CN102933520A - 电路基板用氮化铝基板及其制造方法 - Google Patents

电路基板用氮化铝基板及其制造方法 Download PDF

Info

Publication number
CN102933520A
CN102933520A CN2011800282746A CN201180028274A CN102933520A CN 102933520 A CN102933520 A CN 102933520A CN 2011800282746 A CN2011800282746 A CN 2011800282746A CN 201180028274 A CN201180028274 A CN 201180028274A CN 102933520 A CN102933520 A CN 102933520A
Authority
CN
China
Prior art keywords
aluminium nitride
grain
nitride substrate
boundary phase
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800282746A
Other languages
English (en)
Other versions
CN102933520B (zh
Inventor
原田祐作
寺野克典
后藤猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Publication of CN102933520A publication Critical patent/CN102933520A/zh
Application granted granted Critical
Publication of CN102933520B publication Critical patent/CN102933520B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/025Other inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/87Grain boundary phases intentionally being absent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Products (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种电路基板用氮化铝基板,具有平均粒径为2~5μm的氮化铝晶粒,热导率为170W/m·K以上,在本发明的电路基板用氮化铝基板中,不含枝状晶界相,且在400°C下的击穿电压为30kV/mm以上。此外,本发明还提供一种电路基板用氮化铝基板的制造方法,具备下述工序:将含有氮化铝粉末的原料在压力150Pa以下加热到1500°C,然后,利用非氧化性气体,在压力为0.4MPa以上的加压气氛下升温到1700~1900°C并进行保持,然后以10°C/分钟以下的冷却速度冷却到1600°C。

Description

电路基板用氮化铝基板及其制造方法
技术领域
本发明涉及一种在高温下具备优异绝缘特性的氮化铝基板及其制造方法。
背景技术
随着电子技术的发展,半导体的高输出化不断发展,在这个过程中,半导体搭载用电路基板所采用的绝缘性优异的氮化铝基板在众多领域中作为基板材料得到应用,例如,被用作对电力铁道、电动车等进行驱动控制的基板材料,以及对工业机器人进行控制的基板材料,等等。其中,为了开发出具备可降低对产品可靠性影响很大的切换损失、能量损失以及可提高控制工作温度等优点的下一代半导体,作为目前使用的Si芯片的替代材料,高可靠性的SiC芯片具有良好的应用前景。由于SiC芯片的可工作温度为400°C左右,这要高于以往的150°C,因此,就要求作为半导体搭载用电路基板的绝缘材料使用的氮化铝基板在如此的高温下也能发挥优异的绝缘特性。
以往,作为上述氮化铝基板使用的氮化铝煅烧体通常用以下的方法来制造。即,在氮化铝粉末中混合煅烧助剂、粘合剂、增塑剂、分散介质、脱模剂等添加剂,将其通过挤出成型等成型为片状,通过锻压机等加工成所需的形状、尺寸(成型、冲压)。然后,将成型体在空气中或氮等非氧化性气氛中加热到350~700°C而将粘合剂除去后(脱脂),在氮等非氧化性气氛中在1800~1900°C保持0.5~10小时(煅烧)。
然而,用这样的方法制造的氮化铝基板的缺陷在于,虽然其击穿电压在室温下显示出30~40kV/mm左右的高绝缘特性,但是,在400°C这样的高温下降低到10kV/mm左右。
为了提高氮化铝煅烧体的绝缘特性,以往提出了各种方案,例如,将钛固溶在氮化铝晶粒中,增加不成对电子浓度的方法(专利文献1);控制氮化铝晶粒、晶界气孔的平均直径以及晶界气孔和晶内气孔的比例的方法(专利文献2)等。然而,至今也未开发出能够在高温下确保绝缘特性的产品。
现有技术文献
专利文献
专利文献1:日本特开平06-128041号公报
专利文献2:日本特开2006-13257号公报
发明内容
本发明的目的在于提供一种高温下具备优异绝缘特性的氮化铝基板及其制造方法。
本发明一方面提供电路基板用氮化铝基板,该基板具有平均粒径为2~5μm的氮化铝晶粒,热导率为170W/m·K以上,不含枝状晶界相,在400°C下的击穿电压为30kV/mm以上。
根据上述本发明的一种实施方式,晶界相是不连续分散的非枝状晶界相。此外,根据上述本发明的另一种实施方式,由氮化铝基板的镜面研磨面测得的晶界相的个数基准粒度分布中,累积10%粒径d10为0.6μm以上,累积50%粒径d50为1.6μm以下。
本发明另一方面提供电路基板用氮化铝基板的制造方法,这种基板在400°C下的击穿电压为30kV/mm以上,该制造方法具备下述工序:将含有氮化铝粉末的原料在压力150Pa以下加热到1500°C,之后,利用非氧化性气体,在压力为0.4MPa以上的加压气氛下升温到1700~1900°C并进行保持,然后以10°C/分钟以下的冷却速度冷却到1600°C。
此处,氮化铝粉末没有特别限定,在一个实施方式中,可以列举出其中杂质含量为下述的粉末,即:氧含量为1.2质量%以下、碳含量为0.04质量%以下、Fe含量为30ppm以下、Si含量为60ppm以下。此外,在原料中通常含有煅烧助剂,作为该煅烧助剂,在一个实施方式中,可使用稀土金属化合物、碱土金属化合物、过渡金属化合物。
本发明另一方面还提供可通过上述制造方法制造的电路基板用氮化铝基板,换言之,还可提供如下制造的电路基板用氮化铝基板,即,将含有氮化铝粉末的原料在压力150Pa以下加热到1500°C,之后,利用非氧化性气体,在压力为0.4MPa以上的加压气氛下升温到1700~1900°C并进行保持,然后以10°C/分钟以下的冷却速度冷却到1600°C。
根据本发明,可提供在高温下具备优异绝缘特性、可适用于电路基板的氮化铝基板及其制造方法。
附图简述
图1是表示现有氮化铝基板枝状晶界相实例的扫描电子显微镜照片。
图2是表示本发明的氮化铝基板非枝状晶界相实例的扫描电子显微镜照片。
图3是表示本发明的氮化铝基板镜面研磨面实例的扫描电子显微镜照片。
具体实施方式
对本发明的电路基板用氮化铝基板的一个实施方式进行说明。
本发明的电路基板用氮化铝基板是具有如下特征的氮化铝基板,即,包含氮化铝晶粒和填埋该粒子间空间的晶界相,热导率为170W/m·K以上,400°C下的击穿电压为30kV/mm以上。此处,击穿电压具有本领域技术人员通常可理解的含义,可以通过按照JIS C 2110对试样施加电压,将产生击穿时的电压除以试样的厚度来求得。
氮化铝晶粒的平均粒径优选为2~5μm。此处,关于氮化铝晶粒的平均粒径,可以通过如下求得,测定使用扫描电子显微镜观察氮化铝基板的断裂面所看到的粒径,从测定数值的平均值来求出。如果氮化铝晶粒的平均粒径不足2μm,则氮化铝基板的致密化变得不充分,则存在热导率下降的情况。另一方面,如果氮化铝晶粒的平均粒径超过5μm,则氮化铝晶粒间的空隙增大,从而无法充分地用晶界相填充该空隙,因此存在绝缘特性、机械性强度降低的情况。此外,在应力负荷时容易产生氮化铝晶粒的晶内破坏,而导致机械性强度变小。
本发明的氮化铝基板的特征在于,为不含枝状晶界相的氮化铝基板,换言之,晶界相为非枝状晶界相。即,本发明人为了提高氮化铝基板在高温下的绝缘特性进行了潜心研究,结果发现,400°C下的击穿电压低于30kV/mm的氮化铝基板可观察到有很多呈枝状的晶界相,而在击穿电压超过30kV/mm的氮化铝基板中完全未观察到枝状晶界相,其晶界相为多数晶界相呈不连续分散的非枝状晶界相。此处,晶界相的形状例如可以通过如下操作来确认,即,将1g的氮化铝基板放入50ml的20%氢氧化钠水溶液中,在130°C保持12小时,静置直到氮化铝晶粒溶解,然后经过滤、清洗取出残留的晶界相,通过扫描电子显微镜进行观察。此处所谓的“枝状晶界相”是指,具有由多个晶界相立体连结的形状的晶界相。因此,本发明的氮化铝基板,在其晶界相中不含这样的枝状晶界相部分,晶界相呈多数晶界相不连续分散的非枝状晶界相。图1的显微镜照片示出观察到上述枝状晶界相的实例,图2的显微镜照片示出观察到不含枝状晶界相的、晶界相不连续分散的非枝状晶界相的实例。
推测枝状晶界相对氮化铝基板在高温下的绝缘特性产生的影响有以下两个方面。
第一,存在由于构成氮化铝基板的氮化铝晶粒和晶界相的热膨胀率之差所产生的微小空隙。人们认为在25~400°C下,晶界相的热膨胀率达到接近于约2倍的氮化铝热膨胀率的值,因此如果变为高温,则在氮化铝晶粒和晶界相的界面上产生因彼此膨胀差异所导致的微小变形和空隙。此时,如果存在立体伸展的枝状晶界相,则在氮化铝基板内微小的空隙会连续地分布,绝缘距离缩短,因而氮化铝基板的绝缘特性降低。另一方面,在不含枝状晶界相且形成由非枝状不连续分散相构成的晶界相的情况下,产生的微小空隙连结消失,所以氮化铝基板在高温下的绝缘特性不会降低。
第二,晶界相的导电路径化。煅烧中使用的煅烧助剂通常来讲,使用碱土金属化合物、稀土金属化合物等的情况很多,这些煅烧助剂在煅烧初期与氮化铝粉末表面存在的氧化物反应形成液相复合氧化物。该液相在煅烧过程中会固溶氮化铝晶粒内的杂质。结果是,由于提纯的氮化铝晶粒的粒子生长,煅烧体组织致密化从而使得氮化铝基板高导热化和高强度化。含有很多杂质的液相在煅烧结束后被冷却,以晶界相析出。为此认为,晶界相自身的电绝缘性比氮化铝晶粒低。特别是当存在立体连结的枝状晶界相时,绝缘性低的晶界相发挥着导电路径的作用,从而导致氮化铝基板的绝缘特性降低。
进而,在本发明的一个实施方式中,在氮化铝基板的由镜面研磨面测得的晶界相的个数基准粒度分布中,累积10%粒径d10为0.6μm以上,累积50%粒径d50为1.6μm以下。在此,晶界相的个数基准粒度分布的测定方法如下进行说明。即,将氮化铝基板埋在环氧树脂中并固化,之后,以与基板厚度方向垂直地裁切,将其断面用抛光研磨机进行镜面研磨。将该研磨面用扫描电子显微镜进行观察,利用图像分析软件由其图像来测定晶界相的粒径,由此可以求出个数基准粒度分布。如果累积10%粒径d10低于0.6μm,则可能出现氮化铝基板中的一部分晶界相以枝状存在的情况,如果累积50%粒径d50超过1.6μm,则可能出现晶界相彼此以块状凝集体连结的情况。在任何一种情况中,由于上述的晶界相的影响,均可能导致降低氮化铝基板在高温下的绝缘特性。以往,已知的氮化铝基板关注于氮化铝晶粒的粒径和晶界相的组成,但是,晶界相的形状和分布状态对绝缘特性的重要性,以及绝缘特性与由镜面研磨面测得的晶界相的个数基准粒度分布之间的关联性,特别是对于通过不含枝状晶界相来提高氮化铝基板在高温下的绝缘特性方面,至今也未被人们所知晓。
如上所示,本发明的氮化铝基板由于不含枝状晶界相,所以在高温下具有优异的绝缘特性。若能够将晶界相形成为非枝状,则通过任何方法制造都没有问题。然而,本发明人经潜心研究,结果发现,仅通过将煅烧时的炉内压力、冷却速度等条件设为特定条件,就可以将晶界相可靠地形成为非枝状,能够制造400°C下击穿电压为30kV/mm以上的氮化铝基板。
即,本发明的氮化铝基板的制造方法具备:
(i)准备含有氮化铝粉末的原料的原料准备工序,以及
(ii)将上述原料在压力150Pa以下加热到1500°C,然后,利用非氧化性气体,在压力为0.4MPa以上的加压气氛升温到1700~1900°C并进行保持,然后以10°C/分钟以下的冷却速度冷却到1600°C的煅烧工序。
(i)原料准备工序:
除了氮化铝粉末,还适当地使用煅烧助剂、粘合剂、增塑剂、分散介质、脱模剂等的添加剂。氮化铝粉末没有特别限定,可以使用例如通过下述公知方法制造的氮化铝粉末:将金属铝在氮气氛下进行氮化的直接氮化法;将氧化铝用碳进行还原的还原氮化法。尤其优选高纯度且为微粉的氮化铝粉末。具体来讲,优选使用杂质含量为下述的氮化铝粉末,即:氧含量为1.2质量%以下、碳含量为0.04质量%以下、Fe含量为30ppm以下、Si含量为60ppm以下。另外,进一步优选最大粒径为20μm以下的氮化铝粉末。此处,氧基本上属于杂质,但其具有防止过分煅烧的作用,因此为了防止因过分煅烧导致的煅烧体强度下降,优选使用氧含量为0.7质量%以上的氮化铝粉末。
煅烧助剂没有特别限定,可以使用稀土金属化合物、碱土金属化合物、过渡金属化合物等。其中优选氧化钇、或并用氧化钇和氧化铝。这些煅烧助剂与氮化铝粉末反应形成复合氧化物的液相(例如2Y2O3·Al2O3、Y2O3·Al2O3、3Y2O3·5Al2O3等),该液相带来煅烧体的高密度化,同时,提取氮化铝晶粒中属于杂质的氧等,以结晶晶界的氧化物相进行偏析,由此带来高导热化。
在原料准备工序(i)中,利用混合装置将煅烧助剂与上述氮化铝粉末混合,在混合得到的原料粉中添加粘合剂等之后,通过片材成型等方式将其成型而得到成型体,进一步将其脱脂并将脱脂体作为煅烧用原料。此处,氮化铝粉末等的混合方法没有特别限定,例如可以使用球磨机、棒磨机、搅拌机等公知的混合装置。粘合剂没有特别限定,优选使用具有增塑性、表面活性效果的甲基纤维素系、热降解性优异的丙烯酸酯系的粘合剂。此外,根据需要可合用增塑剂、分散介质等。一个例子是,作为增塑剂使用甘油等,作为分散介质使用离子交换水、乙醇等。
成型片的脱脂方法没有特别限定,优选将成型片在空气中或氮等非氧化性气氛中加热到300~700°C,将粘合剂除去。脱脂时间需要根据成型片的尺寸、处理片数适当地决定,但通常是1~10小时。
(ii)煅烧工序:
将原料准备工序(i)中得到的原料(脱脂体)进行煅烧得到氮化铝煅烧体。在该工序中,首先将煅烧炉内的压力设为150Pa以下,加热到1500°C。由此,脱脂体中的残留碳被除去,得到具有理想煅烧体组织和热导率的氮化铝煅烧体。此处,如果炉内压力超过150Pa,则不能充分地除去碳,而如果超过1500°C进行加热,则氮化铝晶粒的致密化在一部分中进行,碳的扩散路径被闭合,因此不能充分地除去碳。
然后,利用非氧化性气氛,在压力为0.4MPa以上的加压气氛下升温到1700~1900°C,进行保持。由此,得到热导率高、绝缘特性提高的氮化铝煅烧体。此处,如果在炉内压力0.4MPa以上的加压气氛下进行煅烧,则液相化的煅烧助剂不易挥发,能够有效地抑制氮化铝晶粒间的空隙产生,能够提高氮化铝基板的绝缘特性。此外,如果煅烧温度不足1700°C,则由于氮化铝晶粒的粒子生长进行地不充分,无法得到致密的煅烧体组织,有时氮化铝基板的热导率降低。另一方面,如果煅烧温度超过1900°C,则氮化铝晶粒的粒成长过度地进行,氮化铝晶粒间的空隙增大,有时绝缘特性下降。
此处,非氧化性气氛是指不含诸如氧等的氧化性气体的惰性气体气氛、还原性气氛等。
接着,在加压气氛下,以10°C/分钟以下的冷却速度冷却到1600°C。在冷却初期的阶段中,结晶晶界中存在液相,在1600°C左右进行固化。由现有制造中进行冷炉时的冷却速度为15°C/分钟以上,在这种冷却速度快的情况下,由于急剧地进行液相的固化,因此氮化铝晶粒的二个粒子界面析出枝状晶界相。但是,如果以10°C/分钟以下的冷却速度进行冷却,晶界相析出从而填埋氮化铝晶粒间存在的空隙,不会引起晶界相彼此的连结,从而可以抑制枝状晶界相的析出。此外,由于在缓解氮化铝晶粒间变形的同时析出晶界相,因此得到的氮化铝基板可抑制在高温下的微小裂纹的产生,绝缘特性提高。在缓慢冷却到1600°C后,如通常那样,可以快速冷却到室温。
此外,炉内的压力优选设为0.4MPa以上,如果不足0.4MPa,在液相化的煅烧助剂以晶界相析出之前就挥发了,在氮化铝晶粒间产生空隙,因此氮化铝基板的绝缘特性下降。此外,冷却方法可以通过控制煅烧炉的加热器温度来实施。
下面,通过实施例进一步详细地说明本发明,但本发明的范围并不限于这些实施例。
[实施例]
<实施例1>
在氮化铝粉末97质量份中添加氧化钇粉末3质量份,在球磨机中混合1小时得到混合粉末。在该混合粉末100质量份中,添加纤维素酯粘合剂6质量份、甘油5质量份、离子交换水10质量份,在亨舍尔混合机中混合1分钟,得到混合物。然后,将该混合物在单螺杆挤压机中成型为厚度0.8mm的片状,通过带金属模具的锻压机冲裁成90mm×90mm的尺寸。在成型片上涂覆作为脱模剂的氮化硼粉末后,层叠15张,在空气中,在570°C下加热5小时脱脂。然后,将脱脂体转移到真空加压炉中,以炉内压力100Pa加热到1500°C。之后,导入氮气,在炉内压力0.6MPa的加压气氛下升温到1750°C,保持2小时后,以1°C/分钟的冷却速度冷却到1600°C,得到氮化铝基板。对于得到的氮化铝基板,评价氮化铝晶粒的平均粒径、枝状晶界相的有无、晶界相的个数基准粒度分布、热导率、25°C及400°C下的击穿电压。将结果示于表1。
<使用材料>
氮化铝粉末:平均粒径1.2μm、氧含量0.8质量%。
氧化钇粉末:信越化学工业公司制、商品名“Yttrium Oxide”
粘合剂:信越化学工业公司制、商品名“METOLOSE”
甘油:花王公司制、商品名“EXCEPARL”
氮化硼粉末:电气化学工业公司制、商品名“Denka's Boron NitrideMGP”
<评价方法>
氮化铝晶粒的平均粒径:将氮化铝基板的断裂面用扫描电子显微镜放大到2000倍,测定50个氮化铝晶粒的粒径,计算平均值。
枝状晶界相的有无:将1g氮化铝基板投入50ml的20%氢氧化钠水溶液中,在130°C保持12小时,静置直到氮化铝晶粒溶解,然后,过滤、清洗后取出残留的晶界相,通过扫描电子显微镜进行观察来确认。
晶界相的个数基准粒度分布:将氮化铝基板的裁切面用标乐(BUEHLER)公司制“自动研磨装置ECOMET 3”进行研磨,将该研磨面用扫描电子显微镜放大至500倍,观察晶界相的分布状态(观察范围155μm×231μm)。图3中表示用扫描电子显微镜观察氮化铝基板的镜面研磨面的实例。将得到的图像用媒体控制公司(Media Cybernetics社)制“Image-Pro Plus6.2J”进行图像分析处理,计算累积10%粒径d10及累积50%粒径d50。
热导率:利用阿鲁巴克理工公司(Ulvac-riko)制“激光脉冲法热常数测定装置TC-7000”进行测定。
25°C及400°C下的击穿电压:可以通过在可加热到400°C的加热炉内设置电极,并同时设置交流耐压试验电压测量装置来测定。为了排除测定时的气氛的影响,将炉内的气氛设为氮气氛0.3MPa进行测定。在保持为规定温度的加热炉内,在氮化铝基板的上下表面配置球状电极,按照JIS C2110对试样施加电压,测定产生击穿时的电压。将产生击穿时的电压除以试样的厚度来计算击穿电压。
<实施例2、3>
如表1所示那样改变1500°C前的煅烧气氛,除此之外,与实施例1同样地得到氮化铝基板。将结果示于表1。
<实施例4、5>
如表1所示那样改变自1500°C至煅烧温度的煅烧气氛,除此之外,与实施例1同样地得到氮化铝基板。将结果示于表1。
<实施例6、7>
如表1所示那样改变煅烧温度,除此之外,与实施例1同样地得到氮化铝基板。将结果示于表1。
<实施例8、9>
如表1所示那样改变冷却速度,除此之外,与实施例1同样地得到氮化铝基板。将结果示于表1。
<比较例1>
如表1所示那样改变煅烧气氛和冷却速度,除此之外,与实施例1同样地得到氮化铝基板。将结果示于表1。
<比较例2>
如表1所示那样改变1500°C前的煅烧气氛,除此之外,与实施例1同样地得到氮化铝基板。将结果示于表1。
<比较例3>
如表1所示那样改变自1500°C至煅烧温度的煅烧气氛,除此之外,与实施例1同样地得到氮化铝基板。将结果示于表1。
<比较例4、5>
如表1所示那样改变煅烧温度,除此之外,与实施例1同样地得到氮化铝基板。将结果示于表1。
<比较例6>
如表1所示那样改变冷却速度,除此之外,与实施例1同样地得到氮化铝基板。将结果示于表1。
[表1]
Figure BDA00002545249900111
工业可利用性
根据本发明,可提供在高温下具有优异的绝缘特性、适用于电路基板的氮化铝基板及其制造方法。

Claims (5)

1.电路基板用氮化铝基板,其具有平均粒径为2~5μm的氮化铝晶粒,热导率为170W/m·K以上,不含枝状晶界相,在400°C下的击穿电压为30kV/mm以上。
2.如权利要求1所述的电路基板用氮化铝基板,其中,所述晶界相为不连续分散的非枝状晶界相。
3.如权利要求1或2所述的电路基板用氮化铝基板,其中,在由所述氮化铝基板的镜面研磨面测得的晶界相的个数基准粒度分布中,累积10%粒径d10为0.6μm以上,累积50%粒径d50为1.6μm以下。
4.如权利要求1~3中任一项所述的电路基板用氮化铝基板,其如下制造:将含有氮化铝粉末的原料在压力150Pa以下加热到1500°C,之后,利用非氧化性气体,在压力为0.4MPa以上的加压气氛下升温到1700~1900°C并进行保持,然后以10°C/分钟以下的冷却速度冷却到1600°C。
5.权利要求1~3中任一项所述的电路基板用氮化铝基板的制造方法,其具有下述工序:将含有氮化铝粉末的原料在压力150Pa以下加热到1500°C,之后,利用非氧化性气体,在压力为0.4MPa以上的加压气氛下升温到1700~1900°C并进行保持,然后以10°C/分钟以下的冷却速度冷却到1600°C。
CN201180028274.6A 2010-06-08 2011-05-24 电路基板用氮化铝基板及其制造方法 Active CN102933520B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-130665 2010-06-08
JP2010130665 2010-06-08
PCT/JP2011/061823 WO2011155319A1 (ja) 2010-06-08 2011-05-24 回路基板用窒化アルミニウム基板及びその製造方法

Publications (2)

Publication Number Publication Date
CN102933520A true CN102933520A (zh) 2013-02-13
CN102933520B CN102933520B (zh) 2015-08-19

Family

ID=45097927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180028274.6A Active CN102933520B (zh) 2010-06-08 2011-05-24 电路基板用氮化铝基板及其制造方法

Country Status (8)

Country Link
US (1) US9190189B2 (zh)
EP (1) EP2581357B1 (zh)
JP (1) JP5919190B2 (zh)
KR (1) KR101693071B1 (zh)
CN (1) CN102933520B (zh)
CA (1) CA2801857C (zh)
TW (1) TWI519503B (zh)
WO (1) WO2011155319A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105502313A (zh) * 2015-12-24 2016-04-20 成都新柯力化工科技有限公司 一种利用双螺杆挤出机制备氮化镓纳米晶体的方法
CN110662728A (zh) * 2017-05-30 2020-01-07 京瓷株式会社 氮化铝质烧结体以及半导体保持装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3560905B1 (en) * 2016-12-21 2022-05-04 NGK Insulators, Ltd. Transparent aln sintered body and production method therefor
JP2020158375A (ja) * 2019-03-28 2020-10-01 京セラ株式会社 窒化アルミニウム基板、電子装置及び電子モジュール
JP7441070B2 (ja) * 2020-02-18 2024-02-29 京セラ株式会社 窒化アルミニウム基板、電子装置及び電子モジュール

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197368A (ja) * 1989-12-26 1991-08-28 Nippon Light Metal Co Ltd 高熱伝導性点火プラグ用絶縁碍子およびその製造方法
EP0882689A2 (en) * 1997-06-06 1998-12-09 Ngk Insulators, Ltd. Aluminum nitride based composite body, electronic functional material, electrostatic chuck and method of producing aluminum nitride based composition body

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68926040T2 (de) * 1989-05-22 1996-10-02 Sumitomo Electric Industries Siliciumnitridsinterkörper hoher Festigkeit und Verfahren zu seiner Herstellung
US5760532A (en) * 1991-12-26 1998-06-02 Ngk Spark Plug Co., Ltd. Sintered ceramic body for a spark plug
JP3404813B2 (ja) 1992-09-04 2003-05-12 住友電気工業株式会社 窒化アルミニウム焼結体およびその製造方法
JP3633636B2 (ja) * 1993-02-05 2005-03-30 住友電気工業株式会社 窒化アルミニウム焼結体
JPH0797265A (ja) * 1993-09-27 1995-04-11 Denki Kagaku Kogyo Kk 窒化アルミニウム焼結体及びそれを用いた回路基板
US5409868A (en) * 1993-12-23 1995-04-25 Electrofuel Manufacturing Co. Ceramic articles made of compositions containing borides and nitrides
US6017485A (en) * 1996-03-28 2000-01-25 Carborundum Corporation Process for making a low electrical resistivity, high purity aluminum nitride electrostatic chuck
JP2004214690A (ja) * 2000-02-07 2004-07-29 Ibiden Co Ltd 半導体製造・検査装置用セラミック基板
JP4763929B2 (ja) * 2001-07-31 2011-08-31 電気化学工業株式会社 窒化アルミニウム焼結体、その製造方法及びその焼結体を用いた回路基板
JP2003070169A (ja) 2001-08-27 2003-03-07 Shin Kobe Electric Mach Co Ltd 自動車用鉛蓄電池の劣化判定方法
JP2003073169A (ja) * 2001-09-04 2003-03-12 Denki Kagaku Kogyo Kk 窒化アルミニウム焼結体、その製造方法及びその焼結体を用いた回路基板
JP4386695B2 (ja) 2002-11-14 2009-12-16 日本碍子株式会社 窒化アルミニウム焼結体の製造方法
JP4666960B2 (ja) 2004-06-28 2011-04-06 京セラ株式会社 静電チャック
WO2010109960A1 (ja) * 2009-03-26 2010-09-30 株式会社東芝 窒化アルミニウム基板、窒化アルミニウム回路基板、半導体装置および窒化アルミニウム基板の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197368A (ja) * 1989-12-26 1991-08-28 Nippon Light Metal Co Ltd 高熱伝導性点火プラグ用絶縁碍子およびその製造方法
EP0882689A2 (en) * 1997-06-06 1998-12-09 Ngk Insulators, Ltd. Aluminum nitride based composite body, electronic functional material, electrostatic chuck and method of producing aluminum nitride based composition body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105502313A (zh) * 2015-12-24 2016-04-20 成都新柯力化工科技有限公司 一种利用双螺杆挤出机制备氮化镓纳米晶体的方法
CN105502313B (zh) * 2015-12-24 2018-06-05 上海欣鑫化工有限公司 一种利用双螺杆挤出机制备氮化镓纳米晶体的方法
CN110662728A (zh) * 2017-05-30 2020-01-07 京瓷株式会社 氮化铝质烧结体以及半导体保持装置
US11685695B2 (en) 2017-05-30 2023-06-27 Kyocera Corporation Aluminum nitride-based sintered compact and semiconductor holding device

Also Published As

Publication number Publication date
CA2801857C (en) 2018-01-23
CA2801857A1 (en) 2011-12-15
TWI519503B (zh) 2016-02-01
US9190189B2 (en) 2015-11-17
EP2581357A4 (en) 2014-03-05
EP2581357A1 (en) 2013-04-17
WO2011155319A1 (ja) 2011-12-15
JP5919190B2 (ja) 2016-05-18
KR101693071B1 (ko) 2017-01-04
KR20130087481A (ko) 2013-08-06
EP2581357B1 (en) 2018-02-21
US20130149530A1 (en) 2013-06-13
CN102933520B (zh) 2015-08-19
TW201202170A (en) 2012-01-16
JPWO2011155319A1 (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5060092B2 (ja) 半導体装置用放熱板
JP4997431B2 (ja) 高熱伝導窒化ケイ素基板の製造方法
CN111196728B (zh) 一种高强度、高韧性、高热导率氮化硅陶瓷材料及其制备方法
CN102933520B (zh) 电路基板用氮化铝基板及其制造方法
KR101751531B1 (ko) 질화 규소 기판 제조방법
JP5726279B2 (ja) 窒化アルミニウム粉末
JP4556162B2 (ja) 窒化珪素質焼結体及びその製造方法、並びにそれを用いた回路基板
JP5495748B2 (ja) 窒化アルミニウム粉末
JP5258650B2 (ja) 窒化アルミニウム焼結体の製造方法
RU2433108C1 (ru) Способ получения теплопроводной керамики на основе нитрида алюминия
JP4564257B2 (ja) 高熱伝導性窒化アルミニウム焼結体
JP3973407B2 (ja) 窒化アルミニウム焼結体の製造方法
JPH10251069A (ja) 窒化珪素回路基板及び半導体装置
CN116589286A (zh) 一种以乙酰丙酮钇为烧结助剂的氮化铝陶瓷的制备方法
JP2000327425A (ja) 窒化アルミニウム焼結体及びその製造方法
JP2013082592A (ja) 窒化アルミニウム焼結体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant