製することができる。
 活性金属ろう材層とは、活性金属ろう材からなる層である。活性金属ろう材とは、Ti、Hf、Zrの少なくとも1種を含有したろう材であり、メタライズ処理や表面処理を行わずにセラミックスと金属とを直接にろう付けすることができるろう材である。活性ろう材は、ろう材中のTi、Hf、Zr等と、窒化アルミニウム基板表面の窒化アルミニウム結晶粒のNと、が反応し、活性金属窒化物を生成することにより窒化アルミニウム基板と接着される。
 活性金属ろう材としては、たとえば、Ag-Cu-Ti-In、Ag-Cu-Tiが挙げられる。具体的な組成としては、たとえば、Cuを15~30質量%と、Ti、HfおよびZrの少なくとも1種からなる活性金属を0.5~5質量%とを含み、残部がAgであるろう材や、Cuを15~30質量%と、Ti、HfおよびZrの少なくとも1種からなる活性金属を0.5~5質量%と、In、SnおよびZnの少なくとも1種を5~20質量%とを含み、残部がAgであるろう材が挙げられる。
 金属板としては、たとえば、銅板が挙げられる。
 本発明に係る窒化アルミニウム基板は、表面に露出した複合酸化物結晶粒が小さくかつ少ないため、窒化アルミニウム基板と活性金属ろう材との界面に活性金属窒化物が多く生成し、窒化アルミニウム基板と活性金属ろう材との接合強度が高い。このため、本発明に係る窒化アルミニウム基板は、焼結上がりの研磨していない状態でも活性ろう材層を介して金属板と強固に結合することができ、表面の研磨工程を省略して窒化アルミニウム回路基板を作製することができる。したがって、本発明に係る窒化アルミニウム回路基板は、従来より製造コストを大幅に低下させることができる。
 また、導体部がTi、ZrおよびHfより選ばれる1種以上からなる活性金属薄膜である場合、活性金属薄膜からなる薄膜導体部としてはTi/Pt/Au等の3層構造としたものが挙げられる。
[半導体装置]
 本発明に係る半導体装置は、上記の本発明に係る窒化アルミニウム回路基板の導体部に半導体素子を搭載したものである。
 導体部への半導体素子の搭載方法としては、たとえば、金属板または薄膜上に半田層を介して半導体素子を搭載する方法が挙げられる。この半導体素子としてはIGBT等のパワー素子や発光ダイオード(LED)等が挙げられる。また、必要に応じ、ワイヤーボンディングにより配線接続することができる。
 以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。
[実施例1]
(窒化アルミニウム基板の作製)
<脱脂工程>
 平均粒径1.0μmのAlN粉末と平均粒径1.2μmのY粉末とを、表1に示す割合でエタノール中に投入して混合し、さらにPVB(ポリビニルブチラール)を加えてスラリーを調製した。表1に示すAlN粉末の量は、AlN粉末とY粉末との合計量100質量%からY粉末量を差し引いた残部である。次に、このスラリーから、ドクターブレード法によりグリーンシートを成形した。得られたグリーンシートを切断して50mm×45mm×厚さ1mmのシート状の第1成形体を作製した。
 第1成形体を大気中、450℃で4時間加熱して脱脂し、第2成形体を得た。
<第1焼結工程>
 第2成形体を、10-4Pa以下にした真空中、1400℃で4時間加熱し、第1焼結体を得た。
<第2焼結工程>
 第1焼結体を、1atmの窒素ガス雰囲気中、1750℃で4時間加熱し、窒化アルミニウム基板を得た。得られた基板の厚さは0.8mmであった。
(窒化アルミニウム基板の評価)
<表面粗さRa>
 得られた窒化アルミニウム基板について、焼き上がり面の表面粗さRaを測定したところ、測定場所によりばらつきがあり、3μm~5μmの範囲内であった。
<AlN結晶粒の最大径および平均粒径、複合酸化物結晶粒の最大径>
 得られた窒化アルミニウム基板について、窒化アルミニウム基板内部のAlN結晶粒の最大径および平均粒径を求めた。窒化アルミニウム基板を人力で破断して得られた破断面についてSEM(走査型電子顕微鏡)で倍率2000倍の拡大写真を撮り、この写真上に、破断面における50μm×50μmの矩形の測定範囲を形成し、この測定範囲内に存在するAlN結晶粒および複合酸化物結晶粒の粒径を測定し、AlN結晶粒の最大値および平均値、ならびに複合酸化物結晶粒の最大径を算出した。
<粒径1μm以上の複合酸化物結晶粒の個数>
 得られた窒化アルミニウム基板について、窒化アルミニウム基板の表面における、粒径1μm以上の複合酸化物結晶粒の個数を求めた。窒化アルミニウム基板の表面についてSEMで倍率1000倍の拡大写真を撮り、この写真上に、基板表面における100μm×100μmの矩形の測定範囲を形成し、この測定範囲内に存在する粒径1μm以上の複合酸化物結晶粒の個数を求めた。
 なお、窒化アルミニウム基板の破断面および表面の拡大写真において、AlN結晶粒は灰色に、複合酸化物結晶粒は白色にそれぞれ写るので、拡大写真におけるAlN結晶粒と複合酸化物結晶粒とは肉眼で識別可能である。
 図1に窒化アルミニウム基板の破断面のSEM観察結果、図2に窒化アルミニウム基板の表面のSEM観察結果をそれぞれ示す。図1および図2中、白く映っている部分が複合酸化物結晶粒であり、黒く映っている部分がAlN結晶粒である。
<相対密度>
 窒化アルミニウム基板につき、(実測値/理論密度)×100(%)により相対密度を求めた。実測値はアルキメデス法により、理論密度は焼結助剤成分を酸化物換算した値を使う簡易法により求めた。相対密度は99.7%であった。
<抗折強度>
 得られた窒化アルミニウム基板について、JIS-R-1601に準じてスパン30mm、クロスヘッドスピード0.5mm/minの条件で3点曲げ強度を測定し、この値を抗折強度とした。
 抗折強度は、焼き上がりのままで研磨していない窒化アルミニウム基板に加え、バフ研磨により表面粗さRaを1μmにした窒化アルミニウム基板についても測定した。
<体積抵抗率>
 焼き上がりのままで研磨していない窒化アルミニウム基板について、JIS-C-2141に準じて四端子法で体積抵抗率を測定した。体積抵抗率は1013~1014Ωmの範囲内であった。さらに、1μm以上の複合酸化物結晶の平均粒径は、いずれも2~3μmの範囲内であった。
 表1~表3に、窒化アルミニウム基板の製造条件および測定結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(窒化アルミニウム回路基板の作製)
 焼き上がりのままで研磨していない窒化アルミニウム基板を用い、この基板の両面に活性金属ろう材(Ag60質量%-Cu24質量%-Ti2質量%-In14質量%)を塗布し、塗布面に厚さ0.3mmの銅板を接合して窒化アルミニウム回路基板を作製した。
(窒化アルミニウム回路基板の評価)
<接合強度>
 得られた窒化アルミニウム回路基板について、窒化アルミニウム基板と銅板との接合強度を測定した。接合強度は、引張試験機を用い、窒化アルミニウム基板から銅板を引き剥がすことにより測定した値である。
 表4に、窒化アルミニウム回路基板の接合強度を示す。
Figure JPOXMLDOC01-appb-T000004
[実施例2~5、比較例1~2]
 製造条件を表1および表2に示すように変えた以外は、実施例1と同様にして窒化アルミニウム基板および窒化アルミニウム回路基板を作製した。なお、実施例2~5に係る窒化アルミニウム基板の相対密度は99.3~99.8%であった。
 なお、比較例2は、AlN結晶粒が緻密化せず、充分な強度を有する窒化アルミニウム基板を作製することができなかった。
 得られた窒化アルミニウム基板および窒化アルミニウム回路基板について実施例1と同様にして評価した。
 得られた窒化アルミニウム基板の焼き上がり面の表面粗さRaは測定場所によりばらつきがあり、3μm~5μmの範囲内であった。また、体積抵抗率は1013~1014Ωmの範囲内であった。さらに、1μm以上の複合酸化物結晶の平均粒径は、いずれも2~3μmの範囲内であった。
 表1~表3に、窒化アルミニウム基板の製造条件および測定結果を示す。表4に、窒化アルミニウム回路基板の接合強度を示す。
 なお、実施例4では、焼き上がりのままで研磨していない窒化アルミニウム基板を用いた場合に加え、焼き上がりのままで研磨していない窒化アルミニウム基板に代えて、表面を研磨して表面粗さRaを1μmにした窒化アルミニウム基板を用いた場合についても窒化アルミニウム回路基板を作製した。
 得られた窒化アルミニウム回路基板について研磨していない窒化アルミニウム基板を用いた場合と同様にして評価した。
 表4に、窒化アルミニウム回路基板の接合強度を示す。実施例4において、研磨した窒化アルミニウム基板を用いたデータを、表4に、「実施例4(研磨基板)」と表示した。
 表4での、研磨していない窒化アルミニウム基板を用いた通常の実施例4と、研磨した窒化アルミニウム基板を用いた実施例4(研磨基板)との比較より、実施例4の窒化アルミニウム基板は、研磨せずに銅板と接合した場合と、研磨してから銅板と接合した場合とで、窒化アルミニウム回路基板の接合強度に大きな差がないことが分かった。言い換えれば本実施例に係る窒化アルミニウム基板は研磨レスであっても十分に回路基板に適用できることが分かった。
[実施例6~8]
 製造条件を表5に示すように変えた以外は、実施例1と同様にして窒化アルミニウム基板および窒化アルミニウム回路基板を作製した。
 得られた窒化アルミニウム基板および窒化アルミニウム回路基板について実施例1と同様にして評価した。なお、実施例6~8に係る窒化アルミニウム基板の相対密度は99.2~99.6%であった。
 得られた窒化アルミニウム基板の焼き上がり面の表面粗さRaは測定場所によりばらつきがあり、3μm~5μmの範囲内であった。また、体積抵抗率は1013~1014Ωmの範囲内であった。さらに、1μm以上の複合酸化物結晶の平均粒径は、いずれも2~3μmの範囲内であった。
 表1、表5、表6に、窒化アルミニウム基板の製造条件および測定結果を示す。表7に、窒化アルミニウム回路基板の接合強度を示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本実施例(実施例1~8)に係るAlN基板は、焼き上がり後の研磨していない状態での抗折強度が400MPa以上で、体積抵抗率が1012Ωm以上であることが分かった。
[実施例9~11]
<脱脂工程>
 平均粒径0.7μmのAlN粉末を97質量%と、平均粒径1.2μmのY粉末を3質量%とをエタノール中に投入して混合し、さらにPVB(ポリビニルブチラール)を加えてスラリーを調製した。次に、このスラリーから、ドクターブレード法によりグリーンシートを成形した。得られたグリーンシートを切断して50mm×40mm×厚さ0.8mmのシート状の第1成形体を作製した。第1成形体を大気中、500℃で5時間加熱して脱脂し、第2成形体を得た。
 次に表8に示す条件で第1焼結工程および第2焼結工程を連続で行い、窒化アルミニウム基板を得た。
Figure JPOXMLDOC01-appb-T000008
 得られた基板の厚さは0.6mmであった。また、得られた窒化アルミニウム基板について実施例1と同様の測定を行った。その結果を表9に示す。
 また、抗折強度は、焼き上がりのままで研磨していない窒化アルミニウム基板に加え、バフ研磨により表面粗さRaを1μmまたは0.5μmにした窒化アルミニウム基板についても測定した。
Figure JPOXMLDOC01-appb-T000009

 表から分かる通り、第1焼結工程と第2焼結工程を連続して行うときに所定の昇温速度で管理したものは焼き上がり状態でも優れた抗接強度が得られた。また、体積抵抗率は1013~1014Ωmの範囲内であった。さらに、1μm以上の複合酸化物結晶の平均粒径は、いずれも2~3μmの範囲内であった。
(窒化アルミニウム回路基板の作製)
 次に、活性金属ろう材として、Ag67質量%-Cu20質量%-In10質量%-Ti3質量%のろう材を用いた以外は、実施例1と同様にして、窒化アルミニウム基板と銅板とを接合して窒化アルミニウム回路基板を作製した。得られた窒化アルミニウム回路基板について、実施例1と同様の方法で接合強度を求めた。その結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010

 実施例にかかる窒化アルミニウム回路基板は優れた接合強度が得られた。
 以上のように、本実施例に係るAlN回路基板は接合強度も良好であることが分かった。特に熱伝導率160~190W/m・Kの窒化アルミニウム基板において研磨レスであっても優れた接合強度が得られる回路基板を提供することができる。接合強度が高いことから半導体素子を搭載した半導体装置の信頼性も向上させることができる。

Claims (11)

  1. 複数個の窒化アルミニウム結晶粒と、
     この窒化アルミニウム結晶粒の粒界に存在し、希土類元素とアルミニウムとを含む複合酸化物結晶粒と、
     を備えた多結晶体からなり、窒化アルミニウムを主成分とする窒化アルミニウム基板であって、
     前記窒化アルミニウム結晶粒の最大粒径が10μm以下であり、
     前記複合酸化物結晶粒の最大粒径が前記窒化アルミニウム結晶粒の最大粒径よりも小さく、
     前記窒化アルミニウム基板を表面観察した100μm×100μmの視野中に、前記複合酸化物結晶粒の1μm以上のものが40個以上あり、
     焼き上がり後の研磨していない状態での抗折強度が400MPa以上であり、
     体積抵抗率が1012Ωm以上であることを特徴とする窒化アルミニウム基板。
  2. 熱伝導率が160W/m・K以上であることを特徴とする請求項1に記載の窒化アルミニウム基板。
  3. 前記窒化アルミニウム結晶粒の平均粒径が3μm~9μmであることを特徴とする請求項1または2のいずれか1項に記載の窒化アルミニウム基板。
  4. 前記窒化アルミニウム基板に対する希土類元素の含有量が、希土類酸化物換算量で3質量%~6質量%であることを特徴とする請求項1ないし3のいずれか1項に記載の窒化アルミニウム基板。
  5. 請求項1ないし4のいずれか1項に記載の窒化アルミニウム基板の表面に、導体部を設けたことを特徴とする窒化アルミニウム回路基板。
  6. 前記導体部が、活性金属ろう材層を介して金属板を接合したものであることを特徴とする請求項5記載の窒化アルミニウム回路基板。
  7. 請求項5または請求項6のいずれか1項に記載の窒化アルミニウム回路基板の導体部に半導体素子を搭載したことを特徴とする半導体装置。
  8. 窒化アルミニウム粉末、希土類酸化物粉末および有機バインダーを成形して得られた第1窒化アルミニウム成形体を、大気中で脱脂して第2窒化アルミニウム成形体を得る脱脂工程と、
     前記第2窒化アルミニウム成形体を真空中、1300℃~1500℃で焼結させて第1焼結体を得る第1焼結工程と、
     前記第1焼結体を不活性雰囲気中、1750℃~1820℃で焼結させて窒化アルミニウム基板を得る第2焼結工程と、
     を備えることを特徴とする窒化アルミニウム基板の製造方法。
  9. 前記第2焼結工程で得られる窒化アルミニウム基板は、
     複数個の窒化アルミニウム結晶粒と、
     この窒化アルミニウム結晶粒の粒界の空間に配置され、希土類元素とアルミニウムとを含む複合酸化物結晶粒と、
     を備えた多結晶体からなる窒化アルミニウム基板であって、
     前記複合酸化物結晶粒の最大粒径が前記窒化アルミニウム結晶粒の最大粒径よりも小さく、
     前記窒化アルミニウム基板を表面観察した100μm×100μmの視野中に、前記複合酸化物結晶粒の1μm以上のものが40個以上あることを特徴とする請求項8に記載の窒化アルミニウム基板の製造方法。
  10. 前記第1窒化アルミニウム成形体は、ドクターブレード法で成形されたものであることを特徴とする請求項8または9に記載の窒化アルミニウム基板の製造方法。
  11. 前記第1窒化アルミニウム成形体は、前記窒化アルミニウム粉末と希土類酸化物粉末との合計量に対し前記希土類酸化物粉末を3質量%~6質量%含むことを特徴とする請求項8ないし10のいずれか1項に記載の窒化アルミニウム基板の製造方法。
PCT/JP2010/051682 2009-03-26 2010-02-05 窒化アルミニウム基板、窒化アルミニウム回路基板、半導体装置および窒化アルミニウム基板の製造方法 WO2010109960A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011505919A JP5667045B2 (ja) 2009-03-26 2010-02-05 窒化アルミニウム基板、窒化アルミニウム回路基板および半導体装置
US13/259,222 US8791566B2 (en) 2009-03-26 2010-02-05 Aluminum nitride substrate, aluminum nitride circuit board, semiconductor apparatus, and method for manufacturing aluminum nitride substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009076340 2009-03-26
JP2009-076340 2009-03-26

Publications (1)

Publication Number Publication Date
WO2010109960A1 true WO2010109960A1 (ja) 2010-09-30

Family

ID=42780656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051682 WO2010109960A1 (ja) 2009-03-26 2010-02-05 窒化アルミニウム基板、窒化アルミニウム回路基板、半導体装置および窒化アルミニウム基板の製造方法

Country Status (3)

Country Link
US (1) US8791566B2 (ja)
JP (1) JP5667045B2 (ja)
WO (1) WO2010109960A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130149530A1 (en) * 2010-06-08 2013-06-13 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum nitride substrate for circuit board and production method thereof
WO2014080536A1 (ja) * 2012-11-20 2014-05-30 Dowaメタルテック株式会社 金属-セラミックス接合基板およびその製造方法
JP2021134120A (ja) * 2020-02-27 2021-09-13 株式会社トクヤマ 複合窒化アルミニウム粒子の製造方法、及び複合窒化アルミニウム粒子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580593B2 (en) * 2009-09-10 2013-11-12 Micron Technology, Inc. Epitaxial formation structures and associated methods of manufacturing solid state lighting devices
US9624137B2 (en) * 2011-11-30 2017-04-18 Component Re-Engineering Company, Inc. Low temperature method for hermetically joining non-diffusing ceramic materials
US9315424B2 (en) * 2011-11-30 2016-04-19 Component Re-Engineering Company, Inc. Multi-layer plate device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640772A (ja) * 1992-05-22 1994-02-15 Hitachi Metals Ltd 窒化アルミニウム焼結体の製造方法及び窒化アルミニウム 焼結体
JPH1025160A (ja) * 1996-07-04 1998-01-27 Tokuyama Corp 窒化アルミニウム焼結体
WO2006135016A1 (ja) * 2005-06-15 2006-12-21 Tokuyama Corporation 窒化アルミニウム焼結体、スラリー、グリーン体、および脱脂体

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3347862C2 (ja) * 1982-09-17 1988-05-11 Tokuyama Soda K.K., Tokuyama, Yamaguchi, Jp
US4672046A (en) * 1984-10-15 1987-06-09 Tdk Corporation Sintered aluminum nitride body
DE3608326A1 (de) * 1986-03-13 1987-09-17 Kempten Elektroschmelz Gmbh Praktisch porenfreie formkoerper aus polykristallinem aluminiumnitrid und verfahren zu ihrer herstellung ohne mitverwendung von sinterhilfsmitteln
JPH06206772A (ja) * 1992-11-18 1994-07-26 Toshiba Corp 窒化アルミニウム焼結体およびセラミック回路基板
KR100232660B1 (ko) * 1995-03-20 1999-12-01 니시무로 타이죠 질화규소 회로기판
JP3670416B2 (ja) * 1995-11-01 2005-07-13 日本碍子株式会社 金属包含材および静電チャック
JP3457495B2 (ja) * 1996-03-29 2003-10-20 日本碍子株式会社 窒化アルミニウム焼結体、金属埋設品、電子機能材料および静電チャック
JP3670444B2 (ja) * 1997-06-06 2005-07-13 日本碍子株式会社 窒化アルミニウム基複合体、電子機能材料、静電チャックおよび窒化アルミニウム基複合体の製造方法
US6294275B1 (en) * 1998-05-06 2001-09-25 Sumitomo Electric Industries, Ltd. Aluminum-nitride sintered body, method for fabricating the same, and semiconductor substrate comprising the same
JP4003907B2 (ja) * 1998-07-08 2007-11-07 コバレントマテリアル株式会社 窒化アルミニウム焼結体からなる半導体製造装置関連製品及びその製造方法並びに静電チャック、サセプタ、ダミーウエハ、クランプリング及びパーティクルキャッチャー
JP4248173B2 (ja) * 2000-12-04 2009-04-02 株式会社東芝 窒化アルミニウム基板およびそれを用いた薄膜基板
FR2839506B1 (fr) * 2002-05-10 2005-06-10 Michelle Paparone Serole Oxyde mixte d'indium etain dit ito a grande conductivite electrique a nanostructure
US20060183625A1 (en) * 2002-07-09 2006-08-17 Kenichiro Miyahara Substrate for forming thin film, thin film substrate, optical wave guide, luminescent element and substrate for carrying luminescent element
EP1712662A4 (en) * 2003-06-30 2009-12-02 Kenichiro Miyahara SUBSTRATE FOR THE MANUFACTURE OF THIN FILMS, SUBSTRATE FOR THIN FILMS AND LIGHT EMITTING ELEMENT
JP4499431B2 (ja) * 2003-07-07 2010-07-07 日本碍子株式会社 窒化アルミニウム焼結体、静電チャック、導電性部材、半導体製造装置用部材及び窒化アルミニウム焼結体の製造方法
TW200521103A (en) * 2003-11-21 2005-07-01 Toshiba Kk High thermally conductive aluminum nitride sintered product
US8481892B2 (en) * 2009-03-30 2013-07-09 Ngk Insulators, Ltd. Ceramic heater and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640772A (ja) * 1992-05-22 1994-02-15 Hitachi Metals Ltd 窒化アルミニウム焼結体の製造方法及び窒化アルミニウム 焼結体
JPH1025160A (ja) * 1996-07-04 1998-01-27 Tokuyama Corp 窒化アルミニウム焼結体
WO2006135016A1 (ja) * 2005-06-15 2006-12-21 Tokuyama Corporation 窒化アルミニウム焼結体、スラリー、グリーン体、および脱脂体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130149530A1 (en) * 2010-06-08 2013-06-13 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum nitride substrate for circuit board and production method thereof
US9190189B2 (en) * 2010-06-08 2015-11-17 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum nitride substrate for circuit board and production method thereof
WO2014080536A1 (ja) * 2012-11-20 2014-05-30 Dowaメタルテック株式会社 金属-セラミックス接合基板およびその製造方法
US9944565B2 (en) 2012-11-20 2018-04-17 Dowa Metaltech Co., Ltd. Metal/ceramic bonding substrate and method for producing same
JP2021134120A (ja) * 2020-02-27 2021-09-13 株式会社トクヤマ 複合窒化アルミニウム粒子の製造方法、及び複合窒化アルミニウム粒子
JP7398733B2 (ja) 2020-02-27 2023-12-15 株式会社トクヤマ 複合窒化アルミニウム粒子の製造方法、及び複合窒化アルミニウム粒子

Also Published As

Publication number Publication date
US8791566B2 (en) 2014-07-29
JP5667045B2 (ja) 2015-02-12
US20120038038A1 (en) 2012-02-16
JPWO2010109960A1 (ja) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5023165B2 (ja) セラミックス回路基板
JP5245405B2 (ja) 窒化珪素基板、その製造方法、それを用いた窒化珪素配線基板及び半導体モジュール
JP5850031B2 (ja) 窒化珪素質焼結体、窒化珪素回路基板及び半導体モジュール
JP6591455B2 (ja) 高熱伝導性窒化珪素焼結体、それを用いた窒化珪素基板および窒化珪素回路基板並びに半導体装置
WO2013146789A1 (ja) 窒化珪素焼結体基板及びその製造方法
JP3845925B2 (ja) 窒化アルミニウム基材を用いた半導体装置用部材及びその製造方法
JP5667045B2 (ja) 窒化アルミニウム基板、窒化アルミニウム回路基板および半導体装置
WO2013008920A1 (ja) セラミックス回路基板
JP3629783B2 (ja) 回路基板
JP6992364B2 (ja) 窒化ケイ素焼結基板
JP2012136378A (ja) 回路基板およびこれを用いた電子装置
JP5439729B2 (ja) 窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール
JP7075612B2 (ja) 窒化ケイ素焼結基板
CN112313191B (zh) 氮化硅烧结体、氮化硅基板及氮化硅电路基板
JP5248381B2 (ja) 窒化アルミニウム基板およびその製造方法並びに回路基板、半導体装置
JP6124103B2 (ja) 窒化珪素回路基板およびその製造方法
JP2007230791A (ja) セラミック回路基板およびその製造方法
JP4556162B2 (ja) 窒化珪素質焼結体及びその製造方法、並びにそれを用いた回路基板
JP2009215142A (ja) 窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール
JPH1093244A (ja) 多層窒化けい素回路基板
JP2004231513A (ja) 高強度・高熱伝導性に優れた回路基板
JP5073135B2 (ja) 窒化アルミニウム焼結体、その製造方法及び用途
JPH11100274A (ja) 窒化珪素質焼結体、その製造方法及びそれを用いた回路基板
JPH11135906A (ja) 基板およびその製造方法
JP4761617B2 (ja) 窒化アルミニウム焼結体およびその製造方法、並びにそれを用いた電子用部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011505919

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13259222

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755761

Country of ref document: EP

Kind code of ref document: A1