WO2011152414A1 - ガラス基板およびその製造方法 - Google Patents

ガラス基板およびその製造方法 Download PDF

Info

Publication number
WO2011152414A1
WO2011152414A1 PCT/JP2011/062520 JP2011062520W WO2011152414A1 WO 2011152414 A1 WO2011152414 A1 WO 2011152414A1 JP 2011062520 W JP2011062520 W JP 2011062520W WO 2011152414 A1 WO2011152414 A1 WO 2011152414A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
glass
less
temperature
thermal expansion
Prior art date
Application number
PCT/JP2011/062520
Other languages
English (en)
French (fr)
Inventor
学 西沢
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012518408A priority Critical patent/JPWO2011152414A1/ja
Priority to CN2011800274646A priority patent/CN102933515A/zh
Priority to EP11789817.1A priority patent/EP2578550A4/en
Priority to KR1020127031409A priority patent/KR20130098877A/ko
Publication of WO2011152414A1 publication Critical patent/WO2011152414A1/ja
Priority to US13/692,536 priority patent/US8921245B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Definitions

  • the present invention relates to a glass substrate.
  • a solar cell in which a photoelectric conversion layer is formed between glass substrates, typically a photoelectric substrate having a glass substrate and a cover glass, and a group 11 element, a group 13 element, or a group 16 element as a main component on the glass substrate. It is related with the glass substrate for thin film solar cells in which the conversion layer is formed.
  • the present invention also relates to a glass substrate for a display panel used for various display panels such as a liquid crystal display (LCD) panel (particularly a TFT panel) and a plasma display panel (PDP).
  • LCD liquid crystal display
  • PDP plasma display panel
  • Group 11-13, 11-16 compound semiconductors having a chalcopyrite crystal structure and cubic or hexagonal 12-16 group compound semiconductors have a large absorption coefficient for light in the visible to near-infrared wavelength range. Therefore, it is expected as a material for a high-efficiency thin film solar cell.
  • Typical examples include Cu (In, Ga) Se 2 (hereinafter referred to as CIGS) and CdTe.
  • soda lime glass is used as a substrate because of its low cost and thermal expansion coefficient close to that of CIGS compound semiconductors, and solar cells are obtained. Moreover, in order to obtain an efficient solar cell, the glass material which can endure high heat processing temperature is also proposed (refer patent document 1).
  • Patent Documents 1 and 2 It has also been proposed to use an alkali glass substrate containing an alkali metal oxide as a glass substrate for a TFT panel (“a-Si TFT panel”) (see Patent Documents 1 and 2). This is because the heat treatment in the TFT panel manufacturing process, which has been conventionally performed at 350 to 450 ° C., can be performed at a relatively low temperature (about 250 to 300 ° C.). Since glass containing an alkali metal oxide generally has a high coefficient of thermal expansion, B 2 O 3 having an effect of reducing the coefficient of thermal expansion is used for the purpose of obtaining a preferable coefficient of thermal expansion as a glass substrate for a TFT panel. Usually contained (Patent Documents 2 and 3).
  • a glass substrate for a TFT panel is required to have a high degree of flatness in order to maintain a constant distance between two glasses sandwiching liquid crystal, that is, a cell gap, in order to ensure display quality.
  • the surface of the plate glass is polished after being formed into a plate glass by the float method, but if the predetermined flatness is not obtained with the formed plate glass, the polishing step is performed.
  • the time required increases and productivity decreases.
  • B 2 O 3 content in the molten glass that lower is preferable.
  • the B 2 O 3 content is low, it has been difficult to reduce the coefficient of thermal expansion to a preferable thermal expansion coefficient for a glass substrate for a TFT panel and to obtain a predetermined Tg while suppressing an increase in viscosity.
  • Patent Document 1 proposes a glass composition having a relatively high annealing point, but the invention described in Patent Document 1 does not necessarily have high power generation efficiency.
  • the present inventors have found that the power generation efficiency can be increased by increasing the alkali of the glass substrate within a predetermined range, but there is a problem that the increase of the alkali causes a decrease in the glass transition temperature (Tg). As described above, there is a problem that it is difficult to achieve both high power generation efficiency and high glass transition temperature in the glass substrate used for the CIGS solar cell.
  • An object of this invention is to provide the glass substrate suitable for the CIGS solar cell which makes high power generation efficiency and high glass transition point temperature compatible especially. Further, the present invention has found that, in the above-described heat treatment at a low temperature, glass compaction (heat shrinkage rate) at a low temperature can greatly affect the film formation quality (film formation pattern accuracy) on the glass substrate.
  • the present invention contains an alkali metal oxide, has a small amount of B 2 O 3, has a small compaction (C) in a heat treatment at a low temperature (150 to 300 ° C.) in a TFT panel manufacturing process, and is used for patterning a film on a glass substrate.
  • An object of the present invention is to provide a glass substrate suitable for a TFT panel which is less likely to be displaced.
  • the present invention is a mass percentage display based on the following oxides: 68 to 81% of SiO 2 Al 2 O 3 0.2 to 18%, 0 to 3% of B 2 O 3 0.2-11% MgO, 0 to 3% of CaO, 0 to 3% of SrO, BaO 0 ⁇ 3%, 0 to 1% of ZrO 2 1 to 18% Na 2 O, 0 to 15% of K 2 O, Containing 0 to 2% of Li 2 O, Al 2 O 3 + K 2 O is 7 to 27%, Na 2 O + K 2 O 11.5-22%, MgO + CaO + SrO + BaO is 0.2 to 14%, MgO + 0.357Al 2 O 3 ⁇ 0.239K 2 O-5.58 is ⁇ 3.0 to 1.5, Na 2 O + 0.272Al 2 O 3 + 0.876K 2 O-16.77 is ⁇ 2.5 to 2.5, A glass substrate having a glass transition temperature of 500 ° C. or higher and an average coefficient of thermal expansion at 50 to 350
  • the glass substrate of the present invention can achieve both high power generation efficiency and high glass transition temperature, and can be suitably used as a low-cost and high-efficiency glass substrate for Cu—In—Ga—Se solar cells.
  • the glass substrate of the present invention has a small compaction (C) (40 ppm or less, preferably 20 ppm or less) in the heat treatment at a low temperature (150 to 300 ° C.) in the TFT panel manufacturing process, and is suitable for film-forming patterning on the glass substrate. Misalignment is unlikely to occur. Therefore, it can be suitably used as a glass substrate for a particularly large TFT panel, for example, a mother glass having a side length of 2 m or more, corresponding to the recent low temperature heat treatment.
  • a mother glass having a side length of 2 m or more, corresponding to the recent low temperature heat treatment.
  • excellent in homogeneity of the glass substrate is excellent in flatness and productivity.
  • FIG. 1 is a cross-sectional view schematically showing an example of an embodiment of the solar cell of the present invention.
  • the glass substrate of the present invention is a mass percentage display based on the following oxide, 68 to 81% of SiO 2 Al 2 O 3 0.2 to 18%, 0 to 3% of B 2 O 3 0.2-11% MgO, 0 to 3% of CaO, 0 to 3% of SrO, BaO 0 ⁇ 3%, 0 to 1% of ZrO 2 1 to 18% Na 2 O, 0 to 15% of K 2 O, Containing 0 to 2% of Li 2 O, Al 2 O 3 + K 2 O is 7 to 27%, Na 2 O + K 2 O 11.5-22%, MgO + CaO + SrO + BaO is 0.2 to 14%, MgO + 0.357Al 2 O 3 ⁇ 0.239K 2 O-5.58 is ⁇ 3.0 to 1.5, Na 2 O + 0.272Al 2 O 3 + 0.876K 2 O-16.77 is ⁇ 2.5 to 2.5,
  • the glass substrate has an average thermal expansion coefficient of 100 ⁇ 10 ⁇
  • the glass transition point temperature (Tg) of the glass substrate of this invention is 500 degreeC or more.
  • the glass transition temperature (Tg) of the glass substrate of the present invention is preferably 525 ° C. or higher in order to ensure the formation of a photoelectric conversion layer at a high temperature, and is 550 ° C. or higher. More preferably, it is 575 ° C. or higher.
  • the glass transition point temperature (Tg) increases due to the above range, and the glass has a high viscosity during low-temperature heat treatment (150 ° C. to 300 ° C.) in the TFT panel manufacturing process. Therefore, the mobility of the alkali component in the glass to the TFT element is lowered, and the performance degradation of the TFT can be suppressed.
  • the average linear expansion coefficient at 50 to 350 ° C. of the glass substrate of the present invention is 100 ⁇ 10 ⁇ 7 / ° C. or less. If it exceeds 100 ⁇ 10 ⁇ 7 / ° C., when used as a glass substrate for CIGS solar cells, the difference in thermal expansion from the CIGS film becomes too large, and defects such as peeling tend to occur. Furthermore, when assembling a solar cell (specifically, when a glass substrate having a CIGS photoelectric conversion layer and a cover glass are heated and bonded together), the glass substrate may be easily deformed.
  • the difference in thermal expansion between the two is preferably 60. ⁇ 10 ⁇ 7 / ° C. or more, more preferably 70 ⁇ 10 ⁇ 7 / ° C. or more, and further preferably 75 ⁇ 10 ⁇ 7 / ° C. or more.
  • the glass substrate of the present invention has a compaction (C) of preferably 40 ppm or less, more preferably 30 ppm or less, and even more preferably 20 ppm or less. Further, it is more preferably 15 ppm or less, and further preferably 10 ppm or less.
  • C compaction
  • concentration is 40 ppm or less (preferably 20 ppm or less)
  • misalignment does not easily occur during patterning of the TFT film on the array glass substrate in the heat treatment at a low temperature (150 to 300 ° C.) in the TFT panel manufacturing process.
  • the compaction (C) means a value measured by the method described below.
  • a target glass substrate is melted at 1600 ° C., and then the molten glass is poured out, formed into a plate shape, and then cooled.
  • the obtained glass substrate is polished to obtain a sample of 100 mm ⁇ 20 mm ⁇ 2 mm.
  • the glass substrate is heated to 300 ° C.
  • the glass substrate of the present invention preferably has a glass surface devitrification temperature (T c ) of 1200 ° C. or lower, more preferably 1100 ° C. or lower, and even more preferably 1000 ° C. or lower.
  • Glass surface devitrification temperature (T c ) means that glass particles crushed in a platinum dish are subjected to heat treatment for 17 hours in an electric furnace controlled at a constant temperature, and the glass is observed by optical microscope observation after the heat treatment. This is an average value of the maximum temperature at which crystals are deposited on the surface and the minimum temperature at which crystals are not deposited.
  • the glass internal devitrification temperature ( Td ) of the glass substrate of this invention is 1200 degrees C or less, More preferably, it is 1100 degrees C or less, More preferably, it is 1000 degrees C or less.
  • Glass internal devitrification temperature (T d ) means that glass particles crushed in a platinum dish are subjected to heat treatment for 17 hours in an electric furnace controlled at a constant temperature, and the glass is observed by optical microscope observation after the heat treatment. Is the average value of the maximum temperature at which crystals are precipitated and the minimum temperature at which crystals are not precipitated.
  • the glass viscosity at Td is preferably 10 4.5 dPa ⁇ s or more, more preferably 10 5 dPa ⁇ s or more, still more preferably 10 5.5 dPa ⁇ s or more, and particularly preferably 10 6 dPa ⁇ s. s or more.
  • the temperature (T 2 ) at which the viscosity becomes 10 2 dPa ⁇ s is preferably 1850 ° C. or less, more preferably 1750 ° C. or less, and further preferably 1650 ° C. or less.
  • the glass substrate of the present invention preferably has a temperature (T 4 ) at which the viscosity becomes 10 4 dPa ⁇ s is 1300 ° C. or less, more preferably 1250 ° C. or less, and further preferably 1200 ° C. or less. is there.
  • Glass substrate of the present invention preferably has a density of 2.50 g / cm 3 or less, more preferably 2.45 g / cm 3 or less, further preferably 2.42 g / cm 3 or less.
  • SiO 2 A component that forms a glass skeleton. If it is less than 68% by mass (hereinafter simply referred to as “%”), the heat resistance and chemical durability of the glass decrease, and the average thermal expansion at a density of 50 to 350 ° C.
  • the coefficient and compaction (c) may increase. Preferably it is 69% or more, More preferably, it is 70% or more, More preferably, it is 70.5% or more. However, if it exceeds 81%, the high-temperature viscosity of the glass increases, and there is a possibility that the meltability deteriorates. Preferably it is 80% or less, More preferably, it is 78% or less, More preferably, it is 77% or less, Most preferably, it is 76% or less.
  • Al 2 O 3 Increases the glass transition temperature, improves weather resistance (solarization), heat resistance and chemical durability, and increases Young's modulus. If the content is less than 0.2%, the glass transition temperature may be lowered. Further, the average thermal expansion coefficient and compaction (c) at 50 to 350 ° C. may increase. Preferably it is 1% or more, More preferably, it is 2% or more, More preferably, it is 4% or more. However, if it exceeds 18%, the high-temperature viscosity of the glass increases, and the meltability may deteriorate.
  • the devitrification temperature (the surface devitrification temperature (T c ) on the glass surface and the internal devitrification temperature (T d ) inside the glass) is increased, and the moldability may be deteriorated.
  • the power generation efficiency may be reduced, that is, the amount of alkali elution described later may be reduced. Preferably it is 16% or less, More preferably, it is 14% or less, More preferably, it is 12% or less.
  • B 2 O 3 may be contained up to 3% in order to improve the meltability.
  • the content exceeds 3%, the glass transition temperature decreases, or the average thermal expansion coefficient at 50 to 350 ° C. decreases, which is not preferable for the process of forming a CIGS film when used as a glass substrate for CIGS solar cells.
  • the content is preferably 2% or less.
  • the content is more preferably 1% or less, and still more preferably substantially not contained.
  • substantially does not contain means that it is not contained other than inevitable impurities mixed from raw materials or the like, that is, it is not intentionally contained.
  • the volatilization amount of B 2 O 3 in the melting step, the refining step, and the molding step when melting the glass during the production of the glass substrate is small.
  • the manufactured glass substrate is excellent in homogeneity and flatness.
  • the display quality is superior to that of a conventional glass substrate for a TFT panel.
  • the content of B 2 O 3 is that less is preferable.
  • MgO It is contained because it has the effect of lowering the viscosity at the time of melting the glass and promoting the melting. However, if it is less than 0.2%, the high temperature viscosity of the glass may increase and the meltability may deteriorate. In addition, the power generation efficiency may be reduced, that is, the amount of alkali elution described later may be reduced. More preferably, it is 0.5% or more, More preferably, it is 1% or more, More preferably, it is 2% or more. However, if it exceeds 11%, the average coefficient of thermal expansion and compaction (c) at 50 to 350 ° C. may increase. Further, the devitrification temperature (T c ) may increase. Preferably it is 10% or less, More preferably, it is 9% or less, More preferably, it is 8% or less.
  • CaO It can be contained because it has the effect of lowering the viscosity at the time of melting the glass and promoting the melting. However, if it exceeds 3%, the average coefficient of thermal expansion and compaction (c) of glass at 50 to 350 ° C. may increase. Preferably it is 2% or less, More preferably, it is 1% or less, More preferably, it does not contain substantially.
  • SrO It can be contained because it has the effect of reducing the viscosity at the time of melting the glass and promoting the melting. However, if it exceeds 3%, the power generation efficiency decreases, that is, the amount of alkali elution described later decreases, and the average thermal expansion coefficient and compaction (c) of the glass substrate at 50 to 350 ° C. may increase. Preferably it is 2% or less, More preferably, it is 1% or less, More preferably, it does not contain substantially.
  • BaO Since it has the effect of lowering the viscosity at the time of melting the glass and promoting the melting, it can be contained. However, if it exceeds 3%, the power generation efficiency decreases, that is, the alkali elution amount described later decreases, and the average thermal expansion coefficient and compaction (c) of the glass substrate at 50 to 350 ° C. may increase. Preferably it is 2% or less, More preferably, it is 1% or less, More preferably, it does not contain substantially.
  • ZrO 2 It can be contained because it has the effect of lowering the viscosity at the time of melting the glass and promoting the melting. However, if it exceeds 1%, the power generation efficiency decreases, that is, the alkali elution amount described later decreases, and the density of the glass substrate, the average thermal expansion coefficient at 50 to 350 ° C., and compaction (c) may increase. 0.5% or less is preferable and it is more preferable not to contain substantially.
  • SrO, BaO, and ZrO 2 can be contained in a total amount of up to 3% because the viscosity at the time of melting of the glass is lowered to facilitate dissolution. However, if it exceeds 3%, the power generation efficiency when used as a glass substrate for CIGS solar cells may decrease, or the compaction (C) important when used as a glass substrate for TFT panels may increase. More preferably, it is 2% or less, more preferably 1% or less, and particularly preferably substantially no content.
  • MgO, CaO, SrO and BaO have a total amount of 0.2% or more in order to lower the viscosity at the melting temperature of the glass and facilitate melting.
  • the average thermal expansion coefficient and compaction (C) of glass at 50 to 350 ° C. may increase.
  • 0.5% or more is preferable, 1% or more is more preferable, and 2% or more is more preferable.
  • 12% or less is preferable, 10% or less is more preferable, and 8% or less is further more preferable.
  • the total amount of Al 2 O 3 and MgO is preferably 8% or more, more preferably 10% or more, and further preferably 11% or more, considering compaction (C) reduction.
  • Na 2 O is contained in an amount of 1 to 18% because it lowers the viscosity at the glass melting temperature and facilitates melting.
  • Na 2 O is a component for contributing to the conversion efficiency of the CIGS solar cell, which is an essential component. Na diffuses into the absorption layer of the CIGS solar cell formed on the glass to increase the conversion efficiency. However, if the content is less than 1%, Na diffusion into the CIGS solar cell absorption layer on the glass becomes insufficient. The conversion efficiency may be insufficient.
  • the content is preferably 2% or more, and more preferably 3% or more. More preferably, it is 4% or more.
  • the average coefficient of thermal expansion and compaction (c) at 50 to 350 ° C. increase, or the chemical durability deteriorates.
  • the content is preferably 17% or less, and more preferably 16% or less. More preferably, it is 15% or less.
  • K 2 O Since it has the same effect as Na 2 O, 0 to 15% is contained. However, if it exceeds 15%, the glass transition temperature may decrease, and the average coefficient of thermal expansion and compaction (c) at 50 to 350 ° C. may increase.
  • the power generation efficiency When used as a glass substrate for a CIGS solar cell, if the content of K 2 O exceeds 15%, the power generation efficiency may be reduced, that is, the amount of alkali elution described later may be reduced.
  • it contains it is 1% or more. It is preferably 14% or less, more preferably 13% or less, and further preferably 12.5% or less.
  • Li 2 O It can be contained in an amount of 0 to 2% in order to lower the viscosity at the glass melting temperature and facilitate melting. However, if it exceeds 2%, the glass transition point may be lowered. Further, 2% or less is preferable so that the average thermal expansion coefficient at 50 to 350 ° C. is 100 ⁇ 10 ⁇ 7 / ° C. or less.
  • the content of Li 2 O is preferably 1% or less, more preferably 0.5% or less, and still more preferably substantially not contained.
  • Al 2 O 3 and K 2 O In order to lower the average thermal expansion coefficient at 50 to 350 ° C. and to increase Tg, the total content of Al 2 O 3 and K 2 O is 7 to 27%. To do. If it is less than 7%, Tg may decrease, and Tc and Td may increase too much. Preferably it is 8% or more, More preferably, it is 9% or more, More preferably, it is 10% or more. However, if it exceeds 27%, T 2 , T 4 , and the density may be excessively increased. Preferably it is 24% or less, More preferably, it is 20% or less, More preferably, it is 18% or less.
  • Na 2 O and K 2 O To reduce sufficiently the viscosity at the glass melting temperature, and for the conversion efficiency of the CIGS solar cell when used as a glass substrate for a CIGS solar cell, Na 2 O and K 2
  • the total content of O is 11.5 to 22%. Preferably it is 12% or more, More preferably, it is 13% or more, More preferably, it is 14% or more. However, if it exceeds 22%, the Tg is too low, and the average thermal expansion coefficient at 50 to 350 ° C. may be too high. Preferably it is 20% or less, More preferably, it is 19% or less, More preferably, it is 18% or less.
  • MgO, Al 2 O 3 and K 2 O MgO, Al 2 O 3 and K 2 O are contained so that the following formula 1 satisfies ⁇ 3.0 to 1.5.
  • the above formula is an index for satisfying T 4 ⁇ T c ⁇ 0 ° C. or T 4 ⁇ T d ⁇ 150 ° C., which will be described later.
  • T 4 -T c ⁇ 0 ° C. or T 4 -T d ⁇ 150 ° C. was satisfied while satisfying an average thermal expansion coefficient of 100 ⁇ 10 ⁇ 7 or less at 50 to 350 ° C.
  • it is -2.0 or more, more preferably -1.5 or more, and still more preferably -1.0 or more.
  • it is 1.0 or less.
  • Na 2 O, Al 2 O 3 and K 2 O Na 2 O, Al 2 O 3 and K 2 O are contained so that the following formula 2 becomes ⁇ 2.5 to 2.5. Na 2 O + 0.272Al 2 O 3 + 0.876K 2 O-16.77 (Formula 2)
  • the above formula is an index for satisfying T 4 ⁇ T c ⁇ 0 ° C. or T 4 ⁇ T d ⁇ 150 ° C., which will be described later. Based on the results of experiments and trial and error, the present inventors have found that when the above components satisfy the scope of the present application and the value obtained by the above formula is ⁇ 2.5 to 2.5, Tg of 500 ° C. or higher. It was also found that T 4 -T c ⁇ 0 ° C.
  • T 4 -T d ⁇ 150 ° C. was satisfied while satisfying an average thermal expansion coefficient of 100 ⁇ 10 ⁇ 7 or less at 50 to 350 ° C.
  • it is -2.0 or more, more preferably -1.5 or more, and still more preferably -1.0 or more.
  • Preferably it is 2.0 or less, More preferably, it is 1.5 or less, More preferably, it is 1.0 or less.
  • the glass substrate of the present invention preferably consists essentially of the above mother composition, but may contain other components as long as the object of the present invention is not impaired.
  • other components may typically be contained in a total of 5% or less.
  • ZnO, Li 2 O, WO 3 , Nb 2 O 5 , V 2 O 5 , Bi 2 O 3 , MoO 3 , P 2 for the purpose of improving weather resistance, meltability, devitrification, ultraviolet shielding, etc. O 5 or the like may be contained in some cases.
  • these raw materials may be added to the matrix composition raw material so that the total amount of SO 3 , F, Cl, SnO 2 is 2% or less in the glass. Good. When using as a glass substrate for TFT panels, these additions are more preferable.
  • ZrO 2 , Y 2 O 3 , La 2 O 3 , TiO 2 and SnO 2 may be contained in the glass in a total amount of 5% or less. Among these, Y 2 O 3 , La 2 O 3 and TiO 2 contribute to the improvement of the Young's modulus of the glass.
  • the glass substrate of the present invention may contain Fe 2 O 3, CeO 2 or the like of the colorant in the glass.
  • the total content of such colorants is preferably 1% or less.
  • the glass substrate of the present invention considering the environmental burden, it is preferred not to contain As 2 O 3, Sb 2 O 3 substantially. In consideration of stable float forming, it is preferable that ZnO is not substantially contained.
  • the glass substrate of the present invention is not limited to being formed by the float method, and may be manufactured by forming by the fusion method.
  • the glass substrate of the present invention can be suitably used as a glass substrate for CIGS solar cells or a glass substrate for TFT panels. This will be described in detail below.
  • the glass substrate in this invention are the alkali glass substrate containing an alkali metal oxide (Na 2 O, K 2 O ), can be used SO 3 effectively as a refining agent, a float as a forming method It is suitable for the method and fusion method (download method).
  • a float method capable of easily and stably forming a large-area glass substrate as the size of the solar cell or TFT panel increases.
  • the glass substrate has T 4 ⁇ as a physical property in the fusion method. It is preferable that T d ⁇ 150 ° C., more preferably T 4 ⁇ T d ⁇ 200 ° C. In the case of the float process, it is preferable to satisfy T 4 -T c ⁇ 0 ° C., and more preferably T 4 -T c ⁇ 50 ° C.
  • molten glass obtained by melting raw materials is formed into a plate shape.
  • raw materials are prepared so as to have the composition of the obtained glass substrate, the raw materials are continuously charged into a melting furnace, and heated to about 1450 to 1650 ° C. to obtain molten glass. And this molten glass is shape
  • a glass substrate is obtained.
  • the cooling means sets the surface temperature of the ribbon-shaped glass substrate drawn out from the forming furnace to T H (° C.), the room temperature to T L (° C.), and further the surface temperature of the ribbon-shaped glass substrate from T H.
  • This is a cooling means for setting the average cooling rate represented by (T H ⁇ T L ) / t to 10 to 300 ° C./min, where t (min) is the time until cooling to T L.
  • the specific cooling means is not particularly limited, and may be a conventionally known cooling method. For example, a method using a heating furnace having a temperature gradient can be mentioned.
  • T H is preferably a glass transition temperature Tg + 20 ° C., specifically 540 to 730 ° C.
  • the average cooling rate is preferably 15 to 150 ° C./min, more preferably 20 to 80 ° C./min, and further preferably 40 to 60 ° C./min.
  • a glass substrate having a compaction (C) of 40 ppm or less, preferably 20 ppm or less can be easily obtained.
  • the glass substrate of this invention can be used suitably for the glass substrate for CIGS solar cells.
  • the glass substrate for CIGS solar cell in the present invention preferably has an alkali elution amount (Na / In intensity ratio described later) of 0.15 or more. More preferably, it is 0.2 or more.
  • the CIGS solar cell glass substrate in the present invention is suitable as a CIGS solar cell glass substrate and a cover glass.
  • the thickness of the glass substrate is preferably 3 mm or less, more preferably 2 mm or less.
  • the method for applying the CIGS photoelectric conversion layer to the glass substrate is not particularly limited.
  • the heating temperature for forming the photoelectric conversion layer can be 500 to 650 ° C.
  • the thickness of the cover glass is preferably 3 mm or less, more preferably 2 mm or less.
  • the method for assembling the cover glass on the glass substrate having the photoelectric conversion layer is not particularly limited. When assembled by heating, the heating temperature can be 500 to 650 ° C.
  • the average thermal expansion coefficient at 50 to 350 ° C. is equivalent, so that thermal deformation or the like during solar cell assembly does not occur.
  • the solar cell according to the present invention includes a glass substrate having a Cu—In—Ga—Se photoelectric conversion layer and a cover glass disposed on the glass substrate, and one of the glass substrate and the cover glass. Or both are the glass substrates of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing an example of an embodiment of a solar cell according to the present invention.
  • a solar cell (CIGS solar cell) 1 according to the present invention has a glass substrate 5, a cover ballus 19, and a CIGS layer 9 between the glass substrate 5 and the cover glass 19.
  • the glass substrate 5 is preferably composed of the glass substrate of the present invention described above.
  • the solar cell 1 has a Mo film back electrode layer as a positive electrode 7 on a glass substrate 5 and a light absorption layer (photoelectric conversion layer) as a CIGS layer 9 thereon.
  • An example of the composition of the CIGS layer is Cu (In 1-X Ga x ) Se 2 .
  • x represents the composition ratio of In and Ga, and 0 ⁇ n ⁇ 1.
  • an antireflection film may be provided at a necessary place between these layers.
  • an antireflection film 17 is provided between the transparent conductive film 13 and the negative electrode 15.
  • a cover glass 19 may be provided on the minus electrode 15, and if necessary, the minus electrode and the cover glass are sealed with a resin or bonded with a transparent resin for bonding.
  • the cover glass the glass substrate for CIGS solar cell according to the present invention may be used.
  • the edge part of a photoelectric converting layer or the edge part of a solar cell may be sealed.
  • a material for sealing the same material as the glass substrate for CIGS solar cells of this invention, other glass, and resin are mentioned, for example. Note that the thickness of each layer of the solar cell shown in the accompanying drawings is not limited to the drawings.
  • the glass substrate of this invention can be used suitably for the glass substrate for TFT panels.
  • a method for manufacturing a TFT panel including a film forming process for forming a gate insulating film on an array substrate on the surface of the glass substrate of the present invention will be described.
  • the film formation region on the surface of the glass substrate of the present invention is raised to a temperature within the range of 150 to 300 ° C. (hereinafter referred to as film formation temperature),
  • film formation temperature There is no particular limitation as long as it includes a film forming step of forming the array substrate gate insulating film in the film forming region by holding at the film forming temperature for 5 to 60 minutes.
  • the film forming temperature is preferably 150 to 250 ° C., more preferably 150 to 230 ° C., and further preferably 150 to 200 ° C.
  • the time for maintaining the film forming temperature is preferably 5 to 30 minutes, more preferably 5 to 20 minutes, and further preferably 5 to 15 minutes. Since the gate insulating film is formed within the range of the film forming temperature and the holding time as described above, the glass substrate is thermally shrunk during this time. Note that once the glass substrate is thermally shrunk, depending on the subsequent cooling conditions (cooling rate or the like), the result of the heat shrinking is not greatly affected. Since the glass substrate for TFT panels in the present invention has a small compaction (C), the thermal contraction of the glass substrate is small, and the film forming pattern is hardly displaced.
  • the film formation in the film formation step can be achieved by, for example, a conventionally known CVD method.
  • an array substrate can be obtained by a known method.
  • a TFT panel can be manufactured using the array substrate by the following known processes. That is, an alignment treatment process in which an alignment film is formed on each of the array substrate and the color filter substrate and rubbed, a bonding process in which the TFT array substrate and the color filter substrate are bonded with high accuracy while maintaining a predetermined gap,
  • a TFT panel can be manufactured by a series of steps including a dividing step of dividing a cell into a predetermined size, an injection step of injecting liquid crystal into the divided cell, and a polarizing plate attaching step of attaching a polarizing plate to the cell.
  • the glass substrate of this invention when using the glass substrate of this invention as a glass substrate for TFT panels, if TFT panel manufacture is heat processing at low temperature, since alkali elution will be suppressed, it will not have a big influence.
  • the glass substrate of the present invention can be used after being chemically strengthened by a well-known method. However, in order to improve the display quality of the TFT panel and the battery efficiency of the solar cell panel, the glass substrate is considered to be flat. It is preferable not to strengthen.
  • Example and a manufacture example demonstrate this invention in more detail, this invention is not limited to these Examples and a manufacture example.
  • Examples (Examples 1 to 13) and comparative examples (Examples 14 to 16) of the glass substrate of the present invention are shown.
  • the parentheses in the table are calculated values.
  • the raw materials of the respective components for the glass substrate were prepared so as to have the compositions shown in Tables 1 to 3, and 0.1 part by mass of sulfate in terms of SO 3 with respect to 100 parts by mass of the raw material for the glass substrate component It added to the raw material, and it melted by heating at a temperature of 1600 ° C. for 3 hours using a platinum crucible. In melting, a platinum stirrer was inserted and stirred for 1 hour to homogenize the glass. Next, the molten glass was poured out and cooled after being formed into a plate shape.
  • Tg glass transition temperature
  • C viscosity
  • C compaction
  • Viscosity The viscosity is measured using a rotational viscometer, and the temperature T 2 (° C.) when the viscosity is 10 2 dPa ⁇ s and the temperature T 4 (° C.) when the viscosity is 10 4 dPa ⁇ s. was measured. Further, the coefficient of Fruchar's formula is obtained from the measurement result of the glass viscosity at a high temperature (1000 to 1600 ° C.) of the molten glass, and the glass viscosity at the glass internal devitrification temperature (T d ) is obtained by the Frucher's formula using the coefficient. Asked. (4) Compaction (C): Measured by the measurement method for compaction (C) described above.
  • Alkali elution amount ITO having a thickness of 100 nm is formed on a glass substrate (vertical 40 mm, horizontal 40 mm square, thickness 2 mm) by sputtering. Subsequently, heat treatment is performed by holding the sample in an electric furnace at 550 ° C. in an air atmosphere for 30 minutes. The sample is measured for integrated intensity of total In and total Na in the ITO film by secondary ion mass spectrometry (SIMS). The amount of alkali leaching is evaluated by the Na / In strength ratio.
  • SIMS secondary ion mass spectrometry
  • Devitrification temperature glass surface devitrification temperature (T c ) and glass internal devitrification temperature (T d )): Glass particles crushed in a platinum dish and placed in an electric furnace controlled at a constant temperature Heat treatment is performed for 17 hours, and the average value of the maximum temperature at which crystals are deposited on the surface of the glass and the minimum temperature at which crystals are not precipitated is determined by observation with an optical microscope after the heat treatment, and the glass surface devitrification temperature T c (° C.) The average value of the maximum temperature at which crystals precipitate inside and the minimum temperature at which crystals do not precipitate is defined as the glass internal devitrification temperature T d (° C.). The residual amount of SO 3 in the glass was 100 to 500 ppm.
  • the glass of the examples (Examples 1 to 4) has a high alkali elution amount and a high glass transition temperature Tg, and therefore can achieve both high power generation efficiency and high glass transition temperature. . Further, since the glass of the example has an average coefficient of thermal expansion at 50 to 350 ° C. of 100 ⁇ 10 ⁇ 7 / ° C. or less, when used as a glass substrate for CIGS solar cells, the difference in thermal expansion from the CIGS film becomes too large. Defects such as peeling are unlikely to occur.
  • the glass substrate is not easily deformed, which is preferable.
  • the glass substrate for a TFT panel there is little dimensional change in the panel manufacturing process, and pattern matching at the time of matching the color filter and the array plate becomes easy. Furthermore, since the influence on the quality by the thermal stress at the time of panel use is small, it is particularly preferable in terms of display quality.
  • the compaction (C) is 40 ppm or less, it is difficult to cause a positional shift at the time of film formation patterning on the glass substrate. Therefore, it can be suitably used as a glass substrate for TFT panels, particularly large glass panels having a side of 2 m or more, particularly for large-sized TFT panels, corresponding to the recent reduction in heat treatment temperature.
  • Examples 1 to 4 satisfy T 4 ⁇ T c ⁇ 0 ° C. or T 4 ⁇ T d ⁇ 150 ° C. while satisfying an average thermal expansion coefficient of 100 ⁇ 10 ⁇ 7 or less at Tg of 500 ° C. or more and 50 to 350 ° C. The devitrification at the time of plate glass forming is suppressed.
  • the glass of Examples (Examples 5 to 13) having the composition described in Table 2 also has a high alkali elution amount, a glass transition temperature Tg of 500 ° C. or higher, and an average coefficient of thermal expansion at 50 to 350 ° C. of 100 ⁇ 10 6.
  • a glass having ⁇ 7 / ° C. or less and a compaction (c) of 40 ppm or less is obtained.
  • T 4 -T d is ⁇ 45 ° C., and devitrification is likely to occur during sheet glass forming.
  • Tg is as low as about 477 ° C.
  • the average thermal expansion coefficient at 50 to 350 ° C. is as large as 102 ⁇ 10 ⁇ 7 / ° C.
  • the amount of SiO 2 is small, and the average coefficient of thermal expansion at 50 to 350 ° C. is as large as 106 ⁇ 10 ⁇ 7 / ° C.
  • the glass substrate of the present invention is suitable as a glass substrate and cover glass for CIGS solar cells, but can also be used for other solar cell substrates and cover glasses.
  • the glass substrate of the present invention is suitable as a glass substrate for a TFT panel, but can be used for other display substrates such as a plasma display panel (PDP), an inorganic electroluminescence display, and the like.
  • PDP plasma display panel
  • inorganic electroluminescence display and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Crystal (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

 本発明は、高いガラス転移点温度を有し、低温(150~300℃)での熱処理においてコンパクション(C)が小さいガラス基板を提供する。本発明は、下記酸化物基準の質量百分率表示で、SiOを68~81%、Alを0.2~18%、Bを0~3%、MgOを0.2~11%、CaOを0~3%、SrOを0~3%、BaOを0~3%、ZrOを0~1%、NaOを1~18%、KOを0~15%、LiOを0~2%含有し、Al+K2Oが7~27%、NaO+KOが11.5~22%、MgO+CaO+SrO+BaOが0.2~14%、MgO+0.357Al-0.239KO-5.58が-3.0~1.5、NaO+0.272Al+0.876KO-16.77が-2.5~2.5であり、ガラス転移点温度が500℃以上、50~350℃における平均熱膨張係数が100×10-7/℃以下である、ガラス基板に関する。

Description

ガラス基板およびその製造方法
 本発明は、ガラス基板に関する。特に、ガラス基板の間に光電変換層が形成されている太陽電池、典型的にはガラス基板とカバーガラスとを有しガラス基板上に11族、13族、16族元素を主成分とした光電変換層が形成されている薄膜太陽電池用ガラス基板に関するものである。また、液晶ディスプレイ(LCD)パネル(特にTFTパネル)、プラズマディスプレイパネル(PDP)等、各種ディスプレイパネルに用いるディスプレイパネル用ガラス基板に関する。
 カルコパイライト結晶構造を持つ11-13族、11-16族化合物半導体や立方晶系あるいは六方晶系の12-16族化合物半導体は可視から近赤外の波長範囲の光に対して大きな吸収係数を有しているために、高効率薄膜太陽電池の材料として期待されている。代表的な例としてCu(In,Ga)Se(以下、CIGSと記述する。)やCdTeがあげられる。
 CIGS薄膜太陽電池では、安価であることと熱膨張係数がCIGS化合物半導体のそれに近いこととから、ソーダライムガラスが基板として用いられ、太陽電池が得られている。
 また、効率の良い太陽電池を得るため、高温の熱処理温度に耐えうるガラス材料の提案もされている(特許文献1参照)。
 また、TFTパネル用(「a-Si TFTパネル用」)のガラス基板として、アルカリ金属酸化物を含有するアルカリガラス基板を使用することも提案されている(特許文献1、2参照)。これはTFTパネル製造工程における熱処理を、従来350~450℃で行ってきたものを比較的低温(250~300℃程度)で行うことが可能になりつつあるためである。
 アルカリ金属酸化物を含有するガラスは、一般的に熱膨張係数が高いため、TFTパネル用のガラス基板として好ましい熱膨張係数とする目的で、熱膨張係数を低減させる効果を有するB23が通常含有される(特許文献2、3)。
 しかしながら、Bを含有するガラス組成とした場合、ガラスを溶融した際に、特に溶解工程、清澄工程およびフロート成形工程において、Bが揮散するため、ガラス組成が不均質になりやすい。ガラス組成が不均質になると、板状に成形する際の平坦性に影響を与える。TFTパネル用のガラス基板は、表示品質確保のため、液晶を挟む2枚のガラス間隔、すなわちセルギャップを一定に保つために高度の平坦度が要求される。このため所定の平坦度を確保するために、フロート法で板ガラスに成形された後、板ガラスの表面の研磨を行うが、成形後の板ガラスで所定の平坦性が得られていないと、研磨工程に要する時間が長くなり生産性が低下する。また、前記Bの揮散による環境負荷を考慮すると、溶融ガラス中のBの含有率はより低いことが好ましい。
 だが、B含有率が低いと、TFTパネル用のガラス基板として好ましい熱膨張係数まで下げること、および粘性の上昇を抑えつつ所定のTg等を得ることは困難であった。
日本国特開平11-135819号公報 日本国特開2006-137631号公報 日本国特開2006-169028号公報
 ガラス基板にはCIGS太陽電池の吸収層が形成されるが、特許文献1に開示されているように、発電効率の良い太陽電池を作製するにはより高温での熱処理が好ましく、ガラス基板にはそれに耐えうることが要求される。特許文献1では比較的徐冷点の高いガラス組成物が提案されているが、特許文献1に記載された発明が高い発電効率を有するとは必ずしもいえない。
 本発明者等はガラス基板のアルカリを所定範囲で増やすことによって発電効率を高くすることができることを発見したが、アルカリの増量はガラス転移点温度(Tg)の低下を招くという問題があった。
 このようにCIGS太陽電池に使用されるガラス基板において高い発電効率と高いガラス転移点温度とを両立させることは困難であるという問題があった。
 本発明は、特に高い発電効率と高いガラス転移点温度とを両立させるCIGS太陽電池に適したガラス基板を提供することを目的とする。
 また、本発明は、前述の低温での熱処理において、低温でのガラスのコンパクション(熱収縮率)がガラス基板上の成膜品質(成膜パターン精度)に大きく影響し得ることを見出した。本発明は、アルカリ金属酸化物を含有し、Bが少なく、TFTパネル製造工程における低温(150~300℃)での熱処理においてコンパクション(C)が小さく、ガラス基板上の成膜パターニング時の位置ずれが生じ難いTFTパネルに適したガラス基板を提供することを目的とする。
 本発明は、下記酸化物基準の質量百分率表示で、
 SiOを68~81%、
 Alを0.2~18%、
 Bを0~3%、
 MgOを0.2~11%、
 CaOを0~3%、
 SrOを0~3%、
 BaOを0~3%、
 ZrOを0~1%、
 NaOを1~18%、
 KOを0~15%、
 LiOを0~2%含有し、
 Al+KOが7~27%、
 NaO+KOが11.5~22%、
 MgO+CaO+SrO+BaOが0.2~14%、
 MgO+0.357Al-0.239KO-5.58が-3.0~1.5、
 NaO+0.272Al+0.876KO-16.77が-2.5~2.5であり、
 ガラス転移点温度が500℃以上、50~350℃における平均熱膨張係数が100×10-7/℃以下であるガラス基板を提供する。
 本発明のガラス基板は高い発電効率と高いガラス転移点温度とを両立させることができ、低コストで高効率なCu-In-Ga-Se太陽電池用ガラス基板として好適に用いることができる。
 また、本発明のガラス基板は、TFTパネル製造工程における低温(150~300℃)での熱処理においてコンパクション(C)が小さく(40ppm以下、好ましくは20ppm以下)、ガラス基板上の成膜パターニング時の位置ずれが生じ難い。したがって、近年の熱処理の低温化に対応した、特に大型のTFTパネル用のガラス基板、例えば、マザーガラスとして一辺が2m以上のガラス基板として好適に用いることができる。
 また、B含有率が低いので、ガラス製造時におけるBの揮散が少ないことから、ガラス基板の均質性に優れ、平坦性および生産性に優れている。
図1は本発明の太陽電池の実施形態の一例を模式的に表す断面図である。
<本発明のガラス基板>
 本発明のガラス基板は、下記酸化物基準の質量百分率表示で、
 SiOを68~81%、
 Alを0.2~18%、
 Bを0~3%、
 MgOを0.2~11%、
 CaOを0~3%、
 SrOを0~3%、
 BaOを0~3%、
 ZrOを0~1%、
 NaOを1~18%、
 KOを0~15%、
 LiOを0~2%含有し、
 Al+KOが7~27%、
 NaO+KOが11.5~22%、
 MgO+CaO+SrO+BaOが0.2~14%、
 MgO+0.357Al-0.239KO-5.58が-3.0~1.5、
 NaO+0.272Al+0.876KO-16.77が-2.5~2.5であり、
 ガラス転移点温度が500℃以上、50~350℃における平均熱膨張係数が100×10-7/℃以下であるガラス基板である。
 なお、本発明のガラス基板のガラス転移点温度(Tg)は500℃以上である。本発明のガラス基板のガラス転移点温度(Tg)は、CIGS太陽電池用ガラス基板として用いる場合は、高温における光電変換層の形成を担保するため525℃以上であるのが好ましく、550℃以上であるのがより好ましく、575℃以上であるのがさらに好ましい。
 なお、TFTパネル用ガラス基板として用いる場合は、上記範囲であることで、ガラス転移点温度(Tg)が高くなり、TFTパネル製造工程における低温熱処理(150℃~300℃)においてガラスの粘性が高くなるため、ガラス中のアルカリ成分のTFT素子への移動度が低くなり、TFTの性能劣化を抑えられる。
 また、本発明のガラス基板の50~350℃における平均線膨張係数は100×10-7/℃以下である。100×10-7/℃超では、CIGS太陽電池用ガラス基板として用いる場合は、CIGS膜との熱膨張差が大きくなりすぎ、剥がれ等の欠点が生じやすくなる。さらに、太陽電池を組立てる際(具体的にはCIGSの光電変換層を有するガラス基板とカバーガラスとを加熱して貼りあわせる際)ガラス基板が変形し易くなる恐れがある。また、TFTパネル用ガラス基板として用いる場合は、上記範囲であることで、パネルの製造工程での寸法変化が少なく、カラーフィルタを有する対向ガラス基板とTFTを有するアレイガラス基板の合せ時のパターン合せが容易となる。さらに、パネル使用時の熱応力による品質への影響が少ないことから、特に表示品質面で好ましい。
 なお、好ましくは95×10-7/℃以下、より好ましくは90×10-7/℃以下、さらに好ましくは85×10-7/℃以下である。CIGS膜との熱膨張差の点から、また対向ガラス基板に一般的なソーダライムガラスを用い、アレイガラス基板に本発明のガラス基板を用いる場合の両者の熱膨張差の点から、好ましくは60×10-7/℃以上、より好ましくは70×10-7/℃以上、さらに好ましくは75×10-7/℃以上である。
 
 本発明のガラス基板はコンパクション(C)が40ppm以下が好ましく、30ppm以下がより好ましく、20ppm以下がより好ましい。また、より好ましくは15ppm以下であり、さらに好ましくは10ppm以下である。40ppm以下(好ましくは20ppm以下)であると、TFTパネル製造工程における低温(150~300℃)での熱処理において、アレイガラス基板上へのTFT成膜パターニング時の位置ずれが生じ難い。
 本発明においてコンパクション(C)とは、次に説明する方法で測定した値を意味するものとする。
 初めに、対象となるガラス基板を1600℃で溶融した後、溶融ガラスを流し出し、板状に成形後冷却する。得られたガラス基板を研磨加工して100mm×20mm×2mmの試料を得る。
 次に、得られたガラス基板を転移点温度Tg+50℃まで加熱し、この温度で1分間保持した後、降温速度50℃/分で室温まで冷却する。その後、ガラス基板の表面に圧痕を長辺方向に2箇所、間隔A(A=90mm)で打つ。
 次にガラス基板を300℃まで昇温速度100℃/時(=1.6℃/分)で加熱し、300℃で1時間保持した後、降温速度100℃/時で室温まで冷却する。そして、再度、圧痕間距離を測定し、その距離をBとする。このようにして得たA、Bから下記式を用いてコンパクション(C)を算出する。なお、A、Bは光学顕微鏡を用いて測定する。
 C[ppm]=(A-B)/A×10
 本発明のガラス基板は、ガラス表面失透温度(T)が1200℃以下であることが好ましく、より好ましくは1100℃以下であり、さらに好ましくは1000℃以下である。
 ガラス表面失透温度(T)とは、白金製の皿に粉砕されたガラス粒子を入れ、一定温度に制御された電気炉中で17時間熱処理を行い、熱処理後の光学顕微鏡観察によって、ガラスの表面に結晶が析出する最高温度と結晶が析出しない最低温度との平均値である。
 また、本発明のガラス基板は、ガラス内部失透温度(T)が1200℃以下であることが好ましく、より好ましくは1100℃以下であり、さらに好ましくは1000℃以下である。
 ガラス内部失透温度(T)とは、白金製の皿に粉砕されたガラス粒子を入れ、一定温度に制御された電気炉中で17時間熱処理を行い、熱処理後の光学顕微鏡観察によって、ガラスの内部に結晶が析出する最高温度と結晶が析出しない最低温度との平均値である。
 Tにおけるガラス粘度は、104.5dPa・s以上であることが好ましく、より好ましくは10dPa・s以上、さらに好ましくは105.5dPa・s以上、特に好ましくは10dPa・s以上である。
 本発明のガラス基板は、粘度が10dPa・sとなる温度(T)が、1850℃以下であることが好ましく、より好ましくは1750℃以下であり、さらに好ましくは1650℃以下である。
 また、本発明のガラス基板は、粘度が10dPa・sとなる温度(T)が、1300℃以下であることが好ましく、より好ましくは1250℃以下であり、さらに好ましくは1200℃以下である。
 本発明のガラス基板は、密度が2.50g/cm以下であることが好ましく、より好ましくは2.45g/cm以下であり、さらに好ましくは2.42g/cm以下である。
 本発明のガラス基板において上記組成に限定する理由は以下のとおりである。
 SiO:ガラスの骨格を形成する成分で、68質量%(以下単に%と記載する)未満ではガラスの耐熱性および化学的耐久性が低下し、また、密度、50~350℃における平均熱膨張係数およびコンパクション(c)が増大するおそれがある。好ましくは69%以上であり、より好ましくは70%以上であり、さらに好ましくは70.5%以上である。
 しかし、81%超ではガラスの高温粘度が上昇し、溶融性が悪化する問題が生じるおそれがある。好ましくは80%以下であり、より好ましくは78%以下であり、さらに好ましくは77%以下であり、特に好ましくは76%以下である。
 Al:ガラス転移点温度を上げ、耐候性(ソラリゼーション)、耐熱性および化学的耐久性を向上し、ヤング率を上げる。その含有量が0.2%未満だとガラス転移点温度が低下するおそれがある。また50~350℃における平均熱膨張係数およびコンパクション(c)が増大するおそれがある。好ましくは1%以上であり、より好ましくは2%以上であり、さらに好ましくは4%以上である。
 しかし、18%超では、ガラスの高温粘度が上昇し、溶融性が悪くなるおそれがある。また、失透温度(ガラス表面における表面失透温度(T)およびガラス内部における内部失透温度(T))が上昇し、成形性が悪くなるおそれがある。また発電効率が低下、すなわち後述するアルカリ溶出量が低下するおそれがある。好ましくは16%以下であり、より好ましくは14%以下であり、さらに好ましくは12%以下である。
 Bは、溶融性を向上させる等のために3%まで含有してもよい。含有量が3%を超えるとガラス転移点温度が下がる、または50~350℃における平均熱膨張係数が小さくなり、CIGS太陽電池用ガラス基板として用いる場合は、CIGS膜を形成するプロセスにとって好ましくない。好ましくは含有量が2%以下である。含有量が1%以下であるとより好ましく、実質的に含有しないことがさらに好ましい。
 なお、「実質的に含有しない」とは、原料等から混入する不可避的不純物以外には含有しないこと、すなわち、意図的に含有させないことを意味する。
 TFTパネル用ガラス基板として用いる場合、B含有率が低いと、ガラス基板製造時にガラスを溶融する際の、溶解工程、清澄工程および成形工程での、Bの揮散量が少なく、製造されるガラス基板が均質性および平坦性に優れる。その結果、高度の平坦性が要求されるTFTパネル用ガラス基板として使用する場合に、従来のTFTパネル用ガラス基板に比べて、表示品質に優れる。
 また、Bの揮散による環境負荷を考慮しても、Bの含有率はより低いことが好ましい。
 MgO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させるが、0.2%未満だとガラスの高温粘度が上昇し溶融性が悪化するおそれがある。また発電効率が低下、すなわち後述するアルカリ溶出量が低下するおそれがある。より好ましくは0.5%以上であり、より好ましくは1%以上であり、さらに好ましくは2%以上である。
 しかし、11%超では、50~350℃における平均熱膨張係数およびコンパクション(c)が増大するおそれがある。また失透温度(T)が上昇するおそれがある。好ましくは10%以下であり、より好ましくは9%以下であり、さらに好ましくは8%以下である。
 CaO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、3%超ではガラスの50~350℃における平均熱膨張係数およびコンパクション(c)が増大するおそれがある。好ましくは2%以下であり、より好ましくは1%以下であり、さらに好ましくは実質的に含有しない。
 SrO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、3%超含有すると発電効率が低下、すなわち後述するアルカリ溶出量が低下し、またガラス基板の50~350℃における平均熱膨張係数およびコンパクション(c)が増大するおそれがある。好ましくは2%以下であり、より好ましくは1%以下であり、さらに好ましくは実質的に含有しない。
 BaO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、3%超含有すると発電効率が低下、すなわち後述するアルカリ溶出量が低下し、またガラス基板の50~350℃における平均熱膨張係数およびコンパクション(c)が大きくなるおそれがある。好ましくは2%以下であり、より好ましくは1%以下であり、さらに好ましくは実質的に含有しない。
 ZrO2:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、1%超含有すると発電効率が低下、すなわち後述するアルカリ溶出量が低下し、またガラス基板の密度、50~350℃における平均熱膨張係数およびコンパクション(c)が増大するおそれがある。0.5%以下が好ましく、実質的に含有しないことがより好ましい。
 SrO、BaO、ZrOはガラスの溶解時の粘性を下げ溶解しやすくなるため、合量で3%まで含有できる。しかし3%を超えると、CIGS太陽電池用ガラス基板として用いる場合の発電効率の低下や、TFTパネル用ガラス基板として用いる場合に重要なコンパクション(C)が増大するおそれがある。より好ましくは2%以下、さらに好ましくは1%以下、特に好ましくは実質的に含有しない。
 MgO、CaO、SrOおよびBaOは、ガラスの溶解温度での粘性を下げ、溶解しやすくするため、合量で0.2%以上とする。しかし、合量で14%超ではガラスの50~350℃における平均熱膨張係数およびコンパクション(C)が増大するおそれがある。
 また、密度や50~350℃における平均熱膨張係数の点から、0.5%以上が好ましく、1%以上がより好ましく、2%以上がさらに好ましい。また、12%以下が好ましく、10%以下がより好ましく、8%以下がさらに好ましい。
 また、AlとMgOとの合量は、コンパクション(C)低減を考慮すると、8%以上が好ましく、10%以上がより好ましく、11%以上がさらに好ましい。
 NaO:NaOはガラス溶解温度での粘性を下げ、溶解しやすくする効果があるので1~18%含有させる。なお、CIGS太陽電池用ガラス基板として用いる場合、NaOはCIGSの太陽電池の変換効率向上に寄与するための成分であり、必須成分である。Naはガラス上に構成されたCIGSの太陽電池の吸収層中に拡散し、変換効率を高めるが、含有量が1%未満ではガラス上のCIGSの太陽電池吸収層へのNa拡散が不十分となり、変換効率も不十分となるおそれがある。含有量が2%以上であると好ましく、3%以上であるとより好ましい。4%以上であるとさらに好ましい。
 NaO含有量が18%を超えると50~350℃における平均熱膨張係数およびコンパクション(c)が大きくなり、または化学的耐久性が劣化する。含有量が17%以下であると好ましく、16%以下であるとより好ましい。15%以下であるとさらに好ましい。
 KO:NaOと同様の効果があるため、0~15%含有させる。しかし、15%超では、ガラス転移点温度が低下し50~350℃における平均熱膨張係数およびコンパクション(c)が大きくなるおそれがある。CIGS太陽電池用ガラス基板として用いる場合は、KOの含有量が15%超では、発電効率が低下、すなわち後述するアルカリ溶出量が低下するおそれがある。含有する場合は1%以上であるのが好ましい。14%以下が好ましく、13%以下であることがより好ましく、12.5%以下であるのがさらに好ましい。
 LiO:ガラス溶解温度での粘性を下げ、溶解しやすくするため0~2%含有させることができる。しかし、2%超含有するとガラス転移点の低下をもたらすおそれがある。また、50~350℃の平均熱膨張係数が100×10-7/℃以下とするためにも2%以下が好ましい。
 LiOの含有率は1%以下が好ましく、0.5%以下がより好ましく、実質的に含有しないことがさらに好ましい。
 AlおよびKO:50~350℃における平均熱膨張係数を下げるため、またTgを上げるために、AlおよびKOの合量の含有量は、7~27%とする。7%未満では、Tgが下がり、またTおよびTが上がりすぎるおそれがある。好ましくは8%以上であり、より好ましくは9%以上であり、さらに好ましくは10%以上である。
 しかし、27%超ではT、T、密度が上がりすぎるおそれがある。好ましくは24%以下であり、より好ましくは20%以下であり、さらに好ましくは18%以下である。
 NaOおよびKO:ガラス溶解温度での粘性を十分に下げるために、またCIGS太陽電池用ガラス基板として用いた場合のCIGS太陽電池の変換効率向上のために、NaOおよびKOの合量の含有量は、11.5~22%とする。好ましくは12%以上であり、より好ましくは13%以上であり、さらに好ましくは14%以上である。
 しかし、22%超ではTgが下がりすぎ、50~350℃における平均熱膨張係数が上がりすぎるおそれがある。好ましくは20%以下であり、より好ましくは19%以下であり、さらに好ましくは18%以下である。
 MgO、AlおよびKO:MgO、AlおよびKOは、下記式1が-3.0~1.5を満たすように含有する。
 MgO+0.357Al-0.239KO-5.58 (式1)
 上記式は、後述するT-T≧0℃、またはT-T≧150℃を満たすための指標となる。本発明者等は、実験および試行錯誤の結果から、上記の各成分が本願の範囲を満たし、且つ、上記式で得られる値が-3.0~1.5となる場合に、Tg500℃以上および50~350℃における平均熱膨張係数100×10-7以下を満足させつつ、T-T≧0℃、またはT-T≧150℃を満たすことを見出した。好ましくは-2.0以上であり、より好ましくは-1.5以上であり、さらに好ましくは-1.0以上である。また、好ましくは1.0以下である。
 NaO、AlおよびKO:NaO、AlおよびKOは、下記式2が-2.5~2.5となるように含有する。
 NaO+0.272Al+0.876KO-16.77 (式2)
 上記式は、後述するT-T≧0℃、またはT-T≧150℃を満たすための指標となる。本発明者等は、実験および試行錯誤の結果から、上記の各成分が本願の範囲を満たし、且つ、上記式で得られる値が-2.5~2.5となる場合に、Tg500℃以上および50~350℃における平均熱膨張係数100×10-7以下を満足させつつ、T-T≧0℃、またはT-T≧150℃を満たすことを見出した。好ましくは-2.0以上であり、より好ましくは-1.5以上であり、さらに好ましくは-1.0以上である。好ましくは2.0以下であり、より好ましくは1.5以下であり、さらに好ましくは1.0以下である。
 本発明のガラス基板は、好ましくは本質的に上記母組成からなるが、本発明の目的を損なわない範囲でその他の成分を含有しても良い。CIGS太陽電池用ガラス基板として用いる場合は、その他の成分を典型的には合計で5%以下含有してもよい。たとえば、耐候性、溶融性、失透性、紫外線遮蔽等の改善を目的に、ZnO、LiO、WO、Nb、V、Bi、MoO、P等を含有してもよい場合がある。
 また、ガラスの溶解性、清澄性を改善するため、ガラス中にSO、F、Cl、SnOを合量で2%以下含有するように、これらの原料を母組成原料に添加してもよい。TFTパネル用ガラス基板として用いる場合は、これらの添加はより好ましい。
 また、ガラスの化学的耐久性向上のため、ガラス中にZrO、Y、La、TiO2、SnO2を合量で5%以下含有させてもよい。これらのうちY23、La23およびTiOは、ガラスのヤング率向上にも寄与する。
 また、ガラスの色調を調整するため、ガラス中にFe、CeO等の着色剤を含有してもよい。このような着色剤の含有量は、合量で1%以下が好ましい。
 また、本発明のガラス基板は、環境負荷を考慮すると、As、Sbを実質的に含有しないことが好ましい。また、安定してフロート成形することを考慮すると、ZnOを実質的に含有しないことが好ましい。しかし、本発明のガラス基板は、フロート法による成形に限らず、フュージョン法による成形により製造してもよい。
<本発明のガラス基板の製造方法および用途>
 本発明のガラス基板は、CIGS太陽電池用ガラス基板やTFTパネル用ガラス基板として好適に用いることができる。以下、詳しく説明する。
(1)ガラス基板の製造方法
 本発明におけるガラス基板を製造する場合、従来の太陽電池用またはTFTパネル用ガラス基板を製造する際と同様に、溶解・清澄工程および成形工程を実施する。なお、本発明におけるガラス基板は、アルカリ金属酸化物(NaO、KO)を含有するアルカリガラス基板であるため、清澄剤としてSOを効果的に用いることができ、成形方法としてフロート法およびフュージョン法(ダウンロード法)に適している。
 太陽電池用またはTFTパネル用ガラス基板の製造工程において、太陽電池やTFTパネルの大型化に伴い、大面積のガラス基板を容易に、安定して成形できるフロート法を用いることが特に好ましい。
 なお、本発明のガラス基板の成形方法として、フロート法およびフュージョン法(ダウンロード法)が適用できるが、板ガラス成形時の失透防止を考慮すると、ガラス基板の物性としてフュージョン法のときはT-T≧150℃、さらにはT-T≧200℃を満たすことが好ましい。また、フロート法のときはT-T≧0℃、さらにはT-T≧50℃を満たすことが好ましい。
 本発明におけるガラス基板の製造方法の好ましい態様について説明する。
 初めに、原料を溶解して得た溶融ガラスを板状に成形する。例えば、得られるガラス基板の組成となるように原料を調製し、前記原料を溶解炉に連続的に投入し、1450~1650℃程度に加熱して溶融ガラスを得る。そしてこの溶融ガラスを例えばフロート法を適用してリボン状のガラス基板に成形する。
 次に、リボン状のガラス基板を成形炉から引出した後に、冷却手段によって室温状態まで冷却し、切断後、ガラス基板を得る。
 ここで冷却手段は、前記成形炉から引出されたリボン状のガラス基板の表面温度をT(℃)、室温をT(℃)とし、さらに前記リボン状ガラス基板の表面温度がTからTに冷却されるまでの時間をt(分)とした場合に、(T-T)/tで示される平均冷却速度を10~300℃/分とする冷却手段である。具体的な冷却手段は特に限定されず、従来公知の冷却方法であってよい。例えば温度勾配を持った加熱炉を用いる方法が挙げられる。
 Tは、ガラス転移点温度Tg+20℃、具体的には540~730℃が好ましい。
 前記平均冷却速度は15~150℃/分であることが好ましく、20~80℃/分であることがより好ましく、40~60℃/分であることがさらに好ましい。上記のガラス基板製造方法により、コンパクション(C)が40ppm以下、好ましくは20ppm以下のガラス基板が容易に得られる。
(2)CIGS太陽電池用ガラス基板
 本発明のガラス基板は、CIGS太陽電池用ガラス基板に好適に用いることができる。
 本発明におけるCIGS太陽電池用ガラス基板はアルカリ溶出量(後述のNa/Inの強度比)が0.15以上であることが好ましい。より好ましくは0.2以上である。
 本発明におけるCIGS太陽電池用ガラス基板は、CIGS太陽電池用ガラス基板、およびカバーガラスとして好適である。
 CIGS太陽電池用ガラス基板に適用する場合、ガラス基板の厚さは3mm以下とするのが好ましく、より好ましくは2mm以下である。またガラス基板にCIGSの光電変換層を付与する方法は特に制限されない。光電変換層を形成する際の加熱温度を500~650℃とすることができる。
 本発明におけるCIGS太陽電池用ガラス基板をカバーガラスとして使用する場合、カバーガラスの厚さは3mm以下とするのが好ましく、より好ましくは2mm以下である。また光電変換層を有するガラス基板にカバーガラスを組立てる方法は特に制限されない。加熱して組立てる場合その加熱温度を500~650℃とすることができる。
 本発明のガラス基板をCIGS太陽電池用ガラス基板およびカバーガラスに併用すると、50~350℃における平均熱膨張係数が同等であるため太陽電池組立時の熱変形等が発生せず好ましい。
(3)CIGS太陽電池
 次に、本発明に係る太陽電池について説明する。
 本発明に係る太陽電池は、Cu-In-Ga-Seの光電変換層を有するガラス基板と前記ガラス基板上に配置されたカバーガラスとを有し、前記ガラス基板および前記カバーガラスのうちの一方または両方が本発明のガラス基板である。
 以下添付の図面を使用して本発明に係る太陽電池を詳細に説明する。なお本発明は添付の図面に限定されない。
 図1は本発明に係る太陽電池の実施形態の一例を模式的に表す断面図である。
 図1において、本発明に係る太陽電池(CIGS太陽電池)1は、ガラス基板5、カバーバラス19、およびガラス基板5とカバーガラス19との間にCIGS層9を有する。ガラス基板5は上記で説明した本発明のガラス基板からなるのが好ましい。
 太陽電池1はガラス基板5上にプラス電極7であるMo膜の裏面電極層を有しその上にCIGS層9である光吸収層(光電変換層)を有する。CIGS層の組成はCu(In1-XGaX)Seが例示できる。xはInとGaの組成比を示すもので0<n<1である。CIGS層9上にはバッファ層11として、CdS(硫化カドミウム)またはZnS(亜鉛硫化物)層を介してZnOまたはITOの透明導電膜13を有し、さらにその上にマイナス電極15であるAl電極(アルミニウム電極)等の取出し電極を有する。これらの層の間の必要な場所には反射防止膜を設けてもよい。図1においては透明導電膜13とマイナス電極15との間に反射防止膜17が設けられている。
 またマイナス電極15上にカバーガラス19を設けてもよく、必要な場合はマイナス電極とカバーガラスとの間は樹脂封止したり接着用の透明樹脂で接着される。カバーガラスは本発明に係るCIGS太陽電池用ガラス基板を用いてもよい。
 本発明において光電変換層の端部または太陽電池の端部は封止されていてもよい。封止するための材料としては例えば本発明のCIGS太陽電池用ガラス基板と同じ材料、その他のガラス、樹脂が挙げられる。
 なお添付の図面に示す太陽電池の各層の厚さは図面に限定されない。
(4)TFTパネル
 本発明のガラス基板は、TFTパネル用ガラス基板に好適に用いることができる。
 本発明のガラス基板の表面に、アレイ基板におけるゲート絶縁膜を成膜する成膜工程を具備するTFTパネルの製造方法について説明する。
 本発明のガラス基板を用いたTFTパネルの製造方法は、本発明のガラス基板の表面の成膜領域を150~300℃の範囲内の温度(以下、成膜温度という)まで昇温した後、前記成膜温度で5~60分間保持して、前記成膜領域に前記アレイ基板ゲート絶縁膜を成膜する成膜工程を具備するものであれば特に限定されない。ここで成膜温度は150~250℃であることが好ましく、150~230℃であることがより好ましく、150~200℃であることがさらに好ましい。また、この成膜温度に保持する時間は5~30分間であることが好ましく、5~20分間であることがより好ましく、5~15分間であることがさらに好ましい。
 ゲート絶縁膜の成膜は上記のような成膜温度および保持時間の範囲内で行われるので、この間にガラス基板が熱収縮する。なお、一度ガラス基板が熱収縮した後は、その後の冷却条件(冷却速度等)によっては、上記の熱収縮の結果に大きな影響を及ぼさない。本発明におけるTFTパネル用ガラス基板はコンパクション(C)が小さいので、ガラス基板の前記熱収縮が小さく、成膜パターンのずれが生じ難い。
 成膜工程における成膜は、例えば従来公知のCVD法によって達成することができる。
 本発明に係るTFTパネルの製造方法では、公知の方法によってアレイ基板を得ることができる。そして、該アレイ基板を用いて以下のような公知の工程によりTFTパネルを製造することができる。
 すなわち、前記アレイ基板、カラーフィルタ基板各々に配向膜を形成し、ラビングを行う配向処理工程、TFTアレイ基板とカラーフィルタ基板を所定のギャップを保持して高精度で貼り合せる貼り合せ工程、基板よりセルを所定サイズに分断する分断工程、分断されたセルに液晶を注入する注入工程、セルに偏光板を貼り付ける偏光板貼り付け工程からなる一連の工程によりTFTパネルを製造することができる。
 なお、本発明のガラス基板をTFTパネル用ガラス基板として用いる場合、TFTパネルの製造が低温での熱処理であればアルカリ溶出が抑制されるので大きく影響を与えるものではない。
 また、本発明のガラス基板は、周知の方法で化学強化して用いることができるが、TFTパネルの表示品質向上や太陽電池パネルの電池効率向上のために、ガラス基板の平坦性を考慮すると化学強化しないことが好ましい。
 以下、実施例および製造例により本発明をさらに詳しく説明するが、本発明はこれら実施例および製造例に限定されない。
 本発明のガラス基板の実施例(例1~13)および比較例(例14~16)を示す。なお表中のかっこは、計算値である。
 表1~3で表示した組成になるように、ガラス基板用の各成分の原料を調合し、該ガラス基板用成分の原料100質量部に対し、硫酸塩をSO換算で0.1質量部原料に添加し、白金坩堝を用いて1600℃の温度で3時間加熱し溶融した。溶融にあたっては、白金スターラーを挿入し1時間攪拌しガラスの均質化を行った。次いで溶融ガラスを流し出し、板状に成形後冷却した。
 こうして得られたガラスの50~350℃における平均熱膨張係数(単位:×10-7/℃)、ガラス転移点温度(Tg)(単位:℃)、密度、粘度、コンパクション(C)、下記アルカリ溶出量、失透温度(ガラス表面失透温度(T)、ガラス内部失透温度(T))を測定し、また、T-TとT-Tを算出し、表1および3に示した。以下に各物性の測定方法を示す。
(1)Tg:TgはTMAを用いて測定した値であり、JIS R3103-3(2001年度)により求めた。
(2)密度:泡を含まない約20gのガラス塊をアルキメデス法によって測定した。
(3)粘度:回転粘度計を用いて粘度を測定し、粘度が10dPa・sとなるときの温度T(℃)と、10dPa・sとなるときの温度T(℃)を測定した。
 また、溶融ガラスの高温(1000~1600℃)におけるガラス粘度の測定結果から、フルチャーの式の係数を求め、該係数を用いたフルチャーの式により、ガラス内部失透温度(T)におけるガラス粘度を求めた。
(4)コンパクション(C):前述のコンパクション(C)の測定方法により測定した。
(5)アルカリ溶出量:ガラス基板(縦40mm、横40mmの角型、厚さ2mm)上にスパッタ法にて厚さ100nmのITOを成膜する。つづいて電気炉で550℃にて大気雰囲気下でサンプルを30分間保持して熱処理を行う。試料を二次イオン質量分析法(SIMS)にてITO膜中の全Inと全Naの積分強度を測定する。アルカリの浸み出し量をNa/Inの強度比で評価する。
(6)50~350℃の平均熱膨張係数:示差熱膨張計(TMA)を用いて測定し、JIS R3102(1995年度)より求めた。
(7)失透温度(ガラス表面失透温度(T)及びガラス内部失透温度(T)):白金製皿に粉砕されたガラス粒子を入れ、一定温度に制御された電気炉中で17時間熱処理を行い、熱処理後の光学顕微鏡観察によって、ガラスの表面に結晶が析出する最高温度と結晶が析出しない最低温度との平均値をガラス表面失透温度T(℃)、またガラスの内部に結晶が析出する最高温度と結晶が析出しない最低温度との平均値をガラス内部失透温度T(℃)とする。
 ガラス中のSO残存量は100~500ppmであった。
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1より明らかなように、実施例(例1~4)のガラスは、アルカリ溶出量が高く、ガラス転移点温度Tgが高く、したがって高い発電効率と高いガラス転移点温度とを両立させることできる。また、実施例のガラスは50~350℃における平均熱膨張係数が100×10-7/℃以下であるので、CIGS太陽電池用ガラス基板として用いる場合、CIGS膜との熱膨張差が大きくなりすぎ、剥がれ等の欠点が生じにくい。
 さらに、太陽電池を組立てる際(具体的にはCIGSの光電変換層を有するガラス基板とカバーガラスとを加熱して貼りあわせる際)ガラス基板が変形しにくいため好ましい。また、TFTパネル用ガラス基板として用いる場合は、パネルの製造工程での寸法変化が少なく、カラーフィルタとアレイ板の合せ時のパターン合せが容易となる。さらに、パネル使用時の熱応力による品質への影響が少ないことから、特に表示品質面で好ましい。
 また、コンパクション(C)が40ppm以下であるため、ガラス基板上の成膜パターニング時の位置ずれが生じにくい。したがって、近年の熱処理の低温化に対応した、特に大型のTFTパネル用ガラス基板、例えば、マザーガラスとして一辺が2m以上のガラス基板として好適に用いることができる。
 また、例1~4は、Tg500℃以上および50~350℃における平均熱膨張係数100×10-7以下を満足させつつ、T-T≧0℃、またはT-T≧150℃を満たしており、板ガラス成形時の失透が抑えられる。
 表2に記載の組成を有する、実施例(例5~13)のガラスも、アルカリ溶出量が高く、ガラス転移点温度Tgが500℃以上、50~350℃における平均熱膨張係数が100×10-7/℃以下で、且つコンパクション(c)が40ppm以下のガラスが得られる。
 例14は、上記T-Tが-45℃であり、板ガラス成形時に失透が起こり易い。
 例15は、Al+KOが4.9%と少ないためTgが477℃程度と低い。また、50~350℃における平均熱膨張係数も102×10-7/℃と大きい。例16は、SiOが少なく、50~350℃における平均熱膨張係数が106×10-7/℃と大きい。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2010年6月3日出願の日本特許出願2010-127709に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のガラス基板は、CIGSの太陽電池用のガラス基板、カバーガラスとして好適であるが、他の太陽電池用基板やカバーガラスに使用することもできる。
 また、本発明のガラス基板は、TFTパネル用ガラス基板として好適であるが、他のディスプレイ用基板、例えば、プラズマディスプレイパネル(PDP)、無機エレクトロ・ルミネッセンス・ディスプレイ等に使用することができる。
1 太陽電池
5 ガラス基板
7 プラス電極
9 CIGS層
11 バッファ層
13 透明導電膜
15 マイナス電極
17 反射防止膜
19 カバーガラス

Claims (5)

  1.  下記酸化物基準の質量百分率表示で、
     SiOを68~81%、
     Alを0.2~18%、
     Bを0~3%、
     MgOを0.2~11%、
     CaOを0~3%、
     SrOを0~3%、
     BaOを0~3%、
     ZrOを0~1%、
     NaOを1~18%、
     KOを0~15%、
     LiOを0~2%含有し、
     Al+KOが7~27%、
     NaO+KOが11.5~22%、
     MgO+CaO+SrO+BaOが0.2~14%、
     MgO+0.357Al-0.239KO-5.58が-3.0~1.5、
     NaO+0.272Al+0.876KO-16.77が-2.5~2.5であり、
     ガラス転移点温度が500℃以上、50~350℃における平均熱膨張係数が100×10-7/℃以下であるガラス基板。
  2.  粘度が10dPa・Sとなる温度(T)とガラス表面失透温度(T)との関係が、T-T≧0℃である請求項1に記載のガラス基板。
  3.  粘度が10dPa・Sとなる温度(T)とガラス内部失透温度(T)との関係が、T-T≧150℃である請求項1に記載のガラス基板。
  4.  原料を溶解して得た溶融ガラスをフロート法を用いて板ガラス成形し、請求項2に記載のガラス基板を得るガラス基板の製造方法。
  5.  原料を溶解して得た溶融ガラスをフュージョン法を用いて板ガラス成形し、請求項3に記載のガラス基板を得るガラス基板の製造方法。
PCT/JP2011/062520 2010-06-03 2011-05-31 ガラス基板およびその製造方法 WO2011152414A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012518408A JPWO2011152414A1 (ja) 2010-06-03 2011-05-31 ガラス基板およびその製造方法
CN2011800274646A CN102933515A (zh) 2010-06-03 2011-05-31 玻璃基板及其制造方法
EP11789817.1A EP2578550A4 (en) 2010-06-03 2011-05-31 GLASS SUBSTRATE AND METHOD OF PRODUCING THE SAME
KR1020127031409A KR20130098877A (ko) 2010-06-03 2011-05-31 유리 기판 및 그의 제조 방법
US13/692,536 US8921245B2 (en) 2010-06-03 2012-12-03 Glass substrate and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-127709 2010-06-03
JP2010127709 2010-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/692,536 Continuation US8921245B2 (en) 2010-06-03 2012-12-03 Glass substrate and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2011152414A1 true WO2011152414A1 (ja) 2011-12-08

Family

ID=45066776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062520 WO2011152414A1 (ja) 2010-06-03 2011-05-31 ガラス基板およびその製造方法

Country Status (7)

Country Link
US (1) US8921245B2 (ja)
EP (1) EP2578550A4 (ja)
JP (1) JPWO2011152414A1 (ja)
KR (1) KR20130098877A (ja)
CN (1) CN102933515A (ja)
TW (1) TW201144248A (ja)
WO (1) WO2011152414A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102346A1 (ja) * 2011-01-28 2012-08-02 旭硝子株式会社 Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池
WO2014057890A1 (ja) * 2012-10-09 2014-04-17 旭硝子株式会社 太陽電池用カバーガラス
US20140235425A1 (en) * 2011-10-31 2014-08-21 Asahi Glass Company, Limited Glass substrate and method for producing same
JP2016147792A (ja) * 2015-02-13 2016-08-18 旭硝子株式会社 ガラス基板
JP2020515498A (ja) * 2017-03-31 2020-05-28 コーニング インコーポレイテッド 高透過ガラス
CN113727953A (zh) * 2019-04-26 2021-11-30 Agc株式会社 熔融盐组合物的寿命延长方法、化学强化玻璃的制造方法、玻璃助剂和玻璃的原材料

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647995B2 (en) 2009-07-24 2014-02-11 Corsam Technologies Llc Fusion formable silica and sodium containing glasses
JPWO2011049146A1 (ja) * 2009-10-20 2013-03-14 旭硝子株式会社 Cu−In−Ga−Se太陽電池用ガラス板およびこれを用いた太陽電池
CN106068245A (zh) * 2014-03-31 2016-11-02 旭硝子欧洲玻璃公司 可化学回火的玻璃板
WO2015199150A1 (ja) * 2014-06-27 2015-12-30 旭硝子株式会社 ガラス、および、それを用いた化学強化ガラス
WO2016010050A1 (ja) * 2014-07-18 2016-01-21 旭硝子株式会社 防眩処理用ガラス、および、それを用いた防眩ガラス
JPWO2016125792A1 (ja) 2015-02-06 2017-12-14 旭硝子株式会社 光選択透過型ガラスおよび積層基板
GB201505091D0 (en) 2015-03-26 2015-05-06 Pilkington Group Ltd Glass

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111974A (ja) * 1997-06-20 1999-01-19 Nippon Sheet Glass Co Ltd 磁気記録媒体用ガラス基板
JPH11135819A (ja) 1997-10-31 1999-05-21 Matsushita Electric Ind Co Ltd 化合物薄膜太陽電池
JPH11240735A (ja) * 1998-02-27 1999-09-07 Asahi Glass Co Ltd 基板として用いるためのガラス組成物
JP2001261373A (ja) * 2000-03-22 2001-09-26 Central Glass Co Ltd 薄膜の形成方法および薄膜付き板ガラス
JP2005314169A (ja) * 2004-04-28 2005-11-10 Matsushita Electric Ind Co Ltd ランプ用ガラス組成物およびこれを用いたランプ
JP2006137631A (ja) 2004-11-11 2006-06-01 Nippon Electric Glass Co Ltd ガラス基板及びその製造方法
JP2006169028A (ja) 2004-12-15 2006-06-29 Nippon Sheet Glass Co Ltd ガラス組成物およびその製造方法
JP2010277771A (ja) * 2009-05-27 2010-12-09 Noritake Co Ltd 固体酸化物形燃料電池システムおよび接合材

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE753189A (fr) * 1969-07-10 1970-12-16 Asahi Glass Co Ltd Procede de renforcement d'un article en verre par echange d'ions et produit ainsi obtenu
FR2761978B1 (fr) * 1997-04-11 1999-05-07 Saint Gobain Vitrage Composition de verre et substrat en verre trempe chimiquement
GB2335423A (en) * 1998-03-20 1999-09-22 Pilkington Plc Chemically toughenable glass
KR101451197B1 (ko) * 2007-06-07 2014-10-15 니폰 덴키 가라스 가부시키가이샤 강화유리기판 및 그 제조방법
CN101784494B (zh) 2007-08-31 2013-01-30 旭硝子株式会社 玻璃板及其制造方法以及tft面板的制造方法
CN101842328B (zh) 2007-11-06 2013-06-26 旭硝子株式会社 基板用玻璃板
EP2426094B1 (en) 2008-04-21 2014-10-22 Asahi Glass Company, Limited Glass plate for display panels, process for producing it, and process for producing TFT panel
JP5444846B2 (ja) * 2008-05-30 2014-03-19 旭硝子株式会社 ディスプレイ装置用ガラス板
EP2426093A4 (en) 2009-04-28 2014-05-14 Asahi Glass Co Ltd GLASS PLATE FOR A SUBSTRATE
US8647995B2 (en) * 2009-07-24 2014-02-11 Corsam Technologies Llc Fusion formable silica and sodium containing glasses
US8802581B2 (en) * 2009-08-21 2014-08-12 Corning Incorporated Zircon compatible glasses for down draw

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111974A (ja) * 1997-06-20 1999-01-19 Nippon Sheet Glass Co Ltd 磁気記録媒体用ガラス基板
JPH11135819A (ja) 1997-10-31 1999-05-21 Matsushita Electric Ind Co Ltd 化合物薄膜太陽電池
JPH11240735A (ja) * 1998-02-27 1999-09-07 Asahi Glass Co Ltd 基板として用いるためのガラス組成物
JP2001261373A (ja) * 2000-03-22 2001-09-26 Central Glass Co Ltd 薄膜の形成方法および薄膜付き板ガラス
JP2005314169A (ja) * 2004-04-28 2005-11-10 Matsushita Electric Ind Co Ltd ランプ用ガラス組成物およびこれを用いたランプ
JP2006137631A (ja) 2004-11-11 2006-06-01 Nippon Electric Glass Co Ltd ガラス基板及びその製造方法
JP2006169028A (ja) 2004-12-15 2006-06-29 Nippon Sheet Glass Co Ltd ガラス組成物およびその製造方法
JP2010277771A (ja) * 2009-05-27 2010-12-09 Noritake Co Ltd 固体酸化物形燃料電池システムおよび接合材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2578550A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102346A1 (ja) * 2011-01-28 2012-08-02 旭硝子株式会社 Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池
US20140235425A1 (en) * 2011-10-31 2014-08-21 Asahi Glass Company, Limited Glass substrate and method for producing same
JPWO2013065489A1 (ja) * 2011-10-31 2015-04-02 旭硝子株式会社 ガラス基板およびその製造方法
WO2014057890A1 (ja) * 2012-10-09 2014-04-17 旭硝子株式会社 太陽電池用カバーガラス
JP2016147792A (ja) * 2015-02-13 2016-08-18 旭硝子株式会社 ガラス基板
JP2020515498A (ja) * 2017-03-31 2020-05-28 コーニング インコーポレイテッド 高透過ガラス
JP7133563B2 (ja) 2017-03-31 2022-09-08 コーニング インコーポレイテッド 高透過ガラス
US11746038B2 (en) 2017-03-31 2023-09-05 Corning Incorporated High transmission glasses
CN113727953A (zh) * 2019-04-26 2021-11-30 Agc株式会社 熔融盐组合物的寿命延长方法、化学强化玻璃的制造方法、玻璃助剂和玻璃的原材料
CN113727953B (zh) * 2019-04-26 2023-06-27 Agc株式会社 熔融盐组合物的寿命延长方法、化学强化玻璃的制造方法、玻璃助剂和玻璃的原材料

Also Published As

Publication number Publication date
US20130267402A1 (en) 2013-10-10
TW201144248A (en) 2011-12-16
JPWO2011152414A1 (ja) 2013-08-01
EP2578550A1 (en) 2013-04-10
US8921245B2 (en) 2014-12-30
EP2578550A4 (en) 2015-02-18
KR20130098877A (ko) 2013-09-05
CN102933515A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
WO2011152414A1 (ja) ガラス基板およびその製造方法
JP6191138B2 (ja) ガラス
US8497220B2 (en) Glass substrate for solar cell
WO2011049146A1 (ja) Cu-In-Ga-Se太陽電池用ガラス板およびこれを用いた太陽電池
WO2012108345A1 (ja) ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板
JP5733811B2 (ja) 太陽電池用ガラス基板の製造方法
MX2012001054A (es) Vidrios que contienen sílice y sodio que se forman por fusión.
WO2012102346A1 (ja) Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池
WO2012053549A1 (ja) Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池
WO2013133273A1 (ja) Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池
TWI543952B (zh) 薄膜太陽電池用玻璃板
WO2013047246A1 (ja) CdTe太陽電池用ガラス基板およびそれを用いた太陽電池
WO2013108790A1 (ja) Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池
JP6128128B2 (ja) 太陽電池用ガラス基板およびそれを用いた太陽電池
WO2015076208A1 (ja) ガラス板
TW201412677A (zh) Cu-In-Ga-Se太陽電池用玻璃基板及使用其之太陽電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027464.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789817

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518408

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011789817

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127031409

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE